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Featured Application: A thorough review of the quantitative methods for the detection of Alzheimer’s
from neuroimaging studies acquired with positron emission tomography, with a special emphasis on
supervised machine/deep learning techniques for specialist physicians, neuroscientists, computer scien-
tists, and other allied professions in dementia care and diagnosis.

Abstract: The dementia spectrum is a broad range of disorders with complex diagnosis, patho-
physiology, and a limited set of treatment options, where the most common variety is Alzheimer’s
disease (AD). Positron emission tomography (PET) has become a valuable tool for the detection of
AD; however, following the results of post-mortem studies, AD diagnosis has modest sensitivity
and specificity at best. It remains common practice that readings of these images are performed
by a physician’s subjective impressions of the spatial pattern of tracer uptake, and so quantitative
methods based on established biomarkers have had little penetration into clinical practice. The
present study is a review of the data-driven methods available for molecular neuroimaging studies
(fluorodeoxyglucose-/amyloid-/tau-PET), with emphasis on the use of machine/deep learning as
quantitative tools complementing the specialist in detecting AD. This work is divided into two broad
parts. The first covers the epidemiology and pathology of AD, followed by a review of the role of
PET imaging and tracers for AD detection. The second presents quantitative methods used in the
literature for detecting AD, including the general linear model and statistical parametric mapping,
3D stereotactic surface projection, principal component analysis, scaled subprofile modeling, support
vector machines, and neural networks.

Keywords: deep learning; machine learning; neuroimaging; PET; Alzheimer’s disease; statistical
parametric mapping; scaled subprofile modeling; stereotactic surface projection; support vector
machine; neural network

1. Introduction

Under the paradigm of early detection and intervention, disease-modifying thera-
pies and preventative strategies are most effective when used as early as possible in the
progression of Alzheimer’s disease (AD). Current clinical practice uses medical history
and neuropsychological examination as the primary means of establishing a diagnosis of
dementia [1]. A diagnosis of dementia does allow access to specialized care and therapies;
however, a diagnosis at the stage where serious cognitive symptoms have become clinically
evaluable does not allow for the full effect of disease-modifying therapies which delay or
reduce cognitive symptoms. Diagnostic accuracy at this stage has also been revealed as
modestly sensitivity-specific at best due to the overlapping clinical presentation of multiple
forms of dementia spectrum disorders (DSDs), as confirmed by large post-mortem stud-
ies across multiple laboratories [2–4]. The potentially prodromal state of mild cognitive
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impairment (MCI) further complicates the diagnostic task because approximately 20% of
all MCI patients progress to develop some form of dementia with 3–5 years of diagnosis
(pMCI), while the balance will remain stable and see a plateau in their cognitive decline
(sMCI) [5,6].

Distinct alterations in the basal rates of glucose metabolism have been found to precede
and coincide with the clinical manifestation of dementia-related cognitive symptoms [5–8].
Patients suspected of having AD may undergo brain positron emission tomography (PET)
imaging with a variety of tracers; however, these images are commonly evaluated by a
physician’s subjective impression of tracer uptake instead of being subject to quantitative
analysis. Data-driven neuroimaging has great potential to alleviate the issue of diagnostic
inaccuracy and increase confidence in clinical decision-making by providing objective
quantitative metrics to complement the specialist physician, but thus far it has seen limited
application in clinical practice [9–11].

This article presents a detailed review of the use of data-driven methods to detect AD
neuropathology from several varieties of PET neuroimaging studies, with an emphasis on
the application of machine/deep learning methods to complement clinical evaluation. We
first present an overview of AD’s epidemiology, pathology, and the most widely recognized
biomarkers. Next, we survey several PET tracers that are useful for the detection of AD in
the context of AD as a progressive proteinopathic disorder. Finally, we detail the quanti-
tative methods useful for detecting AD from PET studies and survey the representative
literature for each of these methods.

2. Alzheimer’s Disease—Epidemiology, Progression, ATN Biomarkers

Alzheimer’s disease (AD) is an age-related chronic illness characterized by progressive
global deterioration in learning, memory, communication, and general cognitive function-
ing. AD is the most common cause of dementia spectrum disorder (DSD) and accounts for
nearly two-thirds of all dementia diagnoses worldwide [12]. Currently, there are approxi-
mately 26 million people worldwide living with AD-derived dementia, and this number is
expected to increase dramatically to over 100 million by the mid-century, or an estimated
prevalence of 324 per 10,000 persons, and an annual cost of care in the hundreds of billions
of dollars worldwide [12,13]. AD patients are likely to require extensive personal care for
the remainder of their lives due to their cognitive impairment [14]. There is no effective
treatment or cure for AD, and the continued neurodegeneration is ultimately fatal to the
patient. The available treatment options focus on slowing down the progression and the
severity of the symptoms of AD. Some preventative measures have also been identified,
such as the maintenance of a cognitive reserve or the elimination of behavioral risk fac-
tors [14]. Other non-preventable risk factors, such as genetics, have also been identified.
Pharmaceutical support does exist in the form of acetylcholinesterase inhibitors [15]. The
recent development and accelerated FDA approval of amyloid beta-targeting drugs such as
aducanumab have raised hopes; however, their uses are limited, and their efficacy remains
controversial [16,17].

AD is histopathologically characterized by abnormal accumulations of protein on
the brain or altered protein content in cerebrospinal fluid (CSF). Well-known examples
include an increase in extracellular amyloid plaques (also known as senile plaques) on the
brain and decreased amyloid protein levels found in CSF; the appearance of intracellular
neurofibrillary tangles composed of hyperphosphorylated tau proteins; and decreased
total tau protein levels in CSF. The accumulation of these is followed by generalized
neurodegeneration and cognitive decline [6,18]. Single-cell transcriptome analysis reveals
that there are multiple genes that are involved in the development of AD, most notably
those that affect the ability of microglia to clear amyloid proteins from the brain or that
affect the regulation of astrocytes [19]. It must be noted that the exact etiology of AD is
currently unknown, and that many different factors (synaptic, mitochondrial, inflammatory,
neuronal, cytoskeletal, vascular, age, lifestyle, demographic, and genetic) are likely to play
mutually overlapping roles in the progression of AD.
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Jack et al., have proposed the now commonly known amyloid-tau-neurodegenerative
(ATN) biomarker-based staging framework, which incorporates the most widely recog-
nized clinical biomarkers of AD [18]. The ATN framework is a descriptive system for
communicating multimodal biomarkers for a patient suspected of having AD. Status is
reported in a binary fashion (positive or negative) to support the ease of use, clarity, and
portability between medical domains. Amyloid positivity is supported by either significant
ligand retention in amyloid-PET or low amyloid levels in CSF. Tau positivity is similarly
supported by high ligand retention in tau-PET or else elevated levels of phosphorylated
tau proteins in CSF. Neurodegeneration (or neuronal injury) is supported by elevated
total tau protein levels in CSF, hypometabolism in fluorodeoxyglucose positron emission
tomography (FDG-PET), or atrophy in specific brain regions revealed by structural mag-
netic resonance (MR) images [18]. It is important to note that while extracellular amyloid
plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins are
not causal factors in AD pathogenesis, AD is characterized along a biologically progressive
spectrum by the abnormal accumulation of these specific proteins. In combination with
neurodegeneration, they form the primary diagnostic markers [18]. The ATN model is
also very amenable to extension should further important biomarkers be discovered in the
future. This biomarker-based framework for AD detection has informed the emphasis of
this review on FDG, amyloid, and tau tracers.

3. Positron Emission Tomography & Tracers for the Detection of AD

Positron emission tomography (PET) has become an important clinical tool for non-
invasive in vivo characterization, visualization, and measurement of physiological processes.
The success of PET imaging is due to the development of radiopharmaceuticals called tracers,
which are radiolabeled molecules administered in sub-pharmacological dosages for the pur-
pose of performing nuclear imaging procedures. The development and clinical evaluation
of tracers for neuroimaging is a highly active field of research and continues to grow in
parallel with advances in neurochemistry and the pathology of neurological disorders [19–25].
Tracer design for neuroimaging is a complex process that must account for many factors,
the most prominent of which are the ability to cross the blood-brain barrier (BBB), ligand
specificity, ligand metabolism, non-specific binding, and the effect of unbound ligands on
normal physiology [22]. The guiding principle of tracer-based imaging is that the distribution
and concentration of a tracer are an indication of the regionalized abundances of the target
for which the tracer is designed. For the purposes of the current work, we will survey three
groups of PET tracers relevant to the in vivo detection of AD: fluorodeoxyglucose (FDG),
amyloid-binding tracers, and tau-binding tracers. While there are many other PET tracers in
existence that may be used to investigate AD pathology (e.g., cholinergic tracers, inflamma-
tory tracers, 15O-based imaging), only the use of FDG is considered the current clinical norm;
however, the use of amyloid and tau tracers is rapidly becoming more common [26–29]. For
each, we present the histological/pathological evidence for the use of these tracers and then
common themes of research resulting from their use.

