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Abstract: Low Earth orbit (LEO) satellites that can be used as computing nodes are an important
part of future communication networks. However, growing user demands, scarce channel resources
and unstable satellite–ground links result in the challenge to design an efficient channel allocation
algorithm for the LEO satellite network. Edge computing (EC) provides sufficient computing power
for LEO satellite networks and makes the application of reinforcement learning possible. In this
paper, an adaptive dynamic channel allocation algorithm based on a temporal–spatial correlation
analysis for LEO satellite networks is proposed. First, according to the user mobility model, the
temporal–spatial correlation of handoff calls is analyzed. Second, the dynamic channel allocation
process in the LEO satellite network is formally described as a Markov decision process. Third,
according to the temporal–spatial correlation, a policy for different call events is designed and online
reinforcement learning is used to solve the channel allocation problem. Finally, the simulation results
under different traffic distributions and different traffic intensities show that the proposed algorithm
can greatly reduce the rejection probability of the handoff call and then improve the total performance
of the LEO satellite network.

Keywords: dynamic channel allocation; temporal–spatial correlation analysis; LEO satellite network;
reinforcement learning; edge computing

1. Introduction

Satellite networks not only provide a call admission service to terminal users at any
time and anywhere, but also provide reliable communication in many scenes such as
natural disasters and emergency rescues. Therefore, it has become a favorable supplement
to terrestrial networks [1]. Low Earth orbit (LEO) satellite networks have advantages such
as global coverage, real-time communication and small terminals, which makes them a
research hotspot of satellite networks [2]. Several researchers have combined LEO satellite
networks with edge computing (EC) to deploy EC servers on LEO satellites [3–5]. As
edge computing nodes, LEO satellites are an important part of future communication
networks [6]. The effectiveness of the application of an EC framework has been verified
in existing systems [7–9]. A reasonable channel allocation algorithm can improve the
utilization of communication resources and the performance of satellite networks. Edge
computing provides sufficient computing power for LEO satellites and makes it possible to
apply reinforcement learning to channel allocations [10].

LEO satellites operate at a low altitude with a high speed, which makes its coverage
area prone to handoff. Therefore, the visibility time of LEO satellites to terminal users is very
short. By using multiple antennas and a satellite-fixed cell (SFC) mode, the coverage area is
divided into multi-beams. Each beam is called as a cell [11]. A call for the terminal user will
hand over between multiple cells or multiple satellites during the whole communication
process. Each handoff will cause a reallocation of the channel resources. An efficient
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channel allocation algorithm can reduce the rejection probability of calls and improve the
total performance of LEO satellite networks [12].

In recent years, scholars have researched channel allocation algorithms in LEO satellite
networks [13–18]. A fixed channel allocation (FCA) algorithm can allocate unchanged
channels in each specified cell. Del Re et al. [19] analyzed the performance of an FCA for
LEO satellite networks. An FCA is simple to implement, but it has a poor adaptability
to variations in the demands of terminal users. A dynamic channel allocation (DCA)
algorithm is superior to an FCA in performance. Li et al. [20] used a DCA to improve the
resource utilization in a satellite network. However, the computational complexity of a
DCA is higher than that of an FCA. Reinforcement learning (RL) is suitable for solving the
DCA problem [21]. Nie et al. [22] used Q-learning to solve the DCA problem and reduce the
computational complexity. Hu et al. [23] proposed a deep RL framework to solve the DCA
problem and further improve the resource utilization in a satellite network. Liu et al. [24]
considered the temporal correlation of a satellite network and used deep RL to further
improve the resource utilization. Zheng et al. [25] extracted the state features through a
convolution neural network and used deep learning to solve the DCA problem. The above
scholars optimized a DCA with RL, which effectively improved the resource utilization
in LEO satellite networks. However, LEO satellite networks have the problem of frequent
handoffs. The existing dynamic channel allocation algorithms based on RL rarely evaluate
the performance of handoff calls.

