
����������
�������

Citation: Ishizuka, R.; Washizaki, H.;

Tsuda, N.; Fukazawa, Y.; Ouji, S.;

Saito, S.; Iimura, Y. Categorization

and Visualization of Issue Tickets to

Support Understanding of

Implemented Features in Software

Development Projects. Appl. Sci.

2022, 12, 3222. https://doi.org/

10.3390/app12073222

Academic Editor: Vito Conforti

Received: 10 February 2022

Accepted: 16 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Categorization and Visualization of Issue Tickets to Support
Understanding of Implemented Features in Software
Development Projects
Ryo Ishizuka 1, Hironori Washizaki 1,* , Naohiko Tsuda 1, Yoshiaki Fukazawa 1 , Saori Ouji 2, Shinobu Saito 2

and Yukako Iimura 2

1 Department Computer Science and Engineering, Waseda University, Tokyo 1698555, Japan;
ryo_issy@fuji.waseda.jp (R.I.); 821821@toki.waseda.jp (N.T.); fukazawa@waseda.jp (Y.F.)

2 Computer & Data Science Laboratories, NTT Corporation, Tokyo 1080023, Japan;
saori.ouji.eu@hco.ntt.co.jp (S.O.); shinobu.saitou.cm@hco.ntt.co.jp (S.S.); yukako.iimura.vr@hco.ntt.co.jp (Y.I.)

* Correspondence: washizaki@waseda.jp

Abstract: Background: In most software projects, new members must comprehend the features
already implemented since they are usually assigned during the project period. They often read
software documents (e.g., flowcharts and data models), but such documents tend not to be updated
after they are created. Herein we focus on tickets issued because they are created as a project evolves
and include the latest information of the implemented features. Aim: The purpose of this paper is to
clarify the way of helping new members understand the implemented features of a project by using
tickets. Methodology: We propose a novel method to categorize tickets by clustering and visualizing
the characteristics of each category via heatmapping and principal component analysis (PCA). Our
method estimates the number of categories and categorizes issue tickets (tickets) automatically.
Moreover, it has two visualizations. Ticket lifetime visualization shows the time series change
to review tickets quickly, while ticket feature visualization shows the relationships among ticket
categories and keywords of ticket categories using heatmapping and PCA. Results: To evaluate the
effectiveness of our method, we implemented a case study. Specifically, we applied our method to an
industrial software development project and interviewed the project members and external experts.
Furthermore, we conducted an experiment to clarify the effectiveness of our method compared with
a non-tool-assist method by letting subjects comprehend the target project, which is the same as that
of the case study. These studies confirm our method supports experts’ and subjects’ comprehension
of the project and its features by examining the ticket category lifetimes and keywords. Implication:
Newcomers during project onboarding can utilize tickets to comprehend implemented features
effectively if the tickets are appropriately structured and visualized. Conclusions: The original
contribution of this paper is the proposal of the project feature comprehension method by visualizing
the multi-dimensional nature of requirements in an organized and structured way based on available
tickets and the result of its application to the industrial project.

Keywords: software development projects; software comprehension; issue tickets; text mining;
machine learning

1. Introduction

At the present time, current software is becoming increasingly more significant and
complicated [1]. In software development projects, new members are typically assigned
during the project period. As part of the project onboarding, they must acquire knowledge
and context. The need to know the software under development is the main difficulty of
project onboarding [2]. This often involves reading software documents to understand the
implemented features of the project. However, these documents become outdated and less
insightful as a project evolves. Outdated documentation demotivates newcomers [3]. On

Appl. Sci. 2022, 12, 3222. https://doi.org/10.3390/app12073222 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073222
https://doi.org/10.3390/app12073222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1417-9879
https://orcid.org/0000-0003-0196-2108
https://orcid.org/0000-0002-6259-3521
https://doi.org/10.3390/app12073222
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073222?type=check_update&version=1

Appl. Sci. 2022, 12, 3222 2 of 24

the other hand, issue tickets (hereafter tickets), which are created as a project evolves,
include the latest information about the implemented features. In issue tracking systems
(ITSs), developers can take a known issue such as a failure and a feature request and assign
it a “ticket” [4].

Although tickets tend to contain insightful information, they are often unorganized. In
theory, new members are expected to read most of the important tickets to understand the
implemented features. However, this is time consuming. Tickets are typically handled one
by one; however, groups of tickets often follow common patterns [5]. Our research assumes
that categorizing tickets following common patterns in terms of ticket descriptions may
help new members quickly read the tickets. Moreover, if each ticket category has known
characteristics, the contents of the tickets can be understood efficiently and effectively.
The purpose of this paper is to clarify the way of helping new members understand the
implemented features of a project by using tickets.

Herein we propose a novel method to categorize tickets and visualize characteristics
of each category. Figure 1 overviews our method. Our method requires only managing
tickets in an ITS. First, tickets are converted into vector representations to apply a clustering
method. Second, the clustering method automatically categorizes the tickets and estimates
the appropriate number of ticket clusters. Finally, our method visualizes the lifetime and
features of the ticket categories. Our ticket feature visualization has two main aspects. First,
it counts the time series change of ticket categories and displays the results as a heatmap.
This helps new members quickly review tickets and identify features that they should
work on first. Second, our ticket feature visualization identifies the relationships among
ticket categories and keywords. The results are displayed by heatmapping and PCA. Our
ticket feature visualization helps new members determine which categories are related to
the features.

…
…

Input: issue tickets

1. Vectorize

issue tickets

2. Categorize

issue tickets

Result of categorizing

3. Visualize

tickets’ lifetime

4. Visualize

tickets’ feature

Keyw

ords

C1 C2

Term1

0.9 0.2

… 0 0.9

… … …

Visualization using heatmap and plot

New member

Day C1 C2

Day 1 4 0

Day 2 0 2

… 0 2

Review

tickets quickly

…
…

… …

Figure 1. Overview of our method.

As a case study, we applied our method to an industrial software development
project [6,7] conducted in a company NTT based in Japan (hereafter, referred to as the
company). In this project, 111 tickets were created and managed on Backlog, which is an
ITS [8]. Furthermore, we conducted an experiment targeting the same project data as the
case study. Specifically, we answer the following four research questions:

RQ1. Does our categorization method estimate the number of ticket categories and cate-
gorize tickets accurately? To answer this question, we categorized 111 tickets using
K-means clustering and gap statistics. K-means is an unsupervised partitional clus-
tering algorithm and one of the most widely used algorithms for grouping data [9].
K-means clustering is widely used to cluster requirement documents. Gap statistics is
an automatic method to estimate the number of clusters. We evaluated the estimation
accuracy for the number of ticket categories from the distribution of 200 automatic

Appl. Sci. 2022, 12, 3222 3 of 24

estimations. Furthermore, we assessed the categorization accuracy for tickets using
well-known clustering measures [10].

RQ2. Can our visualization method help new members understand the implemented fea-
tures of a project? To answer this question, we interviewed two project members and
three external experts. During the interviews, the results of the ticket categorization
and the ticket visualization were shared because they show the lifetime and keywords
of ticket categories as well as the relationships between categories. Interviewees were
asked if our method helps comprehend the project’s features.

RQ3. Does our method improve project comprehension? To answer this question, an
experiment compared the comprehension of the target tasks using our method and
a traditional method. The target tasks in the experiment were the same as those in
the case study. Subjects were asked to perform four tasks: two comprehension tasks
for activeness of ticket categories and two comprehension tasks for activeness of
features. We divided the 28 subjects into two groups (i.e., the experimental group
and the control group) to compare subjects’ comprehension correctness with and
without the support of our method.

RQ4. For which tasks is our method effective? To answer this question, we compared
the statistical test results of all four tasks. Then we identified tasks with the most
significant difference between the two groups.

