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Abstract: Personalized recipe recommendation is attracting more and more attention, which can help
people make choices from the exploding growth of online food information. Unlike other recommen-
dation tasks, the target of recipe recommendation is a non-atomic item, so attribute information is
especially important for the representation of recipes. However, traditional collaborative filtering
or content-based recipe recommendation methods tend to focus more on user–recipe interaction
information and ignore higher-order semantic and structural information. Recently, graph neural
networks (GNNs)-based recommendation methods provided new ideas for recipe recommendation,
but there was a problem of sparsity of supervised signals caused by the long-tailed distribution of
heterogeneous graph entities. How to construct high-quality representations of users and recipes
becomes a new challenge for personalized recipe recommendation. In this paper, we propose a new
method, a multi-level knowledge-aware contrastive learning network (MKCLN) for personalized
recipe recommendation. Compared with traditional comparative learning, we design a multi-level
view to satisfy the requirement of fine-grained representation of users and recipes, and use mul-
tiple knowledge-aware aggregation methods for node fusion to finally make recommendations.
Specifically, the local-level includes two views, interaction view and semantic view, which mine
collaborative information and semantic information for high-quality representation of nodes. The
global-level learns node embedding by capturing higher-order structural information and semantic
information through a network structure view. Then, a kind of self-supervised cross-view contrastive
learning is invoked to make the information of multiple views collaboratively supervise each other to
learn fine-grained node embeddings. Finally, the recipes that satisfy personalized preferences are
recommended to users by joint training and model prediction functions. In this study, we conduct
experiments on two real recipe datasets, and the experimental results demonstrate the effectiveness
and advancement of MKCLN.

Keywords: personalized recipe recommendation; contrastive learning network; high-quality
representation; multi-level view

1. Introduction

The growth of massive amounts of data make it difficult for users to select interactive
items that meet their requirements, and this is no exception when it comes to recipe
selection. Recipe websites (e.g., Allrecipes, Food.com (accessed on 4 November 2022), etc.)
provide users with a rich selection of recipe content, reviews, categories, etc. However,
with the huge number of users and the entries matching problem, it is no doubt a difficult
challenge to recommend recipes that match users’ personalized preferences from the large
number of matching recipes. Therefore, personalized recipe recommendation aims to help
users select recipes that meet their personal requirements from the information explosion
of items.

Appl. Sci. 2022, 12, 12863. https://doi.org/10.3390/app122412863 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412863
https://doi.org/10.3390/app122412863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122412863
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412863?type=check_update&version=2


Appl. Sci. 2022, 12, 12863 2 of 18

Indeed, existing research on recommender systems can be divided into three cate-
gories: collaborative filtering-based methods (CF) [1,2], content-based methods (CB) [3,4]
and hybrid methods [5,6]. Collaborative filtering-based recommendation methods learn
representations of users and items from users’ historical interactions, which are often easy
to implement but lead to coarse-grained representations. Content-based recommendation
methods construct representations of items by exploring their content information (e.g.,
photos, attributes, etc.); these methods ignore users’ interests and cannot satisfy personal-
ization requirements. Hybrid recommendation methods achieved good results in many
application scenarios by combining models to address the shortcomings of different recom-
mendation methods. There also exists much research on the task of recipe recommendation
that experiments with three recommendation methods [4,5]. However, there are challenges
in recipe recommendation that differ from the general recommendation task: (1) the tar-
get of recipe recommendation is non-atomic items, and the ingredients, flavors, cooking
methods and other attributes of recipes are crucial to users’ choices. This means that the
recipe recommendation task should pay more attention to high-order relationship structure
information and semantic information between nodes. (2) The personalized preferences of
users in recipe recommendation are more complex. Two different users may have different
reasons for choosing the same recipe, and there are differences in the taste of two recipes
with similar ingredients. So, the personalized recipe recommendation task has higher
quality requirements for fine-grained embedding representation of users and recipe nodes.

Graph neural networks (GNNs) were successfully applied to various fields in rec-
ommendation, such as: travel [7], video [3], etc., and received a lot of attention from
researchers. Graph structure data can better represent the rich relationships between nodes,
and at the same time, the powerful information aggregation capability of GNNs can enable
the transfer of some features of neighboring nodes to the target node for a higher quality
node representation. GNN-based models sometimes achieve an increase in the accuracy
of recommendations at the cost of amplifying biases in the data and producing unfair
recommendations [8], which brings new ideas for recipe recommendations. However,
there are many difficulties in applying GNN to recipe recommendation as well. Among
them, the long-tailed distribution of heterogeneous graph entities may cause the loss of the
personalized value of recommendation results because the sparsity of supervised features
may lead to the over-smoothing of node embeddings. For this reason, the recipe recom-
mendation task needs to make full use of the limited interaction and relevance information
for personalized recommendations.

