
Citation: Li, C.; Li, Y.; Hu, H.; Shang,

J.; Zhang, K.; Qian, L.; Wang, K.

Efficient Object Detection in SAR

Images Based on Computation-Aware

Neural Architecture Search. Appl. Sci.

2021, 12, 10978. https://doi.org/

10.3390/app122110978

Academic Editors: Rui Yao and

Hancheng Zhu

Received: 16 September 2022

Accepted: 26 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Efficient Object Detection in SAR Images Based on
Computation-Aware Neural Architecture Search
Chuanyou Li 1,2,3,*, Yifan Li 2,3,4, Huanyun Hu 2,3, Jiangwei Shang 3,4,5, Kun Zhang 3,*, Lei Qian 3 and Kexiang Wang 6

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2 MOE Key Laboratory of Computer Network and Information Integration, Southeast University,

Nanjing 211189, China
3 State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi 214128, China
4 School of Cyber Science and Engineering, Southeast University, Wuxi 214128, China
5 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
6 Chinese Aeronautical Establishment, Beijing 100029, China
* Correspondence: cyli@seu.edu.cn (C.L.); zhang.kun@meac-skl.cn (K.Z.)

Abstract: Remote sensing techniques are becoming more sophisticated as radar imaging techniques
mature. Synthetic aperture radar (SAR) can now provide high-resolution images for day-and-night
earth observation. Detecting objects in SAR images is increasingly playing a significant role in a series
of applications. In this paper, we address an edge detection problem that applies to scenarios with
ship-like objects, where the detection accuracy and efficiency must be considered together. The key to
ship detection lies in feature extraction. To efficiently extract features, many existing studies have
proposed lightweight neural networks by pruning well-known models in the computer vision field.
We found that although different baseline models have been tailored, a large amount of computation is
still required. In order to achieve a lighter neural network-based ship detector, we propose Darts_Tiny,
a novel differentiable neural architecture search model, to design dedicated convolutional neural
networks automatically. Darts_Tiny is customized from Darts. It prunes superfluous operations to
simplify the search model and adopts a computation-aware search process to enhance the detection
efficiency. The computation-aware search process not only integrates a scheme cutting down the
number of channels on purpose but also adopts a synthetic loss function combining the cross-
entropy loss and the amount of computation. Comprehensive experiments are conducted to evaluate
Darts_Tiny on two open datasets, HRSID and SSDD. Experimental results demonstrate that our
neural networks win by at least an order of magnitude in terms of model complexity compared
with SOTA lightweight models. A representative model obtained from Darts_Tiny (158 KB model
volume, 28 K parameters and 0.58 G computations) yields a faster detection speed such that more
than 750 frames per second (800× 800 SAR images) could be achieved when testing on a platform
equipped with an Nvidia Tesla V100 and an Intel Xeon Platinum 8260. The lightweight neural
networks generated by Darts_Tiny are still competitive in detection accuracy: the F1 score can still
reach more than 83 and 90, respectively, on HRSID and SSDD.

Keywords: ship detection; detection efficiency; neural architecture search; pruning; computation
awareness

1. Introduction

Synthetic aperture radar (SAR) can provide high-resolution images in day-and-night
and all-weather earth observation. SAR techniques have played a significant role in
applications of environmental monitoring, maritime management and resource exploration.
With the rapid growth of SAR imaging techniques, an increasing number of studies have
considered object detection in SAR images. In this paper, we study ship detection in SAR
images towards edge scenarios, where detection efficiency should be taken into account
along with detection accuracy. For example, SAR is typically mounted on battery-powered

Appl. Sci. 2021, 12, 10978. https://doi.org/10.3390/app122110978 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110978
https://doi.org/10.3390/app122110978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122110978
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110978?type=check_update&version=3

Appl. Sci. 2021, 12, 10978 2 of 22

devices [1]. Due to limited energy and computation resources, any ship detector should
not be computation intensive.

To detect ship targets in SAR images, many algorithms taking the advantages of neural
networks in feature extraction have been proposed. In early studies, different dedicated
neural networks were designed towards having better detection accuracy. Recent studies
noticed that efficiency is important as well as accuracy, especially in edge scenarios. A
series of lightweight neural networks were then proposed, where detection accuracy and
efficiency were considered together.

According to our knowledge, existing lightweight neural networks for ship detection
are mainly designed by pruning manually designed neural networks such as YOLO [2],
Fast R-CNN [3], and MobileNet [4]. It is known that the performance of a neural network
depends on its structure and the operations (e.g., standard convolution, depth-wise con-
volution, max pooling, average pooling, etc.) used. Thus, designs based on a well-known
neural network are often not expected to have bad preliminary results. However, this
methodology relies on artificial expertise and is subject to the existing neural architectures.
Such a problem becomes more intractable when meeting two inconsistent targets: accuracy
and efficiency. In many existing studies, although different baseline models are reduced
on the premise of maintaining detection accuracy, a large amount of computation is still
required. For example, in two recent YOLO-based lightweight ship detectors [5,6], the
FLOPs (floating-point operations) required are, respectively, 1.94 G and 3.53 G. In this
paper, we follow a different methodology, neural architecture search (NAS), to design
neural networks. After a search space is specified, the neural network design process can be
done automatically, and meanwhile, more possibilities in the network design space could
be explored. In addition, detection accuracy and efficiency are combined together in our
neural architecture search model. Hence, it is expected to generate a neural network that is
more attractive in detection efficiency and is still competitive in detection accuracy.

The main body of our ship detector is composed of a backbone and a detection head.
The backbone is used to extract features, and the detection head is used to identify targets.
Note that most computations are required by the backbone. Clearly, the lighter the back-
bone is, the higher the detection efficiency that could be achieved. In order to generate a
satisfactory backbone, techniques of Darts [7,8] are adopted. We first followed the recom-
mended settings [7,8] to construct a ship detector. However, after testing on HRSID [9]
and SSDD [10], we obtained no good results, only serious overfitting. Furthermore, we
found that first conducting an architecture search by Darts and then pruning the neural
network generated can hardly obtain sufficient improvements. Aiming at the problem, we
customized a new architecture search model named Darts_Tiny. Compared with Darts,
Darts_Tiny first prunes the super neural network used for the architecture search. In
addition, a channel-pruning scheme is carried out along with the search process, and a
synthetic loss function is used such that not only is the overfitting restrained, but also, the
detection efficiency is enhanced.

Comprehensive experiments are conducted on two datasets, HRSID [9] and SSDD [10].
Experimental results demonstrate that the neural networks generated by Darts_Tiny can
save at least an order of magnitude in model volume, the amount of parameter, and the
amount of computation. A lighter model yields a faster detection speed: by inputting
800× 800 SAR images, more than 750 frames per second (FPS) can be achieved.

The main contributions are summarized as follows:

1. We customized a new differentiable neural architecture search model, Darts_Tiny, to
automatically generate neural network-based ship detectors. Compared with manual
design, our methodology can explore more possibilities in the network design space
and thus can handle well both the ship detection accuracy and efficiency.

2. The neural architecture search process of Darts_Tiny is computation aware, where
a channel-pruning scheme and a synthetic loss function are adopted. The channel-
pruning scheme suppresses excessive channels, and the synthetic loss function com-
bines cross-entropy loss and the amount of computation.

Appl. Sci. 2021, 12, 10978 3 of 22

3. Compared with existing models, Darts_Tiny can generate remarkably lightweight neural
networks that not only have significant advantages in terms of model scale, computation
complexity and detection speed but are also competitive in detection accuracy.

The rest of this paper is organized as follows. Section 2 sketches out the related
work. Section 3 introduces the ship detection problem and necessary evaluation metrics. In
Section 4, we introduce Darts and apply it to ship detection. By conducting experiments, we
show that directly applying Darts can hardly obtain good results. In Section 5, we propose
a new model, Darts_Tiny. The experimental setup and results are given in Section 6. Finally,
Section 7 brings concluding remarks and discusses future work.

