
Citation: Olague, G.;

Menendez-Clavijo, J.A.; Olague, M.;

Ocampo, A.; Ibarra-Vazquez, G.;

Ochoa, R.; Pineda, R. Automated

Design of Salient Object Detection

Algorithms with Brain Programming.

Appl. Sci. 2022, 12, 10686. https://

doi.org/10.3390/app122010686

Academic Editors: Andrea Prati and

Yuan-Kai Wang

Received: 19 September 2022

Accepted: 12 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Automated Design of Salient Object Detection Algorithms
with Brain Programming
Gustavo Olague 1,*,† , Jose Armando Menendez-Clavijo 1, Matthieu Olague 2, Arturo Ocampo 3,
Gerardo Ibarra-Vazquez 4,‡, Rocio Ochoa 5 and Roberto Pineda 1

1 CICESE Research Center, EvoVisión Laboratory, Department of Computer Science, Carretera
Tijuana-Ensenada 3918, Zona Playitas, Ensenada C.P. 22860, Mexico

2 Mechatronics Engineering Faculty, Anáhuac University–Queretaro, Calle Circuito Universidades I,
Kilómetro 7, Fracción 2, El Marqués, Queretaro C.P. 76246, Mexico

3 Faculty of Higher Studies Aragón, National Autonomous University of Mexico, Av Hacienda de Rancho Seco
S/N, Impulsora Popular Avicola, Nezahualcóyotl C.P. 57130, Mexico

4 Facultad de Ingeniería, Autonomous University of San Luis Potosí, Dr. Manuel Nava 8, Col. Zona
Universitaria Poniente, San Luis Potosí C.P. 78290, Mexico

5 Facultad de Ciencias Básicas Ingeniería y Tecnología, Autonomous University of Tlaxcala, Carretera
Apizaquito S/N, San Luis Apizaquito, Apizaco C.P. 90401, Mexico

* Correspondence: olague@cicese.mx
† Senior Member, IEEE.
‡ Current address: ITESM, Institute for Future of Education, Monterrey C.P. 64849, Mexico.

Abstract: Despite recent improvements in computer vision, artificial visual systems’ design is still
daunting since an explanation of visual computing algorithms remains elusive. Salient object detec-
tion is one problem that is still open due to the difficulty of understanding the brain’s inner workings.
Progress in this research area follows the traditional path of hand-made designs using neuroscience
knowledge or, more recently, deep learning, a particular branch of machine learning. Recently, a
different approach based on genetic programming appeared to enhance handcrafted techniques
following two different strategies. The first method follows the idea of combining previous hand-
made methods through genetic programming and fuzzy logic. The second approach improves the
inner computational structures of basic hand-made models through artificial evolution. This research
proposes expanding the artificial dorsal stream using a recent proposal based on symbolic learning to
solve salient object detection problems following the second technique. This approach applies the fu-
sion of visual saliency and image segmentation algorithms as a template. The proposed methodology
discovers several critical structures in the template through artificial evolution. We present results on
a benchmark designed by experts with outstanding results in an extensive comparison with the state
of the art, including classical methods and deep learning approaches to highlight the importance of
symbolic learning in visual saliency.

Keywords: visual attention; genetic programming; salient object detection

1. Introduction

Saliency is a property found in the animal kingdom whose purpose is to select the
most prominent region on the field of view. Elucidating the mechanism of human visual
attention including the learning of bottom-up and top-down processes is of paramount
importance for scientists working at the intersection of neuroscience, computer science, and
psychology [1]. Giving a robot/machine this ability will allow it to choose/differentiate
the most relevant information. Learning the algorithm for detecting and segmenting
salient objects from natural scenes has attracted great interest in computer vision [2],
instrumentation and measurement [3], pattern analysis [4], and recently by people working
with genetic programming [5,6]. While many models and applications have emerged, a
deep understanding of the inner workings remains lacking. This work develops over a

Appl. Sci. 2022, 12, 10686. https://doi.org/10.3390/app122010686 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010686
https://doi.org/10.3390/app122010686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5773-9517
https://doi.org/10.3390/app122010686
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010686?type=check_update&version=2

Appl. Sci. 2022, 12, 10686 2 of 32

recent methodology that attempts to design brain-inspired models of the visual system,
including dorsal and ventral streams [7,8]. The dorsal stream is known as the “where”
or “how” stream. This pathway is where the guidance of actions and recognizing objects’
location in space is involved and where visual attention occurs. The ventral stream is
known as the “what” stream. This pathway is mainly associated with object recognition
and shape representation tasks. This work deals with the optimization/improvement of an
existing algorithm (modeling the dorsal stream) and allows evolution to improve this initial
template method. The idea is to leverage the human designer with the whole dorsal stream
design’s responsibilities by focusing on the high-level concepts, while leaving the computer
(genetic programming—GP) with the laborious chore of providing optimal variations to
the template. Therefore, the human designer is engaged in the more creative process of
defining a family of algorithms [9].

Figure 1 shows the template’s implementation (individual representation) that emu-
lates an artificial dorsal stream (ADS). As we can observe, the whole algorithm represents
a complex process based on two models. A neurophysiological model called the two-
pathway cortical model—the two-streams hypothesis—and a psychological model called
feature integration theory [10]. This last theory states that human beings perform visual
attention in two stages. The first is called the preattentive stage, where visual information
is processed in parallel over different feature dimensions that compose the scene: color, ori-
entation, shape, intensity. The second stage, called focal attention, integrates the extracted
features from the previous stage to highlight the scene’s region (salient object). Hence, the
image is decomposed into several dimensions to obtain a set of conspicuity maps, which
are then integrated—through a function known as evolved feature integration (EFI)—into a
single map called the saliency map. Brain programming (BP) is based on the most popular
theory of feature integration for the dorsal stream and the hierarchical representation of
multiple layers as in the ventral stream [11]. Note that the template’s design can be adapted
according to the visual task. In this work, we focus on designing an artificial dorsal stream.
Moreover, BP replaces the data-driven models with a function-driven paradigm. In the
function-driven process, a set of visual operators (VOs) is fused by synthesis to describe
the image’s properties to tackle object location and recognition tasks.

Intelligence data analysis (IDA) is a new research area concerned with analyzing data
science effectively to discover meaningful information to improve decisions for real-world
problems effectively [12]. Traditionally, deductive reasoning is the method of preference
since problems can be naturally explained under pure reasoning, and salient object detection
is no exception. However, inductive reasoning, largely represented under the umbrella
of deep learning, is the flagship approach of a new wave of methodologies following the
design by synthesis [13]. So far, researchers have approached IDA problems with a growing
set of bioinspired techniques founded on synthesis with advantages, and disadvantages [14].
Gupta et al. describe a deep learning methodology to improve SOD with heuristic processes
following empirical assessment [15]. While a consensus about which process to apply
has not been arrived at yet, we believe that a balanced methodology between analysis
and synthesis is a way of combining the best of both approaches [16]. Merging both
approaches for image complex problems is an active research area. Santamaría et al. provide
an overview on the latest nature-inspired and metaheuristic-based image registration
algorithms [17]. Iqbal et al. introduce the idea of applying learning classifier systems to SOD
research [18]. Brain programming has proved its robustness against adversarial attacks,
a hot topic in machine learning, for the problem of image classification [19]. Finally, the
honeybee search algorithm is applied to 3D reconstruction and visual tracking by [20,21].

Appl. Sci. 2022, 12, 10686 3 of 32

Visual Operators
generated by the

evolutionary process

Color Image

VOC(Icolor)

Orientation

VOO(Icolor)

Shape

VOS(Icolor)

Intensity
VO

Int=(Ir+Ig+Ib)

 3

CMC CMO CMS CMInt

Center
surround

Color

A B A BA B A B
Activation

Markov
Chains

Feature
extraction

Feature
maps

Activation
maps

Conspicuity
maps

A B A BA B A B
Normalization

Markov
Chains

Linear
Combination

Subsample

Figure 1. Brain programming implementation of the dorsal stream using the combination of visual
saliency and image segmentation algorithms. We propose discovering a set of visual operators (VOs)
and the evolutionary feature integration (EFI) within the template through artificial evolution. The
whole design makes a design balance between the human designer (deductive reasoning) and the
computer (symbolic learning).

This paper is organized as follows. First, we outline the related work briefly to high-
light the research direction and contributions of our work. Next, we detail the construction
of the ADS template using an adaptation of graph-based visual saliency (GBVS) combined
with the multiscale combinatorial grouping (MCG) to an evolutionary machine learning
algorithm. Then, we present the results of the evolutionary algorithm to illustrate the
benefits of the new proposal. Finally, we finish the article with our conclusions and future
work on the automate design of brain models.

2. Related Work

For a learning algorithm design technique to be well received, it needs to solve several
analysis levels regarding the automated generation or improvement of algorithms for
solving a particular or broad set of problems [22]. A significant critique of deep learning is
the opacity generating problems, such as lack of interpretability, reusability, and generality.
Scientists depend on complex computational systems that are often ineliminably opaque,
to the detriment of our ability to give scientific explanations and detect artifacts. Here,
we follow a strategy for increasing transparency based on three levels of explanation
about what vision is, how it works, and why we still lack a general model, solution, or
explanation for artificial vision [23]. The idea follows a goal-oriented framework where
we study learning as an optimization process [16]. The first is theoretical transparency or
knowledge of the visual information processing whose design is the computation goal.
The second is algorithmic transparency or knowledge of visual processing coding. Finally,

Appl. Sci. 2022, 12, 10686 4 of 32

the third level is execution transparency, or knowledge of implementing the program
considering specific hardware and input data.

Visual attention has a long history, and we recommend the following recent articles
to the interested reader to learn more about the subject [24–27]. However, to put it into
practice, it is better to look for information about benchmarks [28–30]. In the present work,
we select the study of Li et al. since it provides an extensive evaluation of fixation prediction
and salient object segmentation algorithms, as well as statistics with standard datasets [30].
They provide a framework focusing on the performance of GBVS against several state-
of-the-art proposals. The study also explains how fixation prediction algorithms adapt
to salient object detection by incorporating a segmentation stage. Fixation prediction
algorithms target predicting where people look in images. Salient object detection focus
on a wide range of object-level computer vision applications. Since fixation prediction
originated from cognitive and psychological communities, the goal is to understand the
biological mechanism. Salient object detection does not necessarily need to understand
biological phenomena.

Regarding the second level of explanation (algorithmic transparency) or the knowledge
of the visual processing coding, we can observe two different approaches to incorporating
learning into such a study. A deep learning technique exemplifies the first (DHSNet—deep
hierarchical saliency network [31]) since it is used as a building block in [6]. This method
is a fully convolutional network (FCN), a well-known method designed to address the
limitations of multi-layer perceptron (MLP)-based methods. FCN architectures lead to end-
to-end spatial saliency representation learning and fast saliency prediction within a single
feed-forward process. FCN-based methods are now dominant in the field of computer
vision. Since DHSNET results rank worst in the proposed benchmark, we decided to train
and test two more FCN approaches:

• BASNet—boundary-aware salient object detection [32];
• PiCANet–learning pixel-wise contextual attention for saliency [33].

Furthermore, we repeat the experiments to compare our proposal with state-of-the-art
methodologies to know the limitations of the proposed method described in this paper.

The second methodology is represented by evolutionary computation, applying ge-
netic programming. We identify two representative works. In [6], the contribution is
oriented toward the mechanical design of combination models using genetic program-
ming. The proposed approach automatically selects the algorithms to be combined, and
the combination operators use a set of candidate saliency detection methods and a set of
combination operators as input. This idea follows a long history in computer vision about
combination models. To achieve good results, the authors rely on complex algorithms, such
as DHSNet, as building blocks to the detriment of transparency since the method does not
enhance the complex algorithms in the function set but only the output.