In this paper, we propose a new multi-level knowledge-aware contrastive learning net-
work (MKCLN) for personalized recipe recommendation. For the task of the personalized
recommendation of recipes, we emphasize the exploration of multiple-level views that are
explored to make full use of higher-order structural information in heterogeneous graphs
and local collaborative and semantic information to learn higher quality node embedding
representations. Specifically, first we regard the full graph as multiple views in two levels,
global-level and local-level, as shown in Figure 1. Compared with the traditional contrast
learning corruption or dropping to generate a contrast view, this complementary view
approach preserves the complete structural information to the maximum extent and makes
the learning node representation more fine-grained. In the local-level view, to better capture
the local collaborative and semantic information, we use different aggregations to learn the
embedding representation of user nodes and recipe nodes containing local structural infor-
mation in the user–recipe graph and recipe–property graph. In the global-level view, we
use a path-aware approach to learn node embedding by passing messages along multiple
paths from the network structure view for the purpose of capturing higher-order structural
information. Then, we introduce self-supervised cross-view contrastive learning so that the
information of multiple views collaboratively supervise each other and learn nodes with
high quality final embedding. Finally, the recipes satisfying personalized preferences are
matched with users through joint training and model prediction functions to complete the
recommendation task. The main contribution of this paper can be as follows:
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• We emphasize the importance of high-order relational information and complex
personalized requirements in recipe recommendation tasks, and introduce the idea
of graph comparison learning for recipe recommendation. To our knowledge it is the
first attempt on this problem.

• We propose multi-level knowledge-aware contrastive learning network (MKCLN), a het-
erogeneous graph learning model for personalized recipe recommendation. The model
leverages the collaborative, semantic, and higher-order structural information of heteroge-
neous graphs by constructing multiple views at both global and local levels. Self-supervised
cross-view contrastive learning is applied to multiple views to obtain comprehensive high-
quality node embeddings and personalized recipe recommendations.

• We conducted extensive experiments on two different food datasets containing differ-
ent national preferences, and the results demonstrate the effectiveness and sophistica-
tion of MKCLN.
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2. Related Work

We review recipe recommendation, graph neural networks-based recommendation,
and contrastive learning related research in this section.

2.1. Recipe Recommendation

On recipe analysis websites containing large amounts of data, recommendations
are the most effective technique to satisfy users’ personalized requirements for selection.
Examples of recipe recommendation include collaborative filtering-based methods. Pe-
cunne et al. [9] applied the traditional collaborative filtering methods BPR and LMF to the
recipe recommendation domain with good results. Trattner et al. [4] applied the popu-
lar collaborative filtering in the LibRec framework to recipe recommendation, where the
LDA method was improved in mining the personalized preference requirements of users.
Collaborative filtering-based methods are usually easy to implement, but they ignore the
rich content representation of recipes, such as ingredients, flavors, etc. However, they do
not allow users to personalize their preferences. Content-based recipe recommendations
focus on the content representation of recipes. Vivek et al. [10] and Khan et al. [11] focused
on the similarity of recipes with the same rating for different users and recommended
recipes as content information to different people. Gao et al. [12] proposed a hierarchical
attention mechanism to embed images, ingredients, etc. into recipe representations to get
more diverse recipe embeddings. These content-based methods improve in precision but
neglect to make internal correlations between recipes and ingredients. Recently, several
researches attempted to use graph-based methods for recipe recommendation. Gao et al. [5]
used a graph convolutional network to model recipe data and obtained comprehensive
embedding representations of recipes by the aggregation of three subgraphs. Tian et al. [13]
proposed a graph learning approach to capture recipe content and collaboration signals
through a heterogeneous graph neural network with hierarchical attention and a compo-
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nent set transformer with good results. However, this method places more emphasis on
collaborative information and ignores the value of higher-order structural information for
recipes. Graph-based methods possess a great improvement in recipe recommendation
accuracy, which indicates the advantage of structured graph data for recipe recommen-
dation. However, due to the specificity of heterogeneous graphs, weighing local feature
information with global high-order structural information becomes one of the challenges
for recommendation.

2.2. Graph Neural Networks-Based Recommendation

Recently, graph neural networks were successfully applied to a large number of
scenarios as a popular method for processing graph data. GNN-based recommendation
uses the efficient information aggregation mechanism of GNN to aggregate features of
multi-hop neighbors in the target node to capture the higher-order potential features of
the node. Wang et al. [14] proposed KGCN, which applies graph convolutional neural
networks to knowledge graphs by stacking multiple convolutional layers so that the
neighboring feature information is continuously aggregated to the target nodes to obtain
node embeddings. Ma et al. [15] proposed two meta-path-based proximity measures to
jointly update node embeddings in heterogeneous graphs, achieving good recommendation
results. He et al. [16] proposed a simplified and improved LightGCN that employed the
neighbor aggregation component of the GCN in collaborative filtering and achieved better
results. Wang et al. [17] developed the knowledge graph attention network (KGAT), which
introduces attention mechanisms into the graph structure, connecting users and items
by their attributes, and extracting higher-order linking paths to represent nodes in the
network. However, the existing GNN-based recommendation mainly focuses on modeling
the interaction information and ignores the collaboration information between entities.

