
����������
�������

Citation: Miao, Z.; Peng, R.; Wang,

W.; Li, Q.; Chen, S.; Zhang, A.; Pu, M.;

Li, K.; Liu, Q.; Hu, C. Integrating

Data Modality and Statistical

Learning Methods for

Earthquake-Induced Landslide

Susceptibility Mapping. Appl. Sci.

2022, 12, 1760. https://doi.org/

10.3390/app12031760

Academic Editor: Francesco Fiorillo

Received: 8 January 2022

Accepted: 29 January 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Integrating Data Modality and Statistical Learning Methods for
Earthquake-Induced Landslide Susceptibility Mapping
Zelang Miao 1,2, Renfeng Peng 1,2, Wei Wang 1,2,* , Qirong Li 3, Shuai Chen 1,2, Anshu Zhang 4, Minghui Pu 1,2,
Ke Li 1,2, Qinqin Liu 5 and Changhao Hu 6

1 School of Geoscience and Info-Physics, Central South University, Changsha 410083, China;
zelang.miao@outlook.com (Z.M.); 195012112@csu.edu.cn (R.P.); s.chen1227@csu.edc.cn (S.C.);
royalharu@csu.edu.cn (M.P.); ke.lichangsha@csu.edu.cn (K.L.)

2 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,
Central South University, Changsha 410083, China

3 The Yangtze Three Gorges Technology and Economy Development Co., Ltd., Beijing 100038, China;
qirong.li@csu.edu.cn

4 Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University,
Kowloon, Hong Kong; anshu.zhang@connect.polyu.hk

5 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China;
qinqinliu@ninhm.ac.cn

6 Hunan Lianzhi Technology Co., Ltd., Changsha 410000, China; 15111019693@163.com
* Correspondence: wangweicn@csu.edu.cn

Abstract: Earthquakes induce landslides worldwide every year that may cause massive fatalities and
financial losses. Precise and timely landslide susceptibility mapping (LSM) is significant for landslide
hazard assessment and mitigation in earthquake-affected areas. State-of-the-art LSM approaches
connect causative factors from various sources without considering the fusion of different information
at the data modal level. To exploit the complementary information of different modalities and boost
LSM accuracy, this study presents a new LSM model that integrates data modality and machine
learning methods. The presented method first groups causative factors into different modal types
based on their intrinsic characteristics, followed by the calculation of the pairwise similarity of modal
data. The similarities of different modalities are fused using nonlinear graph fusion to generate a
unified graph, which is subsequently classified using different machine learning methods to produce
final LSM. Experimental results suggest that the presented method achieves higher performance than
existing LSM methods. This study provides a new solution for producing precise LSM from a fusion
perspective that can be applied to minimize the potential landslide risk and for sustainable use of
erosion-prone slopes.

Keywords: landslide susceptibility mapping; earthquake-induced landslide; data modality;
information fusion

1. Introduction

Landslide, one of the most destructive geological hazards in the world, often results in
massive casualties and property losses [1–4]. The earthquake is a vital causative factor that
triggers numerous landslides throughout the earthquake-affected area [5]. For instance, the
2008 WenchuanMw7.9 earth-quake induced more than 20,000 landslides [6,7]. Landslide
susceptibility mapping (LSM) refers to predicting potential landslides in an area depending
on a range of causative factors [8–12]. It provides a beneficial reference to reflect the spatial
distribution and the susceptibility level of landslide hazards, and thus has now become a
common tool in addressing landslide risk reduction [13].

A considerable amount of literature related to LSM has been published and can be
grouped into three main categories: (1) physically-based methods, (2) knowledge-based
methods, and (3) data-based methods [3,14–16]. Physically-based methods typically use
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limit-equilibrium to analyze the slope stability [17,18]. For instance, Martin et al. [19]
proposed a three-dimensional limit equilibrium slope stability model that is robust and
capable to deal with shallow and deep landslides. They applied this method to assess slope
stability in Umbria, central Italy, and it yielded satisfactory results. Kukemilks et al. [20]
integrated hydrogeological and slope stability models to identify potential landslides.
Though this kind of method does not need a landslide inventory, it requires exhaustive
geotechnical and engineering geological data that are challenging and expensive to obtain.
Thus, physically-based methods are restricted to assessing landslide susceptibility at the
site-specific scale, and are unsuitable for regional/global scale. The knowledge-driven
methods are based on expert knowledge on the contribution of various causative factors to
landslides. In general, experts provide detailed descriptions on causative factors within
the landscape and the contribution of each factor to landslides. Such knowledge is then
assimilated into a certain knowledge-driven model to produce a landslide susceptibility
score for each location (e.g., each pixel) as a weighted sum of the contribution by various
causative factors. Representative approaches for knowledge-driven LSM include analytic
hierarchy process (AHP) [21] and fuzzy logic (FR) assessment [6]. In the AHP approach, a
comparison matrix is constructed to represent the expert judgment on pairwise relative
importance of the causative factors for landslides. The weight of each causative factor for
the landslide susceptibility score is then derived from the comparison matrix. In the FR
approach, a fuzzy membership function for each causative factor is constructed to represent
expert opinions on its contribution to landslides. The landslide susceptibility score is
then generated for every pixel by integrating the fuzzy membership values of various
causative factors. Although the knowledge-driven methods are simple and efficient, their
results are sensitive to the correctness of expert knowledge. Accurate expert inputs into
the knowledge-driven models, such as the comparison matrix in AHP and the fuzzy
membership functions in the FR assessment, not only rely on extensive domain knowledge,
but also are specific to regions with certain geological structures and climates. This limits
the transferability of knowledge-driven models to other geographical regions and this
limitation is almost similar to the physically-based methods. In particular, for urgent
landslide susceptibility assessments (e.g., post-earthquake ones), the assessment results
can be questionable if the area is unfamiliar to experts. Data-driven methods use machine
learning algorithms to analyze the correlation between landslide distribution and causative
factors to assess landslide susceptibility. Regional-scale LSM represents a significant leap
forward from previous studies, and integrates the Geographic Information System and the
modern advent of machine learning (e.g., artificial intelligence). Typical machine learning
algorithms include support vector machines [17], logistic regression [22], information
value [23], weight of evidence [24], index of entropy [25], frequency ratio [25], artificial
neural networks [26], and random forest [27]. Machine learning algorithms are considered
more suitable for LSM over large and complex areas than physically-based methods and
knowledge-based methods. Data-driven LSM models have their own advantages and
disadvantages. These methods are unable to eliminate the differences of causative factors
in terms of magnitude and nature, and also have other problems such as low training
efficiency and negative influence by several modeling parameters.