Since fixation prediction algorithms are complex heuristics, another alternative is to
work directly with some essential parts of the algorithm to attempt to improve/discover
the whole design. In [5], genetic programming generates visual attention models—fixation
prediction algorithms—to tackle salient object segmentation. However, the authors took
a step back, returning to the first stage—theoretical transparency—and revisited Koch
et al., looking for a suitable model susceptible to optimization [34]. Dozal et al. develop
an optimization-based approach introducing symbolic learning within crucial parts of the
complete model, using it as a basic algorithm that serves the purpose of a template. This
algorithm uses as a foundation the code reported in Itti’s work [35]. In this way, Dozal et
al. attempt to fulfill the second stage—algorithmic transparency—since they contemplate
the difficulty of articulating the whole design exposed by Treisman and Gelade through
heuristic search.

In summary, it is difficult to delegate all practical aspects to the computer according
to the genetic programming paradigm. This way of looking for visual attention programs
has already impacted practical applications, such as visual tracking [36,37]. This method
searches for new alternatives in the feature integration theory (FIT) processes. That in-

Appl. Sci. 2022, 12, 10686 5 of 32

cludes processes for acquiring visual features, the computation of conspicuity maps, and
integrating features. Nevertheless, a drawback is that the visual attention models evolved
to detect a particular/single object in the image.

In this work, we would like to identify all foreground regions and separate them
from the background. Note that the foreground can contain any object on a particular
database. Proper identification of the foreground from the background was the problem
approached by Contreras et al. and is known as salient object detection, a hot topic
exclusively studied nowadays from a deep learning viewpoint. The idea is to replace Itti’s
algorithm with the proposal published in [38] and the further adaptation and benchmark
described in [30]. We corroborated the results, testing with more databases [24] and deep
learning methodologies [27].

We highlight the following contributions:

1. The study of salient object detection using a symbolic approach methodology pro-
vides a way to extend previous human-made designs with learning capabilities. The
algorithms defeat DHSNet and obtain competitive outcomes against recent deep
learning models.

2. Learning is an inductive process, and as with any heuristic/stochastic method, we
need methodologies that corroborate the results through statistical approaches. We
use k-fold cross-validation to provide evidence about the proposed methodology’s
robustness.

3. In BP, the template refers to a deductive reasoning strategy combined with an induc-
tive learning approach powered by genetic programming. The whole methodology
describes an inferential knowledge system that naturally fulfills the requirement of be-
ing explainable. The programs evolved by artificial evolution complete the flowchart
following logical reasoning.

Koch and coworkers adapt Treisman and Gelade’s theory into essential computational
reasoning [34]. Itti’s algorithm accomplishes two stages: (1) visual feature acquisition and
(2) feature integration. It consists of visual-feature extraction and computation of visual
and conspicuity maps, feature combination, and the saliency map. GBVS is not different
from Itti’s implementation. However, it makes a better description of the technique through
Markov processes. The idea is to adapt the GBVS algorithm to the symbolic framework
of brain programming. Figure 1 depicts the proposed algorithm that discovers multiple
functions through artificial evolution. GBVS is a graph-based bottom-up visual salience
model. It consists of three steps: first, extraction of features from the image; second, creation
of activation maps using the characteristic vectors; and third, normalization of activation
maps and combining these maps into a master map. We adapt the algorithm described
in [5] with the new proposal using four dimensions: color, orientation, shape, and intensity.
In Koch’s original work, there are three dimensions, each approached with a heuristic
method, and the same for the integration step. We apply the set of functions and terminals
provided in [39] with a few variants to discover optimal heuristic models for each stage.
This algorithm uses Markov chains to generate the activation maps. Researchers consider
this approach “organic” because, biologically, individual “nodes” (neurons) exist in a
connected, retinotopically organized network (the visual cortex) and communicate with
each other (synaptic activation) in a way that results in emergent behavior, including quick
decisions about which areas of a scene require additional processing.

3. Methodology

BP aims to emulate the behavior of the brain through an evolutionary paradigm using
neuroscience knowledge for different vision problems. The first studies to introduce this
technique [5,8] focused on automating the design of visual attention (VA) models and
studied the way it surpasses previous human-made systems developed by VA experts. To
perceive salient visual features, the natural dorsal stream in the brain has developed VA
as a skill through selectivity and goal-driven behavior. The artificial dorsal stream (ADS)
emulates this practice by automating acquisition and integration steps. Handy applications

Appl. Sci. 2022, 12, 10686 6 of 32

for this model are tracking objects from a video captured with a moving camera, as shown
in [36,37].

BP is a long process consisting of several stages summarized in two central ideas
correlated with each other. First, the primary goal of BP is to discover functions capable of
optimizing complex models by adjusting the operations within them. Second, a hierarchical
structure inspired by the human visual cortex uses function composition to extract features
from images. It is possible to adapt this model depending on the task at hand, e.g., the
focus of attention can be applied to saliency problems [5], or the complete artificial visual
cortex (AVC) can be used for categorization/classification problems [8]. This study uses the
ADS, explained to a full extent in the following subsections, to obtain as a final result the
design of optimal salient object detection programs which satisfy the visual attention task.
Appendix A provides pseudo codes of all relevant algorithms for the interested reader.

3.1. Initialization

BP begins with a randomized generation along an evolutionary process defined by a
set of initialization variables such as population size, size of solutions or individuals, or
crossover-mutation probabilities. An individual represents a computer program written
with a group of syntactic trees embedded into hierarchical structures. In this work, individ-
uals within the population contain functions corresponding to one of the four available
visual operators (VO). Table 1 shows the functions and terminals used for each VO or
visual map (VM). The table includes arithmetic functions between two images A and B,
transcendental and square functions, square root function, image complement, color op-
ponencies (red–green and blue–yellow), dynamic threshold function, arithmetic functions
between an image A, and a constant k. It also includes transcendental operations with a
constant k and the spherical coordinates of the DKL color space. The table also incorporates
round, half, floor, and ceil functions over an image A, dilation and erosion operators with
the disk, square, and diamond structure element (SE), skeleton operator over the image
A, finding the perimeter of objects in the image A, hit-or-miss transformation with the
disk, square, and diamond structures. Additionally, we include morphological top-hat
and bottom-hat filtering over the image A, opening and closing morphological operator
on A, absolute value applied to A, and the addition and subtraction operators. Finally,
we add infimum and supremum functions between images A and B, the convolution of
the image A, a Gaussian filter with σ = 1 or 2, and the derivative of the image A along
direction x and y. Note that all dimensions include elementary functions since these can
be employed to compose high-level properties (invariance to rotation, translation, scaling,
and illumination) through the template design.

Table 1. Functions and terminals for the ADS.

Functions for EVOO Terminals for EVOO

A + B, A − B, A × B, A/B, |A|, |A + B|, |A − B|,
log2(A), A/2, A2,

√
A, k × A, A/k, A1/k, Ak,

(1/k) + A, A− (1/k), Gσ=1(A), Gσ=2(A), Dx(A),
Dy(A), round(A), bAc, dAe, in f (A, B), sup(A, B),
thr(A), AttenuateBorders(A), ConvGabor(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Dx(Icolor),
Dxx(Icolor), Dy(Icolor), Dyy(Icolor),
Dxy(Icolor), AttenuateBorders(Icolor),
ConvGabor(Icolor),

Functions for EVOC Terminals for EVOC

A + B, A − B, A × B, A/B, log2(A), exp(A), |A|,
A2,
√

A, (A)c, thr(A), round(A), bAc, dAe, k× A,
A/k, A1/k, Ak, (1/k) + A, A− (1/k)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv,DKLr, DKLΦ,
DKLΘ, Opr−g(I),Opb−y(I)

Appl. Sci. 2022, 12, 10686 7 of 32

Table 1. Cont.

Functions for EVOS Terminals for EVOS

A + B, A− B, A× B, A/B, |A|, k× A, A/k, A1/k,
Ak, (1/k) + A, A − (1/k), round(A), bAc, dAe,
A ⊕ SEd, A ⊕ SEs, A ⊕ SEdm, A 	 SEd, A 	 SEs,
A 	 SEdm, Sk(A), Perim(A), A ~ SEd, A ~ SEs,
A ~ SEdm, That(A), Bhat(A), A } SEs, A � SEs,
thr(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv

Functions for EFI Terminals for EFI

A + B, A − B, A × B, A/B, |A|, |A + B|, |A −
B|, k × A, A/k, A1/k, Ak, (1/k) + A, A −
(1/k)„Hist(A), round(A), bAc, dAe, thr(A), (A)2,√

A, exp(A), Gσ=1(A), Gσ=2(A), Dx(A), Dy(A)

CMd, Dx(CMd), Dxx(CMd), Dy(CMd),
Dyy(CMd), Dxy(CMd)

3.2. Individual Representation

We represent individuals using a set of functions for each VO defined in Section 3.3.
Entities are encoded into a multi-tree architecture and optimized through evolutionary
crossover and mutation operations.

The architecture uses three syntactic trees for each evolutionary visual operator (EVOO,
EVOC, EVOS) regarding orientation, color, and shape. We then merge the CMs produced
by the center-surround process–including feature and activation maps–using an EFI tree,
generating a saliency map (SM); therefore, we apply four syntactic trees. Section 3.3.1
provides details about the usage of these EVOs; additionally, Figure 1 provides a graphical
representation of the complete BP workflow. After initializing the first generation of
individuals, the fitness of each solution is tested and used to create a new population.

3.3. Artificial Dorsal Stream

The ADS models some components of the human visual cortex, where each layer
represents a function achieved by synthesis through a set of mathematical operations; this
constitutes a virtual bundle. We select visual features from the image to build an abstract
representation of the object of interest. Therefore, the system looks for salient points (at
different dimensions) in the image to construct a saliency map used in the detection process.
The ADS comprises two main stages: the first acquires and transforms features in parallel
that highlight the object, while in the second stage, all integrated features serve the goal of
object detection.

3.3.1. Acquisition and Transformation of Features

In this stage, different parts of the artificial brain automatically separate basic features
into dimensions. The entrance to the ADS is a color image I defined as the graph of a
function.

Definition 1 (Image as the graph of a function). Let f be a function f : U ⊂ R2 → R. The
graph or image I of f is the subset of R3 that consists of the points (x, y, f (x, y)), in which the
ordered pair (x, y) is a point in U and f (x, y) is the value at that point. Symbolically, the image
I = {(x, y, f (x, y)) ∈ R3|(x, y) ∈ U}.

From this definition, we can highlight how images are variations in light intensity
along the two-dimensional plane of camera sensors. Regarding visual processing for
feature extraction of the input image, we consider multiple color channels to build the set
Icolor = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}, where each element corresponds to the color
components of the RGB (red, green, blue), HSV (hue, saturation and value) and CMYK
(cyan, magenta, yellow and black) color spaces. We define the optimization process by
formulating an appropriate search space and evaluating functions.

Appl. Sci. 2022, 12, 10686 8 of 32

3.3.2. Feature Dimensions

In this step, we obtain relevant characteristics from the image by decomposing it and
analyzing key features. Three EVOs transform the input picture Icolor through each VO
defined as EVOd : Icolor → VMd and applied in parallel to emphasize specific charac-
teristics of the object. Note that the fourth VMInt is not evolved and is calculated with
the average of the RGB color bands. These EVOs are operators generated in Section 3.2.
Individuals–programs represent possible configurations for feature extraction that describe
input images and are optimized using the evolutionary process. We perform these transfor-
mations to recreate the process of extracting information following the FIT. When applying
each operator, a VM generated for each dimension represents a partial procedure within the
overall process. Each VM is a topographic map that represents, in some way, an elementary
characteristic of the image.

3.4. Creating the Activation Maps

After selecting the visual operators generated by the evolutionary process, the feature
maps complete the feature extraction. Next, the algorithm creates activation maps as
follows. Suppose we are given a feature map M : [n]2 → R the goal is to compute an
activation map for each dimension A : [n]2 → R such that locations (i, j) ∈ [n]2 on the
image, or as a proxy, M(i, j), that are somehow unusual in its neighborhood will correspond
to high values of activation A. The dissimilarity of M(i, j) and M(p, q) is given by

d((i, j)||(p, q)) , log
M(i, j)
M(p, q)

. (1)

3.5. A Markovian Approach

Consider a fully connected graph denoted as GA. For each node M with its indexes,
(i, j) ∈ [n]2 is connected to the other nodes. The edge point of a node in the two-dimensional
plane (i, j) to the node (p, q) will be the weight and is defined as follows:

w1((i, j), (p, q)) , d((i, j)||(p, q)) · F(i− p, j− q) , (2)

where

F(a, b) , exp
−(a2 + b2)

2σ2 , (3)

Moreover, σ is a free parameter of the algorithm. Thus, the weight of the edge from
node (i, j) to node (p, q) is proportional to their dissimilarity and their closeness in the
domain of M. It is possible then to define a Markov chain on GA by normalizing the weights
of the outbound edges of each node to 1, and drawing an equivalence between node states,
and edges’ weight-transition probabilities.

