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Abstract: Vulnerability and attack information must be collected to assess the severity of vulner-
abilities and prioritize countermeasures against cyberattacks quickly and accurately. Common
Vulnerabilities and Exposures is a dictionary that lists vulnerabilities and incidents, while Common
Attack Pattern Enumeration and Classification is a dictionary of attack patterns. Direct identification
of common attack pattern enumeration and classification from common vulnerabilities and exposures
is difficult, as they are not always directly linked. Here, an approach to directly find common links
between these dictionaries is proposed. Then, several patterns, which are combinations of similarity
measures and popular algorithms such as term frequency–inverse document frequency, universal
sentence encoder, and sentence BERT, are evaluated experimentally using the proposed approach.
Specifically, two metrics, recall and mean reciprocal rank, are used to assess the traceability of the
common attack pattern enumeration and classification identifiers associated with 61 identifiers for
common vulnerabilities and exposures. The experiment confirms that the term frequency–inverse
document frequency algorithm provides the best overall performance.

Keywords: cybersecurity database; CVE; CAPEC; natural language processing; sentence embeddings;
TF-IDF; universal sentence encoder; sentence BERT

1. Introduction

System administrators devote a significant amount of time to vulnerability manage-
ment against cyberattacks due to the sheer volume of vulnerabilities. Information must be
collected quickly and exactly for efficient vulnerability management. Effective management
should provide information not only about known vulnerabilities, but also possible attacks.
A database on cybersecurity issues can gather such information. There are two publicly
available databases: Common Vulnerabilities and Exposures (CVE) [1] and Common At-
tack Pattern Enumeration and Classification (CAPEC) [2]. CVE is a dictionary specializing
in vulnerability information. It lists and assigns a unique number to each vulnerability
or defect in a system, software, or web application in information security. CAPEC is a
dictionary of attack information. It systematizes attacks and exploits against vulnerabilities.

There is a vulnerability scanner tool called Vuls. Although it can automatically find
CVE-IDs, CVEs are poorly informed about attacks. Consequently, it needs to be supple-
mented with information about CAPEC attack patterns. The associated CAPEC-ID from
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CVE cannot be directly identified from the associated CAPEC-ID since CVE and CAPEC are
independent. Currently, CVE can be traced to CAPEC via common weakness enumeration
(CWE) [3], which is a community-developed list of software and hardware weakness types.
CVE is synchronized with the national vulnerability database (NVD) [4], and the associated
CWE-ID is found from the NVD. CWE contains the associated CAPEC-identifier (ID).
Therefore, the conventional method traces from CVE through CWE to CAPEC. There are
two major issues with the conventional method:

• Even with CWE, it may not be possible to trace the CVE-ID to the associated CAPEC-ID.
• Cybersecurity databases are linked manually. The growing amount of vulnerability

information makes manual handling problematic, resulting in more failures.

An explicit link from CVE to CAPEC currently does not exist. A CVE reporter should
include the associated CAPEC-ID. However, accurate linking is costly and difficult. This
paper aims to trace associated CAPEC-IDs directly from the CVE-ID. Specifically, a list of
associated CAPEC-ID candidates is generated for a given CVE-ID. Then, the linkage is
determined based on the similarity between the CAPEC document and the CVE description.
This paper is an extension of papers presented at the Hawaii International Conference on
System Sciences (HICSS 54) [5] and Information for Business and Management-Software
Development for Data Processing and Management [6]. Here, we extend the experimental
patterns and revised the analysis results and the corresponding discussion.

Nine patterns are proposed and evaluated to calculate the similarity. Three different
similarity measurement algorithms are used: term frequency–inverse document frequency
(TF-IDF) [7], universal sentence encoder (USE) [8], and sentence BERT (SBERT) [9]. These
algorithms can be classified as context-independent algorithms or context-dependent
algorithms. TF-IDF is a context-independent algorithm, which calculates similarity based
on the occurrence frequency of words. It is a classical and simple method. On the other
hand, USE and SBERT are context-dependent algorithms. They learn distinct embeddings
of the same word in different contexts and create a model. BERT is a relatively new
technology. Previous studies [10,11] have employed similarity algorithms to achieve similar
goals, but similarity algorithms have yet to be accurately evaluated and compared. This
study compares 9 patterns of the proposed approach using the inputs of 61 patterns of
CVE-IDs and tracing the associated CAPEC-IDs.

