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Abstract: Legal judgment prediction (LJP) is a crucial task in legal intelligence to predict charges,
law articles and terms of penalties based on case fact description texts. Although existing methods
perform well, they still have many shortcomings. First, the existing methods have significant
limitations in understanding long documents, especially those based on RNNs and BERT. Secondly,
the existing methods are not good at solving the problem of similar charges and do not fully and
effectively integrate the information of law articles. To address the above problems, we propose a
novel LJP method. Firstly, we improve the model’s comprehension of the whole document based
on a graph neural network approach. Then, we design a graph attention network-based law article
distinction extractor to distinguish similar law articles. Finally, we design a graph fusion method to
fuse heterogeneous graphs of text and external knowledge (law article group distinction information).
The experiments show that the method could effectively improve LJP performance. The experimental
metrics are superior to the existing state of the art.

Keywords: legal judgment prediction; heterogeneous graphs; graph convolutional network; graph
attention network; graph fusion method

1. Introduction

Legal intelligence aims to use artificial intelligence technologies, such as natural lan-
guage processing and speech recognition, to empower the field of intelligent justice. Legal
judgment prediction (LJP) is an essential task in the field of legal intelligence, especially for
countries and regions that use civil law systems in which the judge decides the charge and
the term of penalty based on the fact description of the case and the relevant law articles.
The purpose of the LJP task is to predict the judgment of a case (charge, law article and
term of penalty) based on the case fact description, which can help legal practitioners to
judge the case and can also give professional legal advice to people who are not in the legal
field. Currently, LJP tasks are generally regarded as text classification tasks [1]. Figure 1
shows the topology of LJP.

Figure 1. Legal judgment prediction.

Existing LJP methods have two main drawbacks. Firstly, the number of long texts
in the LJP dataset is large, with texts having a length larger than 512 accounting for
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about 15% of the total and the longest text containing 56,694 words. Existing methods
lack inference and representation for long documents and training data for LJP are fact
description texts of cases. They focus on selecting deep-learning-based encoders, such as
CNN-based encoders [2], RNN-based encoders and BERT-based encoders. The CNN-based
encoder is not good at modeling and fully understanding sequential data such as text.
Although an RNN-based encoder is good at modeling sequential data such as text, it has
the natural disadvantage that too-long sequences can cause the model to lose information
in backpropagation. Although BERT-based methods have made breakthroughs in different
fields in recent years [3–8], there is still a deficiency in terms of solving understanding long,
domain-specific text, mainly because pre-trained models trained by generic corpora often
do not work well in the legal field. There are currently several pre-trained models for the
legal domain [9–11]. Nevertheless, there is only one open-source pre-training model for
Chinese judicial scripts and its effect has been experimentally verified to have no significant
performance improvement.

Secondly, there is a confusing issue of charges (law articles), a current research hotspot
in LJP. Existing work uses law articles to distinguish between similar charges, but a similar
descriptive text can appear in the law articles corresponding to different charges. Therefore,
it is still tricky to better use law articles to distinguish charges and existing work is still
inadequate. Ref. [12] first used a traditional classifier to obtain the relevant law articles;
then, they incorporated these relevant law articles in the model. However, this approach
introduced too much noise and the results were not very satisfactory. The method proposed
in [13] requires much expert knowledge and, in practice, we all prefer to use methods that
can automatically obtain features to predict the judgment results. Ref. [14] used a graph
neural network-based method to capture the differences in feature information between
law articles, but it constructed text graphs in a relatively simple way that was not sufficient
to adequately capture the different features of similar law articles.

In order to solve the above problem, this paper proposes a new LJP method, which
uses a graph neural network-based approach. Firstly, we use a graph network that extracts
distinction of features between similar law articles for the law article graphs. Then, we
construct a total of six kinds of different text graphs (heterogeneous graphs) for each fact
description text and use a graph convolutional network (GCN) [15] to pass and update
information inside the graph. A graph fusion method is used to integrate the node informa-
tion of the six kinds of graph and the information of the law articles into the model. Finally,
the fused vectors are used to predict the judgment results of the cases. The contributions of
this paper are summarized as follows:

1. A novel method for legal judgment prediction is proposed. It can solve the confusion
of similar charges and similar law articles.

2. We propose a method to fuse different feature information of nodes from different
kinds of graphs (graph fusion method).