2. Related Work
2.1. Ship Detection via Neural Networks

Convolutional neural networks are well-known for their remarkable ability of fea-
ture extraction. Since J. Li et al. [10] proposed a labeled open dataset, SSDD, applying
convolutional neural networks to ship detection in SAR images quickly received intense
attention. At the beginning, studies mainly focused on designing a neural network hav-
ing better detection accuracy. Based on SSDD, J. Li et al. [10] first proposed a ship de-
tector based on Faster R-CNN, and then they conducted follow-up studies for further
improvements [11,12]. To achieve better accuracy, many other solutions have been pro-
posed. For example, H. Guo et al. [13] leveraged feature pyramids, Z. Zhang et al. [14]
designed a multitask learning-based object detector, X. Geng et al. [15] presented boundary
box optimization techniques, and Z. Sun et al. [16] proposed an anchor-free method aiming
at improving ship detection in high-resolution SAR images. However, all these studies did
not pay enough attention to the detection efficiency, such that they might not be adaptive
in an environment with limited computation resources.

Recent studies on ship detection have noticed the importance of detection efficiency as
well as accuracy. Aiming at the two inconsistent targets, current studies are often conducted
based on existing manually designed neural networks, expecting to achieve a preliminary
detection result. To obtain higher detection efficiency, either a lighter neural network
backbone is used [17–20] or the baseline network is tailored [5,6,21,22]. Lightweight
techniques sometimes decreasethe detection accuracy. Additional techniques are adopted
as long as the detection accuracy needs to be compensated for [5,6].

Y. Li et al. [17] proposed a lightweight model based on Faster R-CNN. T. Zhang et al. [18]
and S. Liu et al. [19] proposed neural networks that took the advantages of MobileNet. In
the above work, all the new designed models can achieve faster inference speed than the
baseline models, such as Faster R-CNN and YOLO. More recent studies were interested in
designing a lightweight ship detector based on different YOLO versions. Z. Sun et al. [23]
proposed an arbitrary-oriented ship detector based on the YOLO detection framework
using bi-directional feature fusion and angular classification. The amount of the parameter
was 19.57 M, and the model volume was 39.4 MB. M. Alkhaleefah et al. [21] proposed
Accelereated-YOLOv3 for ship detection. Compared with YOLOv3 [24], a higher detection
speed is achieved by using fewer channels and convolutional layers. S. Chen et al. [5]
proposed an efficient SAR ship detector named Tiny YOLO-Lite, which was also designed
based on YOLOv3. Tiny YOLO-Lite combines network pruning and knowledge distillation
techniques to guarantee both efficiency and accuracy. The amount of computation is
reduced to 1.94 G FLOPs, which is a fifteenth of that of YOLOv3. J. Jiang et al. [6] proposed
YOLO-v4-light. Aiming at a faster detection speed, YOLOv4 [25] was tailored to reduce the
model size and the number of parameters. To compensate for the loss of accuracy, YOLO-v4-
light was refined for three-channel images. By cutting the amount of computation to 3.53 G
FLOPs, the detection speed of YOLO-v4-light achieves rates three times faster than YOLOv4.
X. Ma et al. [26] proposed Light-YOLOv4, where the model volume, parameter size, and
FLOPs can been reduced by 98.63%, 98.66%, and 91.30% compared with YOLOv4. X. Xu
et al. [22] proposed a model named Light-YOLOv5, where the amount of computation is
4.44 G FLOPs. In addition to standard YOLO versions, YOLOX [27], an anchor-free version,

Appl. Sci. 2021, 12, 10978 4 of 22

also received attention. Y. Feng et al. [20] proposed LPEDet based on YOLOX. To ensure
higher detection efficiency, the original backbone Darknet-53 was replaced with a lighter
network LCNet.

Existing studies show the effectiveness of designing based on a known neural network.
However, this methodology heavily depends on artificial experiences: first selecting a
reasonable baseline network and then performing delicate remolding to obtain both high
efficiency and accuracy. On the other hand, the design space is also limited by the selected
baseline network. Aiming at these problems, we present a different idea for ship detection.
By adopting a neural architecture search, the neural network itself is designed automatically:
the design process turns out to be a form of optimization. In this way, we could combine
detection accuracy and efficiency together in the optimization and explore more possibilities
in the network design space. Compared with existing studies, we succeed in moving a step
further towards lightweighting: for example, the amount of computation can be decreased
to less than 0.6 G FLOPs while still keeping competitive detection accuracy.

2.2. Neural Architecture Search

Neural architecture search (NAS) is a recently proposed technique that aims at de-
signing aneural network automatically. Early NAS methods are time costly [28,29] due
to the huge discrete architecture-searching space. In the past two years, Darts [7] and its
follow-up studies, e.g., PC-Darts [8], Darts+ [30], Darts- [31], etc. transformed the discrete
searching space to a continuous space, in which the gradient descent method was carried
out to decrease the searching costs.

The methodology introduced in this paper is derived from Darts. However, there are
two main differences compared with the Darts series [7,8,30,31]. First, for the specified ship
detection task, we refine the search process, propose a tiny backbone to restrain overfitting,
and thus improve the detection accuracy. Second, we took into account the number of
channels and the amount of computation to implement computation awareness in the
search process.

Adopting NAS for ship detection in SAR images is still in a start-up stage. Y. Wang et al. [32]
proposed a lightweight neural network based on FBNet [33] where the network is deter-
mined by NAS. FBNet has a simple search space in which different operations are selected
to fill in a chain-like network structure. In our work, we set a different search space that
provides more resiliency in the network structure. On the other hand, our search process is
refined to be computation aware such that the detection efficiency can be greatly improved.

3. Problem Description

We focus on efficient ship detection in SAR images. The open datasets used are
HRSID [9] and SSDD [10]. Both include SAR images with different resolutions, polariza-
tions, sea conditions, sea areas, and coastal ports. Figure 1 provides SAR images obtained
in different scenarios. Our target is to demarcate each ship target accurately and efficiently
(e.g., the green rectangular boxes in Figure 1 represent ships detected). By comparing the
area with the ground truth (identified via the red rectangular box in Figure 1), we can cal-
culate Precision (P), Recall (R), F1 score and Average Precision (AP) to evaluate detection
accuracy [34]. On the other hand, to show that the neural network we generated is efficient
in computation, we carry out comparisons by the number of computations (represented by
floating-point operations—FLOPs) and frames per second (FPS). Detailed definitions of
evaluation metrics are given below:

P =
TP

TP + FP
; (1)

R =
TP

TP + FN
; (2)

F1 = 2× P× R
P + R

; (3)

Appl. Sci. 2021, 12, 10978 5 of 22

AP =
∫ 1

0
P(R)dR; (4)

TP (true positives), FP (false positives) and FN (false negatives) in Equations (1) and (2)
are, respectively, the number of ship detected correctly, false alarms, and missing ships. To
consider precision and recall together, we also adopt the F1 score in Equation (3) and AP
in Equation (4). AP is defined by an integral equation, where P represents precision and R
represents recall. P(R) refers to a set of 〈P, R〉 pairs that are obtained by setting different
confidence thresholds.

Figure 1. The problem of ship object detection.

4. Darts vs. Ship Detection

Figure 2 provides an overview of the target detection components (for ships). There
are three parts: a backbone, a detection head and post-processing. A backbone is a neural
network taking charge of the feature extraction. In this section, the backbone is designed
by Darts techniques [7,8] that will be specified later. By considering computation efficiency,
we introduce a simple detection head that is composed of Relu6 and a 1× 1 convolution.
Once the detection head process finishes, target identification occurs next. Note that at
this moment, there exists more than one candidate rectangular box (each candidate has
a confidence level) for each target. To output one final rectangular box for each target
detected depends on post-processing, where non-maximum suppression is performed.

In
pu

t

Backbone Detection
Head

O
ut

pu
t

R
el

u6

C
on

v_
1×

1

Post-
processing

Non-Maximum
Suppression

Architecture
Search

Figure 2. Overview: ship target detection.

In the following, we first apply techniques and settings directly from Darts [7] and
PC-Darts [8] to construct the backbone.

4.1. Backbone

Figure 3 depicts a neural network-based backbone that is composed of 2 stems, 12 NCs
(normal cells) and 2 RCs (reduction cells). The integer associated with each block is the
number of channels. The two stems include 3 standard 3× 3 convolutions (1 for stem 0 and
2 for stem 1). All normal cells have the same inner composition. Reduction cells expand the
number of channels while reducing the size of the feature maps. Similar to normal cells, the

Appl. Sci. 2021, 12, 10978 6 of 22

two reduction cells are homogeneous in terms of their inner composition. Both the normal
cells and reduction cells are generated via a neural architecture search.

We use the Darts technique to search through the normal and reduction cells to construct
the backbone in Figure 3. The search process is implemented over a super neural network
depicted in Figure 4. The super neural network is composed of two stems, six normal cells
and two reduction cells. The two stems are composed of 3 standard 3× 3 convolutions, while
the eight cells are defined by a uniform template drawn in Figure 5. In the cell template,
different operations are defined by weight sharing, where the discrete architecture search will
turn out to be a differentiable weight-tuning process.