3.1. Fluorodeoxyglucose (FDG)

FDG (2-[18F]-fluoro-2-deoxy-D-glucose) is a glucose analog that does not undergo
glycolysis and hence accumulates in the brain at the same rate that glucose would be
metabolized. FDG has been routinely used for decades to monitor brain glucose metabolism
as a reliable proxy of synaptic activity [30]. It is well known that changes in FDG uptake
precede the structural atrophy in neurodegenerative disorders that may be visualized by
MR or CT imaging [31,32]. AD patients exhibit progressive and usually bilateral glucose
hypometabolism compared to healthy controls. As seen in Figure 1, this occurs specifically
within the parietal and temporal cortices, but also in the frontal and posterior cingulate
cortices and the precunei. Metabolism is mostly preserved in the primary sensorimotor
cortex, basal ganglia, thalamus, brainstem, and primary visual cortex. The degree and size
of the area of distribution of hypometabolism also correlate with the estimated severity
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of AD dementia and decreased scores on clinical tests of cognitive function. MCI patients
also show heterogeneous patterns of hypometabolism throughout the brain, in keeping
with the fact that MCI patients may eventually develop non-AD dementias, though most
MCI patients show hypometabolism in the medial temporal cortex; however, this is also a
common finding in elderly healthy controls [20,32]. Hypometabolism within the posterior
cingulate cortex, inferior parietal lobe, and precunei is common in prodromal AD patients.
Progressive parietotemporal hypometabolism is also found in asymptomatic carriers of the
allele APOE-ε4, a gene that significantly increases the lifetime risk of developing AD [33].
Because glucose metabolism is spared in the posterior cingulate cortex and the precunei in
non-AD DSDs, FDG-PET is also useful in their differential diagnosis [34]. FDG-PET has
also been used for monitoring outcomes in many AD therapeutics, specifically by tracking
changes in regionalized or global tracer uptake [35–38].

Figure 1. Brain regions that typically show hypometabolism from FDG-PET imaging. Images
visualized with BrainNet Viewer [39]. In the top row, we see these areas on the left, top, and right of
the outer surface of the brain. In the middle row, we see the left and right medial brain surfaces and
the underside of the brain in the center. In the bottom row, we see the anterior and posterior views of
the brain. Each color represents a distinct anatomical region of interest.

3.2. Amyloid-Binding Tracers

The development of the amyloid cascade hypothesis highlights the role of a range of
dynamic and heterogeneous soluble amyloid species as the primary instigator of neurotoxi-
city and cellular dysfunction [40]. Both synthetic and proto-fibrillar amyloid species have
been demonstrated to directly induce oxidative stress, neuroinflammation, and synaptic hy-
peractivity, leading to neurodegeneration and the development of several amyloid-binding
tracers and clinical trials of amyloid-targeting pharmaceuticals [41–43]. AD patients also dis-
play higher cortical retention of amyloid than elderly healthy controls in the orbitofrontal,
inferior parietal/posterior cingulate cortices, and the precunei [44]. Cortical retention
of amyloids also appears to stop increasing upon reaching a plateau early on in disease
progression; however, there is some evidence to suggest this may not be a universal feature
of amyloid accumulation [45].

The first amyloid tracer was N-methyl-[11C]-2-(4-methylaminophenyl)-6-
hydroxybenzothiazole, which is commonly known as Pittsburgh compound B or PIB
and is a derivative of the amyloid staining compound thioflavin-T [46,47]. It has been
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shown that the distribution and retention of PIB in vivo correlate very well with amyloid
found post-mortem at autopsy and shows that PIB is sensitive to soluble and insoluble
forms of amyloid protein [48]. Amyloid imaging with PIB is also sensitive in differentiat-
ing AD patients from elderly healthy controls; however, imaging studies in MCI patients
have revealed a bimodal distribution of amyloid positivity. However, those with a greater
amyloid burden are more likely to develop AD [49–51]. The retention of PIB also correlates
with glucose hypometabolism in the parietotemporal regions in AD patients but not in
those with MCI [47,52]. As with FDG-based imaging, carriers of the APOE-ε4 allele show a
greater degree of amyloid plaque deposition revealed by PIB imaging [46].

The greatest challenge to the clinical adoption of PIB has been the short half-life of the
11C atom at approximately 20 min, which has greatly limited its use to locales with an on-
site cyclotron. This has driven the development of 18F-based tracers for amyloid imaging
since the half-life is much longer at nearly two hours. This not only greatly increases
ease-of-access but also yields less noisy images, which allows for more precise quantitation.
Three of these fluorine-based tracers have received approval for clinical use (tradenames:
florbetapir, florbetaben, and flutemetamol), and these have been demonstrated to correlate
well with the results of PIB studies and post-mortem autopsies [53,54]. Differences in target
sensitivity and non-specific binding between these have been reported; however, efforts
are underway to standardize amyloid staging, such as the centiloid project [55].

Amyloid-based imaging is not without its drawbacks. Amyloid is extremely useful for the
differential diagnosis of DSDs that do not have an amyloid pathology, such as frontotemporal
dementia disorder (FTD); however, the presence of accumulated extracellular amyloid plaques
is relatively common in the general population of older adults [55,56]. As such, it is a
nonspecific indicator on its own, so its diagnostic value is as a predictor of possible future
effects, or else it must be considered in conjunction with other more specific biomarkers.

3.3. Tau-Binding Tracers

The accumulation of neurofibrillary tangles of hyperphosphorylated tau proteins is a
well-known pathological characteristic of AD alongside the accrual of amyloid plaques [57].
The amyloid cascade hypothesis states that downstream from the accumulation of insoluble
amyloid, misfolded and hyperphosphorylated tau proteins weaken tau’s binding affinity to
microtubules within neuronal bodies, resulting in the generalized breakdown of cytoskele-
tal architecture and leading to neurodegeneration [58]. Tau deposition in vivo correlates
very well with hypometabolism revealed by FDG-PET and also with Braak staging in
post-mortem studies. Tau retention tends to first occur in the hippocampus and entorhinal
cortex during Braak stages I–II, adjacent neocortices in Braak stages III–IV, and throughout
the whole brain in Braak stages V–VI [20,59,60]. The accumulation of tau tangles in the
temporal lobe is inversely correlated with memory performance, while accumulation in
the frontal lobe is inversely correlated with general cognition, and with FDG-PET and
amyloid-PET [61,62]. Individuals with the APOE-ε4 allele showed a substantially increased
tau protein burden [63,64].

The development of tracers for tau-PET has been marked by significant challenges
regarding off-target binding, specifically to amyloid proteins and monoamine oxidase [65].
Even highly tau-specific tracers must deal with the complication of tau proteins having
many unique isoforms with significantly different structures at the secondary and ter-
tiary levels of protein organization, making isoform selectivity an important challenge to
overcome [66]. Tau tracer design is further complicated by the fact that neurofibrillary
tau tangles occur within neuronal bodies, which would require that the tracer not only
be capable of crossing the BBB but also be capable of crossing neuronal cell membranes.
Currently, there is only one tracer that is approved for clinical use by the FDA (tradename:
flortaucipir); however, extensive effort is underway to design validation procedures for the
design of next-generation tau tracers [67–70].

One important advantage of tau-PET over amyloid-PET is that tau neurofibrillary
tangles follow a well-defined sequential spread defined by Braak stages, which is markedly
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different from the plateau typically seen in amyloid accumulation. The spread of these tau
tangles may, in fact, be indicative of disease progression in vivo [57,59]. Tau-PET has been
shown to outperform amyloid-PET and volumetric MR studies for the prognostication of
cognitive decline [71]. As with the accumulation of amyloid plaques, the presence of tau
tangles does not necessarily prescribe a diagnosis of AD dementia nor any other DSD. For
instance, tau deposition also occurs in elderly healthy control patients in a process known
as primary age-related tauopathy (PART) and is believed to be an insufficient condition for
the progression of cognitive decline in the absence of amyloid positivity [72]. Tau-PET may
also be very useful in the differential diagnosis of non-tauopathic DSDs (e.g., Parkinson’s
disease dementia and multiple system atrophy).

4. Quantitative Methods for the Detection of AD

In current clinical practice, both the patient’s medical history and the physician’s neu-
ropsychological examination are the primary means of establishing a diagnosis of dementia;
however, clinical diagnosis comes very late in AD progression [1]. Beach et al., discovered
that the diagnosis of AD by specialist physicians in living patients is at best modestly sensitive
(70.9–87.3%) and generally nonspecific (44.3–70.8%) over a wide range of clinical diagnostic
criteria. Diagnostic accuracy was found to be particularly poor in the cases of mild early
AD progression [2]. Even post-mortem autopsy-based diagnosis can vary across laborato-
ries due to significant variations in interobserver agreement, which shows a depreciation
in the gold standard of autopsy for neuropathological evaluation [2–4]. Patients with MCI
possess biomarker pathology that partially overlaps that of healthy controls and AD patients,
which further complicates the diagnosis of AD by introducing the problem of prognosticat-
ing cognitive decline in this potentially prodromal stage [5–8]. DSDs also typically have a
broad overlap in their clinical presentation at earlier stages, which further complicates the
differential diagnosis.

When neuroimaging studies are ordered, it is typically for the differential diagnosis of
DSDs. These are also routinely evaluated by a physician’s subjective impression of tracer
uptake throughout the brain rather than objective data-driven analysis. In view of the
modest accuracy of the clinical evaluation, this is insufficient to fully exploit the available
potential of disease-modifying therapies, especially since the recent and controversial
approval of Aduhelm© (tradename: aducanumab) [16,17].