The channel reservation technique is an effective way to resolve the problem of
frequent handoffs [26]. Maral et al. [27] designed a channel locking mechanism for handoff
users with a successful handoff. Del Re et al. [28] proposed different handoff queueing
strategies with dynamic and fixed channel allocation techniques. However, it is difficult
to balance the complexity and performance. A channel allocation algorithm combined
with RL technology can be implemented more flexibly and efficiently [29,30]. The traffic
prediction of the calls of terminal users plays a decisive role in the resource allocation [31].
Due to LEO satellites moving along their orbit regularly and periodically, a handoff call
has the characteristic of a temporal–spatial correlation. The temporal correlation means
that the departure call of the current cell and the new call of the adjacent cell occur at the
same time. The spatial correlation means that the adjacent cell and the current cell have
a neighbor relationship in space. We made full use of the temporal–spatial correlation of
handoff calls in LEO satellite networks to propose an adaptive DCA algorithm based on
RL. This algorithm not only considered the problems caused by a frequent handoff, but
also improved the total performance of the network. The main efforts of this paper were:

• The temporal–spatial correlation of handoff calls was analyzed and the Markov deci-
sion process (MDP) was used to formally describe the channel allocation process so that
the channel allocation could be dynamically adjusted according to the environment.

• A policy for different call events was designed. Afterwards, an online RL algorithm—
namely, SARSA—was used to solve the DCA problem. SARSA iteratively updated the
policy from the performed actions so that the channel allocation could be adjusted in
real-time according to the environment.

• The effectiveness of the proposed algorithm was verified by simulation experiments
under different traffic distributions and different traffic intensities.

The remainder of this paper is structured as follows. Section 2 introduces the related
technologies. The proposed algorithm is presented in Section 3. Section 4 presents and
discusses the simulation results. Finally, conclusions are drawn in Section 5.

2. Related Technologies
2.1. Markov Decision Process

The MDP, which is a discrete time stochastic control process, provides a mathematical
framework for modeling the decision process [32,33]. Typically, the MDP is defined as a
tuple (S, A, P, R), where S represents a finite set of states and A represents a finite set of
actions. P represents the probability of the state transition from s (s∈S) to s’ (s’∈S) after
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performing an action a (a∈A). R represents the immediate reward obtained after performing
this action. In the MDP, policy π is defined as the mapping from a state to an action. The
ultimate goal of the MDP is to find the optimal policy π* to maximize the benefit that the
performed actions can cumulatively obtain from the environment.

2.2. SARSA

RL, an important branch of machine learning, is an effective way to solve the MDP. The
state-action value is very important in RL, which is called the Q-value. The Q-value refers
to the average value of the benefits cumulatively obtained from the environment when a
policy π performs an action from the current state to the final state. It is generally expressed
as the expectation of the sum of the immediate reward and the subsequent rewards. The
Q-value is a measure of the quality of the policy and it is calculated by:

Q(st, at) = Eπ

(
Rt + γRt+1 + γ2Rt+2 + γ3Rt+3 + . . .

∣∣∣st = s, at = a
)

(1)

where st is the environmental state at time t, at is the performed action at time t and π is
the policy. In particular, Rt is the immediate reward after performing action at in the state st
and Rt+1, Rt+2 . . . are the subsequent rewards after time t. γ ∈ [0,1) is the discount factor,
which weighs the immediate reward and subsequent rewards obtained after performing
the current action.

Finding the optimal policy means that an optimal action is performed at each state.
When the space of the environmental state is very large or the probability of the current
state reaching the final state is very small, it is difficult for Equation (1) to update the
Q-value. Q-learning can update the Q-value in one step with the learning rate.

SARSA can calculate the Q-value of a given policy without a state transition proba-
bility and complete the state sequence so it can find the optimal policy without requiring
knowledge of the environment [34,35]. Different from Q-learning, SARSA performs the
actions with the same policy in real-time at each iteration time step [36,37]. Its Q-value is
iteratively updated at each time step by:

Qt+1(st, at) = Qt(st, at) + αt[Rt(st, at) + γQt(st+1, at+1)−Qt(st, at)] (2)

where αt is the learning rate at time t and Qt(st+1, at+1) is the value of the next state and
the next action. According to αt+1 = αt∗ δ, the learning rate decreases with an increase in
the iteration time t. δ is the decay factor of α and αt ∈ (0,1].

3. The Proposed Algorithm
3.1. Temporal–Spatial Correlation Analysis

The mobility model of the users is shown in Figure 1. The LEO satellite used the SFC
coverage mode. The user mobility was simplified to a linear motion. Compared with the
satellite movement speed, the speed of the terminal users had the same value and the
opposite direction [38].