N
C

Detection
Head

Backbone

1

Figure 3. The composition of backbone.

Detection
Head

R
el

u6

C
on

v

In
pu

t

St
em

1

N
C

N
C

N
C

St
em

0

R
C

N
C

R
C

N
C

N
C

1 48 48 64 64 128 128 128 256 256 256

Detection
Head

Super neural network

Figure 4. The super network for architecture search.

Ck-2

Ck-1

Ck21 30

v0

v1

v2 v3 v4 v5
v6

Figure 5. Cell template.

Let us specify the cell template first. It can be seen that the whole cell template is
constructed by a directed acyclic graph consisting of 7 nodes {v0, v1, ..., v6}. Cell Ck takes
the outputs of cell Ck−2 and cell Ck−1 as inputs. For an easier representation, we also use the
notation Ck to represent the output of cell Ck. Inside the cell template, there are four internal
states numbered by 0, 1, 2, and 3, each of which can take Ck−2, Ck−1 and the preceding
states as inputs. For example, for the internal state 1, its inputs could be Ck−2, Ck−1 or the
internal state 0 but never the internal state 2 or 3. Hence, in Figure 5, there are 14 directed
edges expressing state transitions, each of which integrates 8 synthetic operations (details
are provided in Table 1). The 4 red dash edges in Figure 5 contain no operations. They are
used to concatenate the four internal states together as the output of cell Ck.

Appl. Sci. 2021, 12, 10978 7 of 22

Table 1. Synthetic operations.

Synthetic Operations Basic Operations

skip_connect add two edges

max_pool_3× 3 max pooling

avg_pool_3× 3 average pooling

sep_conv_3× 3 depth-wise separable convolution
for 2 times with 3× 3 depth-wise kernel

sep_conv_5× 5 depth-wise separable convolution
for 2 times with 5× 5 depth-wise kernel

dil_conv_3× 3 3× 3 dilation convolution followed
by a point-wise convolution

dil_conv_5× 5 5× 5 dilation convolution followed
by a point-wise convolution

zero no operation

Let O be the set of 8 synthetic operations. Note that to obtain lightweight models,
O includes depth-wise separable convolution rather than standard convolution. The
searching process aims at selecting one synthetic operation from O for each directed edge
(not including the dashed ones). To alleviate performance crash, we shall perform a two-
level weight sharing [8]. First, for a directed edge (vi, vj), 8 synthetic operations formulate
the information propagated from vi to vj as a weighted sum. Second, for a node vi, all its
incoming edges (information) are also formulated by a weighted sum.

fi,j(xi) = ∑
o∈O

exp{αo
i,j}

∑o′∈O exp{αo′
i,j}

o(x1
i) + x2

i (5)

The above Equation (5) represents the first level of weight sharing, where xi is the output
of node vi and αo

i,j is a hyper-parameter for weighting operation o(xi). Note that we also
leverage partial channel connections where only 1/K channels are selected. This involves a
channel sampling mask Si,j in Equation (5): x1

i = Si,j ∗ xi and x2
i = (1− Si,j) ∗ xi [8].

xj = ∑
i<j

exp{βi,j}
∑i′<j exp{βi′ ,j}

fi,j(xi) (6)

Equation (6) represents the second level of weight sharing, where xj is the output of
node vj ∈ {v2, v3, v4, v5} and βi,j is the normalization parameter of (vi, vj). The searching
process will decide each αo

i,j and βi,j by gradient descent.
When the search is completed, a neural network is derived based on the weights ob-

tained. Within a cell, for each internal node vj ∈ {v2, v3, v4, v5}, two synthetic operations are
selected, respectively, for vj’s two incoming edges. Specifically, each incoming edge of node
vj is first assigned a synthetic operation with the greatest weight calculated by Formula (7).
Then, we select the top two incoming edges of vj according to the weights assigned.

max
o∈O

exp{βi,j}
∑i′<j exp{βi′ ,j}

·
exp{αo

i,j}

∑o′∈O exp{αo′
i,j}

(7)

A brief description of searching is given in Figure 6. To perform the differentiable
architecture search, the two-level weight sharing scheme [8] is implemented first (line 1).
Then, the neural network parameters are updated by m epochs (line 2), which is a necessary
pre-training step by which an architecture search could be carried out more stably. Lines

Appl. Sci. 2021, 12, 10978 8 of 22

3–6 are the process of architecture search. Each time the architecture is updated (line 4), an
epoch of training is carried out (line 5).

1: Implement weight sharing represented by Equations (5) and (6);
2: update neural network parameters for m epochs (by training);
3: while not finished do
4: update each architecture parameter αo

i,j and βi,j by gradient descent;
5: update neural network parameters (by training);
6: end while
7: Derive the final architecture based on the learned αo

i,j and βi,j;

Figure 6. The algorithm steps of Darts.

4.2. Testing Results and Analysis

To test the performance of Darts, we implement comprehensive evaluations on the
dataset HRSID [9], where 90% of SAR images are randomly selected for the architecture
search and neural network training, and the remaining 10% of SAR images are left for
performance validation. IoU (intersection over union) is set to 0.3, and the threshold of
confidence is set to 0.15. We perform a neural architecture search multiple times and select
the best three of them (named HArch_1, HArch_2, and HArch_3) to show the results.
Cell structures are depicted in Appendix A, Figure A1. According to the Darts settings,
12 normal cells and 2 reduction cells are stacked to construct the backbone (see Figure 3).

Table 2 demonstrates that the detection results are not good: for all three neural
networks generated, F1 is below 75, recall is below 69, and precision is around 80. Note
that for all the results, there is a big gap between the validation and training results, which
is typical overfitting phenomena. To increase the detection accuracy while preventing
overfitting, we perform two straightforward methods. One is early-stopping: cutting down
the number of training epochs. However, we observe that overfitting appears in the early
epochs. When overfitting first appears, the detection results are even worse than those
given in Table 2. The second way is to simplify the neural network. What we did was
to reduce the number of stacked normal cells. Experimental results are given in Table 3.
We can see that stacking 8 or 4 cells to construct the backbone will obtain better results
than stacking 14 cells. Surprisingly, even if the backbone is only composed of 2 reductions
cells (by suppressing all normal cells), the results are still competitive. Unfortunately,
although we cut down the number of cells, overfitting is still significant. We also perform
similar experiments on SSDD [10] (Table 4; cell structures are depicted in Appendix A
Figure A2). There are similar observations: cutting down the number of cells can obtain
benefits, however, overfitting still exists.

According to these experimental results, we have two observations. One is that
simplifying the neural network generated by Darts is potentially good for ship detection.
On the other hand, performing an architecture search first and then roughly decreasing
the number of stacked cells is far from enough. Hence, it is necessary to customize a new
model for ship detection.

Table 2. Applying Darts directly for ship detection on HRSID.

Archs Cells
F1 Recall Precision

Validation Training Validation Training Validation Training

HArch_1 14 74.6 90.0 68.4 84.5 82.1 96.2

HArch_2 14 71.0 86.8 63.8 81.2 80.1 93.3

HArch_3 14 68.6 86.4 62.1 80.8 76.7 92.8

Appl. Sci. 2021, 12, 10978 9 of 22

Table 3. Detection results on HRSID after reducing the number of cells.

Archs Cells
F1 Recall Precision

Validation Training Validation Training Validation Training

HArch_1

8 76.4 90.9 70.3 85.6 83.5 97.0

4 76.1 90.4 71.3 85.8 81.7 95.4

2 73.1 91.1 66.7 85.8 81.0 97.0

HArch_2

8 74.1 89.7 67.7 84.7 81.7 95.3

4 76.1 91.8 71.1 87.1 81.9 96.7

2 72.5 90.9 65.7 85.4 80.8 97.1

HArch_3

8 73.7 87.7 69.5 85.0 78.6 90.5

4 74.7 91.6 68.8 86.5 81.8 97.2

2 70.7 89.9 64.5 84.2 78.3 96.5

Table 4. Detection results on SSDD after reducing the number of cells.

