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Abstract: This paper presents a novel design of discrete-time dual internal model-based repetitive
control systems. The design strategy is accomplished by combining general and high-order modified
repetitive control schemes for simultaneous tracking repetitive tasks and rejection of uncertain
periodic disturbances. The proposed controller is constructed from two different discrete-time internal
models, rendering a dual internal model-based repetitive controller (DIMRC). The first internal model
is intended to track repetitive commands with a fixed fundamental frequency. Meanwhile, the second
internal model is coupled to compensate for an exogenous periodic disturbance with an uncertain
frequency. The controller structure, stability conditions, and convergence analysis are discussed
in this paper. The performance of the proposed controller is validated through simulation studies
showing accurate tracking and excellent disturbance rejection simultaneously.

Keywords: repetitive control; high-order repetitive control; internal model; repetitive task; uncertain
periodic disturbance

1. Introduction

Repetitive control (RC) is a learning control scheme utilizing an internal model princi-
ple by Francis and Wohnam [1] for accurate reference tracking or good disturbance rejection
of the periodic signals. The inclusion of internal model inside the feedback loop estab-
lishes a generator of periodic control signal, enabling a null steady-state tracking error.
The early applications of RC for reference tracking and disturbance rejection problems
were listed by Hillerstrom and Walgama [2], followed by Kurniawan et al. [3]. Recently,
RC was developed and applied in many different applications such as wind-turbines [4],
inverter compressor refrigeration fields [5], magnetically suspended rotor systems [6], func-
tional electrical stimulation [7], nano-positioning systems [8], centrifugal compressors [9],
and many others.

In principle, RC design comprises two parts, i.e., a stabilizing controller and an
internal model. In the RC-controlled system, the stabilizing controller, sometimes called the
compensator/learning function, is required to stabilize the closed-loop model. In addition,
the stabilizing controller also determines the convergence speed of the system error. On the
other hand, the internal model represents the reference/disturbance model, which later
behaves as a periodic signal generator. This internal model makes accurate reference
tracking/good disturbance rejection possible.

Some important works related to the internal model design can be found in [10–15].
The first digital internal model obtained by discretizing the continuous-time delay was
given in [10]. The internal model [10] has a finite-dimensional structure and provides
a null steady-state tracking error for any periodic signal at a fundamental frequency
and its harmonics up to Nyquist frequency components. The internal model [10] was
successfully applied to the control of a single-axis electric servomechanism using a 16-bit
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microprocessor. In [11], a low-pass filter q(z) is added to discrete-time internal model [10]
intended to improve the system robustness against high-frequency models. Hillerstrom
and Sternby [12] presented a low-order internal model targeting specific band-limited
periodic references/disturbances. The discrete-time internal model specifically used to
track/compensate odd-harmonic periodic references/disturbances was proposed in [13].
In [14], the discrete-time design of the internal model was developed to track or suppress
periodic signals consisting of two or more fundamental frequencies. A discrete-time higher-
order internal model for tracking/rejecting periodic signals with uncertain periods was
introduced in [15]. In addition to some works on the internal models, several recent
works on the development and application of RCs can be found in [16–19]. A robust RC
with an optimized-band-stop filter for achieving high accuracy in nanopositioning stages
was proposed in [16]. In [17], the discrete-time RC with an active disturbance rejection
control was implemented to realize high-precision permanent magnet synchronous motor
drives. A design of higher-order RC with a phase lead stabilizing controller applied for
a two-level grid-connected inverter was presented in [18]. Lu et al. [19] developed the
high-order selective harmonic RC scheme to improve the steady-state tracking accuracy of
the pulse-width modulation converters. The works in [10–19] aimed to develop and utilize
the internal model-based RC for either periodic reference tracking or disturbance rejection.
This also implies that the proposed RC designs are not intended to simultaneously track
and reject periodic signals.