3. This paper incorporates six kinds of graphs to predict case judgment; we achieved
excellent results using real-world datasets, outperforming all baseline models.

This paper contains five sections in total and the first is an introduction. Section 2
focuses on the related work. In Section 3, the details of the proposed method are presented.
In Section 4, the experimental results and analysis of the model are shown. Finally, the
entire paper is summarized in Section 5.

2. Related Work

LJP received attention a long time ago, with the earliest work dating back to 1957
with Kort [16]. Existing LJP works can be divided into three categories; the first uses
mathematical or statistical methods, which are primarily early work, using some linear
classifiers and incorporating legal rules to make such work well interpreted, but they have
poor generalization. With the development of deep learning techniques, deep-learning-
based methods have been widely applied to LJP tasks.
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The second uses the novel architecture of the model to improve the performance of
the task. Ref. [17] proposed a model based on the combination of FastText and TextCNN to
solve the task. Ref. [18] proposed a hierarchical legal cause prediction (HLCP) model that
uses an attention-based end-to-end model to predict charges. Ref. [19] proposed a multi-
channel attentive neural network that extracts the case fact description, the defendants and
relevant law articles. Ref. [20] proposed a new recursive attention network (RAN) to match
fact descriptions and law articles correctly. Ref. [21] devised a new approach based on the
judge’s decision process. The method incorporates the plaintiff’s claims and court debate
data to reach the final judgment through multi-task learning. Ref. [22] used an gating
mechanism-based model to enhance the term of penalty prediction. Ref. [23] proposed a
multi-level attention-based model that can handle cases containing multiple defendants.

The third is to explore how to incorporate legal knowledge into the model. Ref. [24]
proposed a method to obtain the points related to the fact description from the definition of
a charge, which enhances the feature representation of the fact description and improves
the performance of the charge prediction task. Ref. [4] used an RNN model based on an
attention mechanism and incorporated the information of the relevant law articles into the
model. Ref. [6] summarized ten different legal attributes and applied them to the data of
less frequent charges to alleviate the poor prediction results of low-frequency charges.

In addition, ref. [25] proposed a large-scale Chinese LJP dataset in 2018, which contains
a large number of legal instruments opened by the Chinese government and contains three
subtasks, law articles, charges and term of penalty prediction. This dataset also provides
a convenient condition for later scholars to engage in research in related fields, which
significantly contributes to the development of the field.

3. Our Method

As shown in Figure 2, we propose a graph neural network-based LJP method. Firstly,
six kinds of text graph were constructed based on judicial decision documents, including
the following: co-occurrence graph, point-wise mutual information (PMI) graph, semantic
graph (using cosine similarity, Euclidean distance, Manhattan distance and Chebyshev
distance). The nodes in the graph are words of the document, document virtual nodes; they
then went through a GCN for intra-graph information passing. For the law article graph,
we used the law article (LA) distinction extractor to obtain the information of different
point features of similar law articles. Then, we input the text graph features and the law
article graph features into the graph fusion layer to predict the results of LJP.

3.1. Problem Formulation

In this section, we briefly describe the fact descriptions, law articles, charges, terms of
penalty and legal judgment prediction, as well as the related notations and terminology, as
Figure 3:

• Fact description: The fact description is a part of an Judicial decision document which
mainly describes the time and place of the case, the defendant, what illegal activities
were carried out, etc., and is noted as FD.

• Law article: Law articles are the basis for convictions and each charge has at least
one law article. The law articles are noted as L = {LA1, LA2, . . . , LAn}. In the dataset
used in the paper, the maximum number is 118.

• Charge: The charges are the items that need to be predicted. The maximum number is 130.
• Term of penalty: The terms of penalty are the items that need to be predicted. The

maximum number is 11.
• Legal judgment prediction: The LJP task is to obtain the legal judgment based on the

fact description of the case and our task is to train a model F to predict the LJP LJP
result (applicable law articles, charges and terms of penalty).
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Figure 2. Overview of our LJP method.

Figure 3. An example of LJP. The model’s input is fact description and we need to predict law articles,
charges and terms of penalty. The number of classes for the three tasks on the CAIL-small dataset are
103, 119 and 11; the number on the CAIL-big dataset are 118, 130 and 11.