The high-speed movement of LEO satellites makes calls frequently hand over between
cells or satellites. The departure call of the current cell and the new call of the adjacent
cell occur at the same time. A handoff call occurs in the only neighbor cell that is in the
opposite direction to the satellite movement. Therefore, a handoff call has the characteristic
of a temporal–spatial correlation in LEO satellite networks.

A call of the current cell hands over at a certain time because of the high-speed
movement of the LEO satellite. The call of the current cell departs; meanwhile, a new call
of the adjacent cell occurs. The adjacent cell is the only neighbor cell where the call of the
current cell hands over. As shown in Figure 1, cell 19 is the adjacent cell of cell 18. In other
words, the call of cell 18 will hand over to cell 19.

When a handoff call occurs, the channel allocation algorithm not only releases the
occupied channel for the departure call, but also allocates the channel for the handoff call
of the adjacent cell. Generally speaking, one channel resource is usually allocated for one



Appl. Sci. 2022, 12, 10939 4 of 16

call in LEO satellite networks. The allocated channel must also meet any electromagnetic
compatibility constraints to avoid co-channel interference [39].
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Figure 1. The mobility model of the users.

We assumed that the LEO satellite network had N cells = {1, 2, 3, . . . . . . N} and K
channels Ҡ = {1, 2, 3, . . . . . . K}. The conflicting cell I(n) of cell n referred to the cells whose
distances from themselves to cell n were less than the minimal reuse distance. This could
be expressed by:

I(n) = {m∈, dist(n, m) < d} (3)

where dist(n, m) represents the distance between cell n and cell m and d represents the
minimal reuse distance. As shown in Figure 1, the 18 cells in gray were conflicting the cell
of cell 25 if d = 3.

The same channel cannot simultaneously be allocated to the calls of the current cell
and its conflicting cell. The eligible channel Ã(n) of cell n refers to the idle channel in both
cell n itself and its conflicting cell and can be expressed by:

Ã(n) = {k∈Ҡ, ∑m∈I(n) x(m, k) = 0} (4)

where x(m, k) represents the status of channel k of cell m. The value 0 means idle and
1 means occupied.

3.2. Markov Decision Process for the Dynamic Channel Allocation Process

In this paper, the channel status and the call event formed the environment in the
channel allocation problem. The transition of the environmental state had the Markov
property. The whole channel allocation process was described as per the following MDP
model to dynamically adapt to the environmental changes.

State S: st = (Xt, et) represents the environmental state at time t. Xt is the channel
status of the LEO satellite network at time t and et is the call event for the admission service
to the terminal users at time t. They are expressed, respectively, by:
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Xt =


xt(1, 1) xt(1, 2) xt(1, 3) . . . xt(1, k) . . . xt(1, K)
xt(2, 1) xt(2, 2) xt(2, , , , 3) . . . xt(2, k) . . . xt(2, K)

. . . . . . . . . . . . . . . . . . . . .
xt(n, 1) xt(n, 2) xt(n, 3) . . . xt(n, k) . . . xt(n, K)
xt(N, 1) xt(N, 2) xt(N, 3) . . . xt(N, k) . . . xt(N, K)

 (5)

et ∈
{

enew
n,t , ehando f f

n,m,k,t , eend
n,k,t

}
(6)

where xt(n, k) = 0 represents that channel k of cell n is idle at time t and xt(n, k) = 1
represents that this channel is occupied. enew

n,t represents a new call event in cell n at time t.

ehando f f
n,m,k,t represents that the handoff call event on channel k in cell n will hand over to the

adjacent cell m at time t according to its temporal–spatial correlation. eend
n,k,t represents that

the departure call event on channel k in cell n occurs at time t.
Action A: to accept or reject the call event. If a new call arrives, a channel should be

occupied. If the call departs, a channel should be free. If the call hands over, the related
new call and the departure call should be handled. In this paper, the actions of different
call events were expressed by:

A((xt, et)) =


(n), et = enew

n,t

{l ∈ K, xt(n, l) = 1}, et = eend
n,k,t

A
((

xt, eend
n,k,t

))
∪ A

((
xt+1, enew

m,t
))

et = ehando f f
n,m,k,t

(7)

Immediate reward R: the reward obtained from the environment after performing
action at in the current state st. In this paper, the immediate reward referred to the total
number of calls served in the current network. It was expressed by:

Rt = (st, ) ∑N
n=1 ∑K

k=1 xt+1 (n, k) (8)

where xt+1(n, k) represents the transformed status of channel k in cell n after performing
action at.