2.3. Contrastive Learning

Contrastive learning attracted wide attention for its successful applications in com-
puter vision [18], natural language processing [19], and video analysis [20] by comparing
positive and negative samples from different perspectives on learning node representa-
tions. Wu et al. [21] performed embedding learning of nodes on heterogeneous graphs
by discarding nodes with edges or random wandering strategies, but the comparative
learning method by impairing the graph structure is not suitable for recommendations,
and it is difficult for this method to capture higher-order potential preference information
to the extent that the recommendations are depersonalized. Wang et al. [22] proposed
HeCo, a cross-view self-supervised contrast learning network, which is able to portray
the local and higher-order structures of the network to obtain high-quality embedding
representations. Therefore, it has great potential to attempt to apply the advantages of
self-supervised learning to the recipe recommendation task using a cross-view contrast
learning method.

3. Problem Formulation

The main task objective of this paper is to recommend recipes to users that match
their personalized preferences. Given a set of users U = {u1, u2, . . . , uM} and recipes
R = {r1, r2, . . . , rN}, the interaction matrix is denoted as Y ∈ RM×N , where M, N denote
the number of users and recipes, respectively. The user–recipe interaction diagram can
be represented as Gui = {(u, yur, r) | u ∈ U , r ∈ R}, where yur denotes whether user u
performs an interaction behavior (e.g., commenting or making) with recipe r, as defined by:

yur =

{
1, if user u interacted with recipe r
0, otherwise.

(1)

Note that some research shows that sentiment analysis of user review information and
incorporation into the recommendation system is beneficial to improve the recommendation
quality [23]. In some other studies, instead of using user interactions (binary values), multi-
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valued ratings are used. These ratings can either be obtained explicitly from users or can
be obtained by applying sentiment analysis techniques on comments or reviews on the
items. However, due to the low quality of explicit feedback on the recipe dataset, we
assign it different weights and treat it as interaction in the preprocessing process. We define
the knowledge-aware heterogeneous graph G = {(h, r, t) | h, t ∈ E , r ∈ R} to denote a
real-world recipe containing rich attributes, where the entity–relation–entity triplet (h, r, t)
denotes the head entity h connected to the tail entity t by the relation r. E and R denote
the set of entities and relationships. In the knowledge-aware recipe heterogeneous graph,
the recipe contains rich attributes and relationships such as ingredients, tastes, cooking
methods, and types. The task goal of recipe recommendation is to recommend recipes to
users by the learned function ŷ = F (G, Θ), where Θ is a model parameter. We specify the
task as follows:

Input: Users U , recipe R, user–recipe interactions Y, heterogeneous graph
G = {(h, r, t) | h, t ∈ E , r ∈ R}.

Output: A predictor function ŷ = F (G, Θ), which estimates the probability of user u
interaction with the recipe r.

4. Methodology

In this section, we present in detail the multi-level knowledge-aware contrastive
learning network for personalized recipe recommendation model, as shown in Figure 2. The
figure shows the three important parts of MKCLN: (1) Heterogenous graph multi-level view
encoder network. This component generates several different graph views from the full
graph at local-level and global-level, which includes interaction view, semantic view, and
network structure view. Additionally, it captures node collaboration information, semantic
information, and higher-order structure information to obtain a fine-grained embedding
representation of users and recipes. (2) Graph cross-view contrastive optimization. This
part first performs cross-view contrastive learning between two local views, and then
learns the result with the global view across views to obtain high-quality global embedding
representations considering the information of each part. (3) Model prediction and joint
training. We recommend the recipes that users might interact with by prediction function,
and optimize the model using the joint training method.
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4.1. Heterogenous Graph Multi-Level View Encoder Network

Due to the specificity of the recipe recommendation task, traditional comparison
learning corruption or dropping to generate comparison views is not applicable to recipe
recommendations. Because unaccounted factors may be the reason for determining the
user’s choice, coarse-grained representations may lead to biased recommendation results.
Therefore, we propose a heterogenous graph multi-level view encoder network for embed-
ding different nodes in recipe recommendation. First, we consider capturing collaborative
and semantic information of nodes through local interaction view and semantic view, here
we are more focused on the low-order relationship between the user–recipe graph and
recipe–entity graph that depends on edge connection. After that, we explore the higher-
order structure information in the graph by global-level network structure view, where
we pay more attention to the long-range connectivity and multi-hop neighbor feature
information in the graph. Finally, we generate embeddings of different views of the nodes
as input for comparison learning.

4.1.1. Local-Level View Encoder

Local-level mainly captures the collaborative information and semantic information
of nodes through two complementary views. We use different encoding methods to
embed the interaction view and semantic view individually to ensure that the embedded
representation contains the complete content.