3.6. Normalizing an Activation Map

This step is crucial to any saliency algorithm and remains a rich study area. GBVS
proposes another Markovian algorithm, and the goal of this step is a mass concentration in
the activation maps. The authors construct a graph GN with n2 nodes labeled with indices
from [n]2. For each node (i, j) and (p, q) connected, they introduce an edge from

w2((i, j), (p, q)) , A(p, q) · F(i− p, j− q) . (4)

Once again, the algorithm normalizes each node’s output edges, treating the resulting
graph as a Markov chain, making it possible to calculate the equilibrium distribution over
the nodes. The mass will flow preferentially to those nodes with high activation. The
artificial evolutionary process works with the modified version of GBVS. We can add the
MCG during the evolution or after to improve the results since the image segmentation
computational cost with this algorithm is very high.

Appl. Sci. 2022, 12, 10686 9 of 32

3.7. Genetic Operations

We follow the approach detailed in [5], where the template represents an individual
containing a set of VMs coded into an array of trees similar to a chromosome and where
each visual operator within the chromosome is a gene code. In other words, the chromo-
some is a list of visual operators (VOs), and each VO is a gene. Therefore, we apply four
genetic operators:

• Chromosome-level crossover. The algorithm randomly selects a crossing point from
the list of trees. The process builds a new offspring by unioning the first parent’s left
section with the second parent’s right section.

• Gene level crossover: This operator selects two VOs, chosen randomly, from a list
of trees, and for each function of both trees (genes), the system chooses a crossing
point randomly, then the sub-trees under the crossing point are exchanged to gen-
erate two new visual operators. Therefore, this operation creates two new children
chromosomes.

• Chromosome-level mutation: The algorithm randomly selects a mutation point within
a parent’s chromosome and replaces the chosen operator completely with a randomly
generated operator.

• Gene-level mutation: Within a visual operator, randomly chosen, the algorithm selects
a node, and the mutation operation randomly alters the sub-tree that results below
this point.

Once we generate the new population, the evolutionary process continues, and we
proceed to evaluate the new offspring.

3.8. Evaluation Measures

Evolutionary algorithms usually apply a previously defined fitness function to eval-
uate the individuals’ performance. BP designs algorithms using the generated EVOs to
extract features from input images through the ADS hierarchical structure depicted in
Figure 1. Experts agree on evaluating the various proposals for solutions to the prob-
lem of salient object detection. In this work, we follow the protocol detailed with source
code in [29] and apply two main evaluation measures: precision–recall and F-measure.
Researchers represent the first through Equation (5):

Precision =
|BM ∩ G|
|BM| , Recall =

|BM ∩ G|
|G| . (5)

To compute a saliency map S, we convert it to a binary mask BM, and compute
Precision and Recall by comparing BM with ground-truth G. In this definition, binarization
is a critical step in the evaluation. The benchmark offers a method based on thresholds
to generate a precision–recall curve. The second measure (Equation (6)) is made with this
information to obtain a figure of merit:

Fβ =
(1 + β2)Precision× Recall

β2Precision + Recall
. (6)

This expression comprehensively evaluates the quality of a saliency map. The F-
measure is the weighted harmonic mean of precision and recall. In the benchmark, β2 is set
to 0.3 to increase the importance of the precision value.

We calculate both evaluations with two variants. In our first approach, we obtain the
maximum F-measure considering different thresholds for each image during the binariza-
tion process. Then, we calculate the average of all photos in the training or testing set;
see [5]. The benchmark uses the second variant, which consists of calculating the average
that results from varying the thresholds and then reporting the maximum resulting from
evaluating all the images. We will use both approaches during the experiments to ensure
that such evaluations do not change the rankings.

Appl. Sci. 2022, 12, 10686 10 of 32

4. Experiments and Results

Designing machine learning systems requires the definition of three different compo-
nents: algorithm, data, and measure. This section evaluates the proposed evolutionary
algorithm with a standard test. Thus, the goal is to benchmark our algorithm against
external criteria. This way, we need to run a series of tests based on data and measures
from well-known experts. Finally, we contrast our results with several algorithms in the
state-of-the-art.

This research follows the protocol detailed in [30]. This benchmark is of great help
because it allows us to access the source code of various algorithms to make a more
exhaustive comparison. This benchmark also analyzes blunt flaws in the design of salience
benchmarks known as database design bias produced by emphasizing stereotypical salience
concepts. This benchmark extensively evaluates fixation prediction and salient object
segmentation algorithms. We focus on the salient object detection part, consisting of three
databases FT, IMGSAL, and PASCAL-S. We present complete results next. Additionally,
we include a test of the best program with the databases proposed in [6].

4.1. Image Databases

FT is a database with 800 images for training and 200 for testing. Authors of the
benchmark reserve this last set of 200 images for comparison. We use the training dataset
to perform a k-fold technique (k = 5) to find the best individual. We randomly partitioned
the training dataset into five subsets of 160 images. Each execution was run considering
the parameters from Table 2. We retained a single subset of the k subsets as the validation
data for testing the model and used the remaining k− 1 subsets as training data. Table 3
reports the best program results for 30 executions in the k-fold technique. We follow the
same procedure in the PASCAL-S database [40], and the final results are given in Figure 3
while adding ocular fixation information and object segmentation labeling. The training
set consists of 680 images, while the test set consists of 170 images for comparison. We
divide the training set into five subsets of 136 images to perform a 5-fold cross validation
to discover the best algorithm. Finally, we run the experiments on the IMGSAL dataset
containing 235 images. The database splits into 188 images for training and 47 images for
testing. We select 185 from the training set and split it into five subsets of 37 images to
perform a 5-fold cross validation.

Table 2. Main parameters settings of the BP algorithm.

Parameters Description

Generations 30
Population size 30

Initialization Ramped half-and-half
Crossover at chromosome level 0.8

Crossover at gene level 0.8
Mutation at chromosome level 0.2

Mutation at gene level 0.2
Tree depth Dynamic depth selection

Dynamic maximum depth 7 levels
Maximum actual depth 9 levels

Selection Tournament selection
with lexicographic

parsimony pressure.
Elitism Keep the best individual

FT contains a diverse representation of animate and inanimate objects with image
sizes ranging from 324× 216 to 400× 300. PASCAL-S contains scenes of domestic animals,
persons, and means of air and sea transport with image sizes ranging from 200× 300 up to
375× 500. Finally, IMGSAL has wild animals, flora, and different objects and persons with
image sizes of 480× 640. All images in the three datasets came with their corresponding

Appl. Sci. 2022, 12, 10686 11 of 32

ground truth. The manual segmentation was carefully made in FT and PASCAL-S datasets
to obtain accurate ground truth. At the same time, IMGSAL provides a ground truth that
was purposefully segmented following a rough segmentation to illustrate a real-world case
where humans imprecisely indicate an object’s location.

4.2. Experiments with Dozal’s Fitness Function on GBVSBP

Table 3 details the experimental results after applying the k-fold cross-validation
method on the FT database. As we can observe, BP optimizes the model scoring the highest
value of 78.18% for the best program during training at the first run and the third fold,
while achieving 77.67% during testing in the fourth run but at the fourth fold. σ remains
low during the experimental runs. BP scores its highest value σ = 2.54 in the fourth testing
run while achieving σ = 0.45 and σ = 1.51 during the sixth run for training and testing,
respectively. The methodology average scores its highest fitness of 76.72% for training and
75.17% for testing. Table 4 presents the best solution. The selected program corresponds to
the training stage for this kind of table.

Table 3. Performance of the best individuals of the GBVSBP model for all FT database runs. Each
pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain 30
executions of our system and report the standard deviation for each run set.

FT
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 75.34 76.10 75.07 73.97 77.57 76.75 76.98 75.29 77.34 75.74 77.08 75.36
2 74.88 71.60 72.92 69.81 75.10 72.97 74.65 71.27 73.62 71.87 76.41 72.25
3 78.18 76.58 76.69 71.77 77.03 72.97 76.75 72.18 76.68 72.39 77.01 72.21
4 75.30 77.05 74.78 74.25 74.90 71.47 75.86 77.67 74.60 76.13 77.03 74.98
5 75.15 74.54 73.14 73.45 74.74 74.97 74.62 74.17 75.18 75.06 76.09 74.37

Average 75.77 75.17 74.52 72.32 75.87 73.83 75.77 74.12 75.48 74.24 76.72 73.83
σ 1.36 2.21 1.54 1.97 1.33 2.05 1.12 2.54 1.52 1.97 0.45 1.51

Table 4. Program structure of the operators corresponding to the best solution for the FT database.
We select this solution from the 30 executions of Table 3. The final solution is simple, basically using
color-chosen bands.

EVOd and EFI Operators Fitness

EVOO = Ik Training = 0.7818
EVOC = Ib + 1.00 Testing = 0.7658
EVOS = top− hat(Im × 0.31)
EFI = (CMC)

22

Table 5 details the experimental results after applying the k-fold cross-validation
method on the IMGSAL database. The fitness function results on this dataset show high
variability since, in training, the results range from 72.49% in the fourth run to 57.37% in the
second run. The high dispersion is due to the complexity of the problem generated by poor
manual segmentation. The experiment shows an average oscillating between 62.60% and
68.52% for training with σ = 3.72 and σ = 1.52, respectively. On the other hand, during
testing, the algorithm’s highest score on average is 67.04% with σ = 2.48. Table 6 reports
the best solution.

The experimental results of the GBVSBP model with the PASCAL-S database show
excellent stability, as seen in Table 7 with a low standard deviation, especially in training
with the first run, scoring 1.58. During training, fitness reaches its highest in the fifth fold
of run 6, scoring 66.39%, while on average, the fifth run scores first place with 63.45%.
Regarding the testing stage, the algorithm scores the best individual at the third fold with
67.66%, and on average, the best run is the fifth with 63.63%. Table 8 presents the best set
of trees.

Appl. Sci. 2022, 12, 10686 12 of 32

Table 5. Performance of the best individuals of the GBVSBP model for all IMGSAL database runs.
Each pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

IMGSAL
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 68.30 66.88 67.62 65.29 68.86 64.28 72.49 68.66 66.23 65.45 59.24 62.2
2 65.23 64.06 67.10 64.76 66.79 64.82 64.18 70.12 69.25 69.69 66.26 64.96
3 68.86 66.25 64.99 62.73 60.84 61.82 64.39 65.26 68.22 63.93 66.7 62.42
4 62.72 70.91 57.37 61.27 68.42 67.16 66.52 66.87 68.52 67.17 61.87 64.56
5 70.74 67.10 68.99 65.43 66.26 60.37 62.86 62.73 70.36 66.6 58.94 61.45

Average 67.17 67.04 65.21 63.90 66.23 63.69 66.09 66.73 68.52 66.57 62.60 63.12
σ 3.18 2.48 4.61 1.82 3.20 2.65 3.81 2.89 1.52 2.14 3.72 1.55

Table 6. Program structure of the operators corresponding to the best solution for the IMGSAL
database. We select this solution from the 30 executions of Table 5. The final solution applies filters to
selected color images and derivatives to the conspicuity maps.