This paper addresses the following three research questions (RQs):
RQ1. How accurately can a CVE-ID be traced to its associated CAPEC-ID following a

link between cybersecurity databases? This question investigates the accuracy of tracing
CVE-IDs to the associated CAPEC-IDs using the conventional method and identifies the
issues with the conventional method.

RQ2. How accurate is the tracing of CVE-IDs to the associated CAPEC-IDs when using
the proposed approach? This question evaluates the usefulness of the similarity algorithms.

RQ3. Which algorithm provides the most suitable tracing? This question clarifies the
algorithm that is most appropriate for this task.

This paper makes the following contributions. First, the link accuracy between cyberse-
curity databases is elucidated. Second, candidate links of CAPEC-IDs are easily identified,
aiding in the linking process. Finally, CVE reporters can determine whether the report
contains sufficient vulnerability information.

The rest of this paper is organized as follows. Section 2 introduces related works, a
motivating example, and current problems. Section 3 details the proposed approach and
the different patterns. Section 4 describes the experiments and discusses the RQs. Finally,
Section 5 presents our conclusions and future work.

2. Related Work and Problems

Herein, the related works are introduced. Additionally, a motivating example and
current problems are provided.
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2.1. Related Work

Previous studies have investigated the mapping between cybersecurity databases [8,9,12,13].
The aims of [8,9] are similar to this research. CVE is mapped to CAPEC using TF-IDF [8]
and Doc2Vec [9]. However, [8] focuses on limited vulnerabilities. The previous studies
did not provide a valid evaluation or a comparison of different algorithms. On the other
hand, this study uses the dataset defined by MITRE to conduct experiments comparing
multiple algorithms.

Recently, research on mapping of ATT&CK [14] and CVE [15–17] has intensified. The
approach in this study should be applicable to map CVE and ATT&CK. In the future, the
tracking will be expanded to include ATT&CK.

The authors of [18,19] propose a method to combine similarity algorithms. In [18], a hy-
brid method, combining Doc2Vec weighted by TF-IDF and a vector space model weighted
by TF-IDF, is proposed. Here, hybrid metaheuristic and machine learning methods are
considered as a growing research domain [20–23] extract hidden topics from the textual
description of each attack pattern. Although the approach in this study uses a simple
similarity algorithm, this work builds upon previous studies.

Some studies have used cybersecurity databases to create vulnerability ontology mod-
els [24–26] and to analyze and assess risk and security [27–32]. However, they do not de-
scribe the information retrieval process from cybersecurity databases. Others have focused
on mining methods and information retrieval from each cybersecurity database [33–37]. In
particular, [33,35] introduce information retrieval processes by following the relationships
among cybersecurity databases. Unlike previous studies, this study explicitly evaluates the
accuracy of the links between databases.

2.2. Motivating Example and Problems

Following the links between cybersecurity databases, CVE-ID can be traced to CAPEC-
IDs. In some cases, tracing back to CAPEC is not possible. An example is CVE-2020-10108,
which is a vulnerability related to HTTP request splitting. The description of CVE-2020-
10108 is as follows: In Twisted Web through 19.10.0, there was an HTTP request splitting
vulnerability. When presented with two content-length headers, it ignored the first header.
When the second content-length value was set to zero, the request body was interpreted as
a pipelined request [38].

There is an attack pattern identifier for HTTP request splitting in CAPEC-105. CVE-
2020-10108 is linked to CWE-20, but CAPEC-105 is not. Therefore, CWE-20 cannot be
traced from CVE-2020-10108 to CAPEC-105. The exact number of CVE-IDs that cannot be
traced to CAPEC via CWE is unknown. Since the issue is the link between cybersecurity
databases, it is preferable to directly trace from CVE to CAPEC. The motivation of this
study is to create an approach to directly trace from CVE to CAPEC.