Interaction view Encoder. Interaction view is mainly designed to capture collab-
orative information in the user behavior record graph, using the historical interaction
connections between users and recipes as the basis for modeling. For the interaction view,
the relationship of interaction behaviors is relatively single, and we consider an effective
and efficient aggregation method for message aggregation and delivery. We choose the
message propagation strategy of Light-GCN [16] for encoding, and its effective lightweight
architecture can be well applied with user–recipe collaborative information collection. The
specific form is as follows:

x(l+1)
u = ∑

r∈Nu

x(l)r√
|Nu||Nr|

; x(l+1)
r = ∑

u∈Nr

x(l)u√
|Nr||Nu|

(2)

where xl
u and xl

r are the embedding representations of user u and recipe r at layer l. Nu and
Nr denote the set of recipes r that interact with user u and the set of users connected to
recipe r, respectively. After that, we sum the embedded expressions for different layers as
the output of the interaction view, as follows:

ei
u = x(0)u + · · ·+ x(l)u ; ei

r = x(0)r + · · ·+ x(l)r (3)

where ei
u and ei

r are the node embedding containing the collaboration information after
encoding by the interaction view.

Semantic View Encoder. Semantic view is mainly designed to capture the semantic
information between recipes and properties. The properties corresponding to recipes in
recipe recommendations often contain nodes with multiple relationship types, such as:
ingredients, tastes, cooking methods, etc. Inspired by the graph attention mechanism [7,17],
we use a relation-aware embedding layer to encode the semantic view as follows:

xs
r = σ

(
∑

e∈Ne
r

αe,r · xe

)
(4)

αe,r =
exp(LeakyReLU(aγ · [xe ‖ xr]))

∑e∈Ne
r

exp(LeakyReLU(aγ · [xe ‖ xr]))
(5)
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where σ is the nonlinear activation function, xe is the entity embedding, and αe,r denotes the
attention relevance of entities and relationships under different relationships. Additionally,
aγ denotes the relation-aware attention vector, and Ne

r is the entity neighbor of different
relationships connected to the recipe r. In this manner we encode the semantic information
that the recipe nodes contain multiple relationship entity types, which is important for us
to determine the user’s preferences for the recipes. After that we define the importance
score wr,a of the relationship to the node and normalize it as follows:

wr,a = 1
|Va | ∑

r∈Va

q> · tanh(Wsxs
r + bs)

βr,a =
exp(wr,a)

∑S
r=1 exp(wr,a)

(6)

where Va denotes the set of nodes associated with relation a and q denotes the relational
level attention vector. The matrix Ws and the bias bs are parameters that can be learned.
βr,a can be regarded as the degree of contribution of the relation a to the recipe nodes, and
S denotes the number of recipe vectors. Ultimately, we aggregate the recipe embedding of
different relationships in the semantic view as follows:

eS
r =

S

∑
m=1

βr,a · xs
r (7)

4.1.2. Global-Level View Encoder

We obtained embeddings of users and recipe nodes from the local-level view, but
ignored the higher-order feature information in the graph. The purpose of the global-level
view is to capture higher-order structural information by exploring long-range connections
in heterogeneous graphs that may contain potential preferred content for users.

Global-level network structure view encoder. We introduce a higher-order meta-
path method for full graph node encoding, which contains both higher-order structural
and global semantic information. Specifically, the set of meta-paths that exist from node i is
defined as P = {P1,P2, . . . ,Pm}, where Pn ∈ P. For different types of node i meta-paths
are set differently, for example, for recipe nodes there are two meta-paths: recipe–entity–
recipe and recipe–user–recipe meta-paths. We use a GCN [22,24] to encode the features in
the following form:

xPn
i =

1
di + 1

xi + ∑
j∈NPn

i

1√
(di + 1)

(
dj + 1

) xj (8)

where di and dj denote the degrees of node i and node j, respectively, and NPn
i denotes

the set of neighbors of node i based on meta-paths. After going through m meta-paths, we
fuse the embeddings of m nodes i using an attention mechanism to ensure the different
semantic effects on the node expressions, formally as follows:

eg
i =

m

∑
n=1

βPn · x
Pn
i (9)

where βPn denotes the weights of different meta-paths and is calculated as follows:

wPn = 1
|V| ∑

i∈V
a>g · tanh

(
WgxPn

i + bg

)
,

βPn =
exp(wPn)

∑m
i=1 exp

(
wPi

) ,
(10)
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where V is the set of target nodes and ag denotes the global-level attention vector. The
matrix Wg and the bias bg are the parameters that can be learned. At this point, we obtain
the node embedding of global-level as follows:

eg
i =

{
eg

u , i f node i is the user node
eg

r , i f node i is the recipe node
(11)

4.2. Graph Cross-View Contrastive Optimization

With the heterogenous graph multi-level view encoder network we obtain the embed-
ding representation from three views for different perspectives of the nodes, and then we
obtain the final fine-grained embedding representation by cross-view contrastive learning.