EVOd and EFI Operators Fitness

EVOO = ((G(σ=1)(G(σ=1)(Iv))− 0.44)− 0.69) Training = 0.7249
EVOC = (I0.44

c) Testing = 0.6866
EVOS = Im
EFI = G(σ=2)(Dy(Dy(CMC)))

Table 7. Performance of the best individuals of the GBVSBP model for all PASCAL-S database runs.
Each pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

PASCAL-S
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 63.58 62.31 62.92 61.83 65.19 65.33 62.27 61.34 62.84 63.12 63.79 62.25
2 61.53 58.92 64.70 57.51 63.02 56.88 64.64 59.80 65.29 58.81 64.50 58.57
3 61.58 64.61 63.47 65.46 62.18 64.13 63.71 65.22 63.20 67.66 59.71 64.90
4 59.60 62.82 58.20 59.77 59.23 60.87 60.45 63.68 59.72 61.78 59.84 60.63
5 63.20 65.81 64.46 63.25 63.90 63.47 66.03 64.55 66.22 66.79 66.39 66.78

Average 61.90 62.89 62.75 61.56 62.70 62.14 63.42 62.92 63.45 63.63 62.85 62.83
σ 1.58 2.63 2.64 3.07 2.24 3.36 2.15 2.28 2.52 3.64 2.96 2.99

Table 8. Program structure of the operators corresponding to the best solution for the PASCAL-S
database. We select this solution from the 30 executions of Table 7. The final solution consists of a
combination of different structures. The first visual operator uses a filter and derivative over Is. The
second operator uses algebraic operations (addition and subtraction between color bands). The shape
dimension uses Im, and the feature integration applies derivatives to the conspicuity map of color.

EVOd and EFI Operators Fitness

EVOO = b(G(σ=1)(Dy(Is)))c Training = 0.6639
EVOC = (((((Im − 0.62)− 0.62) + Iy) + (Iy + Iv)) + (Iy + Iv)) Testing = 0.6678
EVOS = Im
EFI = Dy(Dy(CMC))

The experiment with our second model GBVSBP+MCG and the FT database shows
outstanding results compared to the previous model, see Table 9. Another remarkable
difference is the stability during training regarding the standard deviation, whose per-
formance decreases while testing the best models, where four values score above σ = 3.
Meanwhile, in the testing stage, the best individual achieves 95.06% in the second run.
On average, the algorithm discovers the best individuals considering all folds in the first

Appl. Sci. 2022, 12, 10686 13 of 32

run with 93.47%, while the second run reports the best results with an average of 92.13%.
Table 10 shows the best solution.

Table 9. Performance of the best individuals of the GBVSBP + MCG model for all FT database runs.
Each pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

FT Database
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 93.39 92.90 93.62 93.09 93.67 93.35 93.29 94.14 93.55 92.19 93.27 93.44
2 94.53 86.67 94.02 86.12 93.75 84.61 93.73 86.67 93.80 86.84 93.74 85.38
3 92.84 93.55 92.82 92.76 92.69 92.22 93.05 94.36 92.45 92.78 92.63 92.90
4 93.33 92.77 92.86 93.64 92.76 93.54 92.98 91.59 92.87 93.89 93.23 90.62
5 93.25 92.86 93.45 95.06 93.02 94.31 93.20 92.22 93.03 93.31 93.00 92.18

Average 93.47 91.75 93.35 92.13 93.18 91.61 93.25 91.80 93.14 91.80 93.17 90.90
σ 0.63 2.86 0.51 3.48 0.50 3.98 0.29 3.11 0.54 2.84 0.41 3.26

Table 10. Program structure of the operators corresponding to the best solution for the FT database.
We select this solution from the 30 executions of Table 9. The final solution is more complex than the
previous experiments. Still, the program is interpretable. The first visual operator applies a filter,
while the second computes two times the complement of DKLr. Then, the shape operator applies a
multiplication between bottom-hat operations to Ib. Finally, the feature integration uses filters and
derivatives to the conspicuity maps using algebraic operations.

EVOd and EFI Operators Fitness

EVOO = Gσ=1(Im) Training = 0.9453
EVOC = Complement(Complement(DKLr)) Testing = 0.9506
EVOS = ((bottom− hat(Ib) × (bottom− hat(Ib))
EFI = |(G(σ=1)(CMMM) × 0.63) + ((Dy(Dy(CMC))− Dy(Dy(CMMM)))− Dy(Dy(CMMM)))|

4.3. Experiments with Benchmark’s Score

In the second round of experiments, we adapt the algorithm to use the proposed
benchmark’s score as a fitness function, as explained earlier; see Section 3.8. From now on,
all report experiments consider this way of evaluation. Table 11 provides the results of the
k-fold experimentation considering the GBVSBP algorithm with the FT database, while
Table 12 provides the corresponding best individual. As can be seen, there is a decrease,
but the ranking remains unaltered, as we verified with the solutions. The results considering
the dataset IMGSAL are in Tables 13 and 14, while those of PASCAL-S are in Tables 15 and 16
respectively, while Table 17 provides partial results with the GBVSBP+MCG model to
illustrate the performance.

Table 11. Performance of the best individuals of the GBVSBP model for all FT database runs. Each
pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

FT
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 71.27 71.94 70.23 70.39 72.04 72.23 70.73 70.99 71.22 70.80 72.59 73.65
2 70.00 63.05 67.04 65.73 68.66 68.86 67.57 69.01 69.5 66.58 68.18 67.78
3 71.71 64.82 71.81 67.92 71.16 68.15 71.22 64.15 72.14 68.02 71.08 66.86
4 69.23 73.45 70.69 66.13 71.32 68.11 68.15 73.81 68.77 71.13 70.87 69.42
5 68.08 67.68 68.52 67.20 68.88 66.03 69.38 64.25 69.17 68.19 68.73 67.59

Average 70.06 68,19 69.66 67,47 70.41 68,68 69.41 68,44 70.07 68,94 70.29 69,06
σ 1.48 4.47 1.88 1.85 1.54 2.25 1.58 4.23 1.51 1.95 1.81 2.73

With this new F-measure, the results obtained show greater stability globally according
to Table 11 despite runs 1 and 4 reporting σ = 4.47 and σ = 4.23. All other values are

Appl. Sci. 2022, 12, 10686 14 of 32

below 2%. Despite the decrease, the fitness of the individuals remains competitive as the
best individual in the training stage achieves 72.59%, and the best in the test stage reaches
73.81%. In this experiment, the last run reflects the highest average fitness considering all
folds and for both stages with values of 70.29% and 69.06%. Table 12 gives the best set of
visual operators.

Table 12. Program structure of the operators corresponding to the best solution for the FT database.
We select this solution from the 30 executions of Table 11. This final solution is simple: a single color
channel and algebraic operations between color channels for the first two visual operators. The third
uses a threshold, and the last one applies derivatives.

EVOd and EFI Operators Fitness

EVOO = Ir Training = 0.7259
EVOC = (((Ik + Im) + Im) + Im) Testing = 0.7365
EVOS = threshold(Iy)
EFI = Dx(Dy(CMS))

Table 13. Performance of the best individuals of the GBVSBP model for all IMGSAL database runs.
Each pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

IMGSAL
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 57.19 60.16 60.09 60.17 65.35 63.45 62.05 60.31 65.09 62.20 60.24 60.8
2 56.12 59.94 55.55 60.25 63.47 63.34 63.94 63.44 60.41 60.51 59.84 60.55
3 57.56 55.90 57.96 57.96 63.78 61.93 63.54 59.49 57.45 56.34 56.97 60.30
4 57.44 59.83 57.37 58.09 64.21 62.94 60.03 62.23 61.60 56.69 59.87 62.26
5 59.49 58.57 57.41 59.30 62.01 60.54 62.86 62.13 58.28 57.48 62.08 57.26

Average 57.56 58.88 57.68 59.15 63.76 62.44 62.48 61.52 60.56 58.64 59.8 60.23
σ 1.22 1.78 1.63 1.10 1.21 1.22 1.55 1.59 3.02 2.58 1.83 1.83

Fitness results with the GBVSBP model and IMGSAL database show similar behavior
as we appreciate in outcomes. For example, the highest average was 63.76% in the training
stage with a σ = 1.21, while reaching a lowest average of 58.64% with a σ = 2.58 in the
testing stage. As we can appreciate, the results were not as high as the other two datasets
since IMGSAL presents difficulties primarily due to poor segmentation when creating the
ground truth. Additionally, the results took a long time to be completed (several months)
due to the bigger image size. The algorithm reached the best solution on the third run,
scoring 65.35% in training and 63.45% at testing. Table 14 provides the best solution.

Table 14. Program structure of the operators corresponding to the best solution for the IMGSAL
database. We select this solution from the 30 executions of Table 13. This final solution is also simple,
using a filter and square root for the first two operators, Im for the third, and the absolute value of
filters and derivatives over the conspicuity map of shape.

EVOd and EFI Operators Fitness

EVOO = G(σ=1)(Iv) Training = 0.6535
EVOC =

√
(Im) Testing = 0.6345

EVOS = Im
EFI = |G(σ=1)(Dy(CMS))|

Appl. Sci. 2022, 12, 10686 15 of 32

Table 15. Performance of the best individuals of the GBVSBP model for all PASCAL-S database runs.
Each pair of training and testing corresponds to one experiment of the k-fold. Therefore, we obtain
30 executions of our system and report the standard deviation for each run set.

PASCAL-S
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 62.03 59.75 61.39 57.53 61.88 57.98 60.76 56.06 61.62 58.75 60.89 58.19
2 61.53 55.12 61.95 54.99 61.11 56.52 61.33 52.61 61.23 53.64 61.01 56.70
3 59.28 58.83 60.08 61.08 59.84 60.32 60.60 59.57 59.82 61.33 59.71 61.78
4 59.57 58.36 58.20 54.28 58.59 55.91 58.61 58.90 58.21 57.13 57.89 56.44
5 63.20 61.40 61.94 61.94 63.08 59.12 63.38 59.01 62.93 59.00 62.87 61.34

Average 61.12 58.69 60.71 57.96 60.90 57.97 60.94 57.23 60.76 57.97 60.47 58.87
σ 1.67 2.31 1.60 3.47 1.75 1.82 1.71 2.92 1.81 2.85 1.83 2.54

The experimental results with GBVSBP for the PASCAL-S database have higher simi-
larity because the F-measure has greater stability than previous results. The results show a
stable standard deviation between 1.60 and 3.47 for training and testing. We obtain similar
behavior in the average results between 60.47% and 61.12% for the training stage. The best
solution was reached in the fifth fold at the fourth run, scoring 63.38% during training,
while in testing, the algorithm scored 61.94%. Table 16 shows the best trees.

Table 16. Program structure of the operators corresponding to the best solution for the PASCAL-S
database. We select this solution from the 30 executions of Table 15. The final solution is similar to
all others discovered by the system. This shows that the proposed programs are independent of the
selected dataset.

EVOd and EFI Operators Fitness

EVOO = G(σ=1)(G(σ=1)(Iv)) Training = 0.6194
EVOC = Im Testing = 0.6194
EVOS = b(dilationdisk(dilationsquare(erosiondisk(Ib))))c
EFI = |G(σ=2)(Dy(CMMM))|

Table 17. Performance of the best individuals of the GBVSBP + MCG model for all FT database
runs. Each pair of training and testing corresponds to one of seven experiments. Then, we report the
average, standard deviation, minimum, maximum, and mean for the seven experiments.

FT
Fold Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
1 88.41 88.51 88.07 86.00 87.92 80.83 88.32 85.75 87.52 89.02 87.04 86.69

Run 1 Average σ Minimum Maximum Mean
Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test

2 89.02 88.56 88.24 86.53 0.56 3.75 87.04 80.83 89.02 89.02 88.07 86.69

The experimental results with GBVSBP + MCG for the FT database show some loss
of aptitude against its counterpart in the first block of experiments (5% in training and
3% in tests). However, the performance values are more stable with σ = 0.56 for training
and σ = 3.75 for testing. In addition to stability, we must bear in mind that the results
of this experiment will be much more consistent when the best individual is tested in
the benchmark since we are using the same F-measure. As a result, the best results were
89.02% in training corresponding to the second fold of the first run and 89.02% at testing
discovered in the first fold of the fifth run. Table 18 gives the best set of trees.

Appl. Sci. 2022, 12, 10686 16 of 32

Table 18. Program structure of the operators corresponding to the best solution for the FT database.
We select this solution from the seven executions of Table 17. Note that we can simplify the second
tree. However, we report the programs as returned by the computer.