3. Tracing Method from CVE-ID to CAPEC-ID

The proposed approach involves four steps. First, a corpus of CVE descriptions and 546
CAPEC-ID documents are generated. Figures 1–3 show examples using CVE-2020-10108
as the input data. Second, a document embedding is created using a similarity algorithm.
The document measure in Figure 1 created 547 vectors, while the section measure in
Figures 2 and 3 created 2692 vectors. Third, the CVE-ID vector and all CAPEC vectors are
used to calculate the cosine similarity (Equation (1)). Finally, the CAPEC documents are
sorted by the similarity score and N CAPEC-IDs are selected. Then, candidates for the
associated CAPEC-IDs are obtained from CVE-IDs.

cos
(→

p ·→q
)
=

p1q1 + p2q2 + . . . + pnqn√
p1

2 + p22 + . . . + pn2
√

q1
2 + q22 + . . . + qn2

=

→
p ·→q∣∣∣→p ∣∣∣∣∣∣→q ∣∣∣ (1)
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Three similarity measures are proposed to trace CAPEC from CVE. The first one
measures the similarity of all sections as a single document (Figure 1). The second measures
the similarity for each section (Figure 2). The third measures the similarity for each section
and then calculates the average of the similarity for all sections per CAPEC-ID (Figure 3).

In addition, three algorithms are considered to create document embeddings: TF-IDF,
USE, and SBERT. Below is an explanation for finding the associated CAPEC-ID using
CVE-2020-10108 as the input data. All algorithms are demonstrated using the flow of
tracing in combination with the document patterns.
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3.1. Tracing Based on TF-IDF

TF-IDF evaluates the importance of words in a document. The TF-IDF score is ob-
tained by multiplying the term frequency and the inverse document frequency. Here,
TfidfVectorizer from scikit-learn [39] is employed. TfidfVectorizer converts each document
into a vector based on the TF-IDF score when given a set of documents. Figure 4 shows the
approach using TF-IDF as the algorithm with CVE-2020-10108 as the input data.
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3.2. Tracing Based on USE

USE sums the vectors of each word considering the context and normalizes them by
the length of the sentence to obtain a vector of sentences. There are two methods to obtain
context-sensitive word vectors: the transformer encoder and the deep averaging network
(DAN). Both methods take a paragraph as the input and output a 512-dimensional vector.
Pre-trained models are available on the Tensorflow Hub for both methods. This study
employs DAN because transformers are used in SBERT. Figure 5 shows the approach using
the USE algorithm with CVE-2020-10108 as the input data. The pre-training model is the
universal-sentence-encoder-v4 [40].
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3.3. Tracing Based on SBERT

SBERT uses a pre-trained BERT model and Siamese Network to create highly accurate
sentence vectors. SBERT adds a layer to the output layer of BERT to perform a pooling
operation. The output of BERT is a sequence of variable numbers of embedded vectors.
Each vector corresponds to the tokens that make up a sentence. The pooling operation
converts the sequence of variable vectors into a vector of one fixed-length dimension.
SBERT uses a Siamese network for fine-tuning. The loss function is important for fine-
tuning. There are 13 different loss functions, but the appropriate one depends on the
training data and the target task. Here, CosineSimilarityLoss is employed because it is easy
to prepare. In-house data is used for fine-tuning. The experiments use only the pre-training
model to ensure the presence of failed data. The guessed security data is fine-tuned so that
the failed data can be successfully traced. Figure 6 shows the approach using SBERT with
CVE-2020-10108 as the input data. The pre-training model is all-distilroberta-v1 [41].
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4. Experiments and Results
4.1. 61 CVE-IDs

CAPEC has the Example Instance field. Figure 7 shows the Example Instance for
CAPEC-60, where CVE-1999-0428 and CVE-2002-0258 are listed. This field has a total of
61 CVE-IDs. Although three are duplicates, they were recognized as different CVE-IDs in
the experiment. The experiment assumed that the link from CVE to CAPEC was many-to-
one and all 61 CVE-IDs were used. The experiment aimed to verify that the CVE-ID listed
in the example instance field can be traced to the corresponding CAPEC-ID.
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4.2. Experimental Patterns

The experiment employed nine experimental patterns: three algorithms combined
with three measurement methods (Table 1). Because the BERT input is limited to 512 tokens,
it cannot be used for the pattern shown in Figure 1 (document). Hence, the experiment
only considered eight patterns.

Table 1. Experiment pattern.