3.2. Graph Construction Based on Legal Text

In this section, we illustrate how to construct six kinds of text graph Gk(V, Ek) for
each document, where k denotes the k-th graph of the document and k belongs to [1, 6]; V
represents all graph nodes, including the word or virtual document nodes; and E is the set
of the weights of the edges.
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3.2.1. Co-Occurrence Graph

Word co-occurrence relationships are often used to analyze research topics in various
disciplines and refer to the co-occurrence of several words in the exact text or sentence, or
paragraph. When several words frequently appear together, there is likely to be a semantic
relation between them. For a pair of words wi, wj, the edge weights between them are
calculated using the following formula:

Ei,j = p(wj|wi) = #N(wi, wj)/#N(wi) (1)

where Ei,j represents the co-occurrence relationship between two words, #N(wi) is the
number of occurrences of the word wi in the co-occurrence window and #N(wi, wj) is the
number of occurrences of the word pair wi, wj in the co-occurrence window. If #N(wi, wj)
is 0, it means that the word pair has no co-occurrence relations.

3.2.2. Point-Wise Mutual Information Graph

PMI is a way to calculate word association, the value of which represents the closeness
of the relation between two words. The basic idea of PMI is to count the probability of two
words appearing together in the text. If the probability is higher, its relevance is closer and
the association is higher. PMI is calculated as follows:

Ei,j = PMI(i, j) = log
p(i, j)

p(i)p(j)

p(i, j) =
#NW(i, j)

#NW
(2)

p(i) =
#NW(i)

#NW

where #NW is the number of sliding windows defined in the whole dataset, #NW(i, j) is
the number of windows containing word i and word j and #NW(i) is the number of sliding
windows containing word i. When PMI is positive, the larger its value is, the greater the
semantic relevance between two words it represents. When PMI is negative, there are
basically no relationships between the two words. Only the edges with positive PMI values
are retained in our method and the edges with negative weights are directly discarded.

3.2.3. Semantic Graph

The word vectors are obtained from a pre-trained model based on a large corpus. The
pre-trained model has achieved great success in recent years and has broken the list in
many NLP tasks, indicating that the pre-trained model has learned the text’s semantic,
syntactic and structural information. In our method, we construct four types of word
semantic graphs based on Cosine similarity, Euclidean distance, Manhattan distance and
Chebyshev distance. The Cosine similarity is a standard similarity calculation method,
which uses the cosine of the angle between two vectors in the vector space to measure the
difference between two individuals. Compared with the distance metric, Cosine similarity
focuses on the difference between two vectors in a direction rather than distance or length.
We use the cosine similarity measure to calculate the edge weights of word pairs which
corresponds to the following formula:

Ei,j = sim(i, j) = cosθ =
xi · xj

|xi| · |xj|
(3)

The remaining three ways of constructing graphs are based on distance metrics, which
are used to calculate the distance values of individuals (word vectors) present in the
space, with larger values indicating more significant differences between individuals [26].
Euclidean distance is the most common distance metric, which measures the absolute
distance between word vectors, corresponding to the following equation:



Appl. Sci. 2022, 12, 2531 6 of 15

Ei,j = dist(i, j) = ||xi − xj||2 (4)

Manhattan distance is a generalization of the Euclidean distance, which is calculated as

Ei,j = dist(i, j) = ||xi − xj||1 (5)

where ||a||1 means L1 norm, which is the sum of the absolute values of the elements of the
vector a; ||a||2 means L2 norm, which is the sum of the squares of the elements of the vector
a and then the square root.

Chebyshev distance originates from the move of the Chinese king in chess. Chebyshev
distance is Ming’s distance when p tends to infinity, which is calculated as

Ei,j = dist(i, j) = max|xi − xj| (6)

3.2.4. Build Graph for Each Document

As mentioned above, we constructed six kinds of graphs for each document and we
removed edges with weight values less than 0 or less than the threshold we set. Such an ap-
proach can filter some noise and reduce the computational effort when passing information
between graphs. Document virtual nodes are linked to all word nodes in the document
and the edge weight is 1. For these six types of graph, we denoted Gs = (V, Es)6

s=1.

3.3. Law Article Distinction Extractor
3.3.1. Build Law Articles Graph

We treated the law articles as nodes and the edge weights between nodes were the
cosine similarity of the document representation vector (Vli, Vl j) of the law article pairs.
Vli, Vl j were obtained as a weighted average for each Glove word embedding in the sentence
using tf-idf. Here, we set a threshold p to filter out the edges with weights less than p in
the graph, so the law article graph was divided into m groups (supposing the number is m).
The law articles within each group had similarities at the semantic level.