EVOd and EFI Operators Fitness

EVOO = G(σ=1)(Dy(Iy)) Training = 0.8902
EVOC = ((DKL1/0.62

Φ)− (((Exp(Ib)
1/0.62)1/0.62)− ((DKLΦ − DKLΦ)− (Ib − Ib)))) Testing = 0.8856

EVOS = Iy
EFI = CMMM

4.4. Analysis of the Best Evolutionary Run

Typical experimental results that illustrate the inner workings of genetic programming
are those related to fitness, diversity, number of nodes, and depth of the tree. Figure 2
provides charts giving best fitness, average fitness, and median fitness. The purpose is to
detail the performance and complexity of solutions through the whole evolutionary run.
As we can observe, artificial evolution scores a high fitness within the first generations. On
average, BP converges around the seventh generation. The diversity chart shows solutions’
convergence in all four trees characterizing the program. Compared to the fitness plot,
these data demonstrate that despite the differences in diversity during the experiment,
the model’s performance remained constant. One of the biggest problems using genetic
programming is incrementing a program’s size without a rise in the program’s performance,
mainly when the final result cannot be generalized for new data. This problem is called
bloat and is usually associated with tree representation. As observed in the last two graphs,
the complexity is kept low with the number of nodes below seven and depth below five
regarding all trees. These numbers were consistently below the proposed setup for all
experiments. The hierarchical structure improves performance and the management of the
algorithm’s complexity.

Figure 2. Brain programming statistics of the run corresponding to the best GBVSBP model for the
FT database. We observe the convergence of fitness, diversity of solutions, number of nodes, and
depth of solutions. It seems that the total number of generations can be reduced to 15.

Appl. Sci. 2022, 12, 10686 17 of 32

4.5. Comparison with Other Approaches

The values presented above correspond to fitness after the evolutionary cycle of BP
to validate our work. The benchmark offers two modalities: one which uses only 60% of
the database and another containing all images; we keep the first option. Table 19 shows
the final results achieved on the testing set over ten random splits with our best program
considering the FT dataset. Here, we appreciate the final results considering the follow-
ing algorithms for salient object detection: FT—frequency-tuned, GC—global contrast,
SF—saliency filters, PCAS—principal component analysis, and DHSNet. Additionally, we
include the original proposal of the artificial dorsal stream named focus of attention (FOA)
reported in [5]. Note that we overpass all other algorithms in the benchmark. FT is the
most straightforward dataset since all objects are in focus and cover a significant portion
of the image. We remark on the poor performance of DHSNet, which contrasts with the
results reported in [31]. This poor performance may be because validation images are not
part of the training.

Table 19. Comparison using the benchmark with other algorithms in the FT database [30]. This
ranking of solutions applies a set of images separated from the rest of the photos as a challenging test.
The evolved solution improves the original proposal and defeats DHSNet by a large margin.

Saliency Model Score (F-Measure)

GBVSBP + MCG 86.72
SF [41] 85.38

GBVS + MCG [30] 85.33
PCAS [42] 83.93

GC [43] 80.64
DHSNet [6] 74.06

FT [44] 71.23
GBVSBP 69.08

GBVS [30] 65.25
FOA [5] 60.05

Figure 3 provides precision–recall curves for the benchmark FT, IMGSAL, and PASCAL-
S databases. Again, our methods score highest in all datasets. However, GVBSBP + MCG
scores highest in the FT and PASCAL-S datasets, while GBVSBP achieves better results
in IMGSAL. The rough segmentation in this last dataset worsens the segmentation pro-
cess. Figure 4 presents image results of all algorithms in the three databases for visual
comparison. According to the results of Figure 3 our methods achieve outstanding results;
however, we provide the following images to spot some challenges in the benchmark. The
rows provide the best method (leftmost) and worst method (rightmost), starting with the
original and finalizing with the ground truth.

The idea of selecting these images highlights that we cannot blindly follow the statisti-
cal results without observing the outcomes. As we mentioned, FT is the most straightfor-
ward test. The mailbox is the object of interest, and we can agree that our proposed method,
including the segmentation step, is slightly better than the others, but not without this
crucial element. The following image provides an example of a questionable ground truth
(the horse), which is not the most conspicuous object. None of the algorithms correctly
identify the object. The last image provides an example of ground truth that we do not con-
sider imprecise, but because the evaluation rests on the average, the ranking, in this case, is
controversial. Note that even if the computer model is symbolic, the interpretation remains
numeric and therefore, there exist computer errors. Nevertheless, the computation is data
independent since the proposal follows a function-driven paradigm. Figure 5 illustrates the
image processing through the whole GBVSBP+MCG program. The programs inserted in
the template and provided in Table 18 are quite simple, helping in the overall explanation.

Appl. Sci. 2022, 12, 10686 18 of 32

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3. The precision–recall curve for FT, PASCAL-S, and IMGSAL datasets using the following
algorithms: GBVSBP + MCG, SF, GBVS + MCG, PCAS, GC, FT, GBVSBP, and GBVS.

Appl. Sci. 2022, 12, 10686 19 of 32

GBVSBP
GBVSBP

MCG

GBVS

MCG
GCPCASSF FT

GBVS

GBVSBP

MCG

GBVS

MCG
GBVSBPPCAS GC SF FT

GBVSBP GBVS PCAS GC

GBVSBP

MCG

GBVS

MCG
FTSFRGB

RGB

RGB GBVS

FT

PASCAL-S

IMGSAL

GT

GT

GT

Figure 4. Example of maps obtained in experiments whose results are controversial despite that our
models observe better performance in the benchmark. The FT image shows the relevance of the
segmentation process to rank highest in the benchmark. The PASCAL-S image shows a misleading
ground truth that confuses all algorithms. Finally, the IMGSAL image shows a reasonably well-
segmented image that contrasts with all others in the dataset, generating a controversial result.

Next, we test our best solution (GBVSBP + MCG) on four databases studied in [6],
and the results are in Table 20. Contreras-Cruz et al. designed the best solution, trained it
with MSRA-A, then tested it with MSRA-BTest, ECSSD, SED2, and iCoseg. We observe that
we scored highest on three datasets, MSRA-BTest, ECSSD, and iCoseg, while achieving
competitive results on SED2. We provide such a comparison since [6] did not test their
algorithms with the benchmark protocol. Therefore it is hard to make a clear comparison
between both approaches, and the results we provide here illustrate the methodologies’
performance.

Table 20. Comparison with others models and databases published in [6]. Our proposal achieves
better results than the more complex proposal using compound functions.

Dataset GA PSO GPMCC GPSED GBVSBP + MCG

MSRA-BTest 0.7579 0.7455 0.7711 0.7662 0.8308
ECSSD 0.6200 0.5988 0.6592 0.6592 0.7591
SED2 0.6914 0.6701 0.7148 0.7340 0.6919

iCoseg 0.6678 0.6557 0.6865 0.7157 0.7168

We provide a final set of experiments in Table 21 to illustrate the behavior of our
evolutionary proposal in comparison with deep learning methodologies. Since such state-
of-the-art methodologies run with small images, we run all experiments with images
of 224× 224 pixels, including our evolved GBVS, which does not have such limitations.
As shown in Figure 4, GBVSBP + MCG is the best algorithm in our test against classic
algorithms for FT and PASCAL-S, while GBVSBP is the best for IMGSAL. The results
shown in these new experiments with IMGSAL exhibit its good performance against
DHSNet and tying BASNet with a lower variance. Regarding FT, we observe that GBVSBP
achieves the lowest score of all learning approaches. Nevertheless, according to Table 17,
GBVSBP + MCG achieves a maximum score of 89.02, a value that is better than PiCANet
and is between DHSNet and BASNet. Moreover, the results agree with those reported in
Table 19, where DHSNet is better than GBVSBP but not compared to GBVSBP + MCG.
Finally, the results with PASCAL-S show the poor performance of GBVSBP, but considering
the expected improvement after combining it with the segmentation process, we could
expect at least to overpass DHSNet as exemplified in the experiments provided in Figure 3,

Appl. Sci. 2022, 12, 10686 20 of 32

where the improvement was of more than 10 points. Beyond the statistical results, it is
true that deep learning methods currently have the edge over other strategies, but most
researchers take it for granted. As illustrated in this document, the community should
include other approaches in the comparison, especially after considering other criteria,
such as the robustness of SOD against adversarial attacks [45].

Visual operators
generated by the

evolutionary process
VOC VOO VOS VOInt

CMC CMO CMS CMInt

Center
surround A B

Activation

Markov
Chains

Feature
Extraction

Feature
maps

Activation
Maps

Normalized
Maps

A B

Normalization

Markov
Chains

Linear
Combination

Master Map

Subsampling

EFI

Saliency Map

A B A B A B

A B A BA B

Salient Object

MCG Candidates

Figure 5. Brain programming result of the dorsal stream using the best GBVS + MCG program.

Appl. Sci. 2022, 12, 10686 21 of 32

Table 21. Testing BP with GBVS against deep learning models for all databases. Since we are not
combining the best programs with the segmentation step, the results are less performing for FT and
PASCAL-S. However, this strategy is better for IMGSAL, as explained earlier. In general, we can say
that the proposal is competitive compared to deep learning.

Datasets
Algorithm FT IMGSAL PASCAL-S

Avg. σ Avg. σ Avg. σ
BP 73.84 12.48 62.66 23.96 62.94 20.89

BASNet 92.67 12.51 63.75 31.73 80.20 21.15
PiCANet 81.45 15.27 71.60 22.16 75.81 19.80
DHSNet 88.63 12.43 53.63 24.85 68.14 21.03

5. Conclusions

In this work, we propose a method to improve the ADS model presented by [5].
This method consists of applying an algorithm called GBVS that surpasses Itti’s previous
model. GBVS uses a graph-based approach using Markov chains while involving the same
stages as the Itti model. Moreover, we follow the idea of combining fixation prediction
with a segmentation algorithm to obtain a new method called GBVSBP + MCG to tackle
the problem of salient object segmentation. As we show in the experiments, the novel
design scores highest in the FT, IMGSAL, and PASCAL-S datasets of a benchmark provided
by [30]. These tests show the strength and generalization power of the discovered model
compared to others developed manually and current CNNs, such as DHSNet, which
is surpassed by more than 12 percentage points in FT. We also give the results on four
datasets described in [6] with outstanding results. The results are revealing regarding
the difficulty of solving this visual task. In the FT and PASCAL-S, objects are defined
with accurate ground truth, and the algorithm GBVSBP + MCG improves the results of
the original algorithm slightly. However, in the IMGSAL database, the ground truth is
poorly segmented, and GBVSBP significantly improves the score compared to the original
proposal. Therefore, we can say that there is a considerable benefit in combining analytical
methods with heuristic approaches. We believe that this mixture of strategies can help
find solutions to challenging problems in visual computing and beyond. One advantage is
that the overall process and final designs are explainable, which is considered a hot topic
in today’s artificial intelligence. This research attempts to advance studies conducted by
experts (neuroscientists, psychologists, and computer scientists) by adapting the symbolic
paradigm for machine learning to find better ways of describing the brain’s inner workings.

Author Contributions: Conceptualization, G.O. and R.O.; Data curation, G.O., J.A.M.-C., M.O.,
A.O. and R.P.; Formal analysis, G.O., A.O. and G.I.-V.; Funding acquisition, G.O.; Investigation, G.O.,
J.A.M.-C., M.O., A.O., R.O. and R.P.; Methodology, G.O., J.A.M.-C. and R.P.; Project administration, G.O.
and G.I.-V.; Resources, G.O., J.A.M.-C. and A.O.; Software, J.A.M.-C., M.O., A.O. and R.P.; Supervision,
G.O.; Validation, G.O., J.A.M.-C., M.O., A.O., G.I.-V., R.O. and R.P.; Visualization, J.A.M.-C., M.O. and
A.O.; Writing—original draft, G.O., J.A.M.-C., M.O. and A.O.; Writing—review and editing, G.O., G.I.-V.
and R.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CICESE grant number 634-135.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The following project support this research: (1) Project titled “Estudio de la
programación cerebral en problemas de reconocimiento a gran escala y sus aplicaciones en el mundo
real” CICESE-634135. We want to thank the editorial office of applied sciences and Christine Zhang
for approval of the full waiver of the article publishing charge.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 10686 22 of 32

Appendix A

In the present work, we integrate the GBVS algorithm into the ADS; since the functions
were defined manually, we would like to incorporate learning. By evolving its dimensions,
the BP paradigm enhanced the GBVS methodology with automated design capabilities.
This nature-inspired technique, in turn, increased its performance by endowing it with the
ability to learn, as shown in Figure 1.