In this work, we focus on the internal model design used for simultaneous reference
tracking and disturbance rejection. More specifically, we develop a control strategy for
tracking repetitive reference and rejection of uncertain periodic disturbance of a discrete-
time linear system. This is motivated by the fact that tracking and rejection are common
problems in control systems. Tracking repetitive trajectories can be found in many appli-
cations, such as robotics, power sources, precision gantry systems, engine valve systems,
etc. [3]. Here, we also consider a disturbance rejection problem, where the disturbance
period is uncertain or varying. Such disturbance appeared in many practical situations,
such as rotating machines [20,21], active suspension systems [22,23], steel casting pro-
cesses [24,25], and many others. When the actual disturbance period is subject to variation,
the general internal model will operate with a period mismatch. This condition makes
the RC gains at the disturbance’s frequencies drastically drop to low-level magnitudes.
Consequently, the perfect disturbance attenuation is no longer applicable and the tracking
accuracy is degraded. Therefore, the higher-order internal model is adopted to improve the
attenuation performance when the disturbance period is varied. In this paper, a systematic
approach to integrating two different internal models, i.e., general and higher-order internal
models, is presented. Note that the basis periods of reference and disturbance signals are
different and uncorrelated. The stability analysis, the controller structure, and controller
realization are also discussed. The proposed method renders a controller called a dual
internal model-based RC (DIMRC). Simulation results and comparison studies validate the
efficiency of the proposed DIMRC. The main contributions of this work are summarized
as follows:

• A novel dual internal model-based RC is constructed by using the denominator parts
of the general and higher-order internal models.

• Stability conditions of the plug-in DIMRC system are presented. The stability condi-
tions are then used to determine the stabilizing controller.

• The structure and realization of DIMRC for the non-causal stabilizing controller
are developed.

The remainder of this paper is structured as follows. Section 2 describes the problem
statement and several assumptions used in the design. In Section 3, the fundamental notions
of the discrete-time general RC and high-order RC are presented. Section 4 discusses the
proposed method covering the controller structure, the closed-loop system stability, and the
controller realization. Simulation results covering minimum-phase and non-minimum
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phase cases, followed by discussion, are provided in Section 5. Lastly, concluding remarks
are drawn in Section 6.

2. Problem Statement

In this work, we consider the following discrete-time LTI system :

y(k) = [P(z)]u(k) + v(k), (1)

where y(k), u(k), v(k) ∈ R are, respectively, the discrete-time plant output, control input,
and external disturbance, and P(z) is the plant model. Throughout this paper, we use
notation z denoting the Z-transform variable, and also the forward shifting operator,
e.g., zu(k) = u(k + 1). Hence, the notation z−1 denotes a backward shifting operator,
e.g., z−1u(k) = u(k− 1). To ease the writing, the operation [P(z)]u(k) is used to equally
represent Z−1{P(z)u(z)}. Here, P(z) can be either a polynomial or transfer function in the
Z domain, and u(z) is Z-transform of the discrete-time control signal u(k).

The plant model of the LTI system (1) is expressed as

P(z) =
N (z)
D(z) , (2)

where N (z),D(z) ∈ C are numerator and denominator polynomials of the plant. The de-
sired trajectory to be tracked is referred to as a reference signal r(k), and the tracking error
e(k) is defined by

e(k) = r(k)− y(k). (3)

In the design of the proposed controller, the following assumptions are used:

Assumption 1. The polynomials N (z) and D(z) in (2) are known. In addition, the plant model
P(z) (2) is stabilized with a conventional controller C(z), resulting in a stable transfer function.
The stabilized plant model can be either a minimum or non-minimum phase system.

Assumption 2. The reference r(k) is a repetitive signal with a fixed and known fundamental
frequency fr. The disturbance v(k) is periodic with an uncertain frequency. However, its nominal
fundamental frequency f̄v is known. The actual frequency of disturbance v(k) may slightly vary
from its nominal value.

Assumption 3. The reference frequency fr and disturbance frequency f̄v are uncorrelated. In other
words, they are not harmonics, i.e., fr 6= n f̄v, where n is an arbitrary positive integer number.