3.3.2. Law Article Groups’ Distinct Learning Operation

The graph constructed in the previous step could distinguish the different law article
groups, but distinguishing similar law articles in one group is the critical problem. In order
to better distinguish the similar law article in the same group, we propose a law distinction
learning operation inspired by the graph attention network (GAT) [27]. Our approach
differs from GAT in that we use an attention-based mechanism to remove the similarity
information between each law article node. This operation can preserve the unique feature
information of each law article and thus can distinguish similar law articles. The specific
formula is as follows:

V(l)
Li

= W(l−1)VLi
l−1 −

1
K

K

∑
k=1

∑
j∈Ni

αk
ijW

kVj (7)

αij =
exp(LeakyReLU(βT [WVi||WVj]))

∑j∈Nj
exp(LeakyReLU(βT [WVi||WVj]))

(8)

where V(l) refers to the representation of law article Li in the l-th layer; Nj refers to the neighbor
set of Li in graph G; and Wl and Wk are the trainable self-weighted matrix and the neighbor
similarity extracting matrix, respectively. αij indicates the importance of node j for node i and
node i must be the first-order neighbor of node j. In calculating the attention value between
nodes, masked attention is used to achieve the above assumptions. The attention mechanism
used in this paper was implemented by a single-layer feedforward neural network, in which the
activation function was the LeakyReLU function. The GAT also incorporates a multi-headed
attention mechanism, with K representing K heads in the formula.
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Then, we used the last layer of the network as a vector representation of the law article
nodes, denoted as V(l). This vector contained information about the different points of
similar law articles. For each of the N groups, which were divided in the law article graph,
we computed the representation vector separately, with the following equation:

hn = WdVL
Li
+ b(d) (9)

where Wd is a trainable parameter matrix, n ∈ N and hn represents the vector representation
of the n-th law article group.

3.4. Fact Description Graph Interaction

We used a graph convolutional network (GCN) to encode the nodes for each graph.
A GCN acts directly on the graph and can obtain the feature vectors of its nodes from the
information of the nodes’ neighbors. All the nodes in the graph are connected to themselves.
Let us assume that matrix X contains the features of all n nodes in the graph, where m is
the dimension of the feature vector of each node. The matrix A is the adjacency matrix
of G and D is the degree matrix of G and the values on the diagonal of A are all 1. The
GCN can obtain the information of direct neighbor nodes after the first layer of the graph
convolution operation. When multiple layers of GCNs are stacked, the information of a
more extensive range of neighbors can be learned. When the initial node feature matrix
is calculated by one layer of GCN, the k-dimensional node feature matrix L(1) ∈ Rn×k is
obtained, which is calculated as follows:

L(1) = tanh(ÃXW0) (10)

where Ã = D−1/2 AD−1/2 is the normalized symmetric adjacency matrix and W0 is the
parameter matrix. The hyperbolic tangent function (tanh) is used for the activation function
based on experiment. For multilayer GCN calculation,

L(p+1) = tanh(ÃL(p)Wp) (11)

where p is the number of layers, L(0) = X. We chose to use a three-layer GCN as the
graph feature extractor. Based on the experiments performed in this paper, we show that
the three-layer GCN could make the node information pass well and the one-layer and
multi-layer GCNs were worse than the three-layer GCN.

Then, we used the following readout functions for the six kinds of graph of one document:

Lv = sigmoid(W1Ll
v)� tanh(W2Ll

v) (12)

hG = Averagepooling(L1...LV) + Maxpooling(L1...LV)−Minpooling(L1...LV) (13)

where Lv is the graph node feature calculated by the attention mechanism. We then used
Averagepooling to add with Maxpooling and subtract with Minpooling. The idea is that
each text word contributes to the task, with essential words contributing more information
and unimportant words potentially having a negative effect.