Policy π: the mapping from an environmental state to the performed action. The
performed action in the current state corresponds with the selected channel for the current
call. The relationship between action, state and policy is expressed by:

at = π(st = (Xt, et)) (9)

3.3. SARSA for Solving the MDP Model

RL can discover an optimal policy and obtain the maximal benefit from the environ-
ment. As an online RL algorithm, SARSA was used in this paper to solve the MDP for
the channel allocation process. SARSA selected the optimal actions at each time step in
real-time and directly updated the policy by the performed actions through interacting with
the environment so that the channel allocation algorithm could be adjusted in real-time
with the environmental changes.

First, parameters such as the channel status, the Q-value, the learning rate and the
discount factor were initialized. Second, by using the temporal–spatial correlation of
handoff calls, action at was performed according to the policy π for different call events.
Subsequently, the immediate reward Rt was obtained after performing at and then the
environment reached a new state. Third, with the same policy, an action was selected for
the next call event and the current Q-value was updated. Last, the iteration continued
in the new state until the ending conditions were satisfied. SARSA for solving the MDP
model is shown in Algorithm 1.
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Algorithm 1: SARSA for solving the MDP model

Input: α, δ, γ

Output: Q*(s, a)
X← x0(n, k) = 0 �� //initialize the channel status
Q(s, a) = 0 //initialize the Q-value
while list { call event } 6= φ do ����

if et == enew
n,t

at ← π
(

st =
(

Xt, enew
n,t

))
//perform at for the new call event

else if et == eend
n,k,t

at ← π
(

st =
(

Xt, eend
n,k,t

))
//perform at for the departure call event

else if et == ehando f f
n,m,k,t

at ← π
(

st =
(

Xt, ehando f f
n,m,k,t

))
//perform at for the handoff call event

end if
Xt+1 ← z(st, at) //transform the channel status
Rt = ∑N

n=1 ∑K
k=1 xt+1(n, k) //calculate the immediate reward

Update Q(st, a)
α← α * δ //decline the learning rate with the decay factor δ

st ← st+1
t = t + 1

end

In view of different call events, the proposed algorithm had the following policy. For a
new call event and a departure call event, the actions were performed with ε-greedy and
then the Q-value was updated. For a handoff call event, two actions were successively
performed with the temporal–spatial correlation of the handoff calls and then the Q-value
was updated. The policy is described in detail below.

3.3.1. The New Call Event

When a new call event occurred (et = enew
n,t ), the current state was st = (Xt, enew

n,t ). If
the eligible channel Ã(n) was empty, the new call was rejected. Otherwise, the channel
was allocated for the new call in the current state. The policy for the new call event was
expressed by:

π
(
s =

(
Xt, enew

n,t ))

{
random (n), ε

arg max Q(st, a), 1− ε
(10)

where ε is the exploration factor. ε could control selected actions according to a stochastic
scheme. ε was used to explore a greater state space, which yielded other benefits. A channel
from Ã(n) was randomly selected with ε. Otherwise, a channel represented by the action
with the maximal Q-value was selected with 1 − ε. The policy for the new call event is
shown in Algorithm 2.

3.3.2. The Departure Call Event

When a departure call event occurred (et = eend
n,k,t), the current state was st = (Xt, eend

n,k,t).
The channel represented by the performed action with the minimal Q-value was selected
and then the channel occupied by the departure call was released. The policy for the
departure call event was expressed by:

π
(

st =
(

Xt, eend
n,k,t

))
= at = arg min Q (st, a). (11)

If at was equal to k, the channel occupied by the departure call was directly released. If
at was not equal to k, channel k was reallocated to the call occupying the channel represented
by at. The policy for the departure call event is shown in Algorithm 3.
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Algorithm 2: Policy for a new call event