The rest of this paper is organized as follows. Section 2 summarizes related works.
Section 3 presents our ticket categorization and visualization methods. Section 4 shows
the results of the case study. Section 5 describes the results of the comparative experiment.
Section 6 explains the limitations and use cases of our method. Section 7 concludes this
paper and provides a future direction. This paper substantially extends our preliminary
6-pages workshop paper presented at IWESEP 2019 [11]. The proposed method to au-
tomatically visualize the implemented features and research questions RQ1–RQ2 have
been taken from the preliminary paper. This paper added use cases and a comparative
experiment to answer two new research questions RQ3–RQ4. Limitations and threats to
validity, related works, and explanations of the proposed method are also substantially
extended in a well-structured paper format [12].

2. Related Work

Studies have been conducted on requirements classification and visualization, which
can support the understanding of implemented features in software development projects.
Furthermore, there are studies investigating challenges and practices in project onboarding.
This section shows related works on requirements classification and visualization in general.
Moreover, we present related works on project onboarding and their limitations to motivate
our method.

2.1. Requirement Classification

Supervised learning has been used to derive classification methods that categorize
documents automatically [13–15]. Sabetta and Bezzi [15] proposed a method using SVM
to automatically identify security-related commits. Dekhtyar and Fong [13] classified
functional and non-functional requirement documents using Word2Vec [16] and a Convo-
lutional Neural Network (CNN). Pingclasai et al. [14] proposed a method to classify bug
reports using supervised learning and topic modeling (e.g., Latent Dirichlet Allocation
(LDA)). However, preparing labeled training data is costly. Furthermore, it is difficult to de-
rive and prepare labels if the context of the software development project is not understood
in advance.

Appl. Sci. 2022, 12, 3222 4 of 24

Other classification methods involve clustering [17,18]. Laurent et al. [17] proposed a
method using hierarchical clustering to semi-automatically prioritize requirement docu-
ments. However, their approach requires that the appropriate threshold for the clustering
method be set manually because the number of feature groups in a real development is
unknown. Hence, several methods have been proposed to automatically estimate the
number of clusters or the distance between clusters [19–21]. Gap statistics estimate whether
the current number of clusters is optimal by comparing the variance of each cluster in a
dataset with that of random data. Herein we apply the gap statistics proposed by Tibshirani
et al. [21] to automatically estimate the number of ticket categories.

Mani et al. proposed a method for clustering tickets and generating labels to discover
groups of problems and help interpret these groups [5]. Although the approach of grouping
tickets with generated labels is similar to our method, our method visualizes not only
features but also lifetime of ticket categories.

2.2. Requirement Visualization

Studies have been proposed to visualize the requirement documents for user reviews
and bug reports [22,23]. Chen et al. proposed AR-Miner to extract useful user reviews
in a mobile app marketplace [22]. AR-Miner extracts informative user reviews by EM
Naive Bayes. Then topic modeling categorizes and ranks user review topics. Their method
visualizes only the features of app reviews. On the other hand, our method visualizes not
only the features of software systems but also the characteristics of their features.

Yeasmin et al. proposed a method to help review bug reports using LDA by visualizing
the lifetime and keywords of bug reports [23]. It is burdensome to compare multiple topics
because their method shows the evolution of one topic per figure. By contrast, our method
visualizes all software features in one figure. Saito et al. proposed a method to visualize the
requirement evolution by tickets [24,25]. Their visual representation tracks requirements
of the evolution history and conducts requirement change impact analysis. Their method
relies on combinations of operations (i.e., add and delete) to tickets, whereas our method
focuses on the descriptions written in tickets for categorization and visualization. Wnuk et
al. proposed visualization techniques called Feature Survival Charts and Feature Transition
Charts. These techniques overview scoping decisions involving changes within projects and
across multiple projects, respectively, [26–28]. Their methods focused on feature transitions
across multiple releases or projects, whereas our method focuses on the lifetime and features
of ticket categories. Misue et al. proposed a method for visualizing an overview of all
tickets in terms of the number of tickets and time changes of the attribute values of the
tickets in large-scale datasets using treemaps [29]. Their method focused on visualization
of the global structure of a large-scale organization for both quantitative and temporal
aspects without considering the descriptions written in tickets. In contrast, our method
visualizes ticket features in addition to their lifetimes by focusing on the ticket descriptions.
Gotel et al. discussed the need to visualize the multi-dimensional nature of requirements to
help realize a shared and rapid comprehension on the health of requirements, and support
various diagnostic activities and decision-making tasks during software development [30].
Our method responds to such a demand by visualizing ticket features and lifetimes.

Semantic-Web-based tools with ontologies can be built and used to facilitate software
engineering processes such as the maintenance process and the requirements engineering
process [31]. In addition to the above-mentioned ticket-specific tools, the general semantic-
web-based tools can be used for visualizing multi-dimensional aspects of requirement
documents. However, their usefulness for comprehension of implemented features by
referring to tickets is not discovered. Furthermore, the existing semantic-web-based soft-
ware maintenance approaches usually focus on establishing and maintaining semantic
connections among multiple different software artifacts such as code, bug descriptions, and
documents [32,33]. In contrast, our method focuses on the lifetime and features of ticket
categories to directly support comprehension of implemented features. In the future, we

Appl. Sci. 2022, 12, 3222 5 of 24

consider extending our method to handle links to corresponding code and other documents
by referring to similar semantic connection approaches.

2.3. Project Onboarding

Some studies have investigated challenges and current practices in project onboarding
where newcomers of industrial and open-source software (OSS) development projects learn
to work with their team.

Yates et al. characterized the common context and different types of information
passed from experts to newcomers during onboarding by a Grounded Theory approach [34].
In the characterized context, our method can support an onboarding session, which is often
included in the onboarding process. Matturro et al. reported that scarce or null documenta-
tion and the need to know the product under construction are the main difficulties of project
onboarding in the software industry. They also noted that there is significant difficulty
in understanding the overall view of the system in development [2]. Concerning that,
Viviani et al. reported a case study to investigate practices adopted during onboarding with
smaller companies. They confirmed that most teams expect new developers to explore and
understand the source code by themselves [35]. Furthermore, they reported that developers
felt that technical onboarding practices could be improved by documenting features. Our
method can respond to the demand for improved practice by ticket lifetime and feature
visualization in industrial development projects. Steinmacher et al. investigated common
barriers faced by newcomers to OSS, which were identified by qualitatively analyzing data
obtained from newcomers and members of OSS projects [3,36]. In their investigation, the
lack of documentation was reported as one of the significant barriers. Our method should
mitigate such documentation problems by ticket lifetime and feature visualization in OSS
development projects.

This section presented related works on requirements classification, visualization, and
project onboarding. Although these can partially support the understanding of imple-
mented features, none can visualize the lifetime and features of ticket categories with an
automated estimation of the appropriate number of clusters. Our method is motivated by
these limitations of existing works to respond to the need to visualize the multi-dimensional
nature of requirements in an organized and structured way based on available tickets.

3. Ticket Categorization and Visualization Method

Our method visualizes tickets and automatically determines the general features using
only the tickets managed on an ITS. Table 1 shows examples of items described in a typical
ticket. Ticket information includes the title, description, comments, issue date, due date,
assignee, etc. Comments describe the progress and discussion of the ticket. Issue date
is the date that the ticket was first opened. Update date is the most recent date that the
ticket was updated. Figure 2 overviews our process using an example involving three
tickets managed on an ITS. First, the tickets are categorized by (1) Ticket Vectorization and
(2) Ticket Categorization. Then the ticket categories are determined by (3) Ticket Lifetime
Visualization and (4) Ticket Feature Visualization. Most steps, except for Step 4.3, can
be fully automated once the associated parameters and rules (such as a selection rule of
important terms in Step 1.4) are set. Figure 3 shows a high-level chart of the flow of steps
in our method. Details of the steps are described in subsequent subsections.