In addition, we use the approach presented in [30], where the authors introduced a
segmentation algorithm called MCG. The fusion of an optimized GBVS+MCG presents
superior results if ground truth is accurate while testing object detection algorithms in the
SOD benchmark.

As discussed in the previous chapter, the GBVS has several stages. As part of the
integration with the BP, the GBVS underwent several changes. These transformations start
with feature extraction, where two new color maps, HSV and CMYK, are extracted for each
subsampling level.

The DKColor and Orientation dimensions are now dynamic, and a new dimension,
‘shape’, is added. The BP tree model comes into play, using the orientation subtree in
the dimension of the same name, the DKColor dimension transforms to use the Color
subtree, and finally, we add Form as a feature dimension through the shape subtree. A final
transformation occurs later with a fourth subtree, charged with integrating features to the
output as post-processing enhancement.

These changes allow GBVS to optimize its dimensions concerning image processing.
This evolution of the GBVS also includes its merger with the MCG algorithm, which
underwent a series of modifications.

Firstly, the segmentation mechanism and extraction of MCG characteristics are isolated,
separating its operation from the flow of the evolutionary cycle. This division represents a
saving of at least five times the time required, without loss in performance, by the MCG
to process an image. We achieved this by storing each result in a file each time the image
enters the evaluation of an individual generated by BP. We illustrate the execution times
before and after its application below.

The time required for each image takes approximately 40 s (1 s for GBVS, 4 s for
integration, and 35 for MCG) on average. A complete run requires 30 generations with
30 individuals to develop a solution, and each individual must process each of the images
in the training set. In a hypothetical example with 120 images for training, there would be
an execution time of

T = 30 ∗ 30 ∗ 120 ∗ 40 = 4,860,000 s/3600 = 1350 h/24 = 56.25 days,

and this time considers a single processing core.
Now, when studying the MCG algorithm, we realize that the output of each processed

image does not change, and therefore it is not necessary to generate it more than once.
We limit the processing of the images by the MCG to only once for each image, saving
computational resources and improving the overall consumption by the evolutionary cycle.
This idea brings as a consequence that with the same hardware components, the PC will
only take the following time:

T = 120 ∗ 35 = 3960 s/3600 = 1.17 h,

for 120 images, the available processing time would be

T = 30 ∗ 30 ∗ 120 ∗ 5 = 540,000 s/3600 = 150 h/24 = 6.25 days,

in total on average, representing an improvement of approximately 89% compared to the
initial method. Since this work implies improvements in the functioning of the ADS model,
it is necessary to explain in situ the changes we made to it. In this section, we describe the
pseudocode algorithms of the brain programming of the new artificial dorsal route based
on the one developed by [5].

Appl. Sci. 2022, 12, 10686 23 of 32

We detail the evolutionary process in the Algorithm A1. We initialize GP variables
between lines (1–6). The sets of functions and terminals of the three dimensions (orientation,
color, and shape), and the function corresponding to the integration of features (7–14) are
declared. Then we create the first generation of individuals in the population (15). In line
16, we initiate the reference list of training images. GP starts the cycle (17). The conditional
if has a negative value only in the first loop; its function is to create a new generation from
the current one (18–29).

After the pop individuals, we calculate their fitness—each fitness value is initialized
to “0” (30). The cycle responsible for calculating aptitude begins (31). On line 32, the values
of f itnesschrom are initialized to “0”. The second cycle (33) begins, which is responsible for
calculating the fitness of the individual whose index is i for each image in the list imagestr.
To achieve this, executing the salobj_test_img (Algorithm A2) returns a proto-object (34).
Then, this pro-object compares with the corresponding binary image (35), and the result
corresponds to the fitness value of the individual i in the image j. We store results in
f itnesschrom, and at the end of the loop, the average of all fitness values is calculated (37).
We preserve the individual with the best average fitness up to that moment at the end of
each GP cycle (39).

The second cycle creates new generations of the population (18–29). The parentschrom
array (19) is emptied. Then (20) several individuals represented by pop_size and discrimi-
nated by a roulette selection method based on the fitness value of each individual in the
population are assigned to parentschrom. The higher the aptitude, the greater the chance
of being selected. The array o f f springchrom is also emptied (21), and a cycle is in charge
of generating the new individuals from the parent individuals (22). The first step is to
choose the genetic operation to perform through a roulette selection. The operations are
chromosome-crossover, chromosome-mutation, gene-crossover, and gene-mutation. These
genetic operators have a probability defined in the initialization (23). Genetic-crossover
operators produce two child individuals from two parents, while mutation operators
produce one child individual from the parent. We store these generated individuals in
o f f springchrom (25), and once the generation ends, these individuals replace those of the
previous generation (27). Only the best individuals from a generation pass on to the
next (28).

Algorithm A2 takes care of generating the proto-object. The first step is initializing
the parameters necessary for executing the GBVS (1). Next, the salience map is obtained
in gbvsResult (Algorithm A3) (2). This algorithm is responsible for using an individual
generated by the GP to process the input image and convert it into a salience map and
store it in salMap (3). The masks, candidate segments, segment numbers and MCG
features are stored in masks, maskCCs, numSegs, mcg_feats respectively (Algorithm A4) (4).
The previous algorithm segments the input image and generates an array of candidate
segments according to the input image and the mode (second parameter) to accomplish
it. This process consumes many resources, executed only once per image, and its result
turns into a file for its next use. This strategy is possible because it always returns the
same individual result for each image. The features and array indexes of the MCG masks
are stored in curFeats, maskIdx respectively (4). This algorithm uses the GBVS bulge map
and the segments generated by the MCG to highlight those segments that coincide with
the most bulge areas of the GBVS map. On the next 2 lines, readjustments are made to
the array data masks, mcg_feats (6–7). In the array allFeats, we store the features extracted
from the MCG (8) for future computation. For the extraction of labels (labels) and their
probabilities (probs), we apply a pre-trained tree model with saliency maps of the GBVS to
the characteristics of the MCG (9). The labels are ordered from highest to lowest for later
use (10). We reset the label index array in the next five lines (11–15). Next, the best masks
of the MCG are extracted (16). In the next three lines, we execute rescaling processes and
grayscale conversions of the final mask (17–19).

Appl. Sci. 2022, 12, 10686 24 of 32

Algorithm A1 Evolving GBVS with BP
Purpose: Create a population of individuals. Each individual is made up of a minimum of 4 functions. The
GBVS+MCG uses these functions, and the fitness function uses their results to determine the best individual.
Input:

• num_gen: Number of cycles/generations in the evolutionary process.
• pop_size: Number of individuals in the population.

Variables:

• max_level: Maximum number of levels any tree can have.
• max_trees: Number of trees (genes) that an individual (chromosome) must have.
• prob_chrom_cross: Probability of applying a chromosome crossover.
• prob_chrom_mut: Probability of applying a chromosome mutation.
• pop: An array with all individuals in the population.
• parentschrom: A structure that saves the selected individuals as parents.
• o f f springchrom: An array that holds one or two new individuals, the product of some genetic operator

applied to selected members of the current population.
• new_pop: An array containing the individuals of the new population generation. It is the same size as pop.
• parentschrom: An array of image pairs used for training. The first is an RGB image, and the second is a

binary image representing the RGB image’s proto-object.
• image[str]: An array of image pairs used for training. The first is an RGB image, and the second is a binary

image representing the RGB image’s proto-object.
• fitness: An array that stores the average fitness values for each individual.
• f itnesschrom: An array that stores the fitness values of a single individual. fO, fC , fS, fFI : List of function

sets regarding Orientation (O), Color (C), Shape (S), and Feature Integration (FI).
• data_base_train: Number of cycles/generations in the evolutionary process.

Output:

• best_ind: Save the individual with the best fitness value.

1: max_level← 9
2: max_trees← 4
3: prob_chrom_cross← 0.8
4: prob_chrom_mut← 0.2
5: prob_gen_cross← 0.8
6: prob_gen_mut← 0.2
7: fO ← {Orientation functions}
8: fC ← {Color Features}
9: fS ← {Form Functions}

10: fFI ← {Feature Integration Functions}
11: tO ← {Orientation Terminals}
12: tC ← {Color Terminals}
13: tS ← {Form Terminals}
14: tFI ← {Feature Integration Terminals}
15: pop← Init_Pop(fO, fC , fS, fFI , tO, tC , tS, tFI , pop_size, max_level, max_trees)
16: imagestr ← Load(data_base_train)
17: for (gen← 1 to num_gen) do
18: if gen 6= 1 then
19: parentschrom.Clear()
20: parentschrom ← Roulette(pop,fitness,pop.size)
21: o f f springchrom.Clear()
22: while (o f f springchrom.length < parentschrom.length) do
23: operator← Roulette_Op(prob_chrom_cross,prob_chrom_mut,prob_gen_cross, prob_gen_mut)
24: i← o f f springchrom.length
25: o f f springchrom.Add(Apply_Gen_Op(operator,parentschrom,i))
26: end while
27: pop← o f f springchrom
28: pop.Add(best_ind)
29: end if
30: fitness← 0
31: for (i← 1 to pop.length) do
32: f itnesschrom ← 0
33: for (j← 1 to imagestr .length) do
34: proto← salobj_test_img(imagestr[j,1],pop[i])
35: f itnesschrom[j]← Calc_Proto_Fitness(pop[i], imagestr[j,2])
36: end for
37: fitness[i]←Mean(f itnesschrom)
38: end for
39: best_ind← Get_Best(pop, fitness, best_ind)
40: end for
41: return best_ind

Appl. Sci. 2022, 12, 10686 25 of 32

Algorithm A2 salobj_test_img
Purpose
• Proto-object generation.
Input
• img: Image or image path.
• param: Contains parameters for the algorithm.
• forest: A pre-trained model for calculating the highest level characteristics. This

model requires training the GBVS bulge maps or some other fixation prediction
algorithm.

• imgName: Name of the image to use.
Output
• finalMask: Contains the proto-object.

1: gbvsParam←makeGBVSParams()
2: gbvsResult← gbvs_init(img, param.ind)
3: salMap← gbvsResult.master_map
4: [masks,maskCCs,numSegs,mcg_feats] ← compute_mcg(img, ’accurate’, imgName,

param)
5: [curFeats,̃, maskIdx]← computeFeatures(maskCCs, salMap, [], param)
6: masks←masks(:,:,maskIdx)
7: mcg_feats← single(mcg_feats(maskIdx, :))
8: allFeats← [curFeats, mcg_feats]
9: [labels, probs]← forestApply(allFeats, forest)

10: [labels, index]← sort(labels, 1, ’descend’)
11: sizeK← param.topK
12: if (sizeK > length(index)) then
13: sizeK← length(index)
14: end if
15: index← index(1:sizeK)
16: topMasks←masks(:,:,index)
17: scores← reshape((labels(index)/param.nbins), [1 1 sizeK])
18: finalMask← topMasks .* repmat(scores, [imgH, imgW, 1])
19: finalMask←mat2gray(sum(finalMask, 3))
20: return finalMask

Algorithm A3 gbvs_init
Purpose
• Configuration of initial parameters of the GBVS and its execution.
Input
• img: Image or image path.
• ind: Mathematical model generated by the BP.
Output
• out: Contains the salience map.

1: params←makeGBVSParams
2: params.channels← ‘DIOS‘
3: params.gaborangles← [0, 45, 90, 135]
4: params.levels← 4
5: params.tol← 0.003
6: params.salmapmaxsize← round(max(size(img))/8)
7: params.ind← ind
8: params.gp← 1
9: params.shapeWeight← 1

10: out← gbvs(img, params)
11: return out

Appl. Sci. 2022, 12, 10686 26 of 32

Algorithm A3 is in charge of initializing the execution parameters of the GBVS and
executing it. The default parameters of the algorithm (1) are stored in param. Next, the
channels (dimensions for the GP) to be used are chosen (2). The Gabor angles to use, the
subsampling levels, the tolerance level of the eigenvector equilibrium mechanism, and the
minimum subsampling size are established (3–6). The individual generated by the GP is
also stored as well as the control variables and weights (7–9). Finally, we obtain the GBVS
result for the input image (10).