Glucose metabolism and in vivo quantification of proteinopathies have proven them-
selves in the literature to be well-established ways of detecting AD pathology and in
prognosticating cognitive decline with a variety of data-driven methodologies. For the
most accurate estimation of cerebral metabolic rates, the gold standard of quantitative
PET is dynamic acquisition (timeseries of 3D volumes) analyzed using kinetic modelling.
Since there is no legitimate reference tissue (i.e., brain regions devoid of tracer uptake),
arterial blood samples are also required to produce a plasma input function. Such methods
are exceptionally complicated and time-consuming in the context of clinical applicability.
They also introduce additional burden and cost to the facility and the subject due to the
requirement for longer PET studies (dynamic multi-frame acquisitions) and arterial line
insertion. Blood sampling is also known for having methodological difficulties such as
scanner-to-well-counter calibration and bias/noise in high performance liquid chromatog-
raphy counting of the parent radioisotope fraction. Kinetic studies also suffer from the
possibility of multiple confounds such as motion-induced errors in attenuation correction,
partial volume effects from the limited spatial resolution of PET devices, age-related effects
on neuroreceptor ligand binding, intrasubject variation introducing issues with coregis-
tration, the normalization of PET-MR images, in vivo radiotracer metabolism, and the
effects of genetics on neuroreceptor ligand binding. Simplified semi-quantitative models
are therefore preferable, such as the use of standard uptake values (SUV) or use the ratio of
this value to a standardized reference region such as the pons as a surrogate for elaborate
kinetic modelling (SUVr). SUV/SUVr methods also have the advantage of being useful with



Appl. Sci. 2022, 12, 11463 7 of 32

static (single frame) PET studies, which are quicker and less costly to acquire compared to
dynamic PET studies [73–75].

Of particular interest to the current article is the use of machine/deep learning methods
that consider whole image data in conjunction with genetic, demographic, and/or clinical
data without resorting to kinetic modelling.

This section presents the methodological underpinnings of a wide variety of quanti-
tative methods that have found application in the neuroimaging-based detection of AD.
These methods have been selected as representative of regression-based methods (general
linear models and stereotactic surface projection), variance-maximization and dimension-
ality reduction methods (principal component analysis and scaled subprofile modeling),
decision boundary-based methods (support vector machines), and neural networks. Unless
otherwise mentioned, all bold notation refers to a matrix or vector in-full, whereas non-bold
script with indices refers to a specific entry of the matrix or vector, and non-bold script
without indices refers to a scalar value.

4.1. General Linear Models and Statistical Parametric Mapping

The general linear model (GLM) is a simple method for generating predictions from
data. The GLM will model the response variable (Y) in terms of a weighted linear combina-
tion of the explanatory variables (X) and uniquely defined response parameters (β), plus a
normally distributed error term (ε) in the form

YM = β1Xm1 + . . . + β`Xm` + . . . + βLXML + εM (1)

where there are M modeled responses and L total explanatory variables [64]. The explana-
tory variables may be continuous or discrete and may be any combination of features (e.g.,
FDG uptake in the precuneus) or covariates (e.g., age and sex). For the case of neuroimag-
ing studies where each voxel is a feature, the number of observations is always less than
the number of features/covariates, and so the GLM is an underdetermined system and
cannot be explicitly solved. The model parameters are then estimated using the method of
ordinary least squares,

ε = Y− βX = Y− Ŷ, (2)

where the hat notation refers to the estimated model values and the bold notation indicates
row or column vectors of values.

Under the condition that XTX is invertible, we may uniquely solve for the least squares
estimate of the parameters as

β̂ =
(

XTX
)−1

XTY. (3)

If the parameter estimates are normally distributed, any arbitrary linear combination
of these will also be normally distributed. Consider then that for some vector of weights
c known as the contrast vector, a hypothesis based on Student’s t-distribution for M − L
degrees of freedom and using the model parameters may be written as:

T =
cTβ̂− cTβ√

σ̂2cT
(
XTX

)−1c
, (4)

where σ̂2 is the estimated variance of the errors, defined as:

σ̂2 =
εTε

M− L
(5)

and the null hypothesis requires that cTβ = 0. A similar expression may be obtained for
generating F-statistics [64].

The extremely successful application of the GLM to the domain of neuroimaging
has been enshrined in the method of statistical parametric mapping (SPM). Developed
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by Friston and colleagues, it is the most widely used neuroimaging analytic tool that
has been used for research purposes since the 1990s [76,77]. It allows users to run voxel-
wise GLM analyses and provides options for multiple comparison corrections that are
tailored for neuroimaging data. The output of this mass univariate analysis is a statistical
parametric map such as that seen in Figure 2—an image where voxel values are assumed to
be distributed under a known probability density function (e.g., t-distribution). These maps
are the primary output of SPM and are used as evidence for or against the null hypothesis
at the level of the voxel [76,77]. This method of generating parametric maps has resulted
in the eponymous software package known as “SPM”, of which the latest version as of
publication is SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK).

Figure 2. Sample output of SPM12. A group-wise comparison was performed on FDG-PET scans of
AD patients and healthy controls, and the results were compared by t-testing. Regions of statistically
significant differences between the groups (p = 0.05 with family-wise error adjustment) are shown as
dark clusters on the white glass brain. Red arrow points to the global maximum.

In SPM and many other neuroimaging analytic software programs, the images are
rotated in a common direction and are spatially normalized with respect to a common
stereotactic space (e.g., Montreal Neurological Institute stereotactic coordinates) to ensure
spatial registration at the level of the voxel. These may also be co-registered in cases where
more than one mode of neuroimaging data are available. Images are then usually smoothed
with an isotropic Gaussian filter to ensure the robustness of the registration process and
increase the signal-to-noise ratio of the data. Smoothing also ensures that the neighbor-
ing voxels are interdependent. Smoothing is also a necessary condition for the multiple
comparison correction with Gaussian field randoms [78]. At this point, statistical inference
may proceed as described above. The contrast vector may be used to generate SPMs of
the hypo- or hypermetabolic regions in FDG-PET images at the level of the patient or the
group. This can be used to detect AD in two primary ways. First, a visual inspection of the
statistically significant regions can be performed. These statistically significant clusters may
be displayed on a glass brain in the application viewer, but they may also be visualized
over an anatomical template, or on subject-specific MR images. SPM will also generate
tables of statistics for each significant cluster and any existing sub-clusters and allow for the
modification of relevant thresholds. SPM has some notable and well-known disadvantages
when compared to other methods. SPM-based analysis assumes sphericity between all
possible pairs of groups under consideration. Being a mass univariate methodology, it
also suffers from the multiple comparison problem, which must be adequately corrected to
avoid dramatic type I errors. SPM also locates statistically significant clusters (see Equation
(4)) based on a facsimile of the signal-to-noise ratio—a contrast of parameter values to their
standard error—which may introduce artifactually large parameter values in regions of
low noise, such as outside the brain, unless corrected with brain masking and/or intensity
thresholding. SPM also assumes that the error variance-covariance is stationary under the
null hypothesis. SPM and many other methodologies also require elaborate preprocessing
procedures to ensure exact voxel-wise spatial correspondence between images/groups.
SPM also presupposes the use of relatively arbitrary thresholds for statistical significance.
Furthermore, SPM maps are best suited for subjective visual interpretation; however, masks
of any statistically significant clusters may be used as a form of dimensional reduction on
whole images.
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It has been demonstrated that SPM-aided FDG-PET readings can improve the dif-
ferentiation of AD patients from healthy controls (HC), sMCI, or pMCI patients [79–84].
SPM-aided readings may also improve the differentiation between different neurodegen-
erative disorders. Perani et al., found that when given SPM-generated maps, specialists
performed significantly better in diagnosing dementia and were better able to differentiate
between several forms of DSD, including MCI [81]. Katako et al., published a novel use
of the GLM using the vector of response parameters (“beta map”) over each voxel in the
image. The dot product of this with the voxel values of the proportionately scaled FDG-PET
images was used to create subject-specific scores representing the similarity of the subject’s
FDG-PET image to the group-derived beta map. Using this technique, they were able to
reliably differentiate AD patients and HCs with sensitivity = 86.2%, specificity = 85.6%, and
area-under-curve (AUC) = 0.922 [85]. Liu et al., discovered, by use of a GLM, that female
subjects exhibited significantly greater accumulation of tau neurofibrillary tangles in the
MCI stage compared to male subjects if they possessed the APOE-ε4 genetic mutation [86].
Ottoy et al., used a GLM to explore the effects of short-term (<1 year) conversion rates from
MCI to AD states by combining FDG-PET, amyloid-PET, CSF markers, structural MRI, and
neuropsychological testing information. They discovered that FDG-PET and hippocampal
volume combined with neuropsychological testing best predicted short-term conversion
from MCI to AD, and that neither amyloid-PET nor CSF markers were able to predict
conversion [87]. Nordberg et al., performed a multi-center study of amyloid-PET imaging
to investigate its value as an indicator of prodromal AD by use of a GLM using amyloid
neuroimaging data and demographic and neuropsychological information [88]. The results
show that MCI patients fall within a bimodal distribution of amyloid burden, as measured
by [11C]PIB retention. A total of 64% of MCI patients were amyloid-positive, while the
remainder were not. The data also showed that 67% of these amyloid-positive MCI patients
eventually developed AD at follow-up; however, none of the amyloid-negative MCI pa-
tients were diagnosed with AD at follow-up, showing a 100% negative predictive value for
amyloid-PET for AD [88]. Saint-Aubert et al., evaluated the relationship between the tau
tracer [18F]THK5317, FDG uptake, and cognition using a GLM. They discovered significant
negative correlations between episodic memory and overall cognition with [18F]THK5317
uptake, and that FDG uptake had a mediating effect between [18F]THK5317 uptake and
overall cognition [89]. Jeon et al., used an unsupervised statistical technique known as hier-
archical clustering to discover AD subtypes by integrating cortical structural MR, tau-PET,
and amyloid-PET information in addition to demographic data from a population of AD
patients and then comparing the results to HC patients by means of the GLM [90]. Ha-
lawa et al., discovered a significant cross-sectional correlation between functional activity
questionnaires, cortical tau burden, cortical amyloid burden, and amyloid-tau interactions
in MCI and AD patients through GLM modeling [91]. Ossenkoppele et al., discovered a
novel spatial effect of the APOE-ε4 genetic mutation on amyloid accumulation and FDG
uptake through the use of a univariate GLM. They discovered a less pronounced amyloid
burden in the frontal cortices of noncarriers and a more pronounced decline in FDG uptake
in the posterior portions of the brain in carriers [92]. Sörensen et al., used voxel-wise
regression and determine patterns of cerebral glucose metabolism in FDG-PET images,
which forecasted cognitive decline [84].