Local-level Contrast Learning. In the local-level view, the main purpose is to contrast
learning of the two embedding expressions ei

r and eS
r of the recipe. First, we feed the

embeddings of the two views into an MLP with hidden layers so that they are mapped into
a uniform space as follows:

zi
r−p = W(2)σ

(
W(1)ei

r + b(1)
)
+ b(2)

zs
r−p = W(2)σ

(
W(1)es

r + b(1)
)
+ b(2)

(12)

where
{

W(1), W(2), b(1), b(2)
}

are the parameters that can be trained and they are shared by
two views. σ is the ELU non-linear function. After that we need to define positive and neg-
ative samples for learning, inspired by other applications of comparative learning [25,26],
we define positive and negative samples as shown in Figure 3. The same node of another
view for the target node is treated as the positive sample, the other nodes of the same view
are treated as the intra-view negative sample, and the nodes of another view except for the
positive sample are treated as the inter-view negative sample. From the defined positive
and negative samples, we have contrastive loss as follows:

Llocal = −log
exp

(
sim(zs

r−p,zi
r−p)

τ

)
exp

(
sim(zs

r−p,zi
r−p)

τ

)
+ ∑k 6=i exp

(
sim(zs

r−p,zs
k−p)

τ

)
+ ∑k 6=i exp

(
sim(zs

r−p,zi
k−p)

τ

) (13)

where sim(·, ·) denotes the cosine similarity calculation of the two vectors and τ denotes
the temperature parameter. In Equation (13), exp

(
sim

(
zs

r−p, zi
r−p

)
/τ
)

denotes the posi-

tive sample pair, ∑k 6=i exp
(

sim
(

zs
r−p, zs

k−p
)

/τ
)

denotes the intra-view negative sample

pair, and ∑k 6=i exp
(

sim
(

zs
r−p, zi

k−p
)

/τ
)

denotes the inter-view negative sample pair. We
obtained the local fine-grained embedding representation by local-level cross-view compar-
ison learning.

Global-level Contrast Learning. After local contrast learning, we obtain the final
node representation by performing cross-view contrastive learning of the local-level view
embedding with the global-level view embedding. First mapping them to the same space,
we still do it by an MLP with a hidden layer:

zg
r−p = W(2)σ

(
W(1)eg

r + b(1)
)
+ b(2)

zl
r−p = W(2)σ

(
W(1)(ei

r + es
r
)
+ b(1)

)
+ b(2)

Similarly, we use cross-view positive and negative samples for contrastive learning
and define the contrastive loss as follows:
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Lg
r = −log

exp
(

sim(zg
r−p,zl

r−p)
τ

)
exp

(
sim(zg

r−p,zl
r−p)

τ

)
+ ∑k 6=i exp

(
sim(zg

r−p,zg
k−p)

τ

)
+ ∑k 6=i exp

(
sim(zg

r−p,zl
k−p)

τ

) (14)

Ll
r = −log

exp
(

sim
(

zl
r−p, zg

r−p
)

/τ
)

exp
(

sim
(

zl
r−p, zg

r−p
)

/τ
)
+ ∑k 6=i exp

(
sim
(

zl
r−p, zl

k−p
)

/τ
)
+ ∑k 6=i exp

(
sim
(

zl
r−p, zg

k−p
)

/τ
) (15)

where Lg
r denotes the contrastive learning loss of recipe nodes for the global-level view, and

Ll
r denotes the contrastive learning loss of recipe nodes for the local-level view. The three

terms in the denominator of Equations (14) and (15) denote positive sample pairs, intra-view
negative sample pairs, and inter-view negative sample pairs, respectively. We replace the
items of the recipe embedding with the user embedding and repeat this process to obtain
the contrastive learning losses Lg

u and Ll
u l for the user node embedding computation. So,

we can obtain the overall global-level contrast learning losses as follows:

Lglobal =
1

2N ∑N
i=1

(
Lg

r + Ll
r

)
+

1
2M ∑M

i=1

(
Lg

u + Ll
u

)
(16)

Up to now, we completed cross-view self-supervised learning to obtain fine-grained
embedding representations of recipe nodes and user nodes.
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4.3. Predictive Layer and Optimization

In MKCLN, our goal is to recommend recipes to users that match their personalized
preferences. Currently, we obtained multiple embedding representations for three views at
two levels and optimized them by contrastive learning. Next, we connect these representa-
tions by concatenating or summing operation, and the final embedding representation of
the node is as follows:

e∗u = eg
u ‖ ei

u
e∗r = eg

r ‖
(
ei

r + es
r
) (17)

Finally, we predict the score of the user matching the recipe and make recommenda-
tions by an inner product function:

ŷ(u, r) = e∗>u e∗r (18)

Heterogeneous graph embedding also suffers from loss, and we combine the self-
supervised learning task with the recommendation task by joint training. For recommenda-
tion tasks, we usually use Bayesian personalized ranking (BPR) loss [27] for optimization:

LBPR = ∑
(u,i,j)∈DS

− ln σ
(
ŷui − ŷuj

)
(19)

within DS = {(u, i, j) | (u, i) ∈ R+, (u, j) ∈ R−} denotes the training set, R+ denotes the
set of recipes that generated (positive) interactions, andR− denotes the set of recipes that
generated (negative) interactions. σ(·) is the sigmoid function. After that, we combine the
local-level and global-level loss with the BPR loss to obtain the MKCLN model integrated
loss function as follows:

LMKCLN = LBPR + β
(

αLlocal + (1− α)Lglobal

)
+ λ ‖ Θ ‖2

2 (20)

where α is the hyperparameter that balances the two contrastive losses and β is the hyperpa-
rameter that controls the weight of the contrastive losses. Θ is the set of model parameters.