Document Per Section Section Average

TF-IDF # # #
USE # # #

SBERT × # #

4.3. Metrics

The mean reciprocal rank (MRR) and Recall@n were used to evaluate the experimental
results. MRR and Recall@n are popular evaluation metrics used in citation recommen-
dation systems. Recall@n indicates the proportion of relevant items found in the top N
recommendations. That is, it denotes the percentage of the 61 CVEs that are successfully
traced. It is given as

Recall@N =
|a ∩ pN |
|a| (2)



Appl. Sci. 2022, 12, 3400 8 of 16

where N is the number of top rankings to consider. a is the set of correct answer data. pN is
the top N recommendation list.

MRR represents the average value of the reciprocal rank of the correct entity for each
prediction task. It is expressed as

MRR =
1
|N|

|N|

∑
i=1

1
ranki

(3)

where N is the number of test data. ranki is the rank position of the first relevant document
for the i-th query.

4.4. Results

Table 2 and Figure 8 show the results for the eight experimental patterns.

Table 2. Results for the eight patterns using the proposed approach.

Recall@10 MRR

TF-IDF (document) 0.787 0.591
SBERT (section average) 0.803 0.368

TF-IDF (per section) 0.770 0.596
TF-IDF (section average) 0.754 0.470

USE (document) 0.705 0.491
USE (per section) 0.672 0.420

USE (section average) 0.590 0.474
SBERT (per section) 0.557 0.337
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4.5. RQ1 How Accurately Can a CVE-ID Be Traced to Its Associated CAPEC-ID following a Link
between Cybersecurity Databases?

Of the 61 CVE-IDs, only 4 were successfully traced. This low accuracy is due to the
CVE-CWE link. First, some of the identified CVE-IDs are not linked to the CWE. Figure 9
shows the percentage of CVE-IDs that are linked to the CWE by year. Although 80% have
been linked since 2008, 20% have not. This 20% cannot be traced to the CWE.
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Second, many CVE-IDs are linked to CWE-IDs with a high level of abstraction, such
as CWE-20 and CWE-200. Figure 10 shows the frequency that highly abstract CWE-IDs are
linked to each other. CWE-20 and CWE-200 are linked with high frequency. Highly abstract
CWE-IDs generate two issues. First, the underlying weaknesses become invisible, and the
chain and complex relationships are hidden. CWE-20 has the following description:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

The “input validation” term is extremely common, but it is used in many different 

ways. In some cases, its usage can obscure the real underlying weakness or otherwise hide 

chaining and composite relationships [42]. 

 

Figure 10. Vulnerability distribution by CWE-ID. 

Based on the above description, a highly abstract CWE-ID may not identify the root 

cause or trace the attack. Second, one CWE-ID is associated with many CAPEC-IDs. CWE-

20 is linked to 51 CAPEC-IDs and CWE-200 is linked to 58 CAPEC-IDs. Hence, it is diffi-

cult to identify the correct CAPEC-ID. The relationship between CVE-ID and CWE-ID is 

not always considered as a characteristic of vulnerability usage by attackers. 

RQ1. Answer 

Only 4 out of the 61 CVE-IDs were traced to the associated CAPEC-ID. CAPEC was 

not taken into account in the link between CVE and CWE. Therefore, following CVE to 

the CAPEC attack information may not provide useful information. 

4.6. RQ2 How Accurate Is the Tracing of CVE-IDs to the Associated CAPEC-IDs When Using 

the Proposed Approach? 

Table 2 shows that the “document” pattern is better suited for TF-IDF and USE. The 

“section average” pattern is most suitable for SBERT. Figures 11–13 show the experi-

mental results for these three patterns. Figure 14 shows a box-and-whisker diagram of 

average precision. All algorithms traced more than 70% of the CVE-IDs. The experiment 

involved only one ground truth because the link between CVE and CAPEC is a many-to-

one link. This is the reason for the low precision. Changing the criteria of the ground truth 

impacts the value of precision. The number of words in the CVE description and CAPEC 

document are not correlated with the success rate of the proposed approach. A character-

istic of CVE-IDs that failed was an insufficient CVE description. This is due to missing 

cybersecurity words important to trace or hidden fundamental weaknesses. Figure 15 

shows the results of a Kruskal–Wallis test. The p-value less than 0.05 indicates a significant 

difference. 

Figure 10. Vulnerability distribution by CWE-ID.