Appl. Sci. 2022, 12, 3222 6 of 24

ID Title Description Comment 1 … Assignee Creation Last Update

I1 Add Button Add button on a dialog Fix dialog PA yyyy/mm/02 yyyy/mm/03

I2 Bad Dialog UI Improve UI on a dialog PA yyyy/mm/03 yyyy/mm/03

I3 Add Feature Want to sort items PB yyyy/mm/01 yyyy/mm/02

ID Tbutton Tdialog Tui Tfeature Titem PA PB

I1 0.30 0.20 0 0 0 1 0

I2 0 0.20 0.30 0 0 1 0

I3 0 0 0 0.30 0.30 0 1

Date C1 C2

yyyy/mm/01 0 1

yyyy/mm/02 1 1

yyyy/mm/03 2 0

Keywords C1 C2

add button 0.24 0

UI, dialog 0.35 0

sort items 0 0.33

Step 1. Vectorize issue tickets with weighting

Estimate the best number of categories

Export issue tickets from the ITS

Step 3. Visualize issue

tickets lifetime

Monitor

high-priority

features

Grasp

differences and

common points

among features

implemented

Issue Tracking System (ITS)

Step 2. Categorize issue tickets by a clustering method

C2●

●

●

●

C4

C3

C1

Mapping relationships of

categories by PCA (N=4)

I1

I3

I2
I1 I2

I3 I1
I2 I3

N=1 N=2 N=3

Heatmap of issue tickets’ lifetime Heatmap of issue tickets’ keywords

Understand

rough

features

Step 4. Visualize tickets features

Issue tickets

Category C1 C2

Figure 2. Flow of our method.

Appl. Sci. 2022, 12, 3222 7 of 24

Preprocessing

Convert into

bag of words

Weighting

Text data
Developer

data

Convert into

one hot vector

Preprocessing

Vector representation for issue ticket

ID Title Description Author …

1 Add QR payment For … Bob …

Step 1.1

Step 1.2

Step 1.3

Step 1.4

Step 1.5

Apply clustering

Evaluate dispersion

(e.g., within-cluster

dispersion)

Decide the best

number of

categories

Repeat

Step 2.2

Set number of

iterations

Step 2.1

Identify

lifetime of

tickets

Convert to

count data

Visualize by

heatmapping

Step 3.1

Step 3.2

Step 3.3

Calculate the term

frequency per

category

Construct and

group collocations

from top feature

terms (manually)

Calculate the

density of

keywords per

category

Compress term

frequency vectors

by PCA

Visualize by

heatmapping

Step 4.1

Step 4.2

Step 4.3

Step 4.4

Step 4.5

Figure 3. High-level chart of flow of steps in our method.

Table 1. Example of items described in an issue ticket.

Item Description

Title Add Button
Description Add Button on a dialog

Assignee Bob
Issue date yyyy/mm/02

Updated date yyyy/mm/03
Comment 1 Fix dialog

3.1. Ticket Vectorization

Tickets, which include text data and developer data, are converted into vectors. This
process can be divided into five steps:

• Step 1.1. To handle tickets for natural language processing, select the text data columns
that indicate the project’s features (e.g., ticket title). Multiple columns should be
selected due to the small sentence length. For example, commit comments are useful
because they may contain information about the features modified.

• Step 1.2. To enhance the accuracy of ticket categorization, parse the extracted text
data into terms and filter uninformative terms such as stop words. If terms are not
separated by white space, use morphological analysis to parse the sentence into terms
(e.g., [37]). For example, if only nouns are extracted from ticket I1, “Button” from the
title, “button” and “dialog” from the description, and “dialog” from comment 1 are
extracted (Figure 2).

• Step 1.3. To obtain the ticket vectors, count the term frequency in each ticket. For
example, the term frequency of ticket I1 is {button, dialog} = {2, 2} (Figure 2).

• Step 1.4. To emphasize the keywords, weigh the term frequency vectors based on the
term frequency–inverse document frequency (TF-IDF). TF-IDF weights a term vector
to extract the feature terms. The weight of term i of ticket j is calculated as

wi,j = t fi,j · log
N
d fi

where t fi,j is the term frequency of term i of ticket j, and d fi is the number of tickets
containing term i. N is the number of tickets.
Moreover, select important and unimportant terms by clustering the most common
terms in each category and weight the vectors of these terms in a second analysis.

• Step 1.5. To consider the relationship between features managed by the same develop-
ers, select columns of developer data (e.g., author and assignee of tickets). To concate-
nate the developer data with the weighted term frequency, convert developer data

Appl. Sci. 2022, 12, 3222 8 of 24

into binary data. For example, the developer vector of ticket I1 is {PA, PB} = {1, 0}
(Figure 2).

3.2. Tickets Categorization

A clustering method (e.g., K-means) is combined with an automatic method to esti-
mate the number of clusters [19–21] to categorize ticket vectors according to the features
automatically. The estimated number of clusters depends on the clustering results. Hence,
our method applies clustering repeatedly and estimates the appropriate number of ticket
categories using the following steps:

• Step 2.1. To obtain the distribution of the estimated number of categories, set R, which
is the number of iterations, using an automatic estimation method.

• Step 2.2. To determine the appropriate number of clusters Nbest, perform ticket
clustering R times according to the automatic estimation method for the number of
clusters (e.g., gap statistics). Then estimate Nbest from the distribution of the estimated
number of categories (e.g., median and mean values). Finally, categorize tickets into
Nbestt categories using a clustering method. For example, three tickets are grouped
into two categories in Figure 2. Category C1 includes tickets I1 and I2, while category
C2 includes ticket I3.

3.3. Ticket Lifetime Visualization

Our method creates a heatmap, which depicts the time series change of ticket cate-
gories, to highlight ticket features with more requests as follows:

• Step 3.1. To define the ticket lifetime, select columns of time series data indicating the
start date (e.g., creation date) and the end date (e.g., updated date and due date).

• Step 3.2. To visualize the tickets in each category, count the number of open tickets
by category. For example, ticket I1 is open from the second day to the third day, and
ticket I2 is open on the third day (Figure 2). Hence, the lifetime vector of category C1
is {D1, D2, D3} = {0, 1, 2}.

• Step 3.3. To visualize the count data quickly, create a heatmap using the count vector
for all categories (Figure 2).

3.4. Ticket Feature Visualization

Our method creates a plot and heatmap to show the keywords included in each ticket
category and the relationships among categories. First, the relevance of each ticket category
is visualized by principal component analysis of the term frequency as follows:

• Step 4.1. To obtain the features of ticket categories, calculate the average of the term fre-
quency vectors of the tickets per category. For example, the term frequency of category
C1 is {Tbutton, Tdialog, Tui, Tf eature, Titem} = ({0.30, 0.20, 0, 0, 0}+ {0, 0.20, 0.30, 0, 0})/2 =
{0.15, 0.20, 0.15, 0, 0} (Figure 2).

• Step 4.2. To simply visualize the relationships among categories, compress every term
frequency vector into a two-dimensional vector by PCA and plot the results in two-
dimensional space. For example, four categories are mapped in Figure 2. Categories
C1 and C3 have similar features. Then our method creates a heatmap, which indicates
the kind of terms appearing in each ticket category using the following steps:

• Step 4.3. To make lists of keywords, select the top clustering terms from each ticket
category and manually construct collocations from the extracted terms. It should be
noted that terms are not limited to nouns but can include all terms. Then group the
collocations and terms. For example, two keywords, “add button” and “sort items”,
are constructed, and keyword “UI” and “dialog” are classified into the same group
(Figure 2).