5. Experiment

We experimented extensively on two real-world datasets to answer the questions
that follow.

RQ1: How does the MKCLN model compare with other recommendation methods
for the task of recipe recommendation?

RQ2: Are the individual components of the MKCLN model valid?
RQ3: How do different hyperparameter settings affect the results?
RQ4: Are there differences in performance on the model for recipes with different

numbers of interactions (long-tail effects)?

5.1. Datasets

We conduct experimental evaluations of the proposed model on the following two
real datasets:

• Ta-da (https://github.com/Eimo-Bai/Ta-da-recipe-dataset (accessed on 30 June 2022)):
The Ta-da dataset is a Chinese recipe dataset constructed by the team of authors, with
data from various Chinese recipe sharing social networking websites, specifically
containing recipe information, ingredient information, interaction information, taste
information, etc. We use the valid recipes and comments information uploaded by
users from 2020 to 2022.

• Allrecipes (https://www.allrecipes.com/ (accessed on 30 June 2022)): This dataset
comes from Allrecipes.com, one of the world’s largest recipe sharing platforms, and
this dataset contains rich content and interactive information, specifically recipe infor-

https://github.com/Eimo-Bai/Ta-da-recipe-dataset
https://www.allrecipes.com/
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mation, ingredient information, user interaction information, and image information.
We used more than 50,000 recipes from 27 categories published between 2000 and 2018.

The final valid data are shown in detail in Table 1.

Table 1. The statistics of datasets.

Dataset Ta-da Allrecipes

users 18,679 68,768

recipes 14,142 45,630

ingredients 3812 29,147

interactions 246,287 1,093,845

Our experiments using these two datasets are independent of each other. By pre-
processing the datasets, we found that the recipe dataset suffers from a large number of
long-tail distribution problems, i.e., most user interactions and comments occur in a small
number of recipes, while cold recipes tend to have little interaction information. Therefore,
we removed users with less than three interactions in order to filter the noise to ensure that
the dataset is not too sparse. In our experiments, we set the ratio of training set, validation
set, and test set as 6:2:2.

5.2. Baseline

To validate the effectiveness of MKCLN, we compared it with a variety of methods
that may be suitable for the recipe recommendation task to explore the applicability of the
recommendation model to the recipe recommendation task.

• BPR [27]: A more popular collaborative filtering-based approach that uses a two-
by-two matrix decomposition of competing strategies for recommendation and uses
Bayesian personalized ranking (BPR) loss optimization.

• CKE [28]: This is a representative embedding-based method that combines text, struc-
ture, and visual knowledge in a unified framework for recommendation.

• Metapath2vec [29]: This is a path-based classical recommendation method. For the
characteristics of heterogeneous networks, features of meta-paths are extracted to
represent the connectivity between users and items.

• FP-MGCN [7]: A GNN-based method, which considers multiple connections of differ-
ent types of nodes from multiple perspective and uses different propagation methods
to enhance the representations in order to obtain high-quality node embeddings
for recommendation.

• KGCN [14]: This is a classical GNN-based method that enriches node features by
iterative aggregation to propagate the features of items over the knowledge graph,
containing structural and semantic information.

• KGAT [17]: An advanced GNN-based method. Using an attention mechanism to
aggregate information of neighbor nodes on the user–item–entity graph is more
popular in the recommendation field.

5.3. Experiments Setup

Evaluation Metrics. We evaluate the performance of recipe recommendation in two
experimental scenarios: (1) Click-through rate (CTR) prediction. We use AUC and F1 to
evaluate the CTR prediction and predict the trained model for each interaction in the test
set. (2) Top-K recommendation. The recipes that users did not interact with are ranked
and the k highest scoring recipes are recommended to users as items. To evaluate how
advanced the model is, we choose recall@k and ndcg@k as evaluation metrics to evaluate
the model. All evaluation metrics we report are taken as the average of all results.

Parameter Settings. For the MKCLN model and all baseline method implementations,
we chose Tensorflow as the experimental platform. To ensure fairness in comparison with
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the baseline method, we set the embedding dimension of all models to 64. We optimize
our method using Adam [30], and use a grid search for hyper-parameters: the learning
range of the regularization parameter is

[
10−7, 10−6, 10−5, 10−6, 10−5, 10−4, 10−3, 10−2], the

learning rate lr in the range [0.0001,0.0005,0.001,0.005,0.01,0.05]. The other hyperparameters
are explored and the optimal values are selected in the following experiments. For the
hyperparameter settings in the baseline method, we follow the optimal settings described
in the original paper with the default values in the original code.