For example, the spatial relationship between landslide locations and the parameters
that affect them cannot be calculated in machine learning method [26,28,29]. The model
requires a large effort to collect and validate the necessary input data, and model prepa-
ration takes a long time. In addition, the performance of the model is vulnerable to the
study area and has low generalization; therefore, it is difficult to compare the susceptibility
classes from different locations [30]. The means to improve the performance of the LSM
model have attracted increasing attention. At present, methods related to improving model
performance mainly focus on the following aspects: (1) improving the accuracy of non-
landslide sample points selection or the appropriate proportion of sample selection [31,32];
(2) assigning weights among different causative factors [3,33–36]; (3) optimizing the internal
parameters of assessment models [37–40]; (4) assessment by region after delineation of the
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study area [41]; and (5) integrating different assessment models [9,42–45]. In essence, these
studies explore and improve the assessment methods or processes, but do not conduct
in-depth analysis from the perspectives of the original data from multiple modalities. They
link the features from different causative factors directly without considering the possible
impact of different data modalities on the performance of LSM. As causative factors of
earthquake-induced landslides are various, such as seismology, terrain, geology, hydrology,
and human activity, different data modalities reflect different facets of impacts on land-
slide occurrence and contain complementary information for LSM. Thus, it would be an
interesting direction to fuse multiple modal data to further improve the LSM accuracy.

In this paper, through treating the data of different types as heterogeneous data, we
distinguish them with different modalities, and subsequently fuse the characteristic data at
the data modalities level. Thus, the complementary information of different modalities can
be fully considered. We develop a new framework for landslide susceptibility assessment
by taking into account the different data modalities and using nonlinear fusion to fuse the
different modal data simultaneously. After that, we utilize the fused data to perform the
landslide susceptibility mapping. To validate the performance of the presented LSM model,
we take Wenchuan as the study area and compare different LSM results calculated by the
multi-modal classification (MMC) model and three benchmark landslide susceptibility
assessment models.

2. Research Area and Data Sources
2.1. Research Area Overview

Wenchuan is located at the junction of the northwest region of the Sichuan Basin
and the eastern margin of the Tibetan Plateau. The study area covers 4038 km2 and is
bounded between 30◦46′ N–31◦00′ N and 102◦53′ E–103◦44′ E (Figure 1). The region
is a very typical landform-changing zone of China and includes lofty mountains, high
ridges, and crisscross gorges and valleys. Huge geomorphologic sharp-change zones occur
from the southeast area with elevations of 800 m to the west area with elevations of over
6000 m. The region has also recorded many large earthquakes in China as it sits on a
highly active seismic area. For instance, the Mw 7.9 Wenchuan earthquake on 12 May
2008 occurred in exactly this region. The synergy between earthquake and the complex
geological and topographic conditions has induced, is inducing, and will induce a large
number of landslides throughout the region. Therefore, it is critical to timely conduct LSM
to prevent and reduce earthquake-induced landslide hazards.

Figure 1. Study area.
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2.2. Data Sources Used in This Study

Table 1 lists the sources for data used in this study, and all data are freely accessible.
The digital elevation model (DEM) has a spatial resolution of 30 m × 30 m that is used
to generate elevation, slope, aspect, profile curvature, and topographic wetness index
(TWI). Distance to faults, distance to roads, and distance to rivers are produced through the
buffer analysis function of ArcGIS. The lithology and faults are obtained by digitizing the
hard copy of 1:500,000 geological-map. The average annual rainfall is obtained by spatial
interpolation based on cumulative annual average rainfall (1981–2010) downloaded from
the National Meteorological Science Data Center of China. Continuous causative factors
(e.g., elevation, slope, profile curvature, annual average rainfall) are converted to discrete
groups using discretization.

Table 1. Data sources used in this study.