Input: et = enew
n,t , st = (Xt, et)

Output: at
if Ã(n) == φ

rejected //reject the current new call event
else

if rand( ) < ε //select the eligible channel with ε

at = random(Ã(n)) //select the eligible channel for the performed action
else

for a∈Ã(n) do
if Q(st, a) > Q(st, at)
at = a //select the channel represented by the selected action
end if
Xt+1 ← xt(n, at) = 1 //transform the channel status

end if

Algorithm 3: Policy for a departure call event

Input: et = eend
n,k,t, st = (Xt, et)

Output: at
for a∈{aj, xt(n, j) = 1} do

if Q(st, a) < Q(st, at)
at = a

//select the channel represented by the action with the minimal Q-value
end if

if(at == k) //judge whether the value of the selected action is k
xt(n, k) = 0 //release the channel occupied by the current departure call event

else
reallocation( ) //reallocate channel k to the call occupying the channel at

end if

3.3.3. The Handoff Call Event

If the policy could ensure an eligible channel for the handoff call of its adjacent cell,
the rejection probability of the handoff call was effectively reduced. We assumed that there
were 5 channels (ch1–ch5) in the LEO satellite network and the minimal reuse distance
was 3. The served calls and the channel status are shown in Figure 2a. When the call on
channel 1 of cell 25 handed over, the following three options were available for handling the
handoff call event: (1) As shown in Figure 2b, without a reallocation, the call on channel 1
of cell 25 departed. The status of channel 1 of cell 25 was transformed from 1 to 0 and
then the channel was released. According to the relative definitions and the channel status
in I(26), Ã(26) was none. Thus, adjacent cell 26 had no eligible channel. As a result, the
handoff call was rejected. (2) As shown in Figure 2c, channel 1 (occupied by the departure
call) was reallocated to the call on channel 3 and then channel 3 was released. According
to the current channel status in I(26), Ã(26) was none. Thus, adjacent cell 26 still had no
eligible channel. As a result, the handoff call was rejected. (3) As shown in Figure 2d,
channel 1 (occupied by the departure call) was reallocated to the call on channel 4 and then
channel 4 was released. According to the current channel status in I(26), Ã(26) = {ch4}. Thus,
adjacent cell 26 had an eligible channel ch4. As a result, the handoff call was successfully
accepted. If the policy selected option 3, as shown in Figure 2d, the policy ensured an
eligible channel for the handoff call and reduced the rejection possibility of the handoff call.

When a handoff call event occurred (et= ehando f f
n,m,k,t ), the current state was

st = (Xt, ehando f f
n,m,k,t ). The departure call event was handled first and then the related new call

event was handled. The currently performed action was adjusted by the action for the
new call event in the adjacent cell. The policy for the handoff call event was expressed by
Equation (12) and Equation (13), respectively.
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π
(

st =
(

Xt, ehando f f
n,m,k,t

))
= π

(
st =

(
Xt, eend

n,k,t

))
= argminQ(st, a) (12)

π
(

st =
(

Xt, ehando f f
n,m,k,t

))
= π

(
st+1 =

(
Xt+1, enew

m,t+1
))

= argmaxQ(st+1, a) (13)

where the first action for the departure call event is expressed by at, corresponding with
the minimal state-action value of Q(st, a) and the second action for the new call event in
the adjacent cell is expressed by at+1, corresponding with the maximal state-action value of
Q(st+1, a). The maximum of Q(st+1, at+1) and Q(st, at) was selected to update the current
Q-value. The channel occupied by the departure call event was reallocated to the call on the
channel represented by the action with the maximum Q-value. The policy for the handoff
call event is shown in Algorithm 4.
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Algorithm 4: Policy for a handoff call event

Input: et = ehando f f
n,m,k,t , st = (Xt, et)

Output: at, Q(st, at)
for at ∈π((Xt, eend

n,k,t)) do //handle the departure call event
k = at //perform the current action corresponding to channel k