• Step 4.4. To visualize the category features independent of the difference in the number
of tickets included in the categories, calculate the density of keywords appearing in
each group. The keyword density of a category is calculated as follows:

Appl. Sci. 2022, 12, 3222 9 of 24

– First, count the number of keywords in all text data of tickets in the category. For
example, the keyword “add button” appears once in the title and once in the
description of ticket I1. Hence, the number of keywords in category C1 is two
(Figure 2).

– Then multiply the number of keywords by the length of the keyword and divide
by the sum length of the text data in the tickets for the category. The length of
ticket I1 is nine and that of ticket I2 is eight. Hence, the density of keyword “add
button” is 2× 2/17 ≈ 0.24.

• Step 4.5. To visualize the features of categories quickly, create a heatmap using the
keyword density of all categories.

4. Case Study

We conducted a case study to answer RQ1–RQ2. It should be noted that our case study
included an expert review to evaluate our categorization and visualization methods from
the viewpoint of usage in an industrial software development setting.

4.1. Project Overview

The software product of the case study was a prototype of a graphical modeling tool
to draw an enterprise system model. The tool supports engineers as part of a research and
development project in the company. Its details are described in previous requirements en-
gineering studies [6,7]. The software product was developed by two requirement engineers
and two software engineers with more than nine years of experience in software develop-
ment. The development schedule consists of three phases: planning, iteration one, and
iteration two with retrospective meetings at the end of each iteration. Phase durations are
three, four, and four weeks, respectively. In the planning phase, the requirement engineers
created user stories and design documents. Since it was a ticket-driven development project
without any detailed specifications or documents after the planning phase, understanding
tickets is essential for new members to grasp the project.

In the two iteration phases, a total of 133 tickets were issued. Most were created
in the beginning of the iteration phase (i.e., iteration planning meeting). The tickets
were created and managed on Backlog [8]. Based on the requests from end users, the
requirement engineers described the contents (e.g., title and description) of the tickets
and issued them. These tickets were assigned to the software engineers. Following the
descriptions of the assigned tickets, they implemented the source codes and then commit
them to the version control system (VCS). During each iteration, if end users submitted
new/change requests or a bug was detected, the requirement engineers issued a new ticket
to reflect the evolving situation. Figure 4 depicts the interactions among three actors and
two tools. There were two types of meetings: daily and weekly. In the weekly meeting, the
requirement engineers shared the product and coordinated detailed specifications with end
users, whereas the software engineers reported their progress to the requirement engineers
in the daily meetings. Based on these meetings, the requirement engineers gave instructions
to the software engineers.

4.2. Case Study Procedure

We used 111 of the 133 tickets. Figure 5 outlines our case study. First, we collected data
from tickets and commit comments. Then the product owner labeled the tickets. Second,
we applied vectorization and categorization. Third, we evaluated the results of our method.
Finally, we interviewed experts to assess our method.

Appl. Sci. 2022, 12, 3222 10 of 24

ITS

Share

product

VCS

Software

Engineers

Requirements

Engineers

End

Users

Coordinate

specification

Weekly

Meeting

Give

instruction

Report

progress

Daily

Meeting

Issue

ticket

Commit

source codes

Add

comments

Figure 4. Actors and their communications in the case study.

ITS

Export issue tickets

and commit comments

Product

Owner

Apply (A) tickets vectorization

and (B) tickets categorization

Apply (C) tickets’ lifetime visualization and

(D) tickets’ feature visualization

Estimate the number of categories, and

calculate the accuracy of categorizing (RQ 1)

Interviews (RQ2)

Experts

CSV file

Categorize issue

tickets by PO

Golden Set

Figure 5. Flow of our case study.

4.3. Results
(1) Data collection and labeling tickets

We exported a CSV file, which included all tickets and commit comments from Backlog.
Prior to applying our method, we selected six data columns in the tickets: subject, task
description, commit comments, assignee, issue date, and updated date. In the vectorization,
the subject, task description, and commit comments were processed as text data while
the assignee was processed as developer data. The issue date and updated date were

Appl. Sci. 2022, 12, 3222 11 of 24

used as lifetime data. To evaluate the accuracy of our categorization method, the product
owner of the project labeled each ticket. First, the product owner removed tickets that were
just documents or prior art searches. This left a dataset with 111 tickets with 118 commit
comments. Second, the product owner labeled each ticket into eight categories. Of these,
three categories were existing features, three were new features for the next development
period, and two were external and user interfaces. The product owner spent 1.5 days
attaching a label to each ticket.

(2) Ticket vectorization and ticket categorization

In ticket vectorization, the text data of tickets were parsed by MeCab, an open-source
text segmentation library MeCab for use with text written in the Japanese language [37]. (All
tickets used in the case study were written in Japanese. Thus, we adopted the segmentation
library for Japanese text. Since our method is independent of the Japanese language,
we believe that it is applicable to tickets written in any language by adopting a text
segmentation tool for the target language.) Only nouns were extracted (Step 1.2). Next,
we counted terms included in the title, description, and all commit comments for each
ticket (Step 1.3). It should be noted that the count of a term for a given ticket was limited
to one, although some terms appeared multiple times due to a citation from the previous
commits. Then tickets were categorized with K-means, and the top nine clustering terms
were selected from each category in Step 1.4. The product owner divided the most frequent
terms into important terms (12) or unimportant terms (19). Finally, we multiplied the weight
of important terms by 2 and that of unimportant terms by 0.5. In ticket categorization, K-
means and gap statistics were employed as the clustering method and automatic estimation
method for the number of clusters, respectively. The number of iterations was set to R = 200
in Step 2.1.

(3) Evaluation of ticket categorization

Figure 6 shows the distribution for 200 automatic estimations using gap statistics. The
median value of the automatic estimation was 8.5, which is similar to the actual number of
categories (i.e., eight categories). We assessed the accuracy of categorizing tickets using
Purity, Inverse Purity, and FP−IP (i.e., the harmonic mean of purity and inverse purity) [10].
These scales are equivalent to precision, recall, and F-measure, respectively. The higher the
value of Purity, the more our categorization method obtained pure ticket categories (i.e.,
the features can be understood easily). On the other hand, a higher value of Inverse Purity
indicates that similar features are classified into the same category.

Figure 6. Distribution of the automatic estimation of the number of ticket categories.

Appl. Sci. 2022, 12, 3222 12 of 24

Table 2 shows the accuracy for the average of 200 iterations when clustering with
different numbers of ticket categories. When the number of categories was eight, which is
the same as the actual number of features, the value of FP−IP was 0.533. (AR-Miner [22]
grouped app reviews by topic modeling, and the average F-measure for four datasets was
reported as 0.534. Since AR-Miner was used for grouping app reviews whereas our method
is for grouping tickets, the accuracy of AR-Miner is not directly comparable to that of our
method). The ticket description affected the results. In our project, 50 of the 111 tickets
did not have a task description. Moreover, 36 of the 50 tickets without task descriptions
had less than 2 commit comments. Consequently, removing less descriptive tickets should
improve the accuracy. On the other hand, our categorization method should be improved
to utilize less descriptive tickets.

Table 2. Accuracy of issue ticket categorization.

#Categories Purity Inverse Purity FP−IP

4 0.056 0.891 0.582
6 0.533 0.574 0.551
8 0.557 0.513 0.533
10 0.573 0.461 0.510

(4) Ticket visualization

In ticket lifetime visualization, we converted the creation and update dates on a weekly
basis to easily estimate which categories to focus on. In Step 4.3, we made 51 collocations
and organized them into 21 groups using nine top clustering terms of every ticket category
by hand. During the interviews, we implemented a GUI for developers. The GUI showed a
list of tickets and the top clustering terms by category (Figure 7). Moreover, we checked the
ticket lifetimes and features by pushing buttons on the GUI.