Data Type Scale Sources

Digital elevation model (DEM) Raster 30 m http://gdex.cr.usgs.gov/gdex/ (accessed on 15
November 2020)

Geological data Raster 1:500,000 http://geocloud.cgs.gov.cn/#/portal/home
(accessed on 15 November 2020)

Annual average rainfall Datasheet 30 m http://data.cma.cn/data/detail/dataCode/A.0029
.0005.html (accessed on 15 November 2020)

Peak ground acceleration (PGA) Vector 1:200,000
https://earthquake.usgs.gov/earthquakes/

eventpage/usp000g650/shakemap/pga (accessed
on 15 November 2020)

Road and river networks Vector 1:250,000 https://www.webmap.cn/commres.do?method=
result25W (accessed on 15 November 2020)

Seismic intensity Vector 1:200,000
https://earthquake.usgs.gov/earthquakes/

eventpage/usp000g650/shakemap/intensity
(accessed on 15 November 2020)

Land use Raster 30 m http://www.webmap.cn/main.do?method=index
(accessed on 15 November 2020)

Soil Raster 90 m http://www.resdc.cn/data.aspx?DATAID=145
(accessed on 15 November 2020)

Landform Raster 90 m http://www.resdc.cn/data.aspx?DATAID=124
(accessed on 15 November 2020)

This study applies a complete landslide inventory [46] (Figure 2) to train and validate
the proposed LSM method. The inventory was produced based on the combination of
visual interpretation and field investigation using pre- and post-earthquake multi-source
imagery from different platforms (e.g., very high-resolution satellite images, aerial photos,
and field surveys). This landslide inventory records detailed landslide information, such
as distribution, size, and volume of landslide. To reduce the influence of asynchrony
between landslide inventory and causative factors, this study selected DEM, geological
data, annual average rainfall, soil, and landform as close as possible to the occurrence time
of the Wenchuan earthquake, and accordingly updated land use, road and river networks
using very high satellite images acquired from 10 October 2007 to 1 April 2008.

http://gdex.cr.usgs.gov/gdex/
http://geocloud.cgs.gov.cn/#/portal/home
http://data.cma.cn/data/detail/dataCode/A.0029.0005.html
http://data.cma.cn/data/detail/dataCode/A.0029.0005.html
https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/shakemap/pga
https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/shakemap/pga
https://www.webmap.cn/commres.do?method=result25W
https://www.webmap.cn/commres.do?method=result25W
https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/shakemap/intensity
https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/shakemap/intensity
http://www.webmap.cn/main.do?method=index
http://www.resdc.cn/data.aspx?DATAID=145
http://www.resdc.cn/data.aspx?DATAID=124
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Figure 2. The complete landslide inventory used in this study.

3. Materials and Methods
3.1. Causative Factors

Causative factors control the landslide occurrence and are fundamental to LSM. Due to
the complex synergistic inter-action of earthquake and geo-environment, causative factors
of seismic landslides vary from one location to another. Until now, there is no unified
consensus regarding the selection of seismic landslide causative factors for a specific re-
gion [47]. Based on published literature and data availability, this study selects 15 causative
factors from 4 data modalities for LSM. Table 2 lists the categories of causative factors. All
causative factors were rescaled to spatial resolution of 30 m, and each causative factor is
described below.
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Table 2. Causative factors categories of landslide.

Causative Factors Classes Classification Criteria

Seismology

PGA/(m/s2) 6 1. <0.2; 2. 0.2~0.4; 3. 0.4~0.6; 4. 0.6~0.8; 5. 0.8~1.0; 6. 1.0~1.2
Distance to fault/(km) 7 1. 0~3; 2. 3~6; 3. 6~9; 4. 9~12; 5. 12~15; 6. 15~18; 7. >20
Earthquake intensity 4 1. VIII; 2. IX; 3. X; 4. XI

Lithology 6 1. sandstone; 2. magmatic rock; 3. phyllite; 4. shale; 5. glutenite; 6. carbonate rock

Terrain

Elevation/(km) 10 1. 0.5~1; 2. 1~1.5; 3. 1.5~2; 4. 2~2.5; 5. 2.5~3; 6. 3~3.5; 7. 3.5~4; 8. 4~4.5; 9. 4.5~5; 10. >5
Slope (◦) 8 1. 0~10; 2. 10~20; 3. 20~30; 4. 30~40; 5. 40~50; 6. 50~60; 7. 60~70; 8. >80
Aspect 9 1. Flat; 2. N; 3. NE; 4. E; 5. SE; 6. S; 7. SW; 8. W; 9. NW

Curvature 8 1. 0~3; 2. 3~6; 3. 6~9; 4. 9~12; 5. 12~15; 6. 15~18; 7. 18~21; 8. >21

Landform 7 1. plain; 2. platform; 3. hill; 4. small undulating mountain; 5. middle undulating mountain;
6. high undulating mountain; 7. very high undulating mountain

Land
cover

Land use 5 1. cultivated land; 2. woodland; 3. grassland; 4. water; 5. urban and rural residents
Soil 6 1. leached; 2. semileached soil; 3. primary soil; 4. alpine soil; 5. ferralsol; 6. rock

Distance to road/(km) 10 1. 0~0.5; 2. 0.5~1; 3. 1~1.5; 4. 1.5~2; 5. 2~2.5; 6. 2.5~3; 7. 3~3.5; 8. 3.5~4; 9. 4~4.5; 10. >4.5

Hydrological
Distance to river/(km) 11 1. 0~0.5; 2. 0.5~1; 3. 1~1.5; 4. 1.5~2; 5. 2~2.5; 6. 2.5~3; 7. 3~3.5; 8. 3.5~4; 9. 4~4.5; 10. 4.5~5; 11. >5

Topographic wetness index 9 1. 0.63~2; 2. 2~4; 3. 4~6; 4. 6~8; 5. 8~10; 6. 10~12; 7. 12~14; 8. 14~16; 9. 16~19.45
Annual average rainfall/(mm) 7 1. <525; 2. 525~625; 3. 625~725; 4. 725~825; 5. 825~925; 6. 925~1025; 7. >1025

3.1.1. Seismology-Related Causative Factors

Peak ground acceleration (PGA): slope instability during earthquakes means that the
combined force of the ground acceleration and the gravity of the slope exceeds the adhesion
and friction strength of the bedrock in a short time. Normally, the impact of an earthquake
on a landslide is measured and quantified by recording the absolute maximum amplitude
of the ground acceleration [1]. This study divides PGA into 6 levels with a step of 0.2 g; see
Figure 3a.