3.5. Graph Fusion Layer

After the calculation of the above steps, for each document, we obtained six different
levels of vector expressions; then, we concatenated the six vectors as follows:

H =
6
||

s=1
hs

G (14)

where || is the concatenation operation; in order to incorporate different vector representations,
we designed the fusion method for fact description graphs with the following equation:

α = so f tmax(wT tanh(H)) (15)
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H∗ = HαT (16)

where w is the trainable parameter and α is the weight vector of H. After that, we mixed
the information of the law article group into the model. This part of our designed idea is
also to use the attention mechanism so that the model can use the importance of the law
article group for dynamic selection so that, in this step, we fuse the features of the six types
of graph and add the features of the law article. The formula is as follows:

α = so f tmax(tanh(WH∗)T(WLhN)) (17)

HF = αH∗ (18)

where WL and W are trainable weight matrices. Then, we obtained a representation of
graph fusion, where HF denotes the vector before the classification layer.

3.6. Prediction and Train

Here, we have three subtasks, t1, charge prediction; t2, sentence prediction; and t3,
law prediction. We used the HF obtained in the previous step and input it into the softmax
classifier as follows:

ŷj = so f tmax(W j
pHF + bj

p) (19)

where W j
p and bj

p are parameters specific to task tj . For training, we computed a cross-
entropy loss function for each subtask and took the loss sum of all subtasks as the overall
prediction loss.

Lp = −
3

∑
j=1

|Yj |

∑
k=1

yj,klog(ŷj,k) (20)

where |Yj| denotes the number of different labels for task tj and ŷj,k refers to the ground-
truth vector of task tj.

4. Experiments

To validate our method, we conducted rich experiments to verify the performance of
the model. We selected all three subtasks of LJP, including charge, term of penalty and law
article prediction.

4.1. Datasets

We used the Chinese AI and Law challenge (CAIL2018) dataset to validate the per-
formance of our model. CAIL2018 contains two parts of data, CAIL-small (practice phase
data) and CAIL-big (main competition phase data), and each sample in the dataset contains
a text of case fact description, relevant law articles, charges and terms of penalty. In the
pre-processing data stage, we first filtered out samples with a length of fact description text
less than 10, then filtered out samples with only a single charge and single law article and,
finally, removed data with sample size less than 100. We took about 15% of the total data as
the test set and the rest as the training set. The Table 1 below shows the detailed statistical
information of the dataset used in experiments.

Table 1. Dataset details.

Dataset CAIL-Small CAIL-Big

Training Set Cases 101,690 1,588,768
Test Set Cases 20,338 185,212
Law Articles 103 118

Charges 119 130
Terms of Penalty 11 11
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4.2. Baselines

• TFIDF + SVM: This technique uses TF-IDF to make text vectors and SVM [28] as a
text classifier.

• CNN [29]: This method uses CNNs containing multiple filters and employs softmax
as a classifier.

• RCNN [30]: The approach fuses RNN and CNN to make a new model and exploits
the advantages of both models to improve the performance of text classification.

• HARNN [31]: First, the method considers the hierarchical structure of documents;
words form sentences and sentences form documents, so the modeling is also per-
formed in these two parts and the attention mechanism is introduced.

• FLA [2]: The method proposes an attention-based neural network framework that can
perform the task of charge prediction and relevant law articles extraction and show
the importance of law articles in the civil law system for judicial decision making.

• TOPJUDGE [32]: The approach unifies multiple subtasks of LJP into a single learning
framework, builds dependencies between LJP subtasks into a DAG form and enhances trial
predictions using prior knowledge. The model can handle any DAG-dependent subtasks.

• GCN [12]: This method uses text to construct a graph and then a graph convolutional
network to extract node features for classification.

• MPBFN-WCA [2]: The approach designs a multi-view forward prediction and back-
ward verification framework to efficiently exploit the dependencies between multiple
subtasks. The word matching features of fact descriptions are integrated into the net-
work through an attention mechanism to distinguish cases with similar descriptions
but different penalties.

• LADAN [8]: The model effectively solves the problem of confusing charges (law
articles) in the LJP task. The method takes into account not only the positive effect of
the textual definitions of charges (law articles) on the semantic extraction of case fact
descriptions but also the negative effect of interrelationships (e.g., similarity relations)
between the definitions of charges (law articles) on the semantic extraction.

4.3. Experimental Settings

The datasets of test and validation for the experiments are shown in Section 4.1. We
used THULAC for word segmentation, which is excellent in handling Chinese segmenta-
tion. We used the Glove model [33] to pre-train the word vectors, where the word vectors
were set to 300 dimensions. For the CNN-based comparison model, we set the maximum
document length to 512 and, for the RNN-based comparison model, we set the maximum
number of words in a sentence to 150 and the maximum number of sentences in a document
to 15. Based on the preliminary experimental results on evaluation tests, we used the Adam
optimizer [34] with a learning rate of 0.01 and set the dropout to 0.5. The GCN interaction
steps were three and the sliding window size was 3. To reduce the memory overhead, we
used mini-batch for training. The environment of hardware and software of the experiment
are shown in Tables 2 and 3.