Algorithm A4 compute_mcg
Purpose
• Image segmentation and feature extraction.
Input
• img: Image or image path.
• mode: MCG execution mode.
• imgName: Name of the image to use.
• param: MCG execution parameters.
Output
• masks: Contains the masks of the MCG conversions.
• maskCCs: Contains the filtered masks of the MCG conversions.
• numSegs: Number of parts in which the image is segmented.
• mcg_feats: Contains the characteristics of the MCG result.

1: if exist(char(strcat(’tmp/’,imgName,’.mat’)), ’file’) then
2: [masks,maskCCs,numSegs,mcg_feats]← load(char(strcat(’tmp/’,imgName,’.mat’)))
3: else
4: [candidates_mcg, ,̃ mcg_feats]← im2mcg_simple(img, mode)
5: mcg_feats←mcg_feats(:, [1:3, 6:13, 15:16])
6: numProps← size(candidates_mcg.scores, 1)
7: numProps←min(numProps, param.maxTestProps)
8: masks← false([size(img, 1), size(img, 2), numProps])
9: scores← zeros([1 numProps])

10: sorted_scores← candidates_mcg.scores
11: sorted_idx← [1:numProps]
12: scores(1:numProps)← sorted_scores(1:numProps)
13: sorted_idx← sorted_idx(1:numProps)
14: mcg_feats← [mcg_feats(sorted_idx, :), scores’]
15: props← candidates_mcg.labels(sorted_idx)
16: for (curProp← 1 to numProps) do
17: masks(:,:,curProp)← ismember(candidates_mcg.superpixels, props{curProp})
18: end for
19: [masks, validMasks, maskCCs]← filterMasks(masks, param.minArea)
20: mcg_feats←mcg_feats(validMasks, :)
21: numSegs← size(masks, 3)

save(char(strcat(’tmp/’,imgName,’.mat’)),’masks’,’maskCCs’,’numSegs’,’mcg_feats’)
22: end if
23: return [masks,maskCCs,numSegs,mcg_feats]

Algorithm A4 is in charge of converting the image into segments and characteristics
of the MCG. Regarding the first two lines, the MCG verifies the existence of values cor-
responding to the image processing (1–2). This step is necessary to save the MCG time
to process an image (approximately 30 s according to [30]). The MCG then processes the
image to extract candidate segments and MCG features (4–6). The following five lines
are used to process the MCG results (7–11). The scores and characteristics are readjusted
(12–14) in the following three lines. Then the MCG results are converted into masks (15–18),
filtered, and saved to a file (19–21). Finally, the masks, candidates, segment numbers, and
features are returned (23).

Appl. Sci. 2022, 12, 10686 27 of 32

Algorithm A5 is responsible for calculating the salience map of an image. Some
constants necessary for executing the GBVS are established in the initial line, such as the
weight matrix and the Gabor filters. This information is stored in a file for each image
dimension to be processed and reused while keeping dimensions (1). In the following line,
we extract the feature maps of the image. It is in this phase that the individual generated
by the GP is used and stored param (Algorithm A6) (2). Then the activation maps are
calculated for each feature map (3). These maps are then normalized (4). Next, each
channel’s average of the feature maps is calculated (5). Next, the characteristics are added
through the channels (6). Then the part of the individual corresponding to the integration
of characteristics is added to the resulting salience map (33). This sum is blurred and finally
returned (38).

Algorithm A6 extracts the features from the input image using the individual gener-
ated by the GP. In the initial line, an array is established with the subsampling levels of the
image starting at two because one would be the image with the original dimensions. The
next 11 lines of the algorithm are dedicated to the subsampling of the different channels
of three color spaces (RGB, CMYK, and HSV) (2–12). In the array rawfeatmaps the feature
maps of each of the channels are saved (orientation (Algorithm A7), color (Algorithm A8),
shape (Algorithm A9) and intensity) for each of the levels (17). These maps result from
applying the individual generated from the GP to each training image. Finally, these maps
are returned (22).

Algorithm A7 is in charge of extracting the characteristics corresponding to the orien-
tation channel. The subsampling index is stored in the initial line, which is then used to
access the corresponding color channels for each level (1). The following 11 lines are used
to store the different channels of the color spaces at each level that will be used later as
terminals in evaluating the individual in the image (2–12). The result of this evaluation is
stored and returned later (13–14).

Algorithm A8 is in charge of extracting the characteristics corresponding to the color.
In the three initial lines, the three channels of the RGB color space of the input image (1–3)
are regrouped. This channel also uses the DKL color space, which is obtained from the
function rgb2dkl (4). In the following lines, this color space’s three channels are distributed
(5–7). The subsampling index is assigned (8) to be then used to access the terminals
that correspond to the channels of each color space used (11–20). The individual is then
evaluated, stored, and returned (21–22).

Algorithm A9 is in charge of extracting the characteristics corresponding to the shape.
The subsampling index is stored in the initial line, which is then used to access the corre-
sponding color channels for each level (1). The following lines group together the three
channels of the RGB color space of the input image (2–4). In the following seven lines, the
channels of various color spaces are distributed (5–11). The individual is evaluated, stored,
and then returned (21–22).

Appl. Sci. 2022, 12, 10686 28 of 32

Algorithm A5 gbvs
Purpose

• Compute the GBVS map of an image and place it in master_map.
• If this image is part of a video sequence, motionInfo should be looped, and the information

from the previous frame/image will be used if “flicker” or “motion” channels are used. It is
necessary to initialize prevMotionInfo to [] for the first frame.

Input

• ind: Individual resulting from the evolutionary cycle of the GP.
• img: Image or image path.
• (opcional) param: Contains parameters for the algorithm.

Output

• master_map: It is the GBVS map for the image–resized it is the same size as the image.
• feat_maps: Contains the final and normalized individual feature maps.
• map_types: Contains a string description of each map in feat_map (respectively for each

index).
• intermed_maps: Contains all computed intermediate maps along the path (act. & norm.) used

to compute feat_maps, which are then combined into master_map.
• rawfeatmaps: It contains all the feature maps calculated at the different scales.
• motionInfo: It contains information on the movement of the frames.

1: [grframe,param]← initGBVS(param,size(img))
2: [rawfeatmaps,motionInfo]← getFeatureMaps(img , param)
3: allmaps← getActivationMaps()
4: norm_maps← getNormalizationMaps()
5: comb_norm_maps← getCombinationNormalizationMaps()
6: master_map← getMasterMap()
7: if (param.gp = 1) then
8: [R,G,B,image]←mygetrgb(img)
9: image← imresize(mean(image,3) , param.salmapsize , ‘bicubic’)

10: R← imresize(R , param.salmapsize , ‘bicubic’)
11: G← imresize(G , param.salmapsize , ‘bicubic’)
12: B← imresize(B , param.salmapsize , ‘bicubic’)
13: [C,M,Y,K]← rgb2cmyk(R,G,B)
14: C← imresize(C , param.salmapsize , ‘bicubic’)
15: M← imresize(M , param.salmapsize , ‘bicubic’)
16: Y← imresize(Y , param.salmapsize , ‘bicubic’)
17: K← imresize(K , param.salmapsize , ‘bicubic’)
18: [H,S,V]← rgb2hsv(img)
19: H← imresize(H , param.salmapsize , ‘bicubic’)
20: S← imresize(S , param.salmapsize , ‘bicubic’)
21: V← imresize(V , param.salmapsize , ‘bicubic’)
22: dkl← rgb2dkl(img)
23: dkl1← dkl(:,:,1)
24: dkl1← imresize(dkl1 , param.salmapsize , ‘bicubic’)
25: dkl2← dkl(:,:,2)
26: dkl2← imresize(dkl2 , param.salmapsize , ‘bicubic’)
27: dkl3← dkl(:,:,3)
28: dkl3← imresize(dkl3 , param.salmapsize , ‘bicubic’)
29: conspicuity1← comb_norm_maps{1}
30: conspicuity2←master_map
31: conspicuity3← comb_norm_maps{3}
32: conspicuity4← comb_norm_maps{4}
33: master_map←master_map + eval(param.ind.str(4))
34: end if
35: master_map← attenuateBordersGBVS(master_map,4)
36: master_map←mat2gray(master_map)
37: master_map← getBluredMasterMap()
38: return master_map

Appl. Sci. 2022, 12, 10686 29 of 32

Algorithm A6 getFeatureMaps
Purpose

• Extraction of feature maps.

Input

• img: Image or image path.
• param: Contains parameters for the algorithm.
• prevMotionInfo: Information of the previous frame/image.

Output

• rawfeatmaps: It contains all the feature maps calculated at different scales.
• motionInfo: It contains information on the movement of the frames.

1: levels← [2 : param.maxcomputelevel]
2: imgL← getIntensitySubsamples()
3: imgR← getRedSubsamples()
4: imgG← getGreenSubsamples()
5: imgB← getBlueSubsamples()
6: imgC← getCyanSubsamples()
7: imgM← getMagentaSubsamples()
8: imgY← getYellowSubsamples()
9: imgK← getKeySubsamples()

10: imgH← getHueSubsamples()
11: imgS← getSaturationSubsamples()
12: imgV← getBrightnessSubsamples()
13: l← 0
14: for (i← 1 to channels) do
15: for (j← 1 to channels[i].numtypes) do
16: for (k← 1 to levels) do
17: rawfeatmaps[l]← channelfunc(param,imgLk,imgRk,imgGk,imgBk,ti)
18: l← l + 1
19: end for
20: end for
21: end for
22: return rawfeatmaps

Algorithm A7 OrientationGP
Purpose

• Feature extraction from the orientation channel.

Input

• fparam: Channel execution parameters.
• img: Image subsampled with intensity values.
• imgR: Red channel of the subsampled image.
• imgG: Green channel of the subsampled image.
• imgB: Blue channel of the subsampled image.
• typeidx: Image subsampling rate.

Output

• out: It contains the characteristics map of the orientation channel.

1: n← typeidx
2: R← imgR
3: G← imgG
4: B← imgB
5: C← fparam.terminals(n).C
6: M← fparam.terminals(n).M
7: Y← fparam.terminals(n).Y
8: K← fparam.terminals(n).K
9: H← fparam.terminals(n).H

10: S← fparam.terminals(n).S
11: V← fparam.terminals(n).V
12: imagen← fparam.terminals(n).V
13: out.map← eval(fparam.ind.str(1))
14: return out

Appl. Sci. 2022, 12, 10686 30 of 32

Algorithm A8 dkColorGP
Purpose

• Extraction of characteristics of the channel of the form.

Input

• fparam: Channel execution parameters.
• img: Image subsampled with intensity values.
• imgR: Red channel of the subsampled image.
• imgG: Green channel of the subsampled image.
• imgB: Blue channel of the subsampled image.
• typeidx: Image subsampling rate.

Output

• out: Contains the feature map of the shape channel.

1: rgb← repmat(imgR , [1 1 3])
2: rgb(:,:,2)← imgG
3: rgb(:,:,3)← imgB
4: dkl← rgb2dkl(rgb)
5: dkl1← dkl(:,:,1)
6: dkl2← dkl(:,:,2)
7: dkl3← dkl(:,:,3)
8: n← typeidx
9: image← []

10: image← img
11: R← imgR
12: G← imgG
13: B← imgB
14: C← fparam.terminals(n).C
15: M← fparam.terminals(n).M
16: Y← fparam.terminals(n).Y
17: K← fparam.terminals(n).K
18: H← fparam.terminals(n).H
19: S← fparam.terminals(n).S
20: V← fparam.terminals(n).V
21: out.map← eval(fparam.ind.str(2))
22: return out

Algorithm A9 ShapeGP
Purpose

• Color channel feature extraction.

Input

• fparam: Channel execution parameters.
• img: Image subsampled with intensity values.
• imgR: Red channel of the subsampled image.
• imgG: Green channel of the subsampled image.
• imgB: Blue channel of the subsampled image.
• typeidx: Image subsampling rate.