Figure 3. Seismology-related causative factors. (a) PGA; (b) Distance of fault; (c) Earthquake intensity;
(d) Lithology.
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Distance to fault: fault structure affects the occurrence of geological disasters. There-
fore, the distance between the slope and the fault should be considered in slope stability
analysis. The internal factor of landslide development and slope instability is that the
various weakness planes produced by tectonic movement form different structural combi-
nations with slope or artificial excavation face. This study divides the distance to the fault
into 7 levels with a step of 3 km; see Figure 3b.

Seismic intensity: seismic intensity is the main parameter to measure the degree of
seismic damage. It refers to the intensity of ground vibration in a certain area within the
seismic range. The intensity of seismic activity is not only directly related to slope stability
but also has an important influence on the spatial distribution of seismic landslides. The
seismic intensity of the study area was divided into 4 levels; see Figure 3c.

Lithology: the lithology is a proxy of the shear strength of the materials constituting
slopes, thus directly controlling the state of slope stability. Lithology is the basis to de-
termine slope strength, stress distribution, permeability, and deformation characteristics.
There are 6 lithology types in the study area; see Figure 3d.

3.1.2. Terrain-Related Causative Factors

Elevation: elevation is closely related to the occurrence of landslides. Elevation
controls terrain slope and surface water catchment capacity. Furthermore, the intensity
of human activities varies at different elevations. This study divides the elevation into
10 groups with a step of 0.5 km; see Figure 4a.

Figure 4. Terrain-related causative factors. (a) Elevation; (b) Slope; (c) Aspect; (d) Carvatu;
(e) Landform.

Slope: the slope angle is a very good proxy of the shear stress that promotes instability
on slopes. Theoretically, the propensity to landslide occurrence tends to increase with the
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increase of slope angle [2]. The slope in the study area was discretized based on a 10◦

interval and generated 8 categories; see Figure 4b.
Aspect: aspect, referring to the direction of the normal vector of the projected slope

on the horizontal plane, is related to soil moisture, surface runoff and vegetation, which
indirectly affects landslide development [3]. According to the local terrain, the aspects of
the study area were divided into 9 classes at 45◦ angle intervals, one of which is flat; see
Figure 4c.

Profile curvature: profile curvature reflects the sharpness of the slope and represents
the ground complexity. Profile curvature affects the movement (acceleration or deceleration)
of materials on the slope and plays an indirect role in the transportation and deposition of
materials on the slope. This study divides profile curvature into 8 classes according to the
classification results; see Figure 4d.

Landform: the distribution of landslides is closely related to geomorphic genesis and
topography. Landslides mainly occur in mountainous areas with steep terrain while few
landslides occur on the plain. The study area mainly contains 7 different landform types;
see Figure 4e.

3.1.3. Land-Cover-Related Causative Factors

Land use: on the one hand, land use reflects anthropogenic actions that can increase
landslide activity [6]. On the other hand, the impact of different land use types on seismic
landslides reflects the varying degree of vegetation cover on slopes. For instance, landslides
are less frequent along slopes with dense and deeply rooted vegetation [7]. According to
the data available on China Academy of Sciences, the study area contains 5 different land
use types; see Figure 5a.

Figure 5. Land-cover-related causative factors. (a) Land use; (b) Soil; (c) Distance to road.

Soil: soils are a critical component of slopes. Different soil types have different mineral
composition, densities, and permeability coefficients, which have different effects on the
occurrence of landslides. According to the data available from the China Academy of
Sciences, the study area contains 6 different land use types; see Figure 5b.

Distance to road: the impact of human activities on landslides is mainly reflected in
road construction. In road construction, engineering activities (e.g., such as cutting a slope
at the slope top) often change the slope topography, making the slope unstable. The study
area was classified into 10 classes with a buffered distance interval of 0.5 km; see Figure 5c.
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3.1.4. Hydrological-Related Causative Factors

Distance to river: rivers are key factors river is a key factor in the occurrence probability
of landslides. Erosion and cutting by a river can weaken slope stability (Nadim et al. 2006).
The distance to a river represents the magnitude of exposure to the erosive action of the
river. In accordance with the river distribution of the study area, the buffer zone was
established based on a distance of 0.5 km, and the study area was divided into 11 categories;
see Figure 6a.

Figure 6. Hydrological-related causative factors. (a) Distance to river; (b) TWI; (c) Rainfall.

Topographic wetness index (TWI): TWI represents the spatial distribution of water in
the soil and can describe the topographic influence on the water saturation of the soil. The
moisture content in the soil will affect the rock, soil, and vegetation conditions on the slope
surface, thereby affecting the landslide occurrence. The study area was divided into 9 sets
at 2 intervals according to the range of the TWI; see Figure 6b.

Annual average rainfall: rainfall is an important landslide trigger factor. Surface water
seeps into the slope during rainfall, which increases the slope weight and may damage slope
stability. The dryness and wetness alternately break the limit equilibrium by increasing pore
water pressure through rock cracking, which provides favorable conditions for landslides.
This study divides the annual average rainfall into 7 categories; see Figure 6c.