Table 2. Hardware environment.

Hardware Name Parameter Description Quantity

CPU Intel Core i7-10700K 2
GPU NVIDIA Tesla V100 32 G 1

Memory Lenovo 16 G 2
SSD SAMSUNG 512 G 1

Hard Disk Seagate 1 TB 2



Appl. Sci. 2022, 12, 2531 10 of 15

Table 3. Software environment.

Software Name Parameter Description

Operating system Ubuntu 16.04
Development tool Pycharm 2020
Version of Python 3.8
Version of Pytorch 1.7.0

Version of DGL 0.3

4.4. Experimental Results

We chose four metrics (accuracy, macro-precision, macro-recall and macro-F1) to
compare the performance of our model with the baseline model on the task. We used a
multi-task approach for each baseline model to train the model and select the best set of
parameters as the experimental results. All models were trained five times and we selected
their average values as the data results used for comparison.

Our method is noted as GFDN. Tables 4 and 5 show the experimental results on the
datasets CAIL-big and CAIL-small, respectively. It can be concluded that our method was
better than the baseline models in all metrics. Compared with LADAN, which is the best
performing baseline model, the performance of our model on the CAIL-big dataset was
improved by 0.1%, 0.02%, 0.14% and 0.1% and by 0.81%, 0.78%, 0.29% and 0.75% in the
CAIL-small dataset, respectively, in terms of accuracy, precision, recall and F1-value in the
charge prediction task. In the law article prediction task, our model improved by 0.02%,
0.03%, 0.02% and 0.04% on the CAIL-big dataset and by 0.2%, 0.09%, 0% and 0.03% on
the CAIL-small dataset, respectively; in the term of penalty prediction task, our model
improved by 0.02%, 0.01%, 0.03% and 0.02% on the CAIL-big dataset and by 0.23%, 0.05%,
0.13% and 0.24% on the CAIL-small dataset, respectively. The main reasons why our model
achieved excellent experimental results can be attributed to two points. First, the six kinds
of text graphs not only could use the GCN well to obtain text-level feature information
but could also obtain inferred information that traditional text feature extraction methods
cannot obtain. The graph structure has a natural advantage in inference. Second, the
proposed law article distinction extractor could well extract the differences of similar law
articles and could also well integrate the information with six kinds of graphs in the graph
fusion step. From the analysis in Table 5, we can see that our model also showed excellent
performance when dealing with small-sample datasets. The model showed a significant
improvement over the LADAN model on CAIL-small. The main reason is that traditional
neural network methods require a large number of data as the basis. Our method is based
on a graph neural network, which has some advantages in dealing with small-sample
datasets according to the experimental results. In predicting the law articles on CAIL-small,
our method did not achieve optimal results. The possible reason is that the law articles
distinction extractor hurt the model’s performance in predicting law articles in a dataset
with few samples. In addition, we could also infer, from the two tables, that the number of
data in LJP directly determined the performance of the task (all models performed much
better on CAIL-big than CAIL-small). The main reason is that the performance of a deep
learning model depends heavily on the number of training data and the same is true for
the LJP task.
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Table 4. LJP results on dataset CAIL-big.

Law Articles Charges Term of Penalty

Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

TFIDF + SVM 89.93 68.56 60.58 61.25 85.81 69.76 61.92 63.51 54.13 39.15 37.62 39.14
FLA 93.22 72.81 64.27 66.57 92.48 76.21 68.12 69.97 57.66 49.01 44.87 46.62
CNN 95.79 82.79 75.15 76.62 95.23 86.57 78.93 81.02 55.41 45.23 38.73 39.96

RCNN 95.98 82.93 75.26 77.13 95.50 87.89 79.03 81.65 55.62 45.43 38.88 40.17
HARNN 96.01 82.99 75.58 77.38 95.62 87.93 79.27 81.79 56.11 44.21 40.57 41.87

TOPJUDGE 95.81 84.41 74.36 76.67 95.73 87.99 79.49 81.93 57.29 47.35 42.61 44.03
GCN 95.69 84.24 74.22 76.58 95.60 87.89 79.28 81.82 57.2 47.17 42.53 43.91

MPBFN 96.01 84.83 74.64 77.48 95.93 89.25 80.82 83.06 58.04 45.95 39.01 41.49
LADAN 96.49 85.71 80.21 81.35 96.32 88.03 82.98 84.54 59.52 51.83 45.2 46.96

GFDN 96.51 85.74 80.23 81.39 96.42 88.05 83.12 84.64 59.54 51.84 45.21 46.99

Table 5. LJP results on dataset CAIL-small.