Most common words of the category

List of issue tickets included

in the current categoryCategory

List

Buttons to overview the lifetimes and features
Clustering results

Result Cluster Heatmap Heatmap (density) Time series Time series (creation)

Time series (update)

PCA

PCA2Heatmap (max = 1)Overview

Keywords:

File Type Title Assignee Issue Updated

Figure 7. GUI of our tool.

Our visualization is expected to help developers quickly review tickets and determine
which ones to read first. For example, many tickets were created in category 2 and category
6 beginning in week 9 (i.e., iteration 2) and week 13 (end of development) (Figure 8).
Moreover, most of these tickets were closed within a week. We assumed that some features
related to these categories were added or modified rapidly in the later development.
Consequently, these tickets should be checked first. On the other hand, in category 1, many
tickets were created at the early development stage, but were closed as the development
progressed. As this suggests that the features related to category 1 are stable, such tickets

Appl. Sci. 2022, 12, 3222 13 of 24

do not need to be read immediately. Our visualization is expected to help developers
understand the software system features of a project, even if our categorization method
is not completely accurate. Developers can predict what other features are affected when
one feature of the software is modified. In Figures 9 and 10, for example, categories 2 and
3 have similar principal components and keywords. Thus, developers can predict that
the features of category 2 and those of category 3 are linked. Moreover, developers can
envision which features are implemented at a certain period.

It
e
ra

ti
o
n
 1

It
e
ra

ti
o
n
 2

Figure 8. Lifetime of issue ticket categories.

Figure 9. Relationships among issue ticket categories by PCA.

Appl. Sci. 2022, 12, 3222 14 of 24

Figure 10. Appearance ratio of keywords in each ticket category (we translated keywords after
applying our visualization method).

(5) Interviews

We interviewed five experts to assess the effectiveness of our visualization method
(Table 3). Project members included one software engineer and one requirement engineer.
We asked the project members to review our visualization method and assess whether it can
aid their initial understanding. External experts included two developers of the company
as customers and one developer of an OSS community. We asked them to evaluate our
visualization method from their perspective. In the interviews, we showed the results
for the eight categories and our visualization results using our GUI. Figure 8 shows the
lifetime heatmap of the eight ticket categories obtained from our visualization method. The
brightness of each cell represents the number of open tickets. Iteration 1 is from week 0
to week 8, while iteration 2 is from week 9 to week 14. Figure 9 shows the relationships
between the ticket categories using our visualization method. Figure 10 shows the keyword
heatmap of the ticket categories. The brightness of each cell represents the appearance ratio
of keywords.

Table 3. Information about the interviewees and our goal.

Company Affiliation Role Goal

Inside
Software engineer To determine the types of software featuresRequirement engineer

Customer
To elucidate the software features

Outside Software engineer

All the experts indicated that our lifetime visualization helps developers prioritize
categories by comparing the transition of the number of open tickets. The requirement engi-
neer of the project said, “We can monitor high-priority features. Ticket lifetime visualization
is useful to select which features should be targeted in the next development”. Most experts
indicated that our feature visualization helps developers roughly grasp the features of the
software system. Both project members said, “Visualization of the relationship between
categories allows us to view the differences and commonalities among the features. For
example, categories 1 and 5 are related to the keyword ‘origin file’. However, category 1 is
related to reading processing ‘read’, whereas category 5 is related to the feature ‘difference
extraction”’. After showing the results of our visualization method, we discussed the future
direction with the experts. Most experts advised that domain knowledge of developers
should be incorporated into our method. Two developers (customers) of the company said,

Appl. Sci. 2022, 12, 3222 15 of 24

“We want to prioritize the features not only in the ticket contents but also on developers’
intentions”.

4.4. Discussion

The case study results can answer RQ1–RQ2 as follows.

4.4.1. Does Our Categorization Method Estimate the Number of Ticket Categories and
Categorize Tickets Accurately?

In the case study, the product owner originally labeled and categorized tickets into
eight categories. Then, we confirmed that the median value of the automatic estimation
was 8.5, which is similar to the actual number of features categorized by the product owner.
Furthermore, in terms of the categorization accuracy, the value of FP−IP was 0.533 when
the number of categories was eight, which is the same as the actual number of features.
Furthermore, removing less descriptive tickets should improve the accuracy of our method.

RQ1. Does our categorization method estimate the number of ticket categories and catego-
rize tickets accurately? Our method can precisely estimate the number of categories. In
the project, the number of categories estimated by our method is similar to the actual
number. The purity, inverse purity, and harmonic mean were 0.557, 0.513, and 0.533,
respectively, when the number of categories was eight, which is the same as the actual
number of features. These values indicate that there is room for further improvement.
Since less descriptive tickets negatively influence the ticket categorization accuracy, en-
hancing the ability to handle less descriptive tickets should improve our method.

4.4.2. Can Our Visualization Method Help New Members Understand the Implemented
Features of a Project?

During the interviews, most experts indicated that our method helps developers
roughly grasp and prioritize the features.

RQ2. Can our visualization method help new members understand the implemented
features of a project? Our method can help developers roughly understand the features
of a software system and prioritize the features for the next development.

5. Experimental Evaluation

To answer RQ3 and RQ4, we conducted an experiment to compare our method to a
traditional method (i.e., the baseline method).

5.1. Experiment Design

The experiment clarified the effectiveness of our method compared with a traditional
method. Subjects were asked to comprehend the target project, which is the same as that of
the aforementioned case study.

(1) Subjects

The experiment involved 28 participants. All subjects were graduates and undergrad-
uates recruited from the same university but with different majors. As a prerequisite, we
confirmed that all subjects had some basic programming experience in advance. Subjects
were divided into two groups: 14 subjects S1–S14 were in the experimental group GE, and
the other 14 subjects S15–S28 were in the control group GC.

(2) Methods and inputs

The traditional method was a non-tool-assisted exploration of the tickets. No specific
tool was given to the subjects. As inputs, both the experimental and control groups received
the document explaining the objective and the background of the target project, and the

Appl. Sci. 2022, 12, 3222 16 of 24

set of 111 ticket descriptions exported from the ITS in the form of Excel spreadsheets as
source documents. We confirmed that practitioners often tried to understand implemented
features without any specific tool supports by conducting preliminary interviews in the
case study company. Furthermore, since we assumed that there would be no significant
difference between comprehending implemented features one by one directly on the ITS
and that on the exported spreadsheets, we decided to compare our method with the non-
tool-assisted exploration, which utilized the spreadsheets only. We plan to conduct further
comparative evaluation against other tool-supported methods as our future work. Each
ticket description contained its title, detailed description, date of its creation, and date of its
last revision. The date of the last revision was regarded as its completion date. The ticket
set was exactly the same as that in the case study. Only group GE received two heatmaps
to comprehend the activeness of tickets and features: the lifetime heatmap of the ticket
categories (Figure 8) and the keyword heatmap of the ticket categories (Figure 10).

(3) Tasks

Subjects were asked to perform four tasks: AL1, AL2, AF1 and AF2. AL1 and AL2
focused on the comprehension of activeness of ticket categories with time, while AF1 and
AF2 were about comprehension of activeness of features. The subjects in GE were instructed
to refer to the heatmaps and the set of tickets, while the GC subjects referred to the set of
tickets only.

• AL1 asked the participants to identify up to three specific weeks where the devel-
opment was ‘active’. Here, ‘active’ means a busy development state with many
unresolved tickets compared with the last time frame. Subjects received 0, 33, 66, or
100 points if they identified zero, one, two, or three correct weeks, respectively.

• AL2 asked the participants to identify up to three specific weeks where the develop-
ment was inactive compared with other weeks. Here, ‘inactive’ means a less busy
development state with few unresolved tickets compared with the last time frame.
Only 2 of the 14 weeks met this definition. Subjects received 0, 50, or 100 points if they
identified zero, one, or two correct weeks, respectively.