Archs Cells
F1 Recall Precision

Validation Training Validation Training Validation Training

SArch_1

14 89.01 94.04 86.10 91.12 92.13 97.15

8 90.78 96.46 88.56 94.02 93.12 99.03

4 89.88 96.95 88.28 95.12 91.53 98.85

2 88.70 96.30 85.56 93.93 92.08 98.79

SArch_2

14 86.58 91.40 81.74 88.31 92.03 94.72

8 89.20 95.87 86.85 93.37 91.91 98.50

4 91.52 97.14 88.28 95.26 95.02 99.09

2 88.30 96.98 86.38 95.35 90.31 98.67

SArch_3

14 87.83 92.71 85.56 90.06 90.23 95.51

8 89.24 96.36 85.83 93.88 92.92 98.98

4 90.71 97.10 89.10 95.35 92.37 98.90

2 86.94 96.70 82.56 94.34 91.82 99.18

5. Methodology

In this section, we propose Darts_Tiny, a customized neural architecture search model
for edge-based ship detection. According to the knowledge obtained from Section 4.2,
Darts_Tiny is designed to remold the architecture search from two aspects. First, the super
neural network built by original Darts is pruned. Second, the process of architecture search
is refined.

5.1. Pruning the Super Neural Network

Figure 7 depicts the super neural network leveraged by Darts_Tiny. Compared with
the one depicted in Figure 4, the super neural network used here is much lighter, where
one stem together with three cells constitutes the backbone.

Appl. Sci. 2021, 12, 10978 10 of 22

In
pu

t

Backbone
Detection

Head

R
el

u6

St
em C
el

l

C
el

l

C
el

l

C
on

v

1 48 128 256 512

Figure 7. Darts_Tiny.

The customization for ship detection is conducted through dedicated pruning. In
the original Darts settings, there are three standard convolution layers that constitute the
two stem blocks. According to our analysis, they make part of the overfitting. Thus, in
Darts_Tiny, we retain one stem block, where only a standard convolution layer is included.
After the stem, we stack three cells. The three cells used here are uniform (no longer divided
into normal cells and reduction cells). The cell’s inner structure also follows the template
depicted in Figure 2, and the concrete structure will be decided by our neural architecture
search algorithm. Each of the three cells expands the number of channels while diminishing
the size of feature maps. Finally, Relu6 and Conv_1× 1 make up the detection head.

5.2. Computation-Aware Searching

Based on the pruned super neural network, we propose a computation-aware search-
ing process. Generally, we leverage two schemes. The first one is channel pruning, and the
second one is a synthetic computation-aware loss function.

The architecture search process that integrates channel pruning is shown in Figure 8.
Generally, the search process flows into the differentiable architecture search. The difference
is that channel pruning could be carried out in several epochs (lines 6–11). Line 6 is a
test that checks whether it is the right time to prune the channels. To pass the test, two
conditions need to be satisfied. The first one focuses on the gap between training and
validation precision. When this gap is greater than a predefined threshold T1, we consider
the current overfitting to be noteworthy. Note that, based on this gap, simply pruning a
channel is hasty. In the early epochs, because the status is not stable, a large gap could
appear between the training and validation precision. To carry out channel pruning in the
early stages where the epochs are not stable is not reasonable. Therefore, we add the second
condition that requires that the validation precision is greater than another predefined
threshold T2. This condition ensures channel pruning can only be carried out during a
stable status. When the test in line 6 is passed, Darts_Tiny cuts off half of the channels
(line 7) to restrain overfitting. Note that channel shrinkage is not a differentiable operation,
e.g., additional training steps are performed to adjust the neural network parameters (line 9)
until the validation precision recovers to the third predefined threshold T3 (line 8).

1: Implement weight sharing represented by Equations (5) and (6);
2: update neural network parameters by gradient descent for m epochs;
3: while not finished do
4: update each architecture parameter αo

i,j and βi,j by gradient descent;
5: update neural network parameters by gradient descent;
6: if (training precision—validation precision) > T1 & validation precision > T2 then
7: suppress half of the channels;
8: while validation precision < T3 do
9: update neural network parameters by gradient descent;

10: end while
11: end if
12: end while
13: Derive the final architecture based on the learned αo

i,j and βi,j;

Figure 8. The algorithm steps of Darts_Tiny.

Appl. Sci. 2021, 12, 10978 11 of 22

The super neural network is learned once the architecture search finishes. The termi-
nation condition in line 3 could be set to the number of searching epochs, training precision
or validation precision. The method of deriving a neural network from the super network
mainly follows the settings introduced in Section 4.1. The difference is that the derived
neural network follows the main structure of the super network (depicted in Figure 7) in
such a way that only three cells are stacked, i.e., the neural network generated has one
stem, then three cells and a detection head.

Channel pruning decreases the number of computations, which not only restrains
overfitting but also improves computational efficiency. In addition to channel pruning,
we also leverage a computation-aware loss function to enhance computation efficiency.
The computation-aware loss function used is represented by the Formula (8). We can
see that Loss is the summation of two parts, where Loss_ce is the cross-entropy loss, and
Ops is the total number of multiply-and-accumulate calculations involved. For these two
parts, Loss_ce is related to inference accuracy, and Ops is related to computation efficiency.
ops_ratio is the parameter used to balance the two parts in the loss function. To decrease
Loss, both Loss_ce and Ops should be decreased such that the target neural network
searched is expected to perform well in both inference accuracy and computation efficiency.

Loss = (1− ops_ratio)× Loss_ce + ops_ratio× log(Ops) (8)

Ops is obtained by adding the number of multiply-and-accumulate calculations used
in different operations. Formulas (9)–(12) provides our method of counting the num-
ber of multiply-and-accumulate calculations. Opspooling_3×3, Opsdepth_wise, Opspoint_wise
and Opsdil_conv, respectively, represent the total multiply-and-accumulate calculations of
pooling_3× 3 (avg_pool_3× 3 and max_pool_3× 3), depth-wise convolution, point-wise
convolution and dilated convolution. C stands for the input channel number, M stands for
the output channel number, P and Q stand, respectively, for the height and width of the
output feature map, and ker_size is the size of the kernel weight.

Opspooling_3×3 = 3× 3× C× P×Q (9)

Opsdepth_wise = ker_size2 × C× P×Q (10)

Opspoint_wise = C×M× P×Q (11)

Opsdil_conv = ker_size2 × C× P×Q (12)

6. Experimental Results

In this section, extensive experiments are carried out to evaluate Darts_Tiny. We
first present details on datasets and settings. Then, we provide experimental results and
our analysis.

6.1. Datasets and Settings

We performed evaluations over two datasets named HRSID [9] and SSDD [10]. HRSID
was proposed by using images from 99 Sentinel-1B images, 36 TerraSAR-X, and 1 TanDEM-
X image. These images were then cropped to 800× 800 pixel images. Overall, there are
5604 images, including 16,951 ships. The ship resolution ranges from 1 m to 15 m. SSDD
is a multi-size and multi-resolution dataset. It has 1160 SAR images, including 2456 ships.
The sizes of the SAR images in SSDD range from 7× 7 to 211× 298 pixel images. In order
to maintain consistency, we resized the images of the SSDD set to 800 × 800 pixels. All
our experiments were implemented by using PyTorch 0.4.1 and CUDA 9.1. Our hardware
platform consisted of an Nvidia Tesla V100 (32 G) GPU and an Intel Xeon Platinum 8260 CPU.

For both datasets, HRSID and SSDD, we randomly select 90% of images for the
architecture search and training. The remaining 10% of images are left for performance
validation. The number of epochs is set to 100, and the batch size is set to 32 for the

Appl. Sci. 2021, 12, 10978 12 of 22

architecture search. After a neural network is derived by Darts_Tiny, sufficient trainings
are performed, while the learning rate is initialized to be 1.

The first 15 epochs of 100 are used to train the super neural network (line 2 in Figure 8).
Remember that in the search process of Darts_Tiny (see Figure 8), we have three thresholds,
T1, T2 and T3, for performing channel pruning. In our experiments, training and validation
precision are expressed by F1. According to our experience, T1 is set to 3, and T2 is set to 75
such that only when the gap between training and validation precision is greater than 3
and the current validation precision (F1) is greater than 75, channel pruning is performed.
The third parameter T3 is set to 70 such that after channel pruning, training is performed
until F1 of validation recovers to 70. In our experiments, T3 = 70 can be easily reached after
a few training epochs. We use the loss function of YOLOv2 [35] to implement Loss_ce in
Formula (8). The detection threshold IoU is set to 0.3. Unless otherwise specified herein, F1
is obtained by setting the threshold of confidence score to 0.15.