4.2. Stereotactic Surface Projection

Where SPM is a general tool for the quantitative analysis of neuroimaging studies
primarily based on GLM approaches, which are agnostic to the data under investigation,
three-dimensional stereotactic surface projection (3D-SSP) is a voxel-driven method that
was purpose-built as a fully automated method of quantifying AD pathology from FDG-
PET images [93]. Relevant to the detection and diagnosis of AD, 3D_SSP is an engineered
method of extracting metabolic information from FDG-PET images that uses a priori knowl-
edge of AD. Using data from known populations of AD and HC patients, 3D-SSP generates
diagnostic indices based on Z-scores generated by voxel-wise comparisons. It has since
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been expanded to be applicable to DSDs in general, including mixed forms of dementia [34];
3D-SSP is also incorporated as a primary component of the software package Neurostat®

(Department of Internal Medicine, University of Michigan, Michigan, Ann Arbor, MI, USA),
which is available for download online [94].

PET images will first undergo a c series of operations at the level of both the group
and the subject prior to analysis. The images are rotated to ensure they are in the correct
anatomical orientation and then undergo stereotactic anatomic standardization to a known
template space. Regional anatomical differences are minimized by linear scaling and
nonlinear warping, and the image is resampled [93]. Voxel values at predetermined
locations on the outer and medial surfaces of the cerebral cortex are considered up to a
depth of 6-voxels (13.5 mm) along a vector normal to the surface-most voxel. The maximal
voxel value along this 6-voxel deep vector is returned as the value at the surface voxel. This
set of maximum-valued voxels is then normalized to the thalamus because, it is a known
region of relatively preserved metabolism in AD patients.

activitynorm = activitymeasured/thalamicactivity. (6)

The mean and standard deviation of each surface voxel are then computed using a
collection of FDG-PET images from HC patients. Using the same procedure, the surface
voxels from the AD population are then compared to those of the HC database, and a
Z-score is computed

ZAD(x,y,z) =
HCmean(x,y,z) − ADx,y,z

HCsd(x,y,z)
(7)

on a voxel-by-voxel basis. e (x, y, z) are the stereotactic coordinates of a surface voxel,
ZAD(x,y,z) is the Z-score of a surface voxel of the suspected AD patient, HCmean(x,y,z) and
HCsd(x,y,z) are the mean and standard deviation of the surface voxel from the collection
of HC controls, and ADx,y,z is the thalamic-normalized value of the surface voxel of the
suspected AD patient.

An index of Z-scores is then computed for the primary cortical areas affected by AD—the
frontal, parietal, and temporal cortices. The locations of these cortices are defined using prede-
termined stereotactic grid coordinates. ∆Z-scores are then computed by comparing Z-scores of
the frontal + parietal + temporal cortices to those of the primary sensorimotor cortex,

∆Z = ZFC/PC/TC − ZSMC (8)

such that a large difference in Z-score indicates more severe hypometabolism in the region
relative to the primary sensorimotor cortex. This is performed bilaterally, where the values
from each hemisphere are averaged together, and the subject may be classified as symmetric
or asymmetric based on the degree of hypometabolic similarity between cortices [93].

Diagnostic indices are then determined with respect to the HC database by establishing
cut-off values for metabolic abnormality based on the ∆Z-scores [93]. These may then be
visualized on a subject’s MR image, an MR template, or a glass brain in a manner like SPM.
After indices have been determined through the database, an individual’s neuroimaging
data may be compared to that of the HC database, and a diagnostic label may be applied
by a physician’s quantitatively informed impression of statistically significant differences
in tracer uptake.

A distinct advantage of this method is its intrinsic motivation, based on well-known
findings from FDG-PET studies on AD patients: hypometabolism in the parietotemporal
cortex, bilateral symmetry of metabolic reduction, frequently reduced metabolic activity in
the frontal cortex, and preservation of the primary sensorimotor cortex and thalamus [95–98].
A great advantage of this design choice is that it easily allows for the incorporation of new
information on the nature or etiology of AD. Another is that the method automatically prepares
and presents data-driven hypotheses in the form of a ∆Z-score in a visually interpretable
manner (color-scale on a brain template), thus complementing the role of the specialist



Appl. Sci. 2022, 12, 11463 11 of 32

physician in the diagnosis of AD. This is, however, a potential disadvantage, as it is notably
distinct from the proper diagnostic tools as the method only presents quantitative information
instead of performing a classification alongside the presentation of the information. This is
particularly notable when using the method for differential diagnosis of DSDs because the
result remains entirely dependent on the specialist physician’s subjective impression of the
spatial distribution of altered metabolism.

Most notably used as a portion of the Neurostat® (Department of Internal Medicine,
University of Michigan, Michigan, Ann Arbor, MI, USA) software package, 3D-SSP has been
demonstrated to increase clinician confidence and accuracy in the diagnosis of DSDs and also
serve as the inspiration behind further methods of analysis on the cortical surface [99–103].
Most of the literature making use of 3D-SSP has been focused on the features derived from
FDG-PET imaging; however, there is an increasing penetrance of amyloid and tau data into
the domain of 3D-SSP. A novel use of 3D-SSP was reported by Iizuka et al., using rifampicin,
a drug used to treat mycobacterium infection that has also been shown to prevent amyloid
oligomerization and tau hyper-phosphorylation in mouse models [104]. Forty subjects with
AD-like hypometabolism undergoing treatment for mycobacterium infection were given
12 months of treatment with 450 mg of rifampicin and showed increased or stabilized FDG
uptake within the posterior cingulate cortex. Results were compared pre- and post-treatment
using z-score maps derived from 3D-SSP, showing a milder decline or no further decline
with follow-up FDG-PET imaging. Dual-biomarker imaging is an area of PET-based AD
investigation that investigates the use of non-FDG tracers to obtain FDG-like diagnostic data.
The rationale for using the first phase of the tracer update as a surrogate for FDG-PET is
based on the neurovascular coupling hypothesis, which describes how glucose metabolism
and oxygen demand are highly correlated in time. Daerr et al., compared the performance of
FDG and the amyloid tracer florbetaben in gathering perfusion-metabolic information very
early post-injection [105]. It was shown that very early florbetaben frames are very similar to
data acquired in FDG-PET throughout a priori selected ROIs. Early perfusion amyloid frames
(first 5 min post-injection) and FDG values were significantly corrected when normalized
to the global metabolic mean in amyloid-positive (r = 0.90) and amyloid-negative (r = 0.79)
patients. These data were later presented in the form of 3D-SSP z-score maps to multiple
neuroradiological readers who showed high inter-reader agreement (kappa > 0.79) between
AD, FTD, and HC patients. Brendel et al., published a similar report for the correspondence of
FDG and the tau tracer THK5351. They discovered an extremely strong correlation between
FDG and THK5351 uptake in the first minutes post-injection (dice similarity coefficient = 95%)
up to 15 min post-injection (coefficient = 89%) [106]. These similarities were visually confirmed
by a neuroradiological reader presented with z-score SSP maps generated from FDG and
THK5351 data. Brendel et al.’s study was performed on a single patient as a pilot project.
Beyer et al., performed a larger experiment with 26 subjects across a variety of DSDs on the
second-generation tau tracer PI-2620 [107]. As in Daerr et al., Brendel’s study used multiple
readers of different levels of experience to evaluate the subjective similarities of FDG-PET
and early perfusion PI-2620 using Neurostat® (Department of Internal Medicine, University
of Michigan, Ann Arbor, MI, USA). The greatest single frame correlation (r = 0.744) occurs
between the tracers occurred in the 30 s following the first minute post-injection, and they
report that combining frames reveals an optimal timing window from 0.5–2.5 min post-
injection (r = 0.728) [107]. Thientunyakit et al., were the first, to the author’s knowledge, to
apply 3D-SSP on florbetapir amyloid-PET images with a population of 31 AD, 27 MCI, and
20 HC patients [108].