The research objective is to synthesize control law u(k) to simultaneously track the
repetitive reference r(k) and suppress the effect of the uncertain periodic disturbance v(k)
of the LTI system (1), such that the tracking error e(k) (3) converges to a small steady-state
value, and the resulting closed-loop system is stable. In addition, the proposed controller is
realizable and applicable for both minimum and non-minimum phase systems.

3. Discrete-Time RC
3.1. A General Modified RC

Suppose that the LTI system (1) is subject to the repetitive reference r(k) with no
presence of disturbance v(k). Let the reference r(k) have a fundamental frequency of fr.
This gives a basis reference period as Tr = 1/ fr. Based on the information of plant model
P(z) and reference period Tr, a general discrete-time RC can be constructed to accurately
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track the reference signal r(k). The general modified RC (GMRC) has a transfer function
as follows:

Ug(z)
E(z)

=

[
qr(z)z−Nr

1− qr(z)z−Nr

]
F(z), (4)

where Ug(z) and E(z) are the control input and the tracking error inZ-domain, respectively,
qr(z) is a zero-phase low pass filter used to cut off higher frequencies of reference r(k), F(z)
is a stabilized controller used for stabilizing the RC-closed loop system, and Nr is an integer
number of samples per reference period.

An integer Nr in (4) is obtained from

Nr =
Tr

Ts
=

1
frTs

. (5)

Here, Tr is a reference period, and Ts is a sampling time. Equation (5) emphasizes that
Assumption 2 is compulsory in the design of GMRC. The term modified in GMRC refers
to the inclusion of q-filter qr(z) to the time-delay z−Nr . The use of qr(z) improves the
robustness of RC against high-frequency components. In addition, the qr(z) smooths
the control signal generated by the traditional RC. The qr(z) is generally designed as a
zero-phase low-pass filter given by

qr(z) = α0 +
hr

∑
i=1

αi

(
zi + z−i

)
. (6)

Note that hr is the order of filter qr(z), and the filter coefficients are chosen such that

α0 + 2
hr

∑
i=1

αi = 1. (7)

The condition (7) ensures the unity gain of the filter at the frequencies below the filter
bandwidth (ωqr ); that is, |qr(ω)| = 1 for ω < ωqr (ωqr = 2π fqr ). In addition, the q-filter (6)
contributes zero-phase for all frequencies , i.e, θqr (ω) = 0o ∀ 0 < ω < π/Ts. Here, |qr(ω)|
and θqr (ω) correspond to the magnitude and phase responses of qr(z), respectively.

The F(z) in (4) is also a crucial part of RC. In addition to stabilizing the RC closed-loop
system, the F(z) also determines the convergence rate of the tracking error e(k). The F(z)
is often designed as an exact inverse of the stabilized plant model. This design requires
that the stabilized plant is in a class of minimum-phase systems. To design F(z) for non-
minimum phase systems, one can refer to a zero-phase error tracking controller (ZPETC)
design proposed in [26].

Next, we define an internal model of the controller (4) as follows:

Ig(z) =
Ng(z)
Dg(z)

=

[
qr(z)z−Nr

]
1− [qr(z)z−Nr ]

, (8)

where Ng(z) and Dg(z) are the numerator and denominator parts of the general internal
model. The denominatorDg(z) in (8) is used later in the synthesis of the proposed controller.

3.2. A Higher-Order Modified RC

Here, the control problem for the LTI system (1) is disturbance rejection only, implying
that the reference r(k) is set to zero. The following input–output relation expresses a
discrete-time higher-order modified repetitive controller (HOMRC) [15]:
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Uh(z)
E(z)

=

[
qv(z)∑m

j=1 wjz−jNv

1− qv(z)∑m
j=1 wjz−jNv

]
F(z), (9)

where Uh(z) is a control input generated by HOMRC, qv(z) is the q-filter used for cutting
off higher frequencies of the disturbance v(k), F(z) is the stabilizing controller, and Nv
is the number of samples per disturbance period. In contrast with (5), Nv is an integer
number given by

Nr =
T̄v

Ts
=

1
f̄vTs

, (10)

where T̄v is a nominal disturbance period which is also known based on Assumption 2.
Similar to (4), we also determine the internal model of the HOMRC given by

Ih(z) =
Nh(z)
Dh(z)

=

(
qv(z)∑m

j=1 wjz−jNv
)

1−
(

qv(z)∑m
j=1 wjz−jNv

) , (11)

It can be seen from (11) that HOMRC employs a sum of the weighted delays, i.e, ∑m
j=1 wjz−jNv .