Xt+1 ← xt+1 (n, k) = 0 //transform the status of channel k in cell n
for at+1 ∈ π(Xt+1, enew

m,t+1) do //handle the new call event in adjacent cell
Xt+2 ← xt+2(m, at+1) = 1 //transform the channel status for the new call event
if Q(st+1, at+1) > Q(st, at)

at = at+1
Q(st, at) = Q(st+1, at+1) // update the current Q-value

end if
end for

end for

4. Simulation
4.1. Simulation Settings

The discrete events were programmed using Python to simulate the calls of the
terminal users. The call arrival was assumed to follow a Poisson distribution with a mean
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rate λ. The call duration was assumed to follow an exponential distribution with a mean
value 1/µ. According to [15], several parameters were set as shown in Table 1. The adaptive
dynamic channel allocation algorithm based on the temporal–spatial correlation analysis
(TSCA) was compared with SARSA [40], a random DCA algorithm (RDCA) [37] and an
FCA [19] under a uniform traffic distribution and a nonuniform traffic distribution. The
performance of the channel allocation algorithm was measured by the rejection probabilities
of the new call, the handoff call and the total call [41]. The rejection probability of the total
call was the ratio of the sum of the rejected new call and the handoff call to the total call. It
could evaluate the total performance of the LEO satellite network. Without considering
the temporal–spatial correlation, SARSA dynamically allocated channels according to the
environment. The RDCA randomly selected a channel from the eligible channels. The FCA
allocated 10 fixed channels to each cell.

Table 1. Parameter settings of the simulation.

Name Description Value

α Learning rate 0.019389
δ Decay factor of α 0.999999
γ Discount factor 0.845
ε Exploration factor 0.8
N The number of cells 49
K The number of channels 70
r The radius of cell 450 km
vs The velocity of satellites 7 k/s

1/µ Call duration 3 min

4.2. Results and Analysis

Two simulations were carried out, including the cases of uniform and nonuniform
traffic distributions. Under a uniform traffic distribution, the traffic intensity of each cell
was the same. Under a nonuniform traffic distribution, the traffic intensity of each cell
was different.

Figure 3 shows the comparison results of the four channel allocation algorithms under
a uniform traffic distribution with different traffic intensities. It can be seen from Figure 3
that the performances of the different channel allocation algorithms decreased with an
increase in the traffic intensity. In terms of the total performance, the RDCA was better
than the FCA because the RDCA dynamically allocated eligible channels. The TSCA and
SARSA were better than the RDCA. The reason was that RL can learn how to select and
perform the actions from a continuous interaction with the environment; thus, the TSCA
and SARSA could allocate more appropriate channels to the calls. The rejection probability
of a new call with the TSCA was higher than SARSA. That was because the TSCA allocated
more eligible channels to the handoff calls and the remaining eligible channels for the
new calls were reduced. The rejection probability of a handoff call with the TSCA was
much lower than that of the other algorithms. That was because the TSCA made full use
of the temporal–spatial correlation of the handoff calls and allocated the eligible channels
to the handoff calls. The rejection probabilities of a total call of the TSCA and SARSA
were almost the same because they all performed optimal actions in real-time to allocate
appropriate channels.

Figure 4 shows a case of a nonuniform traffic distribution. The numbers in the
hexagons were the traffic distribution proportions of each cell. Value 1 represented the
standard traffic distribution proportion and its traffic intensity was equal to 5.
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Figure 5 shows the comparison results of the four channel allocation algorithms under
a nonuniform traffic distribution with different traffic intensities. It can be seen from
Figure 5 that the performances of the different channel allocation algorithms decreased
with an increase in the average traffic intensity. The performances of the four algorithms
under a nonuniform traffic distribution were generally worse than that under a uniform
traffic distribution.
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The performance of the same algorithm under different traffic distributions can be
seen in Figures 3 and 5. It can be seen from Figures 3a and 5a that the advantage of a
dynamic channel allocation was clearly reflected under a nonuniform traffic distribution.
For instance, the rejection probability of a new call of the FCA was 2.4% higher than that of
a uniform traffic distribution and the RDCA was 1.5% higher than that of a uniform traffic
distribution at 10 Erlangs. In other words, the rejection probability of a new call of the
FCA under a nonuniform traffic distribution was 19.98% higher than that under a uniform
traffic distribution at 10 Erlangs and the rejection probability of a new call of the RDCA
under a nonuniform traffic distribution was 12.74% higher. It can be seen from Figures 3b
and 5b that the rejection probability of a handoff call of SARSA under a nonuniform traffic
distribution was 18.17% higher than that under a uniform traffic distribution at 10 Erlangs
and the rejection probability of a handoff call of the TSCA under a nonuniform traffic
distribution was 11.04% higher. The TSCA not only had the lowest rejection probability
of a handoff call, but also played a significant role in the performance, especially under a
nonuniform traffic distribution and a high traffic intensity. As the TSCA considered the
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temporal–spatial correlation of the handoff calls, it dynamically allocated more appropriate
channels for the handoff calls than SARSA.