4.3. Principal Component Analysis & Scaled Subprofile Modeling

GLMs are a data-agnostic tool, and 3D-SSP is a highly engineered method for AD
detection and diagnosis, but they may both have difficulties when working with very
intercorrelated and/or high-dimensional data sets. Principal component analysis (PCA) is
a widely known technique of multivariate analysis and is commonly used as a means of
dimensionality reduction [109]. PCA is used to reduce a large dataset to a small number
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of orthogonal variables that carry a majority of the variance within the data. This is
accomplished by finding a new linear vector basis on which to re-express the data such
that the data are decorrelated, the variance is maximized, and the reconstruction error is
minimized. This is easily expressed in matrix notation as:

Y = PX (9)

where Y is the decorrelated matrix, P is a transformation matrix, and X is the original dataset.
Consider a dataset in the form of a matrix X with I rows and J columns corresponding

to the number of observations and the number of variables describing those observations,
respectively. Let us now define the covariance as the degree of linear relationship between
two variables (the columns of X), written as:

CX = XXT (10)

where we assume the dataset is standardized to the number of observations, zero-centered,
and with unit variance. The covariance of the decorrelated matrix should have two relevant
properties: (1) all off-diagonal terms should be zero, and (2) each diagonal term should be
ranked in order of decreasing variance. Thus, the goal of PCA is to find an orthonormal
matrix P, such that CY is a diagonal matrix. The rows of P will then be the principal
components (PCs) of X. See Figure 3 for a visualization of these principal components.

Figure 3. Performing PCA on FDG-PET images reveals disease-specific patterns in AD com-
pared to healthy controls. PCs were obtained and eight of the first 10 were combined via step-
wise linear regression to obtain the visualization seen above. Figure shows outer exterior (left)
and medial exterior (right) surfaces. Images scaled according to mean z-score and standard
deviation of whole images for the purposes of visualization. Reprinted/adapted with permis-
sion from Ref. [85]. Copyrights under Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/, accessed on 1 October 2022).

Consider the form of the covariance matrix CY is written:

CY = YYT

= (PX)(PX)T

= P
(
XXT)PT

= PCXPT.

(11)

This symmetric matrix may be diagonalized by multiplication with an orthogonal
matrix of its eigenvectors,

CX = EDET (12)

http://creativecommons.org/licenses/by/4.0/
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where D is a diagonal matrix and E is the matrix of eigenvectors. Thus, if we choose our
transformation matrix P to have rows composed of the eigenvectors of CX we may write

CY = PCXPT

= P
(
ETDE

)
PT

=
(
PPT)D(PPT)

=
(
PP−1)D(PP−1)

= D.

(13)

The construction of eigenbrains (aka eigenimages) have demonstrated their utility as
a tool for reducing the dimensionality of the feature space to a simpler set of projection
coefficients [110].

A further extension of PCA is scaled subprofile modeling (SSM). SSM generates a
group-level score that represents disease-specific patterns. SSM has as an underlying
assumption that neuroimaging data represent the brain as a set of spatially distributed but
interconnected regions. This leads to the assumption that metabolic processes give rise to
specific patterns of metabolic covariation across these regions that are characteristic of a
group-level pattern in regional cerebral metabolic rates of glucose consumption [111].

We now assume that the data are organized in a dataset matrix P such that every
row corresponds to a subject and every column refers to a unique voxel of that subject’s
neuroimaging data, forming a matrix of dimension S×V. We also assume that the data have
been spatially normalized to a common template place, smoothed, and that an intracranial
mask has been applied. The subscripts s and v denote subject- and voxel-wise measurements.

The data are first log-transformed and then centered with respect to the log-mean
value of glucose metabolic rate,

Qsv = log Psv − LGMRs

LGMRs = meanv(log Ps)
(14)

resulting in “row-centered” (subject-wise) data. These data are then “column-centered”
(voxel-wise) by subtracting the mean value of a voxel over the entire subject group,

SRPsv = Qsv − GMPv (15)

where GMP (group mean profile) and SRP (subject residual profile) are defined:

SRPsv = Qsv − GMPv

GMPv = means(Qsv).
(16)

A subject centering scalar is defined as the difference between the subject-wise mean
of the logarithmic group metabolic rate (LGMR) and the group-wise mean of LGMR,

cCs = LGMRs −means(LGMRs), (17)

where cCs is defined as the subject centering constant. (17) may now be explicitly rewritten,

SRPsv = log Psv −means(log Psv)−meanv(log Ps)−means(log Ps). (18)

In this form, we note that the SRP at the level of the voxel is representation of the
difference between the log values of the subject and the appropriate group mean.
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At this point, a singular value decomposition (SVD) is performed on the voxel- and
subject-wise covariations of the SRP. An SVD is a generalization of the diagonalization of a
matrix by its eigenvectors. We first define the subject-wise covariance matrix,

Ss = (SRP)
(

SRPT
)

, (19)

and then by multiplying the eigenvalue relation Ssek = λkek by SRPT from the left we
may write: (

SRPTSRP
)

SRPTek = λkSRPTek (20)

where the subscript k refers to the size of the set of eigenvalues.
Note well here that the product of the matrix multiplication

(
SRPT)(SRP) is the voxel-

wise covariance matrix Sv. We note that in (20), this matrix has eigenvectors SRPTek, which
carries a special significance in SSM methodology and is known as the group invariant
subprofile (GIS) vectors. As such, we may rewrite (20) as:

SvGISk = λkGISk, (21)

where Sv =
(
SRPT)(SRP) and GISk = SRPTek. From here we define and compute a

subject score by multiplying each of the normalized eigenvalues by their associated and
normalized eigenvector,

scorek =
√

λkek. (22)

The SRP is then easily expressible as a linear combination of orthogonal GIS vectors
weighted by their associated subject score,

SRPs = ∑k scoreksGISk. (23)

The metabolic profile at the level of a subject is therefore expressed in terms of group-
level parameters.

The major strengths of both PCA and SSM are their abilities to expressly quantify
the relative importance of each dimension of the decorrelated data with measures of their
variance. It also provides a means for describing a complex and highly intercorrelated
dataset with a much smaller number of decorrelated variables and is thus an important
method of dimensionality reduction. The computation of the PCs is also quite straight-
forward since nearly all high-level programming languages have built-in functionality
for computing eigenvectors of matrices or performing SVD [109]. SSM is notable for its
use of log-transformation and double centering, which allow the method to explicitly
separate subject-dependent and regional scaling effects. GIS patterns are thought to express
“small signals” processes, and thus true descriptions of disease-specific abnormalities. GIS
patterns are also constant throughout disease progression, whereas regional metabolic
patterns (such as those revealed by mass univariate methods) change with disease pro-
gression. This shows that there exists a distinction to be made between SSM and regional
metabolic pattern; however, it has been recently shown that SPM and SSM/PCA are, in
fact, not independent of one another and have a well-defined analytical relationship when
performed on FDG-PET of AD patients [111–113]. In either PCA or SSM, analysis at the
level of the single subject is straightforward and involves taking the dot product of each
FDG-PET image with the PCs, or else taking the dot product of the scaled subprofile of
a patient’s FDG-PET image with the PCs—both of which will generate a quantitatively
meaningful subject-specific score that may be used to differentiate patient groups. Fur-
thermore, GIS vectors are determined to represent true disease-specific metabolic patterns,
which may be visualized in the form of Z-scores, such as in 3D-SSP, and used to model
group-specific abnormalities in brain glucose metabolism. This is especially useful because
these are invariant group characteristics, whereas the subject score is indicative of disease
expression [112]. PCA is also very amenable to unsupervised machine learning in cases
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where differences in class label are not considered; however, PCA is often ill-suited for
non-linear data. The stepwise linear regression is also useful in contexts where single
PCs are insufficient [85,114]. PCA is also a well-established means of reducing feature
complexity during data preprocessing operations and can be used to eliminate unnecessary
or redundant information.

By using two different SSM-based classifiers (first PC vs. multiple PCs), Katako et al.,
were able to differentiate AD and HC patients with sensitivities and specificities of 78.7%/81.9%
and 80.2%/86.5%, respectively, and AUCs of 0.852 and 0.911 [85]. Teune et al., have also
discovered distinct Alzheimer-related glucose metabolic patterns that had 93% sensitivity and
94% specificity for correctly classifying AD between probable AD patients and those with
MCI [115]. Iizuka & Kameyama were able to use SSM-PCA to dis metabolic profiles, which
differentiated dementia with Lewy bodies (DLB) and AD with AUC = 0.937 [116]. Meles et al.,
also used SSM to develop a discriminator for pMCI and HC groups with sensitivity = 82.4%
and specificity = 85.7% [117]. Substantial work has been done in applying PCA/SSM models
to amyloid- and tau-PET data. Blazhenets et al., reported a study on 319 MCI subjects that
explored the use of imaging and non-imaging data to predict MCI to AD conversion [118].
By applying SSM-PCA to amyloid images of sMCI and pMCI subjects from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), they used logistic regression to select PCs with
the greatest explanatory power at follow-up. Results reported from an independent test
set using combined FDG, amyloid, and non-imaging variables showed significant group
separation between converters and non-converters using the PCs obtained through SSM-PCA
and Cox voxel-wise regression. A further follow-up study in 2021 from the same group
reports that their model has strong predictive power in estimating the risk time to conversion
from MCI within the AT(N) framework [119]. Yokoi et al., used SSM-PCA on combined
fMRI and tau-PET data on amyloid-positive patients and discovered a spatially dependent
pattern of tau retention within patient group precunei, posterior cingulate cortices, and dor-
solateral prefrontal cortices [120]. This pattern had 82.6% specificity and 79.1% sensitivity
in differentiating AD HC patient groups. A positive correlation between tau retention and
canonical resting-state functional networks was also discovered, but a negative correlation
was reported between tau retention and seed-based analysis originating in both the pre-
cuneus/PCC and left dorsolateral prefrontal cortex. Perovnik et al., used SSM-PCA to identify
an Alzheimer’s-related pattern from a combination of FDG-PET images, CSF protein markers,
and neuropsychological information in a group of 20 AD and 20 HC subjects. The pattern was
then validated on a group of 261 patients with AD, a behavioral variant of frontotemporal
dementia (bvFTD), MCI, and HC subjects. They report differentiating AD HC groups with
AUC = 0.95 and MCI vs. bvFTD from AD with AUC = 0.76 to 0.85 between internally and
externally validated sample groups [120]. Perovnik et al., also used SSM-PCA to develop
a disease-specific pattern to differentiate DLB from AD patients with an AUC = 0.87. This
result is notable due to the significant clinical comorbidity of DLB and AD symptoms [121].
Peretti et al., used SSM-PCA to generate disease-specific patterns for AD from amyloid-PET
images [122]. They reported that amyloid-PET images were sufficient to differentiate between
healthy controls and AD patients, but that FDG-PET or regional cerebral perfusion-weighted
images were necessary to distinguish between AD, pMCI, and sMCI groups with statistically
significant accuracy, leading them to suggest that perfusion-weighted images can be used as a
surrogate for FDG-PET when performing SSM-PCA analysis.