• AF1 asked the participants to identify up to five specific ‘stable’ features compared
with other features. Here, ‘stable’ means that most of tickets related to the feature were
resolved as the development progressed. Only 2 of the 13 features met this definition.
Subjects received 0, 50, or 100 points if they identified zero, one, or two correct features,
respectively.

• AF2 asked the participants to identify up to five specific ‘unstable’ features. Here,
‘unstable’ means that most of the tickets related to the feature were unresolved even
in the latter half of the development period. Four of 13 features met this definition.
Each subject received 0, 25, 50, 75, or 100 points if the subject identified zero, one, two,
three, or four correct features, respectively.

(4) Experimental procedure

In January 2021, both group subjects participated in a 60 min experiment composed
of three consecutive sessions. During all sessions, subjects were not allowed to discuss or
communicate with each other.

• The first session took 10 min. It was designed to familiarize the subjects with the target
project such as the objective and functionalities of the system. Both group subjects
were instructed to read the project document only during the first session. Thus, there
was no setting difference in both groups.

• In the second session, subjects performed tasks AL1 and AL2 within 10 min. The
subjects in GE used the heatmaps and the set of tickets, while the GC subjects only
used the set of tickets.

• In the third session, subjects performed tasks AF1 and AF2 within 40 min. The subjects
in GE used the heatmaps and the set of tickets, while the GC subjects only used the set
of tickets.

Appl. Sci. 2022, 12, 3222 17 of 24

5.2. Results

Figures 11 and 12 show boxplots of the subjects’ scores by group for ticket active-
ness comprehension tasks AL1 and AL2, respectively. Subjects in GE outperformed those
in GC. Mann–Whitney’s U test confirmed that there were significant differences in the
representative values of the two groups for AL1 (p = 0.00017 < 0.001 ***) and AL2
(p = 0.00167 < 0.01 **) as the significance levels were 0.001 and 0.01, respectively.
Figures 13 and 14 show boxplots of subjects’ scores for both groups for feature activeness
comprehension tasks AF1 and AF2, respectively. GE outperformed GC. Mann–Whitney’s U
test confirmed that there were significant differences in the representative values between
the two groups for AF1 (p = 0.00005 < 0.0001 ****) and AF2 (p = 0.00004 < 0.0001 ****)
with a significance level of 0.0001.

Figure 11. Scores for task AL1.

Figure 12. Scores for task AL2.

Appl. Sci. 2022, 12, 3222 18 of 24

Figure 13. Scores for task AF1.

Figure 14. Scores for task AF2.

Figures 15 and 16 show the changes in scores over time for GE and GC, respectively.
Most subjects in GE began to answer correctly around the middle of each session, and from
this point, they rarely changed their answers. For example, subject S8 scored 100 points for
three tasks AL1, AL2, and AF1 around the middle of each session and scored 50 points for
AF2. Thus, our method supported most subjects. By contrast, most subjects in GC needed
more time to obtain correct answers, which resulted in lower scores. For example, subject
S17 scored 0 points for three tasks AL1, AL2, and AF2 but scored 50 points for AF1 near the
end of the session, indicating that most subjects struggled to identify the correct answers.

Appl. Sci. 2022, 12, 3222 19 of 24

AL1 AL2 AF1 AF2

Subjects’

scores

Time

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

Figure 15. Changes in scores over time for each subject in the experimental group (GE).

AL1 AL2 AF1 AF2

Time

Subjects’

scores

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

Figure 16. Changes in scores over time for each subject in the control group (GC).

Appl. Sci. 2022, 12, 3222 20 of 24

5.3. Discussion

RQ3 and RQ4 are discussed based on the experiment.

5.3.1. Does Our Method Improve Project Comprehension?

Since only experimental group subjects utilized the heatmaps generated by our
method, we believe that our method supports subjects’ comprehension by reviewing
tickets and features.

RQ3. Does our method improve project comprehension? Subjects of the experimen-
tal group outperformed those of the control group for ticket activeness comprehension
and feature comprehension tasks. Our method successfully supports subjects to com-
prehend the project by reviewing ticket categories’ lifetime and keywords.

5.3.2. For Which Tasks Is Our Method Effective?

Although there are significant differences in the representative values of the two
groups for all tasks, the statistical test indicates that the feature activeness comprehension
tasks (AF1 and AF2) have the most significant differences between the two groups. Since
the comprehension of feature activeness requires understanding of multiple aspects of
tickets such as their lifetimes as well as contained keywords, the non-tool-assisted explo-
ration of tickets does not work well. On the other hand, our method supports subjects’
comprehension by visualizing lifetimes and keywords.

RQ4. For which tasks is our method effective? Our method is effective for all tasks,
including ticket activeness comprehension tasks and feature comprehension ones. A
statistical test confirms that our method is most effective for feature activeness compre-
hension tasks.

6. Limitations and Use Cases

We describe the limitations and threats to validity of our case study and experiment
results as well as possible use cases of our method in consideration with such limitations.

6.1. Limitations and Threats to Validity

In terms of the design of our method, the written language may affect the categoriza-
tion accuracy. For example, we used MeCab [37] to separate the term units. Since MeCab
cannot distinguish proper nouns, which are specific to the software development project, it
may separate proper nouns into separate terms. Furthermore, our method assumes that
each ticket is related to only one feature of the software system. In real developments,
tickets can be related to multiple features. Thus, our assumption may cause information
loss. Other unsupervised learning techniques may link one ticket to multiple features. On
the other hand, because multiple links make it difficult to understand the category features,
they may have the opposite effect on understanding the implemented software features.

As a threat to the internal validity of the case study and the experiment, the ticket
content and parameters (such as the weights of important and unimportant terms) affect
the result of our categorization method. For example, the task description impacted the
categorization accuracy in our case study. The requirement engineer of the project was
concerned that our method could not identify implementation and specification omis-
sions because the tickets are written for implemented features. In the future, we plan
to enhance the ability to handle less descriptive tickets. For example, we will consider
available information associated with tickets other than the ticket content. Furthermore,
to mitigate the threat of manually setting the parameters, we recommend employing a
group that includes domain experts to identify appropriate parameters when applying
our method to a particular domain for the very first time. After the initial setting, the
parameters can be reused for the same domain. Another threat to the internal validity of

Appl. Sci. 2022, 12, 3222 21 of 24

the experiment is that we assumed each subject had a similar capability of software system
development project comprehension. In the future, we plan to conduct further experiments
with more subjects possessing similar backgrounds such as practitioners with comparable
development experiences.

A threat to the external validity of the case study and the experiment is that we used
data for a single project using a dataset with more than 100 tickets in one organization. The
same project has been used for case studies in previous requirements engineering stud-
ies [6,7]. However, the total number of tickets may exceed 10,000 in large-scale projects [29].
Furthermore, the granularity of features addressed by tickets may differ according to the
software project and domain. Thus, our method’s scalability and domain generalizability
should be further examined using larger datasets in multiple domains. In the future, we
plan to conduct more case studies and experiments using other larger development projects
and discuss the scalability and the generalization of our method.

6.2. Use Cases

Based on the results of the case study and experiment, our method is expected to
guide practitioners and researchers in the following possible use cases UC1–UC3.

UC1 When new members are assigned to an existing project, our categorization method
can help them roughly understand the types and contents of tickets addressed in
the target software system development by categorizing tickets automatically with
an estimation of the appropriate number of categories. This use case is particularly
supported by the answers to research questions RQ1–RQ2.

UC2 When new members are assigned to an existing project, our visualization method
can help them roughly understand the relationships among the ticket categories,
the lifetime and feature of each category addressed in the target development, and
support prioritization of the features for the next development. This use case is
particularly supported by the answers to research questions RQ2–RQ4.