The weights wj for j = 1, 2, · · · , m are chosen to satisfy conditions as follows [15]:

m

∑
j=1

wj = 1, (12)

m

∑
j=1

jm−1wj = 0. (13)

The conditions (12) and (13) are added to ensure that the high gains of HOMRC at the
fundamental frequency and its harmonics remain infinite. In addition, the high-gain peaks
of HOMRC at the harmonics are extended to wider regions. This behavior can be seen from
the magnitude responses of GMRC and HOMRC at the targeted fundamental frequency
1 Hz shown in Figure 1. Hence, the disturbance-rejection performances at the neighboring
frequencies are improved by using the HOMRC.

Figure 1. Magnitude responses of the GMRC and the HOMRC.
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4. Proposed Dual Internal Model-Based RC (DIMRC)
4.1. DIMRC Structure

Observing the internal models (8) and (11), we notice that both models show a similar
form as follows:

Ig,h(z) =
Sg,h(z)

1− Sg,h(z)
, (14)

where Sg,h(z) corresponds to the delay term of GMRC/HOMRC, and formulated by

Sg(z) = qr(z)z−Nr , (15)

Sh(z) = qv(z)
m

∑
j=1

wjz−jNv . (16)

Hence, the proposed DIMRC is designed to have the following transfer function:

Cd(z) =
Ud(z)
E(z)

=

[
Sd(z)

1− Sd(z)

]
F(z), (17)

which is equivalent to the DIMRC law as follows:

Ud(z) = [Sd(z)]Ud(z) + [Sd(z)F(z)]E(z). (18)

Note that Sd(z) in (17) is the delay term constructed based on the denominators Dg(z)
and Dh(z) given in (8) and (11), respectively. The Sd(z) is also in the form of polynomial
and is proposed as follows:

Sd(z) = 1−Dg(z)Dh(z). (19)

Substituting Dg(z) in (8) and Dg(z) in (11) to (19), we obtain

Sd(z) = 1−
[
1− qr(z)z−Nr

][
1− qv(z)

m

∑
j=1

wjz−jNv

]
, (20)

which can be further expressed as

Sd(z) = qr(z)z−Nr + qv(z)
m

∑
j=1

wjz−jNv − qr(z)qv(z)
m

∑
j=1

wjz−jNv−Nr . (21)

Finally, the block diagram of the proposed DIMRC closed-loop system is illustrated
in Figure 2. In addition, the controller realization is described in Figure 3. The weighted
delays shown in Figure 3, is then detailed in Figure 4. Note that the controller realiza-
tion shown in Figure 3 is implementable for DIMRC with causal or proper stabilizing
controller F(z). Some F(z) designs resulting in causal form can be seen in [27,28]. Here,
the causal stabilizing controller F(z) can be implemented separately without being merged
with the internal model. Other designs resulting in non-causal/improper form can be
found in the references [26,29,30]. Thus, it is obvious that the stabilizing controller F(z)
can be designed in either causal or non-causal form. Suppose that the stabilizing con-
troller F(z) is non-causal by a factor of dF. This means that deg{N f (z)} > deg{D f (z)}
and deg{N f (z)} − deg{D f (z)} = dF, where deg{N f (z)} and deg{D f (z)} represent the
degrees of F(z)’s numerator N f (z) and denominator D f (z), respectively. To reduce the
controller’s complexity, the realization of DIMRC with non-causal F(z) can be achieved by
modifying Figure 3 into Figure 5.
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Figure 2. Block diagram of the plug−in DIMRC system.