3.2. Methodology
3.2.1. Mapping Unit Selection

A suitable mapping unit is critical for LSM. Five typical mapping units [48] include:
(1) grid unit, (2) slope unit (SU), (3) regional unit, (4) homogeneous unit, and (5) sub-
watershed unit. Among these five units, grid and slope units are frequently used for LSM
due to their simplicity. Though the grid unit is simple and easy to operate, it breaks down
the slope integrity and reduces the relationship between landslides and slopes. By contrast
to the grid unit, the slope unit boundary is more consistent with the ridge and valley lines,
and better reflects the topographic features. Therefore, this study selects SU as the basic
mapping unit and then divides the study area into 1351 Sus; see Figure 7.
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Figure 7. Slope units of the study area.

3.2.2. Independency Analysis

The process of independency analysis is to reduce the influence of the interdependency
of causative factors on the performance of the control group. Correlation coefficient analysis
is an important method to analyze the independence of causative factors, and the correlation
coefficient reflects the correlation between factors. This paper applied GIS statistical analysis
tool to establish the correlation coefficient matrix of factors; see Table 3. Based on the
threshold algorithm, this study retains those factors with low correlation coefficients.

Table 3. Causative factor categories for landslide.

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

F1 1
F2 −0.85 1
F3 0.04 −0.11 1
F4 −0.03 −0.06 0 1
F5 −0.68 0.63 −0.02 0.04 1
F6 −0.15 0.03 0.12 0.12 0 1
F7 0.10 −0.10 0.05 0.01 −0.06 −0.09 1
F8 0 −0.02 0.04 0.06 0.07 0.29 −0.01 1
F9 −0.48 0.41 0.02 0.03 0.81 0.05 −0.06 0.12 1

F10 −0.37 0.32 −0.03 0.02 0.48 −0.07 −0.06 0.02 0.40 1
F11 −0.25 0.25 0 −0.03 0.45 −0.12 0.03 −0.02 0.30 0.21 1
F12 −0.13 0.08 −0.02 0 0.09 0.10 −0.02 0.07 0.10 −0.08 0.02 1
F13 −0.30 0.25 0 −0.10 0.67 −0.05 −0.05 0.03 0.65 0.25 0.28 0.12 1
F14 0.03 0 −0.02 −0.07 −0.07 −0.26 −0.05 −0.22 −0.09 −0.03 0.05 0.02 −0.06 1
F15 −0.54 0.29 −0.03 0.02 0.16 0.24 −0.03 0.04 0.07 0.04 0.04 0.23 0.14 −0.03 1

F1~F15 represent PGA, distance to fault, earthquake intensity, lithology, elevation, slope, aspect, curvature,
landform, land use, soil, distance to road, distance to river, TWI, and rainfall, respectively.
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3.2.3. Importance Analysis of Causative Factor

The formation of landslides is the result of the comprehensive action of different
causative factors, which have different effects on landslide occurrence. In this paper, the
importance of factors is analyzed by mean decrease accuracy from RF according to the
complete landslide inventory, and the result is shown in Figure 8. In general, the seismic
landslide is a kind of seismic geological disaster directly triggered by the earthquake,
and its main causative factors are related parameters of seismology, which in this paper
are seismic intensity and distance to fault. The formation of landslides needs certain
topographic conditions, that is, there is a steep terrain. Therefore, the terrain slope is
another important factor affecting landslides in the Wenchuan earthquake, which is second
only to ground motion parameters. Rainfall, especially heavy rainfall, will intensify surface
seepage, increase pore water pressure, and weaken rock mass strength. All these effects
indicate that rainfall is a factor that cannot be ignored for the formation of landslides. In this
paper, rainfall, a hydrological type, is the third major factor after seismology and terrain.
Figure 8 also shows that different types of causative factors have different influences on
landslides, and a single type of causative factor cannot effectively represent the formation
conditions of landslides. Therefore, the comprehensive effects of various types of causative
factors should be comprehensively considered.

Figure 8. Importance of 15 causative factors.

By full consideration of the results of independency analysis and importance analysis,
this study discarded three causative factors, including earthquake intensity, aspect, and
soil. The remaining twelve causative factors will be used for the control group.

3.2.4. LSM Based on the Graph Theory and Multi-Modal Classification

This study presents a new landslide susceptibility mapping method based on the
graph theory and multi-modal classification. The presented method contains four main
steps: (a) feature extraction from each data modality; (b) graph construction based on
features of each data modality; (c) nonlinear graph fusion; and (d) landslide susceptibility
mapping. Figure 9 illustrates the flowchart of the proposed method.

This study groups 15 causative factors into 4 data modalities: (1) seismic modal, includ-
ing peak ground acceleration, distance to fault, seismic intensity, and lithology; (2) terrain
modal, including elevation, slope, aspect, profile curvature, and landform; (3) land cover
modal, including land use, soil, and distance to river; and (4) hydrological modal, including
distance to river, topographic wetness index, and annual average rainfall.
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Figure 9. Workflow of LSM based on the graph theory and multi-modal classification.