Output

• out: Contains the Color channel feature map.

1: n← typeidx
2: R← imgR
3: G← imgG
4: B← imgB
5: C← fparam.terminals(n).C
6: M← fparam.terminals(n).M
7: Y← fparam.terminals(n).Y
8: K← fparam.terminals(n).K
9: H← fparam.terminals(n).H

10: S← fparam.terminals(n).S
11: V← fparam.terminals(n).V
12: out.map← eval(fparam.ind.str(3))
13: return out

Appl. Sci. 2022, 12, 10686 31 of 32

References
1. Ndayikengurukiye, D.; Mignotte, M. Salient object detection by LTP texture characterization on opposing color pairs under slico

superpixel constraint. J. Imaging 2022, 8, 110. [CrossRef]
2. Ahmed, K.; Gad, M.A.; Aboutabl, A.E. Performance evaluation of salient object detection techniques Multimed. Tools Appl. 2022,

81, 21741–21777. [CrossRef]
3. Gupta, A.K.; Seal, A.; Khanna, P.; Yazidi, A.; Krejcar, O. Gated contextual features for salient object detection. IEEE Trans. Instrum.

Meas. 2021, 70, 1–13. [CrossRef]
4. Gupta, A.K.; Seal, A.; Khanna, P.; Krejcar, O.; Yazidi, A. Awks: Adaptive, weighted k-means-based superpixels for improved

saliency detection. Pattern Anal. Appl. 2021, 24, 625–639. [CrossRef]
5. Dozal, L.; Olague, G.; Clemente, E.; Hernández, D.E. Brain programming for the evolution of an artificial dorsal stream. Cogn.

Comput. 2014, 6, 528–557. [CrossRef]
6. Contreras-Cruz, M.A.; Martinez-Rodriguez, D.E.; Hernandez-Belmonte, U.H.; Ayala-Ramirez, V. A genetic programming

framework in the automatic design of combination models for salient object detection. Genet. Program. Evolvable Mach. 2019, 20,
285–325. [CrossRef]

7. Clemente, E.; Olague, G.; Dozal, L.; Mancilla, M. Object recognition with an optimized ventral stream model using genetic
programming. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7248, pp. 315–325.

8. Olague, G.; Clemente, E.; Hernandez, D.E.; Barrera, A.; Chan-Ley, M.; Bakshi, S. Artificial visual cortex and random search for
object categorization. IEEE Access 2019, 7, 54054–54072. [CrossRef]

9. Rojas-Quintero, J.; Rodríguez-Liñán, M. A literature review of sensor heads for humanoid robots. Robot. Auton. Syst. 2021, 143,
103834. [CrossRef]

10. Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [CrossRef]
11. Khan, A.; Qureshi, A.S.; Wahab, N.; Hussain, M.; Hamza, M.Y. A recent survey on the applications of genetic programming in

image processing. Comput. Intell. 2021, 37, 1745–1778. [CrossRef]
12. Mohammed, G.S.; Al-Janabi, S. An innovative synthesis of optmization techniques (FDIRE-GSK) for generation electrical

renewable energy from natural resources. Results Eng. 2022, 16, 100637. [CrossRef]
13. Olague, G.; Olague, M.; Ibarra-Vazquez, G.; Reducindo, I.; Barrera, A.; Martinez, A.; Briseno, J.L. Modelling Hierarchical

Architectures with Genetic Programming and Neuroscience Knowledge for Image Classification through Inferential Knowledge.
In Genetic Programming Theory and Practice XIX; Springer: Berlin/Heidelberg, Germany, 2023.

14. Al-Janabi, S.; Alkaim, A. A novel optimization algorithm (lion-ayad) to find optimal dna protein synthesis. Egypt. Inform. J. 2022,
23, 271–290. [CrossRef]

15. Gupta, A.K.; Seal, A.; Khanna, P.; Herrera-Viedma, E.; Krejcar, O. Almnet: Adjacent layer driven multiscale features for salient
object detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [CrossRef]

16. Olague, G. Evolutionary Computer Vision: The First Footprints; Springer: Berlin/Heidelberg, Germany, 2016.
17. Santamaría, J.; Rivero-Cejudo, M.L.; Martos-Fernández, M.A.; Roca, F. An overview on the latest nature-inspired and

metaheuristics-based image registration algorithms. Appl. Sci. 2020, 10, 1928. [CrossRef]
18. Iqbal, M.; Naqvi, S.S.; Browne, W.N.; Hollitt, C.; Zhang, M. Learning feature fusion strategies for various image types to detect

salient objects. Pattern Recognit. 2016, 60, 106–120. [CrossRef]
19. Ibarra-Vazquez, G.; Olague, G.; Chan-Ley, M.; Puente, C.; Soubervielle-Montalvo, C. Brain programming is immune to adversarial

attacks: Towards accurate and robust image classification using symbolic learning. Swarm Evol. Comput. 2022, 71, 101059.
[CrossRef]

20. Perez-Cham, O.E.; Puente, C.; Soubervielle-Montalvo, C.; Olague, G.; Aguirre-Salado, C.A.; Nuñez-Varela, A.S. Parallelization of
the honeybee search algorithm for object tracking. Appl. Sci. 2020, 10, 2122. [CrossRef]

21. Perez-Cham, O.E.; Puente, C.; Soubervielle-Montalvo, C.; Olague, G.; Castillo-Barrera, F.-E.; Nunez-Varela, J.; Limon-Romero, J.
Automata design for honeybee search algorithm and its applications to 3d scene reconstruction and video tracking. Swarm Evol.
Comput. 2021, 61, 100817. [CrossRef]

22. Pillay, N.; Qu, R. (Eds.) Automated Design of Machine Learning and Search Algorithms; Springer: Berlin/Heidelberg, Germany, 2021.
[CrossRef]

23. Creel, K.A. Transparency in complex computational systems. Philos. Sci. 2020, 87, 1–37. [CrossRef]
24. Li, N.; Bi, H.; Zhang, Z.; Kong, X.; Lu, D. Performance comparison of saliency detection. Adv. Multimed. 2018, 2018, 1–13.

[CrossRef]
25. Borji, A.; Cheng, M.-M.; Hou, Q.; Jiang, H.; Li, J. Salient object detection: A survey. Comput. Vis. Media 2019, 5, 117–150. [CrossRef]
26. Gupta, A.K.; Seal, A.; Prasad, M.; Khanna, P. Salient object detection techniques in computer vision—A survey. Entropy 2020, 22,

1174. [CrossRef] [PubMed]
27. Wang, W.; Lai, Q.; Fu, H.; Shen, J.; Ling, H.; Yang, R. Salient object detection in the deep learning era: An in-depth survey. IEEE

Trans. Pattern Anal. Mach. Intell. 2021, 44, 3239–3259. [CrossRef]
28. Borji, A.; Sihite, D.N.; Itti, L. Salient object detection: A benchmark. In Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7573,
pp. 414–429.

http://dx.doi.org/10.3390/jimaging8040110
http://dx.doi.org/10.1007/s11042-022-12567-y
http://dx.doi.org/10.1109/TIM.2021.3064423
http://dx.doi.org/10.1007/s10044-020-00925-1
http://dx.doi.org/10.1007/s12559-014-9251-6
http://dx.doi.org/10.1007/s10710-019-09345-5
http://dx.doi.org/10.1109/ACCESS.2019.2912792
http://dx.doi.org/10.1016/j.robot.2021.103834
http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1111/coin.12459
http://dx.doi.org/10.1016/j.rineng.2022.100637
http://dx.doi.org/10.1016/j.eij.2022.01.004
http://dx.doi.org/10.1109/TIM.2021.3108503
http://dx.doi.org/10.3390/app10061928
http://dx.doi.org/10.1016/j.patcog.2016.05.020
http://dx.doi.org/10.1016/j.swevo.2022.101059
http://dx.doi.org/10.3390/app10062122
http://dx.doi.org/10.1016/j.swevo.2020.100817
http://dx.doi.org/10.1007/978-3-030-72069-8
http://dx.doi.org/10.1086/709729
http://dx.doi.org/10.1155/2018/9497083
http://dx.doi.org/10.1007/s41095-019-0149-9
http://dx.doi.org/10.3390/e22101174
http://www.ncbi.nlm.nih.gov/pubmed/33286942
http://dx.doi.org/10.1109/TPAMI.2021.3051099

Appl. Sci. 2022, 12, 10686 32 of 32

29. Borji, A.; Cheng, M.; Jiang, H.; Li, J. Salient object detection: A benchmark. IEEE Trans. Image Process. 2015, 24, 5706–5722.
[CrossRef]

30. Li, Y.; Hou, X.; Koch, C.; Rehg, J.M.; Yuille, A.L. The secrets of salient object segmentation. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 280–287.

31. Liu, N.; Han, J. Dhsnet: Deep hierarchical saliency network for salient object detection. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 678–686.

32. Xuebin, X.; Zhang, Z.; Huang, C.; Hao, C.; Dehghan, M.; Jagersand, M. BASNet: Boundary-aware Salient Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019; pp. 7471–7481.

33. Liu, N.; Han, J.; Yang, M.-H. PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018;
pp. 3089–3098.

34. Koch, C.; Ullman, S. Shifts in selective visual attention: Towards the underlying neural circuitry. In Human Neurobiology; Springer:
Berlin/Heidelberg, Germany, 1985; Volume 4, pp. 219–227.

35. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 1998, 20, 1254–1259. [CrossRef]

36. Olague, G.; Hernandez, D.E.; Clemente, E.; Chan-Ley, M. Evolving head tracking routines with brain programming. IEEE Access
2018, 6, 26254–26270. [CrossRef]

37. Olague, G.; Hernández, D.E.; Llamas, P.; Clemente, E.; Brise no, J.L. Brain programming as a new strategy to create visual routines
for object tracking: Towards automation of video tracking design. Multimed. Tools Appl. 2019, 78, 5881–5918. [CrossRef]

38. Harel, J.; Koch, C.; Perona, P. Graph-based visual saliency. In Advances in Neural Information Processing Systems; Mit Press:
Cambridge, MA, USA, 2007; pp. 545–552.

39. Clemente, E.; Chavez, F.; Fernandez De Vega, F.; Olague, G. Self-adjusting focus of attention in combination with a genetic fuzzy
system for improving a laser environment control device system. Appl. Soft Comput. J. 2015, 32, 250–265. [CrossRef]

40. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

41. Perazzi, F.; Krahenbuhl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21
June 2012; pp. 733–740.

42. Margolin, R.; Tal, A.; Zelnik-Manor, L. What makes a patch distinct? In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1139–1146.

43. Cheng, M.M.; Zhang, G.X.; Mitra, N.J.; Huang, X.; Hu, S.M. Global contrast based salient region detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011;
pp. 409–416.

44. Achantay, R.; Hemamiz, S.; Estraday, F.; Süsstrunky, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, Miami, FL, USA,
20–25 June 2009; Volume 2009, pp. 1597–1604.

45. Pineda, R.; Olague, G.; Ibarra-Vazquez, G.; Martinez, A.; Vargas, J.; Reducindo, I. Brain Programming and Its Resilience Using a
Real-World Database of a Snowy Plover Shorebird. In International Conference on the Applications of Evolutionary Computation (Part
of EvoStar), EvoApplications; Springer: Cham, Switzerland, 2022; pp. 603–618.

http://dx.doi.org/10.1109/TIP.2015.2487833
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1109/ACCESS.2018.2831633
http://dx.doi.org/10.1007/s11042-018-6634-9
http://dx.doi.org/10.1016/j.asoc.2015.03.011
http://dx.doi.org/10.1007/s11263-009-0275-4

	Introduction
	Related Work
	Methodology
	Initialization
	Individual Representation
	Artificial Dorsal Stream
	Acquisition and Transformation of Features
	Feature Dimensions

	Creating the Activation Maps
	A Markovian Approach
	Normalizing an Activation Map
	Genetic Operations
	Evaluation Measures

	Experiments and Results
	Image Databases
	Experiments with Dozal's Fitness Function on GBVSBP
	Experiments with Benchmark's Score
	Analysis of the Best Evolutionary Run
	Comparison with Other Approaches

	Conclusions
	Appendix A
	References