5.4. Performance Comparison (RQ1)

We conducted comparative experiments on two real recipe datasets and evaluated the
overall performance of all methods, as shown in Table 2, Figures 4 and 5. The analysis of
the results allows us to draw the following observations:

Table 2. Performance of approaches on Ta-da, Allrecipes.

Methods
Ta-da Allrecipes

AUC F1 AUC F1

BPR 0.8267 0.7829 0.7337 0.6281

CKE 0.8389 0.7942 0.7585 0.6384

Metapath2vec 0.7665 0.7405 0.6320 0.5515

KGCN 0.8818 0.7980 0.7612 0.6532

KGAT 0.8898 0.8177 0.7671 0.6638

FP-MGCN 0.9010 0.8225 0.7718 0.6667

MKCLN 0.9184 0.8382 0.7882 0.6798

• Our proposed MKCLN model has the best performance in both datasets. The results
show that the fine-grained final representations of users and recipes can be better
captured through contrastive learning of embedding representations of three views
at two levels, so that the final nodes contain more comprehensive information to the
extent of having better recommendation results.

• In the baseline methods, CKE performs better than BPR, which proves the superiority
of graph data in recommendations. The results of simple embedding using hetero-
geneous graphs still perform better than the collaborative filtering methods. This is
because they do not pay enough attention to the relevant attributes of the recipes.

• The path-based representative method Metapath2vec has the worst performance
among all methods. This is because the method relies heavily on manual definition
of meta-paths and it is difficult to define the best meta-path. This also shows that
structural information is crucial in the embedding of heterogeneous graphs.

• The results of the GNN-based baseline methods KGCN, KGAT, and FP-MGCN out-
perform other baseline methods, which indicates that the high-quality representations
of nodes are very important in recommendation, and the higher-order structural and
semantic information in the graph is also very valuable for the potential preferences
of users.

• The performance of FP-MGCN is better than KGCN and KGAT because FP-MGCN
performs embedding and information propagation for nodes through multiple views
separately. This shows that embedded propagation through multiple views is valuable
for improving recommendation performance.

• Our proposed MKCLN shows better results than the FP-MGCN in the baseline ap-
proach, which illustrates the benefit of self-supervised learning in improving recom-
mendation quality and the importance of the fine-grained representation of nodes on
recommendation results.
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In the above comparison test, we explore the methods suitable for recipe recom-
mendations. The results of the Ta-da dataset are better than the Allrecipes dataset when
compared to the same metric in both datasets. This is because the Ta-da dataset is of
higher quality than Allrecipes, which contains recipes from all over the world and also
faces some problems with featured ingredients or recipes that have cold attributes and
fewer interactions.
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5.5. Ablation Analysis (RQ2)

To verify the effectiveness of each MKCLN component, we conducted ablation experi-
ments on the model, exploring the contribution of a component to the final performance by
corrupting a variant of the MKCLN model for the component. We define two variants of the
model as MKCLN that corrupts the local-level comparison learning component MKCLN
(w/L) and MKCLN that corrupts the global-level comparison learning component MKCLN
(w/G), respectively. The experimental results are shown in Table 3, and by observing them
we can conclude the following.
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Table 3. Effect of different component on Ta-da, Allrecipes.

Model
Ta-da Allrecipes

AUC F1 AUC F1

MKCLN (w/L) 0.8864 0.8278 0.7828 0.6732

MKCLN (w/G) 0.8887 0.8133 0.7845 0.6748

MKCLN 0.9184 0.8382 0.7882 0.6798

• Removing both local and global levels of contrast learning models significantly de-
grades the performance, which indicates that collaborative information, semantic
information, and high-order structural information have a significant contribution to
the recipe recommendation task.

• MKCLN (w/L) performs worse than MKCLN (w/G). This indicates that for the recipe
recommendation task, the collaborative and semantic information contributes more to
the fine-grained node representations, and also illustrates the importance of collecting
information through two different views.

5.6. Study of MKCLN (RQ3)

In order to explore the optimal performance of MKCLN in more detail, we analyze
the impact of the parameters on performance through several different perspectives. The
exploration of hyperparameters can also reflect the overall strength of the model [31].

5.6.1. Effect of Model Depth

We first explore the MKCLN with different embedding propagation layers, and differ-
ent embedding layers may lead to different node aggregation results. Specifically, we vary
the number of propagation layers L in the range [1,2,3,4,5], and the results are shown in
Table 4, and we can conclude from the analysis that:

• The MKCLN model performs best in the recipe recommendation task at one level of
aggregation and slightly decreases in performance at two levels. This indicates that
our model collects sufficient feature information by performing aggregation of one or
two-hop neighbors, and on the other hand demonstrates the effectiveness of adopting
the multiple-view method to collect information.