Law Articles Charges Term of Penalty

Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

TFIDF + SVM 76.52 43.21 40.12 39.68 79.81 45.86 42.72 42.77 33.32 27.66 24.99 24.64
FLA 77.72 75.21 74.12 72.78 80.98 79.11 77.92 76.77 36.32 30.81 28.22 27.83
CNN 78.61 75.86 74.6 73.59 82.23 81.57 79.73 78.82 35.2 32.96 29.09 29.68

RCNN 79.12 76.58 75.13 74.15 82.50 81.89 79.72 79.05 35.52 33.76 30.41 30.27
HARNN 79.73 75.05 76.54 74.67 83.41 82.23 82.27 80.79 35.95 34.5 31.04 31.18

TOPJUDGE 79.79 79.52 73.39 73.33 82.03 83.14 79.33 79.03 36.05 34.54 32.49 29.19
GCN 79.81 79.65 73.42 73.37 82.33 83.19 79.20 78.97 35.97 34.66 32.54 29.23

MPBFN 79.14 76.03 71.1 72.21 82.16 83.15 80.82 80.06 35.76 31.72 28.31 29.56
LADAN 81.17 77.92 72.43 73.79 84.02 83.18 82.08 81.04 38.05 35.97 32.15 32.33

GFDN 81.37 78.01 72.43 73.82 84.83 83.96 82.37 81.79 38.28 36.02 32.28 32.57

Since the data gap between Tables 4 and 5 is relatively small, we conducted statistical
significance tests and the results are shown in Figure 4. We assumed the null hypothesis as
no significant differences between the two groups of data and the alternative hypothesis as a
significant difference. As shown in Figure 4, the red dots are the distribution of the samples.
The t value fell in the rejection domain, so we rejected the null hypothesis and accepted the
alternative hypothesis that there was a significant difference between the two data groups.
Then, the Wilcoxon test was also performed in our experiment. In the CAIL-big dataset,
we assumed that there were no differences between the experimental results of GFDN and
LADAN. Based on the calculated p-value (p = 0.003857 < 0.005), the original hypothesis was
rejected; therefore, it can be concluded that there was a significant difference between the two
sets of experimental data. Both sets of experiments illustrated that our method was significantly
better than the LADAN in terms of performance.

Figure 4. Statistical significance test results between GFDN and LADAN.
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In the CAIL-big dataset, there is data imbalance. We plotted the ROC curves and show
the corresponding AUC scores because they considers the classification ability for both
positive and negative cases. It could still make a reasonable classifier evaluation in such
a case. We selected five models from the baseline to compare the AUC with our model
GFDN. From Figure 5, we can see that the FLA model had the lowest AUC score because
its semantic extractor was not powerful enough to extract the document information fully.
Although FLA was designed for the LJP task, it had a lower AUC score than the HARNN
model. The TOPJUDGE model did not address this problem accordingly, so its AUC score
was also low. GCN, LADAN and GFDN all contain graph neural networks and GFDN uses
multiple methods to construct text graphs, which allowed the model to fully extract feature
information and alleviate the problem of data imbalance.

Figure 5. AUC scores and ROC curves of several models on CAIL-big.

Although the metrics presented are an average of the results obtained from five runs,
providing only the average value is still insufficient to determine whether the observed
differences are robust or occur by chance. Therefore, we show the minimum and maximum
metrics from our methods’ runs and compare them with the results of LADAN. In Table 6,
we used ↓ if the value was less than LADAN, ↑ if the value was more significant than
LADAN and − if it was equal. From Table 6, we can see that most of the minimum values
of our method are larger than the average values of LADAN. We can conclude that GFDN
was better than LADAN in terms of performance.

Table 6. Maximum and minimum values of LJP experimental results.