Figure 3. Realization of the proposed DIMRC.

Figure 4. Realization of the weighted multiple delays.

Figure 5. Realization of the DIMRC with non−causal stabilizing controller.
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4.2. Stability of the Plug-In RC System

In this subsection, we develop a sufficient stability condition for the closed-loop system
regulated by plug-in DIMRC. The sensitivity function of the plug-in DIMRC system shown
in Figure 2 is given by

E(z)
R(z)

=
1

1 + {1 + Cd(z)}C(z)P(z)
(22)

=
1− Sd(z)

1 + P(z)C(z)− [1 + P(z)C(z)]Sd(z) + P(z)C(z)F(z)Sd(z)
. (23)

Equation (23) can be factorized to

E(z)
R(z)

=
1− Sd(z)

[1 + P(z)C(z)]
[
1− Sd(z) + {

P(z)C(z)
1+P(z)C(z)}F(z)Sd(z)

] (24)

Let define the closed-loop plant model Pc(z) as follows:

Pc(z) =
P(z)C(z)

1 + P(z)C(z)
. (25)

The sensitivity function (24) can be further derived to

E(z)
R(z)

=
1− Sd(z)

[1 + P(z)C(z)][1− {1− Pc(z)F(z)}Sd(z)]
. (26)

This leads to the following characteristic equation (CE):

CE: [1 + P(z)C(z)][1− {1− Pc(z)F(z)}Sd(z)] = 0. (27)

Based on (27), the closed-loop DIMRC system in Figure 2 is internally stable if the
following two conditions are fulfilled:

1. The first factor [1 + P(z)C(z)] in (27) has stable roots. This also implies that the
closed-loop plant model Pc(z) in (25) is a stable transfer function.

2. The second factor [1− {1− Pc(z)F(z)}Sd(z)] in (27) has stable roots. Following the
work in [13], the stability of the second part can be assured by

‖{1− Pc(z)F(z)}Sd(z)‖∞ ≤ ‖1− Pc(z)F(z)‖∞‖Sd(z)‖∞ < 1. (28)

Here, the notation
∥∥∥T f (z)

∥∥∥
∞

corresponds to the H∞-norm infinity of the transfer

function T f (z), which can be defined as the peak of the magnitude response of T f (z)
for all frequency components.

Based on Assumption 1 and picking the conventional controller C(z) , Pc(z) can be
computed. Meanwhile, Sd(z) can be calculated by using Assumption 2, and by choosing
the q-filters qr(z) and qv(z). Finally, the stabilizing controller F(z) can be designed to satisfy
the condition (28). It has been mentioned before that several works addressing stabilizing
controller design methods can be found in [26–31]. Here, we omit the discussion about
the stabilizing controller design as we focus on the internal model structure, the controller
structure and realization, and the stability of the plug-in DIMRC system.

To summarize, the proposed design is accomplished according to the following steps:

1. Obtain the open-loop plant model P(z) (2).
2. Pick the conventional controller C(z), ensuring a stable Pc(z) (25).
3. Obtain the reference frequency fr and disturbance frequency f̄v to calculate the integer

numbers Nr (5) and Nv (10).
4. Pick the q-filters qr(z) and qv(z) according to (6) and (7).
5. Choose the order of HOMRC m, and determine the weights based on (12) and (13).
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6. Construct the Sd(z) by using (21).
7. Determine the stabilizing controller F(z) satisfying (28).
8. Synthesize the complete controller according to (17).
9. Realize the controller based on Figure 3 for causal F(z), and Figure 5 for non-causal

F(z).