6.2. Results of Channel Pruning

Channel pruning is an important scheme integrated into Darts_Tiny. In this section,
we shall visualize the effect of channel pruning by depicting the variation of F1 through a
complete neural architecture search over HRSID and SSDD. Evaluation results are given
in Figures 9 and 10. The horizontal axis represents the number of epochs. The vertical
axis represents the F1, obtained after each epoch, that reflects the detection accuracy. In
the results from HRSID, channel pruning is executed 4 times in epochs 5, 10, 32 and 40
respectively. It is not surprising to see that the F1 validation score falls sharply in these
epochs as channel pruning is not differentiable. However, we can see that the F1 validation
score recovers quickly after a few epochs of training. Thus, channel pruning does work
in restraining overfitting. We can see that after the 41st epoch, the overfitting is stable. As
for the results from SSDD, channel pruning is triggered 3 times. Because the scenarios
in SSDD are simpler, overfitting here is not as serious as what was achieved in HRSID.
However, channel pruning also works in SSDD and can restrain overfilling under a small
threshold. For both datasets, the variation in F1 (especially the F1 validation score) via
channel pruning does not show a negative impact on detection accuracy.

search

0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0

9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1

I

」

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

epoch

．一Validation ．一Training

Figure 9. The effect of channel pruning on HRSID: pruning is triggered 4 times. After that, overfitting
(the gap between two curves) is restrained.

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

F1

epoch

search

Validation Training

Figure 10. The effect of channel pruning on SSDD: pruning is triggered 3 times. As the scenarios
in SSDD are simpler, overfitting is not as serious as what was achieved with HRSID. However, F1
validation score recovers quickly after a few epochs of training.

Appl. Sci. 2021, 12, 10978 13 of 22

6.3. Searching Results via Darts_Tiny

In this section, we evaluate Darts_Tiny by using HRSID and SSDD. We leverage the
super neural network depicted in Figure 7 to perform a neural architecture search and then
derive several neural networks with various numbers of channels. The neural architecture
search is fixed to 100 epochs. The time costs are around 36 hours (running on 4 Nvidia
Tesla V100 GPUs) on average. Experimental results on HRSID are provided in Table 5.

Table 5. Detection results on HRSID (the first four are obtained by setting ops_ratio = 0, and the last
four are obtained by setting ops_ratio = 0.012).

Architectures Channels Paras FLOPs AP F1

H_Arch_32 32× 4 280 K 6.89 G 85.09 85.636
H_Arch_16 16× 4 79 K 1.84 G 80.76 81.868
H_Arch_8 8× 4 28 K 0.62 G 82.03 82.270
H_Arch_4 4× 4 10 K 0.21 G 80.38 80.172

H_Arch_C_32 32× 4 246 K 5.64 G 79.726 80.515
H_Arch_C_16 16× 4 79 K 1.64 G 82.826 83.630
H_Arch_C_8 8× 4 28 K 0.58 G 83.93 83.158
H_Arch_C_4 4× 4 9 K 0.18 G 79.35 78.744

The given results include the number of channels, the amount of parameters (“Paras”),
the amount of computation (“FLOPs”), AP and F1. The number of channels is given in
the form of “x × 4”, as there are 4 internal states (see Figure 5). For each state, channel
pruning will cut down half of its channels. The amount of parameters and the amount of
computation reflects the scale of a neural network. Generally, fewer parameters and com-
putations lead to higher computation efficiency. The amount of computation is represented
by FLOPs including all multiply-and-accumulate calculations. F1 is a popular criterion in
object detection. In Darts_Tiny, we mainly focus on F1 to represent the detection accuracy
and take AP as a secondary reference. Both F1 and AP synthetically consider precision
and recall.

We provide a sequence of architectures with different channels generated during one
search process. In Table 5, there are eight architectures. The first four are obtained by setting
ops_ratio = 0, while the last four are obtained by setting ops_ratio = 0.012. Compared
with the results in Tables 2 and 3, all the eight architectures derived by Darts_Tiny have a
substantial improvement in detection accuracy. On the other hand, when the number of
channels is cut down, both the amount of parameters and computations decrease sharply.
Clearly, channel pruning enhances efficiency.

From the first four architectures, we can see that as the amount of computation
decreases, both AP and F1 present a downward trend. However, by considering the amount
of computation saved, an acceptable loss in detection accuracy is reasonable especially
in an environment without sufficient computation resources. For example, compared
with H_Arch_32, H_Arch_8 only costs 10% of the amount of computation. The last four
architectures in Table 5 show something different. H_Arch_C_32 does not have the best
performance in terms of F1. When generating the last four architectures, the loss function
is composed of the cross-entropy loss and the amount of computations (see Equation (8)).
We observe that the architecture search in this case usually needs more epochs to obtain a
superior neural network. Therefore, H_Arch_C_32 generated in an early epoch is not as
good as H_Arch_C_16 and H_Arch_C_8 generated in later epochs. Finally, by comparing
the first four with the last four neural architectures, we can find that integrating Ops in the
loss function succeeds in further reducing the number of computations.

We conduct the same evaluations by using SSDD to test whether Darts_Tiny can
perform consistently in different datasets. Evaluation results are given in Table 6. Overall,
Darts_Tiny also works well on SSDD. As channels are cut down, the number of parameters
and the number of computations decrease, which enhances computation efficiency. On
the other hand, channel pruning does not bring apparent negative impacts on AP and F1.

Appl. Sci. 2021, 12, 10978 14 of 22

Compared with HRSID, SSDD has fewer SAR images and simpler scenarios. Consequently,
even Darts_Tiny cuts down the number of channels to 4× 4, so the detection accuracy is
still competitive. Finally, combined with the results given in Tables 5 and 6, we can notice
that the detection accuracy and efficiency are balanced when the number of channels is
equal to 8× 4.

Table 6. Detection results over SSDD (the first four are obtained by setting ops_ratio = 0, and the last
four are obtained by setting ops_ratio = 0.003).

Architectures Channels Paras FLOPs AP F1

S_Arch_32 32× 4 274 K 5.96 G 91.35 88.46
S_Arch_16 16× 4 84 K 1.90 G 93.65 91.57
S_Arch_8 8× 4 30 K 0.59 G 92.28 90.29
S_Arch_4 4× 4 12 K 0.22 G 90.99 88.68

S_Arch_C_32 32× 4 251 K 5.99 G 91.68 89.65
S_Arch_C_16 16× 4 59 K 1.62 G 87.41 88.98
S_Arch_C_8 8× 4 24 K 0.54 G 89.61 90.24
S_Arch_C_4 4× 4 9 K 0.21 G 89.14 88.56

6.4. Detection Speed in FPS

In Section 6.3, we used the amount of parameters and the amount of computations to
represent the computation efficiency. In this section, we adopted frames per second (FPS)
to show the detection speed. Remember that the whole process of ship detection not only
includes a stage processed by a neural network but also a post-processing stage used to
decide a unique rectangular box. As FPS is decided by both the stages, we separated them
in the evaluation results. We used an Nvidia Tesla V100 to conduct the testing on HRSID
and SSDD and set batchsize = 128. Results are provided in Tables 7 and 8.

Table 7. Computation efficiency in FPS (HRSID).

Architectures Channels FLOPs Net Post All Postmt Allmt

H_Arch_32 32× 4 6.89 G 279 492 178 3955 261
H_Arch_16 16× 4 1.84 G 561 488 261 3923 491
H_Arch_8 8× 4 0.62 G 1028 481 327 3859 812
H_Arch_4 4× 4 0.21 G 1855 475 379 3764 1243

H_Arch_C_32 32× 4 5.64 G 256 563 176 4525 242
H_Arch_C_16 16× 4 1.64 G 496 551 261 4430 446
H_Arch_C_8 8× 4 0.58 G 936 560 312 4501 775
H_Arch_C_4 4× 4 0.18 G 1828 555 377 4452 1297

Table 8. Computation efficiency in FPS (SSDD).