UC3 The results of our case study and experiment can serve as a reference for the soft-
ware requirements engineering and related community, including practitioners and
researchers, for practicing and researching further project comprehension methods
and tools. Since the ticket lifetime and feature visualization procedures are somewhat
independent from the ticket categorization procedure in our method, researchers may
independently extend or replace the categorization method and the visualization
method.

7. Conclusions and Future Work

We propose a method to automatically visualize the implemented features of software
systems using tickets. Our method estimates the number of ticket categories in an indus-
trial software development project. Although the category accuracy is not 100%, experts
indicated that our visualization method aids in the rough understanding of the features
of a software system. Moreover, our visualization method can help developers quickly
view tickets. As demonstrated in the case study and the experiment, our method supports
experts and subjects’ comprehension of the project and the features of the target software
system by reviewing the lifetimes and keywords of the ticket categories.

In the future, we plan to apply our method to more projects. Second, we will introduce
domain knowledge of developers and word embeddings (e.g., [16,38,39]) to improve our
ticket vectorization method. Third, we will match and compare the categories automatically
identified with the actual features and the outputs of related works and other methods
such as treemap and tag cloud representations. Fourth, we will automate constructing
and grouping collocations. Finally, we will introduce document summarization methods
(e.g., [40]) to extract representative tickets.

Appl. Sci. 2022, 12, 3222 22 of 24

Author Contributions: Conceptualization and methodology, R.I. Literature review and analysis, all
authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The case study and the experiment with our method and the
traditional method were carried out in accordance with the university’s guidelines and regulations.
The case study and the experiment were exempted from ethics review and approval as a result
of checking the application guidelines for ethics review of the university. The case study and
the experiment did not involve any identifiable individual personal information of the experts
and the subjects and satisfied all conditions of the determination of the unnecessity of assessment
stated in section 9 of the university’s Application Guidelines for Ethics Review available at https:
//www.waseda.jp/inst/ore/en/procedures/human/, 9 February 2022.

Informed Consent Statement: Informed consent was obtained from all participants at the time of
their applications to the experiment. Informed consent was also obtained from the experts in the
case study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Park, B.K.; Kim, R.Y.C. Effort Estimation Approach through Extracting Use Cases via Informal Requirement Specifications. Appl.

Sci. 2020, 10, 3044. [CrossRef]
2. Matturro, G.; Barrella, K.; Benitez, P. Difficulties of newcomers joining software projects already in execution. In Proceed-

ings of the 2017 International Conference on Computational Science and Computational Intelligence, Las Vegas, NV, USA,
14–16 December 2017; pp. 993–998.

3. Steinmacher, I.; Treude, C.; Gerosa, M.A. Let Me In Guidelines for the Successful Onboarding of Newcomers to Open Source
Projects. IEEE Softw. 2019, 36, 41–49. [CrossRef]

4. Meneely, A.; Corcoran, M.; Williams, L.A. Improving developer activity metrics with issue tracking annotations. In Proceedings
of the 2010 ICSE Workshop on Emerging Trends in Software Metrics, WETSoM 2010, Cape Town, South Africa, 4 May 2010;
Canfora, G., Concas, G., Marchesi, M., Tempero, E.D., Zhang, H., Eds.; ACM: New York, NY, USA, 2010; pp. 75–80.

5. Mani, S.; Sankaranarayanan, K.; Sinha, V.S.; Devanbu, P.T. Panning requirement nuggets in stream of software maintenance
tickets. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22),
Hong Kong, China, 16–22 November 2014; Cheung, S., Orso, A., Storey, M.D., Eds.; ACM: New York, NY, USA, 2014; pp. 678–688.

6. Saito, S.; Iimura, Y.; Massey, A.K.; Antón, A.I. How Much Undocumented Knowledge is there in Agile Software Development?:
Case Study on Industrial Project Using Issue Tracking System and Version Control System. In Proceedings of the 25th IEEE
International Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8 September 2017; Moreira, A., Araújo, J.,
Hayes, J., Paech, B., Eds.; IEEE Computer Society: Washington, DC, USA, 2017; pp. 194–203.

7. Saito, S.; Iimura, Y.; Massey, A.K.; Antón, A.I. Discovering undocumented knowledge through visualization of agile software
development activities. Requir. Eng. 2018, 23, 381–399. [CrossRef]

8. Backlog. Available online: https://backlog.com/ (accessed on 9 February 2022).
9. Moreno, A.; Iglesias, C.A. Understanding Customers’ Transport Services with Topic Clustering and Sentiment Analysis. Appl.

Sci. 2021, 11, 10169. [CrossRef]
10. Artiles, J.; Gonzalo, J.; Sekine, S. The SemEval-2007 WePS Evaluation: Establishing a benchmark for the Web People Search Task.

In Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval@ACL 2007, Prague, Czech Republic, 23–24
June 2007; Agirre, E., Villodre, L.M., Wicentowski, R., Eds.; The Association for Computer Linguistics: Stroudsburg, PA, USA,
2007; pp. 64–69.

11. Ishizuka, R.; Washizaki, H.; Fukazawa, Y.; Saito, S.; Ouji, S. Categorizing and Visualizing Issue Tickets to Better Understand the
Features Implemented in Existing Software Systems. In Proceedings of the 10th International Workshop on Empirical Software
Engineering in Practice, IWESEP 2019, Tokyo, Japan, 13–14 December 2019; pp. 25–30.

12. Misra, S. A Step by Step Guide for Choosing Project Topics and Writing Research Papers in ICT Related Disciplines. In Information
and Communication Technology and Applications; Misra, S., Muhammad-Bello, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 727–744.

13. Dekhtyar, A.; Fong, V. RE Data Challenge: Requirements Identification with Word2Vec and TensorFlow. In Proceedings of the
25th IEEE International Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8 September 2017; Moreira, A.;
Araújo, J., Hayes, J., Paech, B., Eds.; IEEE Computer Society: Washington, DC, USA, 2017; pp. 484–489.

14. Pingclasai, N.; Hata, H.; Matsumoto, K. Classifying Bug Reports to Bugs and Other Requests Using Topic Modeling. In Proceed-
ings of the 20th Asia-Pacific Software Engineering Conference, APSEC 2013, Ratchathewi, Bangkok, Thailand, 2–5 December 2013;
Muenchaisri, P., Rothermel, G., Eds.; IEEE Computer Society: Washington, DC, USA, 2013; Volume 2, pp. 13–18.

https://www.waseda.jp/inst/ore/en/procedures/human/
https://www.waseda.jp/inst/ore/en/procedures/human/
http://doi.org/10.3390/app10093044
http://dx.doi.org/10.1109/MS.2018.110162131
http://dx.doi.org/10.1007/s00766-018-0291-4
https://backlog.com/
http://dx.doi.org/10.3390/app112110169

Appl. Sci. 2022, 12, 3222 23 of 24

15. Sabetta, A.; Bezzi, M. A Practical Approach to the Automatic Classification of Security-Relevant Commits. In Proceedings of the
2018 IEEE International Conference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, 23-29 September 2018;
IEEE Computer Society: Washington, DC, USA, 2018; pp. 579–582.

16. Word2Vec. Available online: https://code.google.com/archive/p/word2vec/ (accessed on 9 February 2022).
17. Laurent, P.; Cleland-Huang, J.; Duan, C. Towards Automated Requirements Triage. In Proceedings of the 15th IEEE International

Requirements Engineering Conference, RE 2007, New Delhi, India, 15–19 October 2007; IEEE Computer Society: Washington, DC,
USA, 2007; pp. 131–140.

18. Ohkura, K.; Kawaguchi, S.; Iida, H. A Method for Visualizing Contexts in Software Development using Clustering Email Archives.
SEC J. 2010, 6, 134–143.

19. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall: Hoboken, NJ, USA, 1988
20. Mojena, R. Hierarchical Grouping Methods and Stopping Rules: An Evaluation. Comput. J. 1977, 20, 359–363. [CrossRef]
21. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. 2001,

63, 411–423. [CrossRef]
22. Chen, N.; Lin, J.; Hoi, S.C.H.; Xiao, X.; Zhang, B. AR-miner: Mining informative reviews for developers from mobile app

marketplace. In Proceedings of the 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India,
31 May–7 June 2014; Jalote, P., Briand, L.C., van der Hoek, A., Eds.; ACM: New York, NY, USA, 2014; pp. 767–778.

23. Yeasmin, S.; Roy, C.K.; Schneider, K.A. Interactive Visualization of Bug Reports Using Topic Evolution and Extractive Summaries.
In Proceedings of the 30th IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada,
29 September–3 October 2014; IEEE Computer Society: Washington, DC, USA, 2014; pp. 421–425.

24. Saito, S.; Iimura, Y.; Takahashi, K.; Massey, A.K.; Antón, A.I. Tracking requirements evolution by using issue tickets: A case study
of a document management and approval system. In Proceedings of the 36th International Conference on Software Engineering,
ICSE ’14, Companion Proceedings, Hyderabad, India, 31 May–7 June 2014; Jalote, P., Briand, L.C., van der Hoek, A., Eds.; ACM:
New York, NY, USA, 2014; pp. 245–254.

25. Saito, S.; Iimura, Y.; Tashiro, H.; Massey, A.K.; Antón, A.I. Visualizing the effects of requirements evolution. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016; Companion Volume;
Dillon, L.K., Visser, W., Williams, L.A., Eds.; ACM: New York, NY, USA, 2016; pp. 152–161.

26. Wnuk, K.; Regnell, B.; Karlsson, L. Visualization of Feature Survival in Platform-Based Embedded Systems Development for
Improved Understanding of Scope Dynamics. In Proceedings of the Third International Workshop on Requirements Engineering
Visualization (REV’08), Barcelona, Spain, 8 September 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 41–50.

27. Wnuk, K.; Regnell, B.; Karlsson, L. What Happened to Our Features? Visualization and Understanding of Scope Change
Dynamics in a Large-Scale Industrial Setting. In Proceedings of the RE 2009, 17th IEEE International Requirements Engineering
Conference, Atlanta, GA, USA, 31 August–4 September 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 89–98.

28. Wnuk, K.; Gorschek, T.; Callele, D.; Karlsson, E.; Ahlin, E.; Regnell, B. Supporting Scope Tracking and Visualization for Very
Large-Scale Requirements Engineering-Utilizing FSC+, Decision Patterns, and Atomic Decision Visualizations. IEEE Trans. Softw.
Eng. 2016, 42, 47–74. [CrossRef]

29. Misue, K.; Yazaki, S. Panoramic View for Visual Analysis of Large-Scale Activity Data. In Proceedings of the Business Process
Management Workshops—BPM 2012 International Workshops, Tallinn, Estonia, 3 September 2012; Revised Papers; Lecture Notes
in Business Information Processing; Rosa, M.L., Soffer, P., Eds.; Springer: Berlin, Germany, 2012; Volume 132, pp. 756–767.

30. Gotel, O.C.; Marchese, F.T.; Morris, S.J. On Requirements Visualization. In Proceedings of the Second International Workshop on
Requirements Engineering Visualization (REV 2007), New Delhi, India, 15–19 October 2007; IEEE Computer Society: Washington,
DC, USA, 2007; pp. 1–10.

31. Zhao, Y.; Dong, J.; Peng, T. Ontology Classification for Semantic-Web-Based Software Engineering. IEEE Trans. Serv. Comput.
2009, 2, 303–317. [CrossRef]

32. Ankolekar, A.; Sycara, K.P.; Herbsleb, J.D.; Kraut, R.E.; Welty, C.A. Supporting online problem-solving communities with the
semantic web. In Proceedings of the 15th international conference on World Wide Web, WWW 2006, Edinburgh, UK, 23–26 May
2006; Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M., Eds.; ACM: New York, NY, USA, 2006; pp. 575–584.

33. Witte, R.; Zhang, Y.; Rilling, J. Empowering Software Maintainers with Semantic Web Technologies. In Proceedings of the
Semantic Web: Research and Applications, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria, 3–7 June
2007; Lecture Notes in Computer Science; Franconi, E., Kifer, M., May, W., Eds.; Springer: Berlin, Germany, 2007; Volume 4519,
pp. 37–52.

34. Yates, R.; Power, N.; Buckley, J. Characterizing the transfer of program comprehension in onboarding: An information-push
perspective. Empir. Softw. Eng. 2020, 25, 940–995. [CrossRef]

35. Viviani, G.; Murphy, G.C. Reflections on onboarding practices in mid-sized companies. In Proceedings of the 12th International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE@ICSE 2019, Montréal, QC, Canada, 27 May
2019; Dittrich, Y., Fagerholm, F., Hoda, R., Socha, D., Steinmacher, I., Eds.; ACM: New York, NY, USA, 2019; pp. 83–84.

36. Steinmacher, I.; Wiese, I.S.; Conte, T.; Gerosa, M.A.; Redmiles, D.F. The hard life of open source software project newcomers.
In Proceedings of the 7th International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2014,
Hyderabad, India, 2–3 June 2014; Sharp, H., Prikladnicki, R., Begel, A., de Souza, C.R.B., Eds.; ACM: New York, NY, USA, 2014;
pp. 72–78.

https://code.google.com/archive/p/word2vec/
http://dx.doi.org/10.1093/comjnl/20.4.359
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1109/TSE.2015.2445347
http://dx.doi.org/10.1109/TSC.2009.20
http://dx.doi.org/10.1007/s10664-019-09741-6

Appl. Sci. 2022, 12, 3222 24 of 24

37. MeCab. Available online: https://taku910.github.io/mecab/ (accessed on 9 February 2022).
38. Isotani, H.; Washizaki, H.; Fukazawa, Y.; Nomoto, T.; Ouji, S.; Saito, S. Duplicate Bug Report Detection by Using Sentence

Embedding and Fine-tuning. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution,
ICSME 2021, Luxembourg, 27 September–1 October 2021; pp. 535–544.

39. Kanakogi, K.; Washizaki, H.; Fukazawa, Y.; Ogata, S.; Okubo, T.; Kato, T.; Kanuka, H.; Hazeyama, A.; Yoshioka, N. Tracing CVE
Vulnerability Information to CAPEC Attack Patterns Using Natural Language Processing Techniques. Information 2021, 12, 298.
[CrossRef]

40. Filatova, E.; Hatzivassiloglou, V. A Formal Model for Information Selection in Multi-Sentence Text Extraction. In Proceedings
of the COLING 2004, 20th International Conference on Computational Linguistics, Geneva, Switzerland, 23–27 August 2004;
pp. 397–403.

https://taku910.github.io/mecab/
http://dx.doi.org/10.3390/info12080298

	Introduction
	Related Work
	Requirement Classification
	Requirement Visualization
	Project Onboarding

	Ticket Categorization and Visualization Method
	Ticket Vectorization
	Tickets Categorization
	Ticket Lifetime Visualization
	Ticket Feature Visualization

	Case Study
	Project Overview
	Case Study Procedure
	Results
	Discussion
	Does Our Categorization Method Estimate the Number of Ticket Categories and Categorize Tickets Accurately?
	Can Our Visualization Method Help New Members Understand the Implemented Features of a Project?

	blackExperimental Evaluationblack
	Experiment Design
	Results
	Discussion
	Does Our Method Improve Project Comprehension?
	For Which Tasks Is Our Method Effective?

	Limitations and Use Cases
	Limitations and Threats to Validity
	Use Cases

	Conclusions and Future Work
	References