After the feature extraction, this study applies the graph theory to represent attribute
values of slope units (SUs). For each modal data, we build a graph according to its features.
Suppose the study area contains n SUs and each SU has l features derived from m modal-
ities. Using features from i-th modality, we construct a graph Gi = (Vi, Ei), i = 1, . . . , m
according to model relations between n SUs, where Vi represents n SUs and Ei are weighted
by how similar SUs are. Wi is a n× n similarity matrix that denotes edge weights, Wi(a, b)
represents the similarity between SU a and SU b in i-th modality. This study calculates the
pairwise Euclidean distance and then converts it to similarity matrix by the exponential
kernel. This study applies random forest to calculate the similarity between pairs of subjects.
The similarity matrix provides a consistent measure for pairwise similarity of SUs, and thus
finds a way to incorporate information from multiple modalities with a unified measure.

The graph construction generates a similarity matrix Wi corresponding to i-th modal-
ity. These similarity matrices are then combined to make full use of the complementary
information between different modalities. Since different modalities are not necessarily
linearly related, a nonlinear graph fusion is utilized for fusion. The similarity matrix Wi is
normalized as follows:

W̃i =
Wi

Di , (1)
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where Di(a, a) = ∑n
b=1 Wi(a, b) is the diagonal matrix and ∑n

b=1 W̃i(a, b) = 1. The oc-
currence of self-similarity on the diagonal of Wi renders the normalization algorithm in
Equation (1) unstable. To tackle this issue, the study normalizes Wi as:

w̃i(a, b) =

{
wi(a,b)

2∑n
b=1 wi(a,b) , b 6= a

1/2 , b = a
, (2)

The normalization in Equation (2) not only speeds up the convergence rate, but also
guarantees the full rank of the final graph. The sparse matrix S̃i of W̃i is calculated by
k-nearest neighbors (KNN) to measure local affinity as:

s̃i(a, b) =

{
w̃i(a,b)

∑b∈k−NN(a) w̃i if b ∈ k−NN(a)

0 otherwise
, (3)

To keep strong connections and discard weak connections between SUs, the weighted
edges between non-neighborhood SUs are set to 0. This is beneficial to improve the
robustness to the noise of similarity measures. Given features from m modalities, based on
Equations (2) and (3), we obtain m normalized matrices W̃i and m sparse matrices S̃i. After
that, a single unified graph is constructed through non-linear iterative cross-diffusion as:

w̃t+1 = s̃i ×
(

1
m− 1

m

∑
j=1,j 6=i

w̃t
j

)
× (s̃i)

T
, (4)

Let W̃i
t=0 = W̃i denote the initial similarity matrix for i-th modality, and S̃i is the ker-

nel matrix. The connection information between different modalities is diffused during the
iteration. Each iteration will normalize the updated similarity matrix W̃i

t+1, i = 1, 2, . . . , m
as Equation (2). To check the convergence of nonlinear graph fusion, each iteration calcu-
lates the relative error ‖Wt−Wt−1‖

‖Wt−1‖
. If the relative error ‖Wt−Wt−1‖

‖Wt−1‖
is smaller than the given

threshold, then the iteration will terminate. After T iterations, the final single unified
similarity matrix W̃u is expressed as:

W̃u =
1
m

m

∑
i=1

W̃T

i

, (5)

Since the unified similarity matrix W̃u keeps all the relationship information between
different SUs, entries in W̃u will be directly used for LSM. The landslide probability of the
study area was calculated based on the aforementioned statistical learning methods (i.e.,
SVM, LR, KNN, and RF). To intuitively distinguish the hazard degree of the study area, this
study utilizes the natural break algorithm to divide the landslide susceptibility into 5 levels:
very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and
very high susceptibility.

4. Results
4.1. Test of the Parameter Influence on the Performance of LSM

The presented method involves two parameters to be set: (1) the number of nearest
neighbors k, and (2) the iteration number T for nonlinear graph fusion. To validate the
parameter tuning influence on the performance of the presented method, k varies from
100 to 600 with a step of 100. Figure 10a suggests that the influence of k on the area under
the curve (AUC) is marginal, which means the effect of k on the performance of LSM is
negligible. Thus, this study sets k = 300. Figure 10b shows that nonlinear graph fusion
converges quickly after very sparse iterations: the cross-diffusion process has converged
after 5 iterations. Thus, this study sets T = 5.
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Figure 10. The effect of (a) k and (b) T on the presented method.

4.2. Comparison of Different LSM Methods

This study compares the presented model to three benchmark methods, including
support vector machine (SVM), linear regression (LR), KNN, and random forest (RF), and
Figure 11 illustrates results of these four LSM methods. The LSM results produced by
different methods vary from each other. In the LSM obtained by the MMC model, the
landslide risk areas are mainly distributed along the water system, mostly concentrated in
the eastern and northeastern part of the study area, and a small amount are distributed
in the southeast and western regions; see Figure 12. Among the four LSM methods, the
MMC result is the closest to the actual spatial distribution of landslides induced by the
Wenchuan earthquake.

Figure 11. Landslide susceptibility maps produced by different methods: (a) SVM, (b) LR, (c) KNN,
and (d) RF.
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Figure 12. Landslide susceptibility maps produced by different methods considering data modality:
(a) MMC-SVM, (b) MMC-LR, (c) MMC-KNN, and (d) MMC-RF.

To quantitatively assess the reliability of the model, we analyzed and verified the
reliability of the landslide susceptibility assessment model through the complete landslide
inventory data in the study area. Table 4 shows the area of each susceptibility subdivision
in the LSM derived from different models, and counts the area of historical landslides
in the different subdivisions. In this paper, the area of historical landslides developed in
the dangerous zone (containing both very high and high susceptibility areas) is used as
the accuracy of model predictions. The statistical results showed that the proportion of
landslide area in the hazard zone reached 84% in the MMC modeling, 75% in the KNN
model, 72% in the SVM model, and 74% in the LR model. This result shows that the MMC
mode has the best performance.