Appl. Sci. 2022, 12, 3400 10 of 16

The “input validation” term is extremely common, but it is used in many different
ways. In some cases, its usage can obscure the real underlying weakness or otherwise hide
chaining and composite relationships [42].

Based on the above description, a highly abstract CWE-ID may not identify the root
cause or trace the attack. Second, one CWE-ID is associated with many CAPEC-IDs. CWE-
20 is linked to 51 CAPEC-IDs and CWE-200 is linked to 58 CAPEC-IDs. Hence, it is difficult
to identify the correct CAPEC-ID. The relationship between CVE-ID and CWE-ID is not
always considered as a characteristic of vulnerability usage by attackers.

RQ1. Answer
Only 4 out of the 61 CVE-IDs were traced to the associated CAPEC-ID. CAPEC was

not taken into account in the link between CVE and CWE. Therefore, following CVE to the
CAPEC attack information may not provide useful information.

4.6. RQ2 How Accurate Is the Tracing of CVE-IDs to the Associated CAPEC-IDs When Using the
Proposed Approach?

Table 2 shows that the “document” pattern is better suited for TF-IDF and USE. The
“section average” pattern is most suitable for SBERT. Figures 11–13 show the experimental
results for these three patterns. Figure 14 shows a box-and-whisker diagram of average
precision. All algorithms traced more than 70% of the CVE-IDs. The experiment involved
only one ground truth because the link between CVE and CAPEC is a many-to-one link.
This is the reason for the low precision. Changing the criteria of the ground truth impacts
the value of precision. The number of words in the CVE description and CAPEC document
are not correlated with the success rate of the proposed approach. A characteristic of CVE-
IDs that failed was an insufficient CVE description. This is due to missing cybersecurity
words important to trace or hidden fundamental weaknesses. Figure 15 shows the results
of a Kruskal–Wallis test. The p-value less than 0.05 indicates a significant difference.
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RQ 2. Answer
All three algorithms were successful in tracing. All algorithms were 70% successful.

In order of success rate, SBERT successfully traced 49 CVE-IDs, TF-IDF traced 48 CVE-IDs,
and USE traced 43 CVE-IDs.

4.7. RQ3 Which Algorithm Provides the Most Suitable Tracing?

The first factor to find candidate attack patterns that may arise from vulnerabilities is
not to miss associated attacks. The second is the ranking quality. Thus, the most important
metric is recall followed by MRR. SBERT had the best recall, as 49 of the 61 CVE-IDs were
successfully traced (Figure 11). Similarly, TF-IDF successfully traced 48 CVE-IDs, which
is not a significant difference. In MRR, TF-IDF showed the best performance. Therefore,
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judging from the two evaluation indices comprehensively, TF-IDF is the most suitable.
Below is a detailed analysis of TF-IDF and SBERT.

4.7.1. TF-IDF

The advantage of TF-IDF is that it can make decisions based on the importance of
words. This is a well-utilized tactic in similarity judgment without missing security and
system terminologies, which are important for linking CVE and CAPEC. On the other
hand, factors that could not be identified by TF-IDF are due to the inability to understand
the context. An example is CVE-2020-0601. CVE-2020-0601 is associated with CAPEC-475.
CAPEC-475 is signature spoofing by improper validation. The description of CVE-2020-
0601 is as follows:

A spoofing vulnerability exists in the way that Windows CryptoAPI (Crypt32.dll)
validates elliptic curve cryptography (ECC) certificates. An attacker could exploit the
vulnerability using a spoofed codesigning certificate to sign a malicious executable, making
it appear the file was from a trusted, legitimate source, aka “Windows CryptoAPI Spoofing
Vulnerability” [43].

Both CVE-2020-0601 and CAPEC-475 contain many words related to cryptography,
such as “cryptography,” “cryptographic,” “cryptographically,” and “cryptanalysis.” TF-IDF
cannot measure a high similarity because it does not understand the context. Context-
sensitive algorithms such as SBERT can compensate for this shortcoming.

4.7.2. SBERT

The advantage of SBERT is that it understands context. On the other hand, factors
that could not be identified by SBERT are based on other words that are not important
in the link. An example is CVE-2004-0629. CVE-2004-0629 is associated with CAPEC52.
CAPEC52 is Embedding NULL Bytes. The description of CVE-2004-0629 is as follows:

Buffer overflow in the ActiveX component (pdf.ocx) for Adobe Acrobat 5.0.5 and
Acrobat Reader, and possibly other versions, allows remote attackers to execute arbitrary
code via a URI for a PDF file with a null terminator (%00) followed by a long string [44].