4.4. Support Vector Machines

We will now introduce the support vector machine (SVM). SVMs are exceptionally
common in the neuroimaging literature. They differ significantly from GLMs or PCA/SSM
in that no threshold score is used to determine group designation, but rather the sign of the
score is used in determining the group label.

The theoretical foundation of the SVM can be simply explained by the statement “a
2D space is clearly separable by a 1D line”. This is also intuitively true for the separation



Appl. Sci. 2022, 12, 11463 16 of 32

of a 3D space by a 2D plane. This property holds for spaces of arbitrary dimension: a
hyperspace of N-dimensions is separable by a linear hyperplane of N-1 dimensions [123].

Consider some arbitrary dataset,

(x1, y1), (x2, y2), . . . , (xn, yn) (24)

where xi is a p-dimensional feature-vector and yi is a binary label classifying the vector. An
SVM will separate these feature vectors according to their class by attempting to find the
geometric margin (a hyperplane) that maximizes the minimum distance between classes.

The optimal hyperplane is defined as the set of points that satisfy:

H =
{

x
∣∣∣wTb + b

}
= 0 (25)

where w is a vector normal to the hyperplane and b is a bias. All vectors having a magnitude
H ≥ 1 orH ≤ 1 belong to the positive and negative classes, respectively, but those with the
special property |H| = 1 are designated support vectors. The support vectors determine
the placement of the hyperplane, and the SVM optimization algorithm will attempt to
construct the hyperplane using the support vectors that are as far away from one another
as possible, as seen in Figure 4 and visualized in Figure 5. This is a minimization problem
that has the form:

min
w, b

wTw s.t. ∀i
∣∣∣yi

(
wTx + b

)∣∣∣ ≥ 1. (26)

Figure 4. The SVM functions here as a linear binary classifier. The data belonging to either the
positive or negative class are plotted, and the optimal boundary between them clearly separates each
class. The support vectors used to draw this boundary are centered in a circle of their relevant class
color, while examples that violate the slack constraint are circled in black.
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Figure 5. Visualization of the decision boundary for sequential minimal SVM on FDG-PET images of
AD patients and healthy controls. Images scaled according to mean z-score and standard deviation of
whole images for the purposes of visualization. Reprinted/adapted with permission from Ref. [85].
Copyrights under Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/, accessed on 1 October 2022).

Note that when support vectors are of unit length, the width of any hyperplane is
determined by 2

|w| , therefore minimizing the magnitude of w maximizes the separation
between classes.

Most data are not linearly separable or are sufficiently low in dimensionality that there
is no optimal boundary that separates all vectors. For these cases, we may introduce a
“soft-margin” optimization by allowing a slack variable (ζ) and a regularization constant
(C) in (28), such that:

min
w, b

wTw + C ∑n
i=1 ζi s.t. ∀i

∣∣∣yi

(
wTx + b

)∣∣∣ ≥ 1− ζi s.t. ζi ≥ 0. (27)

In this form, the classifier will allow feature vectors to exist on the “wrong” side of
the hyperplane without affecting the shape of the boundary. Larger values of C penalize
the optimization and often make for a highly non-linear classification boundary, whereas
smaller values of C allow for a simpler boundary less prone to overfitting the data.

Note that in (26), the optimization considers the inner product of the vector orthogonal
to the hyperplane. Any other mathematical function expressible as an inner product may
be chosen in its place; thus, another solution to the problem of the non-linear boundary is to
artificially increase the dimensionality of the data by appropriate choice of kernel function.
This is known as the “kernel trick”. The radial basis function (RBF)

RBF
(
x, x′

)
= exp

[
−|x− x′|2

2σ2

]
, (28)

is a very common choice for this purpose since it may express data over a continuous range
and therefore as infinite effective dimensionality [123]. Choice of kernel for exploiting the
“kernel trick” is sensitive to the nature of the data and results can vary.

SVMs are quite amenable to incorporating regularization methods into the optimiza-
tion process. They may also undergo k-fold cross-validation. Both regularization and
cross-validation can help prevent overfitting [85]. SVMs may, however, be easily con-
founded by overlapping or noisy datasets and may underperform when the number of
features is larger than the number of training samples. Noisy datasets may, however, be
more accurately differentiated through one-class SVMs. SVM hyperplanes may also be
difficult to interpret since they may be very high-dimensional. SVMs also do not output
any probabilistic information related to the classification label because they are intrinsically
binary classifiers. Classification tasks with more than two labels necessitate training multi-
ple binary classifiers for each pair of cases. SVMs are highly effective in high-dimensional
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spaces and perform optimally on linearly separable data. The optimization algorithms are
also quite mature and highly efficient in their use of computational resources [124].

After determining the optimal hyperplane separating each group, an FDG-PET image
may be vectorized (AKA flattened) and fed into an SVM for classification. This remains
a very common way of using SVMs on image-based data because this method is ex-
tremely amenable to feature selection/engineering practices and to the concatenation of
additional features along this voxel-vector (data fusion). Using two different forms of
SVM-based classifiers (the iterative single-data algorithm and sequential minimal opti-
mization), Katako et al., were able to test two forms of SVM for classifying different patient
groups. In classifying AD vs. HC, they achieved the best performance with the iterative
single-data algorithm SVM (AUC = 0.945, sensitivity = 0.840, specificity = 0.955), whereas
for classifying sMCI vs. pMCI, they reported a combined performance (sensitivity × speci-
ficity) of 0.590 on a privately curated dataset [85]. Illan et al., were able to classify AD vs.
HC patients using a SVM classifier and PCA-based data preprocessing that performed
with sensitivity = 88.64%, sensitivity = 87.70%, and accuracy = 88.24% [125]. Ramirez et al.,
were able to achieve 90.38% accuracy on the same task using raw image data (voxels
as features) [126]. Garali et al., were able to introduce a feature selection algorithm that
used 21 regions from FDG-PET images to achieve 95.07% accuracy on AD vs. HC classi-
fication using SVM [127]. Hammes et al., developed an SVM-based classifier that used
18F-flortaucipir tau-PET data and SSM-PCA [128]. They showed that their classifier and
tracer were able to differentiate between amyloid-positive and amyloid-negative, typical
and atypical AD patients, and FTD. Their classifier was also able to predict amyloid posi-
tivity with an AUC = 0.952 [128]. Damasceno et al., used the colocalization of amyloid and
tau burden in a cohort of amyloid-positive patients for an SVM classifier. They constructed
a feature vector containing a mean standardized uptake ratio (SUVR: ratio of observed
tracer uptake to that of a standardized reference region), cortical thickness from MR, and
the product of amyloid and tau burden for each ROI. It was determined that this combi-
nation of features outperformed each individual feature set and was able to differentiate
between patients with MCI, AD, and non-AD dementias (progressive cortical atrophy
and lopogenic variant primary progression aphasia) with an AUC approaching 0.9 [129].
Syaifullah et al., published research on an SVM-based classifier that used amyloid PET
and structural MR data to predict conversion from MCI to AD with 87.2% accuracy, 81.7%
sensitivity, 90.1% specificity, and an AUC = 0.94 [130]. Ding et al., were able to use amyloid
PET data in combination with CSF protein markers, neuropsychological scores, and an
SVM classifier to achieve AD vs. HC classification with AUC = 0.93 and sMCI vs. pMCI
with AUC = 0.83 [131]. Varatharajah et al., investigated a series of quantitative methods
for predicting conversion from MCI to AD from FDG-PET, CSF amyloid and tau markers,
structural MRI, mini-mental state examination (MMSE) scores, a measure of cognitive
resilience, genetic data, and demographic data. It was determined that linear kernel SVM
outperformed multi-kernel learning SVM and GLM with elastic regularization in this task
with sensitivity = 0.93, specificity = 0.77, accuracy = 0.81, and AUC = 0.93 [132]. Zhao et al.,
used longitudinal FDG-PET images to predict MCI to AD conversion and achieved an
accuracy of 89.9% with an AUC of 0.892 [133]. Their work made use of a novel brain atlas
(Brainnetome Atlas), a novel normalization procedure, and an engineered distance metric
for their network [134,135]. Furthermore, their work is unique for making use of ADNI
subjects with four separate FDG-PET studies.