5. Simulation Results
5.1. Case 1: Minimum Phase Stabilized System

To validate the effectiveness of the proposed controller, the following discrete-time
model of Quanser SRV02 servo plant [32] is used in the simulation:

P(z) =
θ(z)
V(z)

=
10−4(7.6337z + 7.173)

z2 − 1.83z + 0.8289
, (29)

where P(z) is an open-loop plant model, θ(z) is an angle position (rad), and V(z) is an input
voltage (Volt). The open-loop plant (29) is associated with the sampling time Ts = 0.005 s.
The conventional controller used to stabilize the open-loop plant (29) is a proportional
controller with the gain 10, i.e., C(z) = 10. The stabilized plant model Pc(z) (25) is obtained
as follows:

Pc(z) =
10−3(7.634z + 7.173)
z2 − 1.822z + 0.837

. (30)

The stabilized plant model (30) has a stable zero and two stable poles located at
z1 = −0.94, p1 = 0.911 + i0.083, and p2 = 0.911− i0.083. Thus, the model (30) is classified
as the minimum-phase system. The control objective is to track a periodic triangle reference
r(k) with the fixed fundamental frequency fr = 0.4 Hz and to suppress the uncertain
periodic disturbance with known nominal frequency as f̄v = 1 Hz. We can notice that fr
and f̄v are uncorrelated, which is inline with Assumption 3. The reference r(k) is illustrated
in Figure 6. The integer numbers Nr and Nv can be calculated as follows:

Nr =
1

0.4× 0.005
= 500, Nv =

1
1× 0.005

= 200. (31)

Figure 6. Repetitive reference r(k).

Suppose that the q-filters qr(z) and qv(z) are equally chosen as

qr(z) = qv(z) = 0.25z−1 + 0.5 + 0.25z. (32)

The chosen filter above gives the tracking/rejection performance with a bandwidth of
36.35 Hz. Note that the q-filter here determines the bandwidth, which selects the reference
frequencies to be passed and the disturbance frequencies to be attenuated. The coefficients
of the q-filter are calculated according to (6) and (7) to give a unity gain at the targeted
bandwidth and a zero phase to all frequency components. The filter behaviors can be
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seen in Figure 7. Increasing the filter’s degree does not guarantee that the bandwidth
is enlarged. The coefficients must be carefully tuned to give the preferred bandwidth.
Here, the chosen q-filter already accommodates the targeted reference and disturbance
frequencies, as specified before.

Let us pick the order of HOMRC m as 2. Then, the following weights are chosen to
satisfy conditions (12) and (13) :

m = 2→ w1 = 2, w2 = −1. (33)

Based on (31) and (33), the polynomial Sd(z) in (21) can now be synthesized. Next, we
need to obtain F(z) to stabilize the closed-loop DIMRC system. A straightforward design
for F(z) is

F(z) = krP−1
c (z) = kr

z2 − 1.822z + 0.837
10−3(7.634z + 7.173)

, (34)

where kr is the learning gain and P−1
c (z) is the inverse model of (30). It can be seen that

F(z) is non-causal by a factor of 1 (dF = 1). Hence, the proposed DIMRC can be realized
by following the controller structure shown in Figure 5. The learning gain kr satisfying
condition (28) is chosen as 0.95. As we have Sd(z) and F(z), the proposed DIMRC (17) can
now be constructed.

Figure 7. Magnitude and phase responses of the q−filter (32).

To highlight the tracking performance of the proposed DIMRC, a comparison to
multiple-periods RC (MPRC) [14] is conducted for two different disturbance models
as follows:

v1(t) = 0.05 sin(2πt) + 0.03 sin(4πt), (35)

v2(t) = 0.05 sin(2π0.95t) + 0.03 sin(2π1.95t). (36)

The MPRC law [14] is expressed as

Um(z) = [M(z)]Um(z) + [M(z)F(z)]E(z), (37)

where Nr and Nv are provided in (31), F(z) is given in (34), and M(z) is a polynomial
given by