Model evaluation can be used to verify the evaluation performance of LSM. There
are two commonly used model evaluation methods, namely, superposition analysis based
on complete landslide inventory and comprehensive model evaluation based on indepen-
dent data sets. The independent data set is mainly established in the preliminary data
preparation stage. In this paper, the performance of the model is verified by the above
two evaluation methods.
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Table 4. Comparison of each susceptibility class for the different modeling.

Algorithm Susceptibility Level Area (km2) Area Proportion
(%) Landslide Area Landslide

Percentage
Density

Percentage

SVM

Very low 1191.12 0.30 14.15 0.04 0.01
Low 749.00 0.19 32.03 0.09 0.04

Moderate 746.60 0.18 54.36 0.15 0.07
High 720.28 0.18 100.21 0.28 0.14

Very high 631.15 0.16 156.21 0.44 0.25

LR

Very low 1175.66 0.29 12.90 0.04 0.01
Low 756.84 0.19 27.33 0.08 0.04

Moderate 717.57 0.18 51.68 0.14 0.07
High 733.14 0.18 101.20 0.28 0.14

Very high 656.32 0.16 163.85 0.46 0.25

KNN

Very low 1203.94 0.30 10.83 0.03 0.00
Low 608.15 0.15 21.47 0.06 0.04

Moderate 945.85 0.23 64.69 0.18 0.07
High 594.53 0.15 83.50 0.23 0.14

Very high 687.27 0.17 176.54 0.49 0.26

RF

Very low 1797.64 0.45 32.35 0.09 0.02
Low 682.26 0.17 24.43 0.07 0.04

Moderate 376.85 0.09 29.42 0.08 0.08
High 434.91 0.11 68.82 0.19 0.16

Very high 746.49 0.18 201.99 0.57 0.27

In general, landslide inventory mapped after an earthquake is important reference
data to verify the model performance. Accurate and reliable LSM should meet the following
two requirements: (1) as many landslides as possible should fall into the high susceptibility
area, that is, the higher the value, the more accurate the LSM; (2) The proportion of high
susceptibility areas in the study area should be as small as possible, that is, the lower
the proportion, the more is the reliability of the LSM. The model is considered to have
good performance when it meets both requirements. However, this method relies on the
classification of susceptibility level, that is, the determination of threshold, and depends
more on human subjective factors. Therefore, this method can only represent the reliability
of LSM under specific threshold conditions. In contrast, the receiver operating characteristic
(ROC) curve is not affected by threshold setting, which is a commonly used method in
traditional classification models. By calculating the true positive rate and false positive
rate under different thresholds, a curve with true positive rate as X-axis and false positive
rate as Y-axis is established. AUC value of ROC is a quantitative indicator of model
performance. the higher the AUC value is, the more reliable the model performance is.
To further evaluate the prediction accuracy of the model, data on new landslide events
after the 2008 Wenchuan earthquake were collected, and the landslide susceptibility level
corresponding to the new landslide events was taken as the evaluation index of the model.
Generally, the more new landslide events locate in the high susceptibility areas, the more
accurate the prediction of the model will be.

Figure 13a presents ROC curves for four LSM methods based on the stack of causative
factors. The AUC values for SVM, LR, KNN, and RF are 0.851, 0.874, 0.885, and 0.911,
respectively. Among four methods, RF achieves the highest AUC value (0.911) while SVM
has the lowest AUC value (0.851). This indicates that LSM results varied in their accuracies
depending on the machine learning methods used, and thus the selection of a right machine
learning method is critical to obtain a satisfactory LSM for a specific area. Figure 13b shows
that AUC values for MCC-SVM, MCC-LR, MCC-KNN, and MCC-RF are 0.985, 0.985, 0.930,
and 0.975, respectively. Among four MCC methods, MCC-SVM and MCC-LR produce
the highest AUC value (0.985) while MCC-KNN achieves the lowest AUC value (0.930).
Overall, all MCC based methods improve the LSM performance compared to the same
methods based on the stack feature set. The improvement of AUC values ranges from 4.5%
to 13.4%. This suggests that data modality has a significant effect on the LSM performance.
Fusion of complementary information from different modalities greatly improves LSM
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accuracy compared to using the stack feature set. Thus, the presented method provides a
simple and straightforward means to combine complementary information from multiple
data modalities, which in turn boosts LSM performance. This verification indicates that
the data modality is both statistically viable and provides an improved LSM performance
versus stack feature set based models.

Figure 13. ROC curves of different LSM models: (a) without consideration of data modality, and
(b) with the consideration of data modality.

Since LSM is mainly used to evaluate the possibility of subsequent landslides, a
new landslide event is also a valuable reference for verifying the performance of LSM
generated. Hence, this study collected 10 new landslides that occurred after the Wenchuan
earthquake through searching the Internet. Geographic locations of these landslides were
determined by the cross-analysis of the news and time series of satellite images from Google
Earth, as shown in Table 4. The statistics on landslide susceptibility corresponding to the
new landslides and analysis of the reliability of the landslide susceptibility results are
presented in Table 5. For the stack feature set, new landslide occurrence in the non-risk
areas (i.e., low, and extremely low susceptibility areas) for SVM, LR, KNN and RF was
1, 1, 1, and 3, respectively. For MMC-SVM, MMC-LR, MMC-KNN and MMC-RF, new
landslide occurrence in the non-risk areas was 1, 1, 1, and 1, respectively. This suggests
that statistical methods by consideration of data modality achieve the same or even higher
performance compared to that without consideration of data modality. Thus, LSM methods
with the consideration of data modality are also beneficial for assessing the possibility of
future landslides.