4.5. Neural Networks

SVMs are highly valued tools for data classification; however, they are impaired by
difficulty in finding the optimal hyperplane when the number of observations is small
compared to the number of features or when the data are highly non-linear. Neural
networks (NNs) are the result of attempts to recreate the information processing structures
found in real brains. Much like how brains may be naively viewed as combinations of
neurons and axons, a NN is therefore easily conceptualized as a combination of nodes and
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connections that are organized into layers. These layers are broadly classified into input,
hidden, and output layers. The input layer is where data may enter the network. The
hidden layers form the bulk of the architecture and perform mathematical transformations
on the input data as it passes through the network. The output layer is necessarily the
final layer of the network and will output a label in the case of classification networks or a
number in the case of regression networks [136,137]. NNs are very well-suited to modeling
non-linear data, unlike the methods previously discussed.

Nodes are the sites of mathematical transformations in the network. At a node, we
consider the values input from the previous layer, the weight of the connection along which
this value has traveled, and the bias value for the layer (see Figure 6 for a visualization of a
common NN architecture). Consider that the summation at some hidden layer in a NN
may be written as:

a` = ρ
(

wT
` x + b`

)
(29)

where a` is the vector of activations (output values of the layer), w is the vector of connection
weights, b is the scalar bias of the layer, x is the input data, and ρ denotes some non-linear
function. The most common non-linearity (AKA activation function) is the rectified linear
unit (ReLU); however, both the sigmoid and hyperbolic tangent functions are still widely
in use [138]. At the time of feeding the final activation values forward into the output layer,
the values will be passed through an output function. The softmax function,

σ(z) =
exp(zi)

∑a exp(za)
, (30)

is a common choice and generalizes both the binary and multi-class tasks. The softmax
function also has a very evident probabilistic interpretation. Other functions are also widely
used, such as the mean squared error or the Manhattan metric.

Figure 6. Visualization of feedforward artificial neural network architecture. We have a 16-node
input layer followed by two hidden layers of 8 and 4 nodes, respectively. The final layer contains a
single output node. At each node, there may be a nonlinear activation function, such as the sigmoid,
but each node’s input is the linear combination of connections from the nodes in the preceding layer.
Connections between each individual node are visualized: blue edges are negatively weighted, red
edges are positively weighted, and edge opacity represents relative magnitude. Weights were initiated
randomly for the purpose of visualization. Networks of this type may be used for classification but
also for the modeling of highly nonlinear operations.
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A convolutional neural network (CNN) is an extension of the fully connected network
explained above that uses convolution operations throughout its hidden layers to transform
image-based data [136,137].

A convolutional layer is an ensemble of filters that act upon the image and are defined
by several quantities such as kernel size (AKA receptive field) and stride (number of voxels
skipped between each convolution). The output of a convolutional layer is a series of feature
maps, one for each of the filters used at the convolutional layer. Dimensional reduction of
the data being passed through the network is often performed with pooling operations,
such as average and maximum pooling, which may also be used to reduce the size of the
image matrix between layers [136]. CNNs also use non-linearities between layers to model
non-linear relations within the data. CNNs may also contain one or more fully connected
layers that are usually found at the end of the network architecture. The input to these
layers is the flattened feature maps computed from the final convolutional/pooling layer. A
loss function is used in conjunction with these final layers to compute any errors that exist
between the network’s prediction and the ground-truth label (in the case of supervised
learning) [136]. These errors are interpretable as losses that are to be minimized in the
network’s training (learning) phase. The softmax function is, again, a very popular choice
of loss function. Figure 7 gives a representation of a simple CNN architecture containing
convolutional, pooling, and fully connected layers.

Figure 7. Visualization of convolutional neural network architecture specifically designed for clas-
sification based on image data. A series of 16@128 × 128 images are input to the network. These
frames are passed through a max pooling layer and a convolutional layer before being flattened into
a 1D vector. Two fully connected layers of size 256 and 128 connect to a final node containing the
network output.

In contrast to a network’s hyperparameters, which are set by the user, the learnable
parameters are those that are modified in response to the error computed at the loss layer,
often as the difference between the network prediction and a known label. The loss is
minimized by use of gradient descent [136,137,139].

CNNs are, however, not the only type of deep neural network, but rather the most
well-known, especially in the neuroimaging research community. The recurrent neural
network (RNN) model inputs vary over time or even space and are rapidly becoming more
common in neuroimaging literature [140]. Generative adversarial networks (GANs) are
a type of generative model that learns the distribution of training images and has been
utilized for PET-based AD image classification [141]. The common theme in GANs and
RNNs is using convolutional operations upon an input image and backpropagation by
gradient descent to learn filter weights, reduce the dimensionality of an image, often with
the point of producing a classification label [139,140].

CNNs have been widely applied for the detection and diagnosis of AD from neu-
roimaging studies. Liu et al., used an ensemble of RNNs to classify AD vs. HC subjects with
91.2% accuracy, 91.4% sensitivity, 91% specificity, and AUC = 0.953 using FDG-PET images.
The same were also able to differentiate MCI from HC patients with an accuracy of 78.9%, a
sensitivity of 78.1%, a specificity of 80%, and an AUC of 0.839 [142]. Ruwanpathirana et al.,
compared the performance of voxel-wise linear regression (GLM) and a CNN in modeling
spatial dependencies between tau-PET and amyloid burden throughout the brain. They
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discovered that the CNN outperformed the GLM in predicting amyloid centiloid values
and found previously unknown associations between tau topography and overall amyloid
burden [143]. Ding et al., created a network based on the Inception v3 architecture, which
differentiated between AD, MCI, and non-AD/non-MCI FDG-PET images with AUCs
of 0.92, 0.63, and 0.73, respectively [144]. Most importantly, this network significantly
outperformed radiology readers in identifying AD and MCI subjects from FDG-PET im-
ages. Guo et al., were able to develop a graph convolutional network that differentiated
between AD and HC subjects with 93% accuracy and between AD, MCI, and HC groups
with 77% accuracy [145]. Choi and Jin reported 96% in AD vs. HC classification and 84.2%
in differentiating pMCI vs. sMCI by using vanilla 3D CNN architecture [146]. Yee et al.,
used a residual neural network on FDG-PET data to differentiate between AD and HC with
an accuracy of 93.5% and an AUC of 0.976. They were also able to differentiate between
pMCI vs. sMCI patients with 74.7% accuracy and AUC = 0.811 [147]. Pan et al., developed
a multi-scale pyramidal network that prognosticated cognitive decline (MCI to AD) with
83.05% accuracy [148]. Etminani et al., developed a 3D CNN that differentiated DLB,
AD, and MCI groups with AUC = 0.962, 0.964, and 0.714, respectively [149]. Hojjjati et al.,
constructed an artificial NN from FDG-PET and MRI features to model neuropsychological
test scores for the HC, sMCI, pMCI, and AD groups. They were able to show significant
differences between test scores dependent on group label and discovered that average
FDG-PET values per ROI outperformed AV-45 in classification accuracy when combined
with resting-state functional magnetic resonance imaging (rs-fMRI) [150]. Choi et al., were
able to predict MCI to AD conversion with an AUC of 0.89 by using a deep convolutional
network combining both amyloid-PET (tracer AV-45) and FDG-PET imaging data [151].
The outputs of their network were also significantly correlated with longitudinal changes
in clinical dementia rating at 1 and 3 years, functional activity questionnaires, and MMSE
scores. Ryoo et al., used a network based on the conditional variational autoencoder ar-
chitecture and discovered four distinct subtypes of AD from FDG-PET, amyloid PET, tau
PET, CSF protein biomarkers, clinical, demographic, and genetic information [151]. They
also discovered differences in disease progression, clinical outcome, and demographic
associations specific to each subtype. The most notable being that each subtype had a
statistically significant difference in their rate of conversion from MCI to AD. Jo et al., devel-
oped a 3D CNN trained on tau PET images to distinguish between the AD HC group with
sensitivity = 95.4%, specificity = 96.9%, and accuracy = 96.2%, and also between the MCI
and HC groups with sensitivity = 48.6%, specificity = 82.4%, and accuracy = 64.2% [152].
They used layer-wise relevance propagation (LRP) to generate “heat maps” of the diag-
nostically relevant features that drive network classification [153]. These LRP maps were
reported to be similar to the group-based differences shown with conventional SPM anal-
ysis. Lu et al., used dual-task learning to increase the ability of their multi-scale deep
learning network to predict conversion from MCI to AD [154]. Their model performed
sMCI vs. pMCI classification with an accuracy of 82.51% from FDG-PET images. Shen et al.,
used an unsupervised network to pretrain their NN architecture as a feature extractor and
then fed the resulting feature vector into an SVM for classification in a hybrid CNN-SVM
architecture [155]. Using a radial-basis function kernel in the final classifier, they achieved
an accuracy of 86.6% in predicting conversion from MCI to AD.