M(z) = qr(z)
[
z−Nr + z−Nv − z−Nr−Nv

]
. (38)
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Tracking-error performance of both DIMRC and MPRC for the minimum-phase sys-
tem (30) with disturbance model v1(t) is shown in Figure 8. We can notice that the tracking
errors of both DIMRC and MPRC converge to zero steady-state value. This is obvious be-
cause the disturbance model v1(t) represents the periodic disturbance signal with nominal
fundamental frequency as 1 Hz. Figure 8 also indicates that the MPRC outperforms the
DIMRC in terms of convergence rate. This phenomenon can be understood because the
DIMRC applies a longer control delay due to the use of the higher-order internal model.
The control delay (also referred as delay term) of DIMRC is calculated according to (21),
and given by

Sd(z) = qr(z)
[
2z−200 − z−400 + z−500 − 2qr(z)z−700 + qr(z)z−900

]
(39)

Meanwhile, the control delay of MPRC is obtained from (38), and expressed as

M(z) = qr(z)
[
z−200 + z−500 − z−700

]
(40)

We can observe from (39) and (40) that DIMRC has more series of delays and gives
longer delays to the control input and the tracking error. Consequently, the DIMRC takes
longer to generate the correct control input, so the tracking error converges to a steady
state. However, we mainly focus on improving the tracking accuracy, especially during the
steady state of the plant under time-varying periodic disturbances. Therefore, the superior
performance of DIMRC can be seen from the next simulation results.

Figure 8. Tracking errors for the minimum phase system (30) with the disturbance model v1(t).

Next, we examine the performance of both controllers when the disturbance frequen-
cies vary from their nominal values. The model (36) represents the uncertain exogenous
periodic disturbance v(k) where the frequency components are shifted to 0.95 Hz and
1.95 Hz. Figure 9 illustrates the tracking errors of the minimum-phase system (30) with
disturbance model v2(t). As we observe in Figure 9, the transient errors of both controllers
indicate similar patterns to the ones shown in Figure 8. In contrast, the steady-state errors
are significantly different, showing that zero-error steady state is no longer achieved. These
results illustrate that RC systems’ tracking accuracy is greatly affected when the distur-
bance’s frequency is slightly changed from its nominal value. However, the steady-state
error of DIMRC is significantly smaller than that of MPRC. This implies that DIMRC
exploiting the higher-internal model offers better robustness against the uncertain peri-
odic disturbance, especially during the steady-state period. This performance can also be
assessed from the magnitude responses of the simulated DIMRC and MPRC shown in
Figure 10. We notice that the magnitude responses at the reference frequency (0.4 Hz) are al-
most similar between DIMRC and MPRC. However, the magnitude response of the DIMRC
is extended to a larger region around the nominal disturbance frequency (1 Hz). As a result,
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the DIMRC improves the rejection performance at the neighboring disturbance frequencies.
Therefore, when the disturbance frequencies vary to 0.95 Hz and 1.95 Hz, the DIMRC gives
a better attenuation than the MPRC, resulting in a smaller steady-state error.

Figure 9. Tracking errors for the minimum phase system (30) with the disturbance model v2(t).

Figure 10. Magnitude responses of the simulated DIMRC and MPRC.

5.2. Case 2: Non-Minimum Phase Stabilized System

In this case, the open-loop plant model (29) is stabilized using the conventional
controller as follows:

C(z) =
z + 1.25
z + 0.75

. (41)

The resulting close-loop plant model is

Pc(z) = 10−3 0.763z2 + 0.145z + 0.896
z3 − 1.079z2 − 0.541z + 0.623

. (42)

The closed-loop plant model (42) has three poles given by p1 = 0.988, p2 = 0.841,
p3 = −0.750, and two zeros located at z1 = −1.25, and z2 = −0.939. It is obvious that
the model (42) has stable poles and one unstable zero (z1 = −1.25) confirming that (42) is
a stable non-minimum phase system. Note that the stabilizing controller F(z) designed
according to (34) is not applicable to the non-minimum phase system. The design method
(34) results in unstable stabilizing controller F(z). In this case, we employ a zero-phase
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tracking error controller (ZPETC) design technique developed in [26]. The ZPETC-based
stabilizing controller has the following transfer function:

F(z) = kr
Dc(z)N u

c (z−1)

kpN s
c (z)

. (43)

Here, kr is the learning gain similar to the ones in (34), kp is the stabilized-plant gain,
Dc(z) denotes the denominator of (42), N s

c (z) and N u
c (z−1) represent stable and unstable

factors of Nc(z), where Nc(z) is the numerator of (42). The term N u
c (z−1) is obtained

from N u
c (z) with the operator z replaced by the backward shift operator z−1. Using the

Equation (43) and choosing the learning gain as kr = 0.2 , we obtain F(z) expressed as

F(z) = 0.2
1.252z4 − 0.351z3 − 1.756z2 + 0.239z + 0.623

10−3(0.763z2 + 0.716z)
(44)

We notice that the F(z) above is non-causal by a factor of 2. This gives dF as 2, and the
DIMRC structure can be adjusted according to Figure 5.

The tracking-error performance of the non-minimum phase system (42) for two dif-
ferent disturbance models v1(t) and v2(t) are, respectively, depicted in Figures 11 and 12.
From Figures 11 and 12, we notice that the DIMRC system converges more slowly and
exhibits larger peaks of the tracking error during transience compared to the MPRC sys-
tem. However, when the disturbance model is uncertain, the DIMRC system offers better
steady-state error. These results indicate that, in term of the transient responses, the MPRC
outperforms the DIMRC for both minimum and non-minimum phase systems when there
is no variation in the disturbance model. Nevertheless, when the disturbance model slightly
changes from its nominal value, the DIMRC significantly outperforms the MPRC, especially
during the steady-state period.

Figure 11. Tracking errors for the non-minimum phase system (42) with the disturbance model v1(t).
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Figure 12. Tracking errors for the non-minimum phase system (42) with the disturbance model v2(t).

In order to highlight the controllers’ performance during the steady state, the detailed
comparison in terms of the steady-state time (tss) and root-mean-square of the steady-state
error (rms-ess) are summarized in Table 1. The tss is defined as the time needed to reach
2.5% error (± 0.025). Meanwhile, the rms-ess is calculated by

rms-ess :=

√√√√ 1
(nts − nss)

nts

∑
k=nss

e2(k), (45)

where nts = ts/Ts, nss = tss/Ts, and tss is the simulation period. It can be seen from
Table 1 that the proposed method has a smaller mean square error for both minimum
and non-minimum phase systems under uncertain periodic disturbance v2(t). However,
the proposed controller offers longer steady-state time compared to the MPRC. All these
results indicate that the proposed controller provides better robustness against uncertain
periodic disturbances, but at the expense of a slower transient response.

Table 1. Steady-state performance of the DIMRC and MPRC.

Method

Minimum Phase System Non-Minimum Phase System

v1(t) v2(t) v1(t) v2(t)

tss rms-ess tss rms-ess tss rms-ess tss rms-ess

DIMRC 5.38 0.0022 5.39 0.0026 13.93 0.0039 13.88 0.0046

MPRC 3.625 0.0008 4.14 0.0029 7.195 0.0019 7.135 0.0065

6. Conclusions

In this paper, the dual internal model-based repetitive controller has been developed
to simultaneously track repetitive tasks and reject uncertain periodic disturbances. The pro-
posed design combines two internal models originating from the general modified and
high-order modified repetitive control schemes. The internal model of general modified
repetitive control is adopted to handle periodic reference tracking with a fixed frequency.
Then, the internal model of high-order modified repetitive control is added to deal with the
uncertain periodic disturbance. The controller structure, stability analysis, and controller
realization are discussed in this article. Simulation and comparison studies have been
conducted to highlight the tracking performance of the proposed controller. However,
the proposed design is still limited for the single-input single-output system, implying that
the controller is not applicable for the multivariable system. Moreover, the proposed control
scheme is unsuitable for handling non-periodic (aperiodic) disturbances. Extending the
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proposed work for the multivariable system and for handling non-periodic disturbances
are challenging tasks and have become our future research investigation.
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