The performance of the different a”gori’hms under the same traffic distribution can be
seen in Figures 3 and 5. It can be seen from Figures 3b and 5b that the rejection probability
of a handoff call of the TSCA was 40.59% lower than that of SARSA under a nonuniform
traffic distribution at 10 Erlangs. In the case of a uniform traffic distribution, the rejection
probability of a handoff call of the TSCA was 36.68% lower than that of SARSA at 10
Erlangs. It can be seen from Figures 3c and 5c that the rejection probability of a total call
of the TSCA was 9.3% lower than that of SARSA at 10 Erlangs under a nonuniform traffic
distribution. In the case of a uniform traffic distribution, the rejection probability of a total
call of the TSCA was 0.8% lower than that of SARSA at 10 Erlangs. The TSCA improved
the performance of the handoff calls, especially under a nonuniform traffic distribution and
a high traffic intensity. The TSCA was better than SARSA, especially under a nonuniform
traffic distribution.

The RDCA was better than the FCA because the FCA did not have enough channels
in high traffic cells and then rejected the calls. The TSCA and SARSA were better than the
RDCA. The reason was that RL performs actions in real-time to obtain more benefits from
the environment during the iterative process. The TSCA was better than SARSA because
the TSCA had a policy considering the temporal–spatial correlation of the handoff calls.

4.3. Parameter Discussion

First, the effect of the change of the parameter ε on the performance of the TSCA was
discussed. Five values of the parameter (0.5, 0.6, 0.7, 0.8 and 0.9) were selected. Figure 6
shows the result after using the above values for the proposed algorithm. Simulations were
carried out under uniform and nonuniform traffic distributions. It could be seen that the
various rejection probabilities fluctuated in the range of one thousandth and the fluctuation
was irregular. Therefore, we concluded that the proposed algorithm was insensitive to a
parameter value of epsilon.
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Figure 6. Performance comparison of TSCA with different values of epsilon. (a1) The rejection
probability of the new call under uniform distribution; (a2) the rejection probability of the handoff call
under uniform distribution; (a3) the rejection probability of the total call under uniform distribution;
(b1) the rejection probability of the new call under nonuniform distribution; (b2) the rejection
probability of the handoff call under nonuniform distribution; (b3) the rejection probability of the
total call under nonuniform distribution.
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We then discussed the effect of the change of the parameter γ on the performance
of the TSCA. In addition to the previous experience value of 0.845, five different values
of the parameter (0.95, 0.85, 0.75, 0.65 and 0.55) were selected. Figure 7 shows the result
after using the above values for the proposed algorithm. Simulations were carried out
under uniform and nonuniform traffic distributions. The results related to the various
rejection probabilities fluctuated in the range of one thousandth and the fluctuation was
also irregular. Therefore, we concluded that the proposed algorithm was insensitive to a
parameter value of gamma.
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5. Conclusions

Frequent handoffs bring a new challenge of designing a reasonable channel allocation
algorithm for LEO satellite networks. EC provides sufficient computing power for LEO
satellite networks and makes it possible for the application of reinforcement learning. An
adaptive DCA algorithm based on a temporal–spatial correlation analysis was proposed in
this paper. First, the temporal–spatial correlation of handoff calls was analyzed. Second, the
DCA process was formally described as an MDP. Third, a policy for different call events was
designed and the MDP model was solved based on SARSA. Finally, simulation experiments
were carried out under different traffic distributions and different traffic intensities. The
simulation results showed that a TSCA could greatly reduce the rejection probability of
handoff calls and improve the total performance of LEO satellite networks. However, the
storage space of the Q-values in the TSCA rapidly increased with an increase in the network
scale. In the future, we will optimize the required storage space of the proposed algorithm.
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