Table 5. LSM validation using new landslide events.

No. Time Latitude Longitude
Landslide Susceptibility Level

SVM LR KNN RF MMC-SVM MMC-LR MMC-KNN MMC-RF

1 2010/05/30 103.644599 31.496066 M H H M H H M M
2 2018/07/20 103.574819 31.475016 M H EH L H M EH H
3 2018/04/02 103.545836 31.678040 EL EL EL EL L EL EL EL
4 2013/07/22 103.443362 31.296196 M H EH EH EH EH EH EH
5 2009/07/25 103.488871 31.219105 EH EH EH EH EH EH EH EH
6 2010/06/12 103.411845 31.220022 H H H EH H EH EH EH
7 2011/07/03 103.502089 31.120935 EH H H EH H EH EH EH
9 2011/07/03 103.500687 31.067901 EH EH EH H EH EH H EH

10 2011/07/03 103.503880 31.174279 EH EH EH EH H EH EH EH
11 2019/08/20 103.300290 31.120226 M H H L M H M M

EL, L, M, H, EH represent Extremely low, Low, Moderate, High, Extremely high.
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5. Conclusions

Landslide susceptibility mapping (LSM) is imperative to landslide-related disaster
reduction and prevention and sustainable uses of slopes. Machine learning algorithms have
been widely applied to LSM and many scholars designed various methods to boost LSM
performance by combining results of multiple machine learning algorithms. Compared to
fusion at the decision level, information fusion for LSM at the data modality level has been
seldom reported. To address this issue, this paper exploits data modality to boost the LSM
performance. Experimental results suggested that the data modality remarkably affects
LSM accuracy, and the presented LSM model effectively integrates the complementary
information of different data modalities and achieves more satisfactory results than main-
stream LSM models without consideration of data modalities. This study provides new
insight on the data modality applications to LSM. This study finds that the performance
of machine learning algorithms (e.g., SVM, LR, KNN and RF used in this study) varies in
accordance with topographic variables. Such results agree with those of state-of-the-art
studies, and suggest that the patterns in causative factors for landslides are highly complex
and variable for the different facets of causative factor attributes (e.g., spatial scale). This
highlights the importance of considering data modality at the data and modeling level
for LSM, as done by the proposed approach in this study. As shown in the experimental
results, the proposed MMC approach can improve the accuracy of LSM when used with
any of SVM, LR, KNN and RF. Alternatively, assembling the results from different machine
learning algorithms at the decision level may further improve the reliability of LSM.

The generation of training data in this study relies on a complete landslide inventory
which is beneficial for generating a good amount of training data to get reliable LSM
Extensive labelled training samples, however, are often a constraint as a complete landslide
inventory after an earthquake is rarely available for a specific area in a very short time. In
such circumstances, the selection of suitable machine learning algorithms is critical. If the
incomplete landslide inventory cannot generate sufficient training samples or the number
of causative factors is larger than that of training samples, statistical learning algorithms
with high bias and low variance (e.g., linear regression, Naive Bayes, and linear SVM)
would be recommended. Otherwise, low bias and high variance algorithms (e.g., KNN,
decision trees, and kernel SVM) can be considered. Another direction is to develop suitable
algorithms (e.g., pseudo training sample generation [49], mixed- effects models [50]) to
reduce the influence of the inventory incompleteness on the statistical learning based LSM.
The third direction is to exploit the potential of crowdsourcing data (e.g., website, social
media) to improve the completeness and the effectiveness of the landslide inventory.

This paper focuses on the multi-modal analysis of causative factors, but the high
quality of input causative factor data required is also an important factor that cannot be
ignored to produce satisfactory performance of LSM. The rapid development of new sensors
undoubtedly provides new sources for high quality data on causative factors (Dou, et al.,
2019). However, the higher resolution of the causative data does not necessarily lead to
the high accuracy of LSM. The appropriate resolution needs to be further discussed. In
addition, the current research directly uses causative factors, which lack the necessary
inspection on quality. Therefore, the quality of causative factors requires in-depth analysis
to control the influence of its inherent bias error on LSM.

The dataset may have a large number of features that may not all be relevant and
significant. For a certain data modality, the feature number may be larger compared to
training data size. A large number of features may bog down some learning algorithms,
making training time unfeasibly long. Therefore, the selection of causative factors should be
used to reduce dimensionality and select important features. In our work, only four modal
data are used for landslide classification, and there may have other modal data not used as
classification data that may provide additional complementary information to potentially
improve the classification performance, such as human engineering activities data. It
should be noted that some feature data of one modal may have similar effects on landslide
generation in certain areas, which may cause confounding effects when classifying based on
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such data. It would be interesting to analyze in depth the impact of the selection of specific
characteristic factors in modal data on the methodology used in this paper. In addition,
some features extracted from different modal data are not independent from each other,
and it makes sense to merge the correlation of features into the proposed classification
framework to help classification. In most traditional landslide susceptibility evaluation
methods, only feature-level data are simply concatenated for landslide classification. Some
studies [51] have also explored the influence of the number of selected feature parameters
on the accuracy of landslide evaluation results, and found that not including all features in
the classification evaluation may give better result
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