Accuracy Precision Recall F1

Max Min Max Min Max Min Max Min

Law Articlesbig 96.53 ↑ 96.50↑ 85.77↑ 85.73↑ 80.25↑ 80.21- 81.43↑ 81.37↑
Law Articlessmall 81.50 ↑ 81.21 ↑ 78.12 ↑ 77.95 ↑ 72.52 ↑ 72.41 ↓ 73.85 ↑ 73.80 ↑

Chargesbig 96.46↑ 96.39↑ 88.08↑ 88.04↑ 83.19↑ 83.06↑ 84.78↑ 84.59↑
Chargessmall 85.12↑ 84.61↑ 84.27↑ 83.36↑ 82.48↑ 82.15↑ 81.92↑ 81.35↑

Terms of Penaltybig 59.57↑ 59.52- 51.87↑ 51.83- 45.23↑ 45.19↓ 47.03↑ 46.96-
Terms of Penaltysmall 38.35↑ 38.19↑ 36.12↑ 35.98↑ 32.37↑ 32.21↑ 32.68↑ 32.46↑

4.5. Ablation Experiments

We designed the relevant ablation experiments which used the same comparison
metric. First, we designed experiments for the text graph types by subtracting one of
the text graphs in turn. Table 7 shows the results of this experiment and we can see that
the impact of the graph without co-occurrence graph experiment was the largest, which
indicates that the co-occurrence graph contained more information about the features that
could be used in this task. The impact of the missing Cosine graph, Euclidean graph,
Manhattan graph and Chebyshev graph on the results was less than that of the PMI graph,
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which indicates that we could pursue the model’s efficiency using only one of the similarity
calculation methods for constructing the graph.

Table 7. Graph ablation experiment results on dataset CAIL-small.

Metrics Acc MR MR F1

GFDN 84.83 83.96 82.37 81.79

GFDN(−CO) 82.35 83.27 79.37 79.91
GFDN(−PMI) 82.40 83.19 80.28 80.52
GFDN(−COS) 82.58 83.29 80.37 80.83
GFDN(−Euclidean) 82.69 83.35 80.51 80.91
GFDN(−Manhattan) 82.67 83.30 80.77 80.93
GFDN(−Chebyshev) 82.69 83.38 80.55 80.96

We also conducted experiments in the graph fusion section, where we used simple
concatenation and took an average. As we can see in Table 8, the experimental results indi-
cate that our approach achieved the best results. The simple concatenation and averaging
approaches destroyed the feature information and degraded the model’s performance.

Table 8. Fusion ablation experiment results on dataset CAIL-small.

Metrics Acc MR MR F1

GFDN 84.83 83.96 82.37 81.79

GFDNConcatenation 81.96 80.38 79.11 79.32
GFDNAverage 80.67 79.96 80.13 79.06

4.6. Parameter Sensitivity

We performed this experiment for the number of iterations and co-occurrence window
size selection of GCN. We only compared the accuracy in the charge prediction task. First,
we selected the number of iterations of the GCN as one, two, three, four and five. From
the Figure 6, we can see that the best result was achieved with three iterations. The curve
shows a rising and then decreasing trend, which indicates that, after three iterations, the
model experienced an over-fitting phenomenon.

We chose, as one, two, three, four, five and six, the set of parameters for the co-
occurrence window size and it can be seen from the Figure 7 that a window size of three
achieved the best results. The curve shows a rising and then decreasing trend, indicating
that the model reached over-fitting after the window size of three.

Figure 6. Effect of different numbers of interactions on accuracy.
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Figure 7. Effect of different window sizes on accuracy.

5. Conclusions

We propose an inductive legal judgment prediction method based on graph neural
networks. The method first constructs six kinds of text graphs for each document and
then uses graph convolutional networks to transfer and update information within the text
graphs to fully understand and extract feature information of documents of the judicial case.
we also utilize an improved legal text differentiation extractor based on graph attention
network to obtain the information about the differences of law articles between similar
charges. In the graph fusion stage, we mixed the document features of the six kinds
of text graphs and law articles information that carried the differentiated features. The
experimental results show that our method performed well and achieved good results in all
three subtasks of the legal judgment prediction task. Our future work is divided into two
parts. First, we will investigate new methods for constructing graphs from texts, including
information from multiple dimensions. Second, more efficient graph fusion methods with
external knowledge will be adopted to improve the performance of multiple tasks in legal
intelligence, including legal judgment prediction (LJP).
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