• The model performance decreases significantly when stacking up to four to five layers.
Models that are too deep can lead to overfitting phenomena, while bringing more
noise to interfere with the recommended performance.

Table 4. The effect of different embedding propagation layers on the model.

Ta-da Allrecipes

AUC F1 AUC F1

MKCLN-1 0.9184 0.8382 0.7882 0.6798

MKCLN-2 0.9180 0.8379 0.7879 0.6796

MKCLN-3 0.9162 0.8356 0.7862 0.6768

MKCLN-4 0.9125 0.8323 0.7820 0.6734

MKCLN-5 0.8876 0.8056 0.7566 0.6486

5.6.2. Effect of Loss Function Weigh Parameters

We set two balance hyperparameters α and β in Equation (20) to control the balance of
the two contrast losses and the hyperparameters of the contrast loss weight, respectively.
We explore the performance impact of these two hyperparameter settings individually. We
vary the parameter α in the range [0,0.2,0.4,0.6,0.8,1] to explore the effect of local and global
proportionality on performance. Afterwards, the optimal α and varying β is set in the range
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[1,0.1,0.01,0.001] to explore the effect of BPR loss and contrastive learning loss weights on
performance. The results are shown in Tables 5 and 6, and the following conclusions can be
drawn from the observations:

Table 5. Effect of parameter α on model performance.

Ta-da Allrecipes

AUC F1 AUC F1

α = 0 0.9062 0.8305 0.7788 0.6713

α = 0.2 0.9184 0.8380 0.7881 0.6796

α = 0.4 0.9181 0.8359 0.7880 0.6789

α = 0.6 0.9168 0.8344 0.7868 0.6776

α = 0.8 0.9160 0.8332 0.7859 0.6768

α = 1 0.9088 0.8297 0.7798 0.6702

Table 6. Effect of parameter β on model performance.

Ta-da Allrecipes

AUC F1 AUC F1

β = 1 0.9072 0.8326 0.7796 0.6708

β = 0.1 0.9184 0.8382 0.7882 0.6798

β = 0.01 0.9146 0.8352 0.7855 0.6747

β = 0.001 0.9135 0.8328 0.7815 0.6713

• For the global and local contrastive learning balance parameter α, the model perfor-
mance is worst when α = 0 or α = 1, which indicates that both local-level contrastive
learning and global-level are valuable for the results. Meanwhile α = 0.2 when the
model achieves optimal performance.

• For the BPR loss and the contrastive learning loss balance parameter β, the model
performance is worst when β = 1, which proves the importance of the contrastive
learning loss function. The model performs best when β = 0.1.

5.7. User Group Experiment (RQ4)

In the recipe recommendation task, the long-tail phenomenon of recipe dataset tends to
affect the performance of the model. The recommendation results for recipes with different
popularity can reflect the personalization of the model and also the robustness of the model.
We investigate the effect of recipe popularity on the performance of the model by setting
four recipe groups with different numbers of interactions (H). We chose to compare the
four advanced performance baseline methods in the Ta-da dataset, where the number of
recipes in each group is the same. The results are shown in Figure 6 and after analysis we
can conclude the following points:

• The MKCLN model is superior in different groups of recipe recommendations, demon-
strating that MKCLN is robust and can obtain higher quality embedding representation
of nodes compared to other baseline methods.

• For the same method, higher popularity recipes result in higher performance of the
model due to the fact that user interaction information enhances the representation
of the nodes, i.e., the more historical interactions one has, the more pronounced their
features are, thus better capturing the user preference information. The importance of
semantic information is also demonstrated.

• We found in exploring the characteristics of recipe content that recipe popularity
also affects users’ choices, i.e., users prefer more popular dishes to cold ones. So the
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recommendation of popular recipes to users that match their preferences does not
affect the personalization of the recommendation results.
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6. Conclusions and Future Work

Aiming to solve the problem of the recipe recommendation task containing multiple
types of attributes and complex relationships, a multi-level knowledge-aware contrastive
learning network (MKCLN) is proposed in this paper. The network is first embedded
through three views at global and local levels separately to adequately collect the collab-
oration information, semantic information, and high-order structure information of the
nodes. After that, the final fine-grained representations of users and recipes are obtained
by contrastive learning, respectively. Finally, the recipes that satisfy personalized prefer-
ences are matched with users through joint training and model prediction functions to
complete the recommendation task. We conducted experiments on two recipe datasets
containing different countries, and the results show the sophistication and plausibility of
the MKCLN model.

In our future work, we will use more evaluation metrics to judge the performance of
our proposed model to refine the limitations. In addition, we can also make the following
attempts: (1) Try to diversify the recipe recommendations. Currently this work is more
concerned with the precision and personalization of recommendation results, which may
cause the results not to meet some specific requirements, e.g., weight loss requirements.
(2) Try to use more advanced information aggregation methods and message propagation
methods for model optimization.
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