When CVE-2004-0629 is entered, SBERT recommended many of the CAPEC-IDs
related to “flash.” This may be based on the word “Adobe.” In addition, since it is written as
buffer overflow, there were many CAPEC-IDs recommended for buffer overflow. However,
the important part of this CVE description is “a null terminator (%00),” and it cannot
be identified unless this word is well utilized. Incidentally, TF-IDF was successful in
this linking. One possible solution is to increase the amount of training data. In this
study, the training data consisted of about 150 sentences. However, merely increasing
the number is inadequate. Learning the relationship between CVE and CWE decreased
the accuracy. Additionally, this study used CosineSimilarityLoss, but TripletLoss may be
more appropriate. Therefore, finetuning the data collected by the cybersecurity group with
TripletLoss should improve the accuracy.

RQ3. Answer
TF-IDF was the best algorithm overall based on the two values of recall and MRR

because it can identify the security terms that are important to the link and measure.

4.8. Findings

Our approach has different uses for vulnerability reporters and system administrators.
For vulnerability reporters, it is useful to determine if there is an insufficient descrip-

tion in the report. For example, TF-IDF traced CVE-2004-0629 to CAPEC-52. CAPEC-52 is
Embedding NULL Bytes. The description of CVE-2004-0629 is shown above. Although
this might be considered buffer overflow, CVE-2004-0629 was traced to CAPEC-52. This
indicates that the quality of the description of CVE-2004-0629 has been ensured.

On the other hand, CVE-2006-4705 was not traced to CAPEC-54. CAPEC-54 is a Query
System for Information. The description of CVE-2006-4705 is as follows:
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SQL injection vulnerability in login.php in dwayner79 and Dominic Gamble Timesheet
(aka “Timesheet.php”) 1.2.1 allows remote attackers to execute arbitrary SQL commands
via the username parameter [45].

In the above description, SQL injection should have been described as blind SQL
injection to improve the quality of vulnerability reporting.

For system administrators, it is useful to understand the scenario-based attacks that
may occur in the future. For example, CVE-2006-2786 is an HTTP Response Smuggling
vulnerability. CVE-2006-2786 was traced to CAPEC-273 (HTTP Response Smuggling). The
CAPEC273 page shows that it leads to XSS and cache poisoning. System administrators
can consider their environment and anticipate subsequent attacks for vulnerability man-
agement. In this way, the CAPEC description of the trace destination can be used to predict
future events, which should be useful for more accurate vulnerability management.

4.9. Threats to Validity

The ground truth was based on the link set up by MITRE. Although the correctness is
ensured, MITRE may have omitted some links. This is a threat to the internal validity. In
the future, the usefulness of other link candidates should be examined.

A threat to external validity is that the effectiveness of the proposed approach for all
CVEs was not verified. In the future, the effectiveness of the approach should be validated
by randomly selecting CVE-IDs.

5. Conclusions and Future Works

Herein, one approach to trace associated CAPEC-IDs directly from CVE-IDs is pro-
posed and different patterns are evaluated. The conventional method follows the links
between each cybersecurity database, which requires manual linking. This leads to accuracy
issues. By contrast, the tracing approach in this study uses a similarity algorithm. Different
patterns (three similarity measures and three algorithms) using the proposed approach
were experimentally evaluated. Although each algorithm has its own merits, TF-IDF is the
most suitable overall.

In the future, employing ensemble learning [46] may improve accuracy. Ensemble
learning merges multiple models that have been trained individually. Specifically, it
combines the predictions of various similarity algorithms in a process, for example, “taking
an average”.

This study has limitations in tracing perfectly the best attack pattern. However, the
impact of the traced attack patterns on the actual vulnerability management is evaluated.
This study used CAPEC attack pattern information, but attack information is available
elsewhere. Examples are the Pattern Language [47] and ATT&CK. In the future, the
candidates of the tracing attack information should be expanded. Additionally, studies
should focus on expanding the proposed approach into a comprehensive and proactive
cyber threat intelligence (CTI) [48,49] by collecting and analyzing data from many cyber
security databases.
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