Architectures Channels FLOPs Net Post All Postmt Allmt

S_Arch_32 32× 4 6.89 G 245 561 170 4512 232
S_Arch_16 16× 4 1.84 G 521 576 261 4629 468
S_Arch_8 8× 4 0.62 G 958 578 360 4645 794
S_Arch_4 4× 4 0.21 G 1704 529 402 4249 1216

S_Arch_C_32 32× 4 5.96 G 267 497 173 3992 249
S_Arch_C_16 16× 4 1.80 G 610 491 269 3945 528
S_Arch_C_8 8× 4 0.59 G 1048 497 337 3994 830
S_Arch_C_4 4× 4 0.22 G 1769 497 388 3995 1227

In the two given tables, there are five columns referring to FPS. Let us first focus on
the first three columns referring to FPS, where “Net” represents the processing speed of
the neural network stage, “Post” represents the speed of the post-processing stage, and

Appl. Sci. 2021, 12, 10978 15 of 22

“All” represents the overall detection speed. When the number of channels decreases, the
processing speed of the neural network stage (“Net”) increases sharply. However, the speed
of the post-processing stage (“Post”) is more or less stable. Although when combining “Net”
and “Post” together, the overall detection speed (“All”) increases, the post-processing stage
gradually becomes the new bottleneck. Post-processing takes charge of selecting a unique
rectangular box for each ship detected, which has a somewhat fixed overhead. Meanwhile,
this program was executed on the CPU. In order to handle the new bottleneck, we adopted
multi-threads to accelerate the post-processing stage. “Postmt” represents the speed of
post-processing by adopting 10 threads. It can be seen that more or less 8 times acceleration
for post-processing could be achieved. Aided by multi-threads, post-processing is no more
the bottleneck, and the overall detection speed (“Allmt”) can be generally decided by the
part of “Net”.

Next, we set different values on batchsize to see the variation in FPS. We selected four
neural architectures, respectively, from HRSID and SSDD to do the testing. Experimental
results are given in Table 9. The entries filled by n/a are due to “out of memory failure”.
We can see that on both datasets, FPS (“Net”) and FPS (“Allmt”) can benefit from a greater
batchsize. FPS (“Postmt”) is not so sensitive to batchsize. When batchsize is set to 1, it can
be seen that FPS in all the three columns decreases significantly. Running the first batch
is time costly due to the fact that GPU has a warm-up time to start the pipeline. Thus,
setting a larger batchsize can share the costs of the warm-up and thus increase the overall
efficiency of inference. On the other hand, the scale of the neural network decides the
maximal batchsize for a given GPU and a given set of images. Usually, a lightweight neural
network wins a greater batchsize. Note that this is another advantage of our Darts_Tiny, as
it aims at generating lightweight neural networks.

Table 9. FPS with different batchsizes.

Architectures Batch Size Net Postmt Allmt

H_Arch_32

500 n/a n/a n/a
128 279 3955 261
16 277 3918 259
8 274 3863 256
1 180 3693 172

H_Arch_4

500 1886 3857 1267
128 1855 3764 1243
16 1747 3870 1204
8 1584 3594 1099
1 202 3638 192

S_Arch_C_32

500 n/a n/a n/a
128 267 3992 249
16 265 3966 248
8 262 3935 246
1 172 3655 164

S_Arch_C_4

500 n/a n/a n/a
128 1769 3994 1226
16 1667 3613 1141
8 1561 3653 1085
1 186 3759 177

6.5. Comparisons

In this section, we conduct comparisons with state-of-the-art methods in the computer
vision field: Fast R-CNN [3], YOLOv2 [35], YOLOv2 tiny [36], YOLOv4 [25], YOLOv4
tiny [36], YOLOv5 [37] and MobileNet [4]. Fast R-CNN was the first neural network used to
study ship detection [10]. YOLO series are often taken as a baseline to construct lightweight
ship detectors [5,6,21,22], and MobileNet is often adopted as a lightweight backbone [18,19].

Appl. Sci. 2021, 12, 10978 16 of 22

In the comparisons, we also use the detection head and the cross-entropy loss function
of Darts_tiny to construct a MobileNet-based ship detector. In addition, we keep the
default parameters for each neural network and do not use special tricks to improve the
performance on purpose.

In Figures 11 and 12, we depict two scatter diagrams to generally show our results
and the comparison baselines. In both scatter diagrams, the horizontal axis represents
F1 score obtained on HRSID. In Figure 11, the vertical axis expresses the detection speed
in terms of FPS (log2). Note that to clearly show each point, we use a logarithmic value
rather than the original FPS. Our results are mainly distributed over the top right corner,
demonstrating that the neural networks generated by Darts_Tiny are competitive in both
accuracy and efficiency. In Figure 12, the horizontal axis represents the model volume
(log2). Similarly, we depict logarithmic values in the diagram. Our results locate over the
bottom right corner, implying that the neural networks generated are light and not bad in
detection accuracy.

H_Arch_32

H_Arch_16

H_Arch_8

H_Arch_4

H_Arch_C_32

H_Arch_C_16

H_Arch_C_8

H_Arch_C_4

Yolov2

Yolov2-tiny

Yolov4

Yolov4-tiny

Yolov5n

Yolov5s

FastRCNN

MobileNet

Yolov5l

3

4

5

6

7

8

9

10

11

63 65 67 69 71 73 75 77 79 81 83 85 87 89 91

FP
S

(lo
g 2

)

F1 score on HRSID

Figure 11. Scatter diagram: FPS vs. F1.

H_Arch_32

H_Arch_16

H_Arch_8
H_Arch_4

H_Arch_C_32

H_Arch_C_16
H_Arch_C_8

H_Arch_C_4

MobileNet

Yolov4

Yolov4-tiny

Yolov5n

Yolov5s

FastRCNN

Yolov2

Yolov2-tiny

Yolov5l

2

4

6

8

10

12

14

16

18

63 65 67 69 71 73 75 77 79 81 83 85 87 89 91

m
od

el
 v

ol
um

e
(lo

g 2
)

F1 score on HRSID

Figure 12. Scatter diagram: model volume vs. F1.

Detailed comparison results are given in Table 10. The amount of parameters, model
volume, the amount of computations (represented by FLOPs, 800× 800 images), epochs of
training, time/epoch (many factors, even including coding quality, can affect the absolute
training time. For the sake of fairness, we use the training epochs required for convergence
and the average time costs per epoch together to represent the training costs. One epoch
here is a round that all images in the training set are put into the model for one time.), AP,
F1 and FPS are listed. We selected two architectures, H_Arch_32 and H_Arch_C_8, to join
the comparison, as the former has the best performance in detection accuracy and the latter
demonstrates a good balance in the two criteria. Generally, H_Arch_32 and H_Arch_C_8
achieve a significant advantage in the amount of parameters, model volume and FLOPs.
Clearly, H_Arch_C_8 achieves a prominent detection speed in terms of FPS. Furthermore,
the two neural networks do not show a distinct weakness in training costs (Fast R-CNN
consumes 20 epochs to converge. However, it costs more in each epoch, and on the other

Appl. Sci. 2021, 12, 10978 17 of 22

hand, the low detection accuracy implies that additional training epochs are useless.), and
they are still competitive in detection accuracy.

Table 10. Comparison results on HRSID.

Architectures Parameters Volume FLOPs Epochs Time/Epoch AP F1 FPS

H_Arch_32 280 K 1.10 MB 6.89 G 80 4 m 85.09 85.636 261
H_Arch_C_8 28 K 158 KB 0.58 G 97 2 m 83.93 83.158 775

MobileNet 1.66 M 8.45 MB 7.6 G 62 2 m 20 s 72.252 79.853 234
Fast R-CNN 130 M 1224 MB 195.01 G 20 60 m 70.2 63.800 36

YOLOv2 63.7 M 255.81 MB 128.2 G 150 2 m 40 s 85.19 82.424 56
YOLOv2 tiny 15.04 M 60.16 MB 25.3 G 100 2 m 20 s 78.37 75.417 137

YOLOv4 62.47 M 244.15 MB 219.5 G 36 6 m 18 s 93.47 83.036 10
YOLOv4 tiny 6 M 22.43 MB 24.9 G 59 57 s 94.33 88.362 65

YOLOv5 l 88.3 M 529.41 MB 170.46 G 120 2 m 30 s 92.75 87.582 62
YOLOv5 s 7.2 M 13.91 MB 25.78 G 70 1 m 48 s 92.34 87.247 169
YOLOv5 n 1.9 M 3.86 MB 7.03 G 60 1 m 20 s 92.12 87.582 255

Compared with MobileNet, Fast R-CNN, YOLOv2 and YOLOv2 tiny, our solutions
outperforms these models in both detection accuracy and efficiency. The last five solutions
are based on the two latest YOLO versions. Among them, YOLOv5n has the best detection
speed. Our result, H_Arch_C_8, can still achieve 3 times faster results with little loss of
F1. To evaluate the detection accuracy a step further, we conducted experiments by setting
different thresholds of confidence. In Figure 13, when the threshold of confidence increases,
the F1 curves of YOLOv4 tiny and YOLOv5n decay more slowly than H_Arch_C_8 and
YOLOv2. That is because YOLOv4 tiny and YOLOv5n have more outputs with greater
confidence scores. Hence, fewer targets were lost when the bar of confidence increased.