5. Discussion

We have discussed the biological spectrum of AD pathogenesis under the ATN model
and surveyed the brain structures affected by AD. We have also reviewed PET tracers
sensitive to AD-specific proteinopathies (amyloid and tau proteins) and neuronal injury
(FDG), considered the basic principles of tracer design, and provided references to the
literature on next-generation PET tracer design. We have also presented a comprehensive
examination of the most common and important data-driven methods for detecting AD
neuropathology from PET imaging data and a broad survey of the uses for these methods
in allied research investigating AD with neuroimaging data. A summary of the applications
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of these to AD identification and prognostication studies has been compiled in Table 1,
where all studies reporting sensitivity, specificity, accuracy, AUC, or some combination
thereof, are considered.

Table 1. Summary of literature for the identification/classification/prognostication of AD. All studies
reporting some combination of sensitivity (SENS), specificity (SPEC), area-under-curve (AUC), or
accuracy (ACC) have been considered for inclusion. The use of GLMs is widespread throughout
statistical analysis software and programming languages and provides a reliable tool for accounting
for the effects of covariates, such as age and sex, with some use as a stand-alone classifier for AD
detection. More specialized methods based on the ideas of the GLM, such as 3D-SSP, are engineered
for the detection of AD pathology, and progress in research into applying this technique to amyloid
and tau imaging is underway. PCA and SSM are both extremely valuable tools for dimensionality
reduction (the elimination of unnecessary or redundant data) and the discovery of disease-specific
patterns. They are also quite effective prior to classification with an SVM and increase classification
accuracy. From the literature surveyed in this review, deep learning-based tools provide the greatest
accuracy for differentiating AD patients from healthy controls, differentiating AD from MCI patients,
and the clinically relevant task of differentiating pMCI and sMCI patients.

Author/Reference Methodology Task Performance

Katako et al. [85] GLM AD vs. HC
SENS = 85.6%
SPEC = 86.2%
AUC = 0.922

Ottoy et al. [87] GLM MCI to AD conversion SENS = 92%
SPEC = 96%

Katako et al. [85] PCA/SSM—single PC
PCA/SSM—many PCs

AD vs. HC
AD vs. HC

SENS = 80.2%
SPEC = 78.7%
SENS = 86.5%
SPEC = 81.9%

Teune et al. [114] PCA/SSM AD vs. HC SENS = 93%
SPEC = 94%

Meles et al. [116] PCA/SSM pMCI vs. HC SENS = 82.4%
SPEC = 85.7%

Yokoi et al. [119] PCA/SSM AD vs. HC SENS = 79.1%
SPEC = 82.6%

Perovnik et al. [120] PCA/SSM
AD vs. HC
AD vs. MCI & bvFTD
AD vs. DLB

AUC = 0.95
AUC = 0.76–0.85
AUC = 0.87

Katako et al. [85] SVM—ISDA AD vs. HC
SENS = 0.84
SPEC = 0.955
AUC = 0.945

Ilan et al. [124] PCA-SVM AD vs. HC
SENS = 88.64%
SPEC = 87.70%
ACC = 88.24%

Ramirez et al. [125] SVM AD vs. HC ACC = 90.38%

Garali et al. [126] SVM AD vs. HC ACC = 95.07%

Damasceno et al. [128] SVM AD vs. MCI vs. non-AD AUC = 0.9

Svaifullah et al. [129] SVM MCI to AD conversion

SENS = 81.7%
SPEC = 90.1%
ACC = 87.2%
AUC = 0.94

Ding et al. [130] SVM AD vs. HC
pMCI vs. sMCI

AUC = 0.93
AUC = 0.83

Varatharajah et al. [131] SVM—linear kernel MCI to AD conversion

SENS = 93%
SPEC = 77%
ACC = 81%
AUC = 0.93

Zhao et al. [132] SVM sMCI vs. pMCI ACC = 89.9%
AUC = 0.892
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Table 1. Cont.

Author/Reference Methodology Task Performance

Liu et al. [141] NN—RNN AD vs. HC
MCI vs. HC

SENS = 91.4%
SPEC = 91%
ACC = 91.2%
AUC = 0.953
SENS = 78.1%
SPEC = 80%
ACC = 78.9%
AUC = 0.839

Ding et al. [143] NN—CNN
AD identification
MCI identification
non-AD/non-MCI identification

AUC = 0.93
AUC = 0.63
AUC = 0.73

Guo et al. [144] NN—Graph CNN AD vs. HC
AD vs. MCI vs. HC

ACC = 93%
ACC = 77%

Choi & Jin [145] NN—3D CNN AD vs. HC
pMCI vs. sMCI

ACC = 93%
ACC = 84.2%

Yee et al. [146] NN—Residual CNN AD vs. HC
pMCI vs. sMCI

ACC = 93.5%
AUC = 0.976
ACC = 74.7%
AUC = 0.811

Pan et al. [147] NN—Pyramidal CNN MCI to AD conversion ACC = 83.05%

Etmani et al. [148] NN—3D CNN
DLB identification
AD identification
MCI identification

AUC = 0.962
AUC = 0.964
AUC = 0.714

Choi et al. [150] NN—3D CNN MCI to AD conversion AUC = 0.89

Jo et al. [152] NN—3D CNN AD vs. HC
MCI vs. HC

SENS = 95.4%
SPEC = 96.9%
ACC = 96.2%
SENS = 48.2%
SPEC = 82.4%
ACC = 64.2%

Lu et al. [154] NN—Multi-scale CNN pMCI vs. sMCI ACC = 82.51%

Shen et al. [155] NN—SVM-CNN MCI to AD conversion ACC = 86.6%

NNs have been criticized for their lack of transparency [156]. This is a legitimate
concern considering that the result of a NN forward run is the accumulation of very elab-
orate mathematical transformations from the beginning to the end of a network that are
neither readily interpretable by the user nor explained by the network. To this end, many
visualization methods have been developed to aid in interpreting NN outputs, such as
layer-wise relevance propagation or class activation mapping [153,157]. Another valid
criticism of NN is their extremely data-hungry nature. These networks require enough
representative examples to learn the underlying structure of the task for which it is being
trained. Such data may be extremely difficult to acquire or very rare, or simply too costly
to acquire. Even when sufficient data is available, the architecture under consideration may
require very large computing times and computing power in order to train. Training a
large-scale neural network requires several days or even weeks of training time on multiple
GPUs in parallel; however, many small-scale networks can be trained in a matter of hours
with appropriate hardware (e.g., a consumer-grade GPU). Transfer learning is a popular
solution to this issue and applies a pre-trained network to a new training sample as a fine-
tuning operation (e.g., a network trained to differentiate between cats and dogs will likely
have image recognition capabilities that could be used to say distinguish between ships
and trucks) [158–161]. The variety of available network architectures is a great strength
of the NN as a quantitative tool. The most important classes of architecture include fully
connected multilayer perceptrons, deep convolutional networks with many convolution
filters, recurrent networks that examine patterns in data over space or time, long short-term
memory networks that take advantage of “training example experience”, autoencoders that
can reconstruct data to an accuracy that varies based on the quality of their training data,
and adversarial networks that attempt to fool one another in discriminating between real
and synthetic data [135,136,138–140,162–165]. Like other forms of machine learning, deep
learning methods such as NN are also prone to the problem of overfitting; however, many
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strategies exist to counteract this, such as batch normalization, regularization, dropout,
drop-connect, and early stopping methods [166–168]. Perhaps the most significant advan-
tage of NN as a method is the lack of feature engineering. Whereas traditional machine
learning methods were forced to handcraft features for consideration by a computationally
intelligent algorithm (e.g., SVM), an NN with sufficient capacity is capable of extracting
features without any special consideration and even of performing complicated tasks such
as image segmentation or preprocessing operations [169–175]. NNs may also serve as
feature extractors, with the output being fed into another classifier like an SVM [155].

One caveat is the lack of neural network studies that validate themselves against mul-
tiple forms of neurodegenerative dementia disorders, which are now commonly performed
in models based on PCA or SSM methods [116,121,122]. This is important considering
post-mortem studies which show AD diagnosis to be quite nonspecific and increase the cost
of care [2–4,176]. Another is the demographic homogeneity of the subject population of the
routinely used ADNI dataset [177]. This is being addressed through the increasing avail-
ability of online neuroimaging datasets, such as the creation of the Japanese Alzheimer’s
Disease Neuroimaging Initiative (JADNI) and the Worldwide Alzheimer’s Disease Neu-
roimaging Initiative (WADNI), and several European neuroimaging initiatives [178–181].
A further issue with current research is the lack of explicitly stated collaboration between
scientific/engineering and clinical faculty, possibly owing to difficulties of data sharing and
privacy, and the lack of integration engineering and computer science specialists within
clinical departments.

6. Conclusions

Neural networks continue to earn their place as the most sophisticated and accurate
quantitative tool for the data-driven detection of AD neuropathology. Most interestingly,
they function very well in conjunction with other classifiers and are readily amenable to
single-session, longitudinal, and multimodal information. Next-generation PET tracers
with increased specificity for amyloid or tau and their associated isoforms should also
contribute significantly to research in this field. The present trend in the field of AD
detection using neuroimaging appears to be the increasing use of neural networks, alone or
in combination with other classifiers, and the fusion of multiple modalities of diagnostic
data for classification, which include functional neuroimaging, structural neuroimaging,
demographic data, clinical data, and even genetic data. Longitudinal data appears to be
the most effective for predicting the progression of dementia due to AD in MCI patients,
and single-session datasets appear sufficient for differentiating AD patients from healthy
controls or even MCI patients.
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