0

10

20

30

40

50

60

70

80

90

0.15 0.3 0.45 0.5 0.65 0.8 0.9

F1

confidence score

F1-confidence score

H_Arch_C_8

YOLOv5n

YOLOv4 tiny

YOLOv2 tiny

Figure 13. F1-confidence.

We then conducted comparisons with referenced studies [5,6,19,26], as they are
lightweight models and provide experimental results on the same SSDD dataset as ours.
Note that different GPUs are used in different studies. We only address fair and reasonable
comparison results in Table 11 to demonstrate the detection efficiency and accuracy. In
addition to S_Arch_C_8 and S_Arch_C_4, all data listed are directly extracted from refer-
ences. Clearly, Darts_tiny can generate lighter and more efficient neural networks while
maintaining a competitive detection accuracy (with only a few points lost in the F1 score).

Appl. Sci. 2021, 12, 10978 18 of 22

Table 11. Comparison with references on SSDD.

Architectures Model Volume Paras FLOPs F1 AP

S_Arch_C_8 150 KB 24 K 0.54 G 90.24 89.61
S_Arch_C_4 75 KB 9 K 0.21 G 88.56 89.14

Reference [19] 49.34 MB 10.78 M 4.26 G n/a 95.03
Reference [5] 2.8 MB 600 K 1.94 G 91.70 94.60
Reference [6] 30 MB 6.5 M 5.96 G n/a 90.37

Reference [26] 1.2 MB 290 K 2.86 G 77.7 79.1

By the above comparisons, some shortages of Darts_tiny receive our attention. First,
although the neural networks generated are light and efficient, they do not have the best
performance in detection accuracy. Recent YOLO versions win better accuracy, as more
techniques and tricks are leveraged, e.g., a “backbone + Neck + detection head” structure,
an optimized loss function, etc. Integrating successful artificial experiences into the neural
architecture search could be meaningful for future accuracy improvement. Second, fewer
computations do not always yield a proportionally faster detection speed, as different
hardware platforms e.g., GPUs and embedded processing units, have different preferences
in the neural architecture and the operations used. It could be the case that a lighter model
fails to win an expected faster detection speed when running on a particular hardware.
Improving Darts_tiny to be hardware-aware is quite meaningful.

7. Conclusions

In this paper, we addressed the problem of edge-based ship object detection, where the
detection accuracy and efficiency need to be considered together. We proposed Darts_Tiny,
a novel customized neural architecture search model. By pruning superfluous operations,
we leverage computation-aware schemes into the search process. Thus, Darts_Tiny can
generate lightweight neural networks that are not only efficient in terms of the amount of
computation but also competitive in terms of detection accuracy. In the future, we shall
study more techniques (e.g., aiming at targets with different sizes) to improve the detection
accuracy of Darts_Tiny. In addition, we would like to study computational efficiency
with different hardware platforms and design hardware-aware schemes into the neural
architecture search model.

Author Contributions: Formal analysis, C.L., K.Z. and L.Q.; Funding acquisition, C.L.; Methodology,
Y.L., H.H. and J.S.; Project administration, C.L.; Validation, C.L., K.Z. and K.W.; Writing—original
draft, C.L.; Writing—review & editing, L.Q. and K.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
61902063, by the Provincial Natural Science Foundation of Jiangsu, China under Grant BK20190342,
and by the Open Project Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing by Grant 2020A04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Neural Architectures

In the last two pages, we provide all neural architectures that appeared in the main
text for readers who have special interests (Figures A1–A6).

Appl. Sci. 2021, 12, 10978 19 of 22

Ck-2

Ck-1

21 30

skip_connect
skip_connect

max_pool_3x3

max_pool_3x3

(a) HArch_1: Normal Cell

Ck-2

Ck-1

21 30

dil_conv_3x3

skip_connect

skip_connect

skip_connectsep_conv_5x5

sep_conv_5x5 sep_conv_3x3

(b) HArch_1: Reduction Cell

Ck-2

Ck-1

21 30

sep_conv_5x5

sep_conv_3x3

avg_pool_3x3
sep_conv_3x3

dil_conv_3x3

sep_conv_3x3

(c) HArch_2: Normal Cell

Ck-2

Ck-1

21 30

max_pool_3x3

dil_conv_5x5
skip_connect

dil_conv_3x3

sep_conv_3x3

(d) HArch_2: Reduction Cell

Ck-2

Ck-1

21 30

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

max_pool_3x3

dil_conv_5x5

max_pool_3x3

(e) HArch_3: Normal Cell

Ck-2

Ck-1

21 30

sep_conv_5x5

dil_conv_5x5

sep_conv_5x5

dil_conv_5x5

sep_conv_5x5

skip_connect

(f) HArch_3: Reduction Cell

Figure A1. Cell structures of HArch_1, HArch_2 and HArch_3.

Ck-2

Ck-1

21 30

dil_conv_5x5

dil_conv_5x5 sep_conv_3x3

dil_conv_5x5 dil_conv_5x5

(a) SArch_1: Normal Cell

Ck-2

Ck-1

21 30

dil_conv_5x5

dil_conv_5x5

sep_conv_5x5 sep_conv_5x5

sep_conv_5x5

(b) SArch_1: Reduction Cell

Ck-2

Ck-1

21 30

dil_conv_5x5

dil_conv_5x5sep_conv_3x3

dil_conv_5x5

dil_conv_5x5

(c) SArch_2: Normal Cell

Ck-2

Ck-1

21 30

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5 dil_conv_5x5dil_conv_5x5

dil_conv_5x5

(d) SArch_2: Reduction Cell

Ck-2

Ck-1

21 30

dil_conv_5x5

dil_conv_5x5 dil_conv_5x5

dil_conv_5x5 dil_conv_5x5

dil_conv_5x5

(e) SArch_3: Normal Cell

Ck-2

Ck-1

21 30

sep_conv_5x5

dil_conv_5x5

dil_conv_3x3

sep_conv_5x5dil_conv_5x5

(f) SArch_3: Reduction Cell

Figure A2. Cell structures of SArch_1, SArch_2 and SArch_3.

Appl. Sci. 2021, 12, 10978 20 of 22

Ck-1

Ck-2

21 30

H_Arch_32

dil_conv_3x3sep_conv_3x3

skip_connect

dil_conv_5x5

dil_conv_5x5

skip_connect

(a) H_Arch_32

Ck-1

Ck-2

21 30

H_Arch_16

dil_conv_3x3sep_conv_3x3

skip_connect

dil_conv_5x5

dil_conv_5x5

skip_connect

(b) H_Arch_16

Ck-1

Ck-2

21 30

H_Arch_8

step_conv_5x5

dil_conv_3x3sep_conv_3x3

skip_connect

dil_conv_5x5

dil_conv_5x5

(c) H_Arch_8

Ck-1

Ck-2

21 30

H_Arch_4

step_conv_5x5

dil_conv_3x3sep_conv_3x3

skip_connect

dil_conv_5x5

dil_conv_5x5

(d) H_Arch_4

Figure A3. Cell structures obtained over HRSID with ops_ratio = 0.

Ck-1

Ck-2

21 30

H_Arch_C_32

skip_connect

skip_connect

skip_connect

dil_conv_5x5

skip_connect

(a) H_Arch_C_32

Ck-1

Ck-2

21 30

H_Arch_C_16

skip_connect

sep_conv_5x5

skip_connect

dil_conv_5x5

skip_connect

(b) H_Arch_C_16

Ck-1

Ck-2

21 30

H_Arch_C_8

skip_connect

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5

skip_connect

(c) H_Arch_C_8

Ck-1

Ck-2

21 30

H_Arch_C_4

sep_conv_5x5

sep_conv_5x5

skip_connect

(d) H_Arch_C_4

Figure A4. Cell structures obtained over HRSID with ops_ratio = 0.012.

Ck-1

Ck-2

1 30

S_Arch_32

skip_conncet

dil_conv_5x5

skip_connect

2

skip_connect

skip_conncet

(a) S_Arch_32

Ck-1

Ck-2

1 30

S_Arch_16

skip_conncet

dil_conv_5x5

skip_connect

dil_conv_5x5
2

dil_conv_5x5

(b) S_Arch_16

Ck-1

Ck-2

1 30

S_Arch_8

skip_conncet

dil_conv_5x5

skip_connect

dil_conv_5x5
2

sep_conv_5x5

(c) S_Arch_8

Ck-1

Ck-2

1 30

S_Arch_4

sep_conv_5x5

dil_conv_5x5

skip_connect

dil_conv_5x5
2

sep_conv_5x5

(d) S_Arch_4

Figure A5. Cell structures obtained over SSDD with ops_ratio = 0.

Appl. Sci. 2021, 12, 10978 21 of 22

Ck-1

Ck-2

1 20

S_Arch_C_32

dil_conv_5x5
3

dil_conv_5x5

skip_connect

skip_connect

skip_connect

(a) S_Arch_C_32

Ck-1

Ck-2

1 20

S_Arch_C_16

dil_conv_5x5

skip_connect

3

skip_connect

dil_conv_5x5

avg_pool_3x3

skip_connect

(b) S_Arch_C_16

Ck-1

Ck-2

1 20

S_Arch_C_8

dil_conv_5x5

skip_connect

3

skip_connect

dil_conv_5x5

sep_conv_5x5

skip_connect

(c) S_Arch_C_8

Ck-1

Ck-2

1 30

S_Arch_C_4

sep_conv_5x5

dil_conv_5x5

skip_connect

2
skip_connect

sep_conv_5x5

(d) S_Arch_C_4

Figure A6. Cell structures obtained over SSDD with ops_ratio = 0.003.

References
1. Feraru, V.A.; Andersen, R.E.; Boukas, E. Towards an Autonomous UAV-based System to Assist Search and Rescue Operations in

Man Overboard Incidents. In Proceedings of the 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Abu Dhabi, United Arab Emirates, 4–6 November 2020; pp. 57–64.

2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

3. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

4. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861v1.

5. Chen, S.; Zhan, R.; Wang, W.; Zhang, J. Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge
Distillation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1267–1282. [CrossRef]

6. Jiang, J.; Fu, X.; Qin, R.; Wang, X.; Ma, Z. High-Speed Lightweight Ship Detection Algorithm Based on YOLO-V4 for Three-
Channels RGB SAR Image. Remote Sens. 2021, 13, 1909. [CrossRef]

7. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. In Proceedings of the 7th International Conference on
Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019; pp. 1–13.

8. Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.J.; Tian, Q.; Xiong, H. PC-DARTS: Partial Channel Connections for Memory-Efficient
Architecture Search. In Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa,
Ethiopia, 26–30 April 2020; pp. 1–13.

9. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance
Segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

10. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the SAR in Big Data
Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6.

11. Li, J.; Qu, C.; Peng, S.; Deng, B. Ship detection in SAR images based on convolutional neural network. Syst. Eng. Electron. 2018,
40, 1953–1959.

12. Li, J.; Qu, C.; Peng, S.; Jiang, Y. Ship Detection in SAR images Based on Generative Adversarial Network and Online Hard
Examples Mining. J. Electron. Inf. Technol. 2019, 41, 143–149.

13. Guo, H.; Yang, X.; Wang, N.; Gao, X. A CenterNet++ model for ship detection in SAR images. Pattern Recognit. 2021, 112, 107787.
[CrossRef]

14. Zhang, Z.; Zhang, L.; Wang, Y.; Feng, P.; He, R. ShipRSImageNet: A Large-Scale Fine-Grained Dataset for Ship Detection in
High-Resolution Optical Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8458–8472. [CrossRef]

15. Geng, X.; Zhao, L.; Shi, L.; Yang, J.; Li, P.; Sun, W. Small-Sized Ship Detection Nearshore Based on Lightweight Active Learning
Model with a Small Number of Labeled Data for SAR Imagery. Remote Sens. 2021, 13, 3400. [CrossRef]

16. Sun, Z.; Dai, M.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. An Anchor-Free Detection Method for Ship Targets in High-Resolution
SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7799–7816. [CrossRef]

17. Li, Y.; Zhang, S.; Wang, W. A Lightweight Faster R-CNN for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022,
19, 4006105. [CrossRef]

18. Zhang, T.; Zhang, X. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network. Remote Sens.
2019, 11, 1206. [CrossRef]

http://doi.org/10.1109/JSTARS.2020.3041783
http://dx.doi.org/10.3390/rs13101909
http://dx.doi.org/10.1109/ACCESS.2020.3005861
http://dx.doi.org/10.1016/j.patcog.2020.107787
http://dx.doi.org/10.1109/JSTARS.2021.3104230
http://dx.doi.org/10.3390/rs13173400
http://dx.doi.org/10.1109/JSTARS.2021.3099483
http://dx.doi.org/10.1109/LGRS.2020.3038901
http://dx.doi.org/10.3390/rs11101206

Appl. Sci. 2021, 12, 10978 22 of 22

19. Liu, S.; Kong, W.; Chen, X.; Xu, M.; Yasir, M.; Zhao, L.; Li, J. Multi-Scale Ship Detection Algorithm Based on a Lightweight Neural
Network for Spaceborne SAR Images. Remote Sens. 2022, 14, 1149. [CrossRef]

20. Feng, Y.; Chen, J.; Huang, Z.; Wan, H.; Xia, R.; Wu, B.; Sun, L.; Xing, M. A Lightweight Position-Enhanced Anchor-Free Algorithm
for SAR Ship Detection. Remote Sens. 2022, 14, 1908. [CrossRef]

21. Alkhaleefah, M.; Ma, S.; Tan, T.; Chang, L.; Wang, K.; Ko, C.; Ku, C.; Hsu, C.; Chang, Y. Accelerated-YOLOv3 for Ship Detection
from SAR Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 3030–3032.

22. Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene
Sentinel-1 SAR Images. Remote Sens. 2022, 14, 1018. [CrossRef]

23. Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship
Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [CrossRef]

24. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
25. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
26. Ma, X.; Ji, K.; Xiong, B.; Zhang, L.; Feng, S.; Kuang, G. Light-YOLOv4: An Edge-Device Oriented Target Detection Method for

Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10808–10820. [CrossRef]
27. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
28. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. In Proceedings of the 5th International Conference on

Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–16.
29. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8697–8710.

30. Liang, H.; Zhang, S.; Sun, J.; He, X.; Huang, W.; Zhuang, K.; Li, Z. DARTS+: Improved Differentiable Architecture Search with
Early Stopping. arXiv 2020, arXiv:1909.06035.

31. Chu, X.; Wang, X.; Zhang, B.; Lu, S.; Wei, X.; Yan, J. DARTS-: Robustly Stepping out of Performance Collapse Without Indicators.
In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021; pp. 1–22.

32. Wang, Y.; Shi, H.; Chen, L. Ship Detection Algorithm for SAR Images Based on Lightweight Convolutional Network. J. Indian Soc.
Remote Sens. 2022, 50, 867–876. [CrossRef]

33. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR Long Beach, CA, USA, 16–20 June 2019; pp. 10734–10742.

34. Kong, X.; Han, W.; Liao, L.; Li, B. An analysis of correctness for API recommendation: Are the unmatched results useless? Sci.
China Inf. Sci. 2020. 63, 190103. [CrossRef]

35. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

36. YOLOv2 Tiny and YOLOv4 Tiny. Available online: https://github.com/AlexeyAB/darknet (accessed on 2 February 2022).
37. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 2 February 2022).

http://dx.doi.org/10.3390/rs14051149
http://dx.doi.org/10.3390/rs14081908
http://dx.doi.org/10.3390/rs14041018
http://dx.doi.org/10.3390/rs13214209
http://dx.doi.org/10.1109/JSTARS.2021.3120009
http://dx.doi.org/10.1007/s12524-022-01491-1
http://dx.doi.org/10.1007/s11432-019-2929-9
https://github.com/AlexeyAB/darknet
https://github.com/ultralytics/yolov5

	Introduction
	Related Work
	Ship Detection via Neural Networks
	Neural Architecture Search

	Problem Description
	Darts vs. Ship Detection
	Backbone
	Testing Results and Analysis

	Methodology
	Pruning the Super Neural Network
	Computation-Aware Searching

	Experimental Results
	Datasets and Settings
	Results of Channel Pruning
	Searching Results via Darts_Tiny
	Detection Speed in FPS
	Comparisons

	Conclusions
	Neural Architectures
	References

