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Abstract: In this study, four protective coating materials: Inconel 718, Inconel 625, Alloy 33 and Stellite
6 were deposited on 16Mo3 steel tubes by means of CMT (Cold Metal Transfer), as an advanced
version of MAG (Metal Active Gas) welding method. In the next step, the surface of the deposited
coating was remelted by means of TIG (Tungsten Inert Gas) welding method. SEM microstructure of
coatings–substrate has been reported, and an EDX-researched chemical composition of the coatings
was compared to the nominal chemical composition. The hardness distribution in the cross-section
was performed, which revealed that among investigated coatings, Stellite 6 layer is the hardest, at
about 500 HV0.2. Other materials such as Inconel 625, Inconel 718 and Alloy 33 represented a cladded
zone hardness about 250 HV0.2. Stellite 6 layer had the lowest wear resistance in the dry sand/rubber
wheel test, and Stellite 6 layer had the highest wear resistance in the erosive blasting test. This proved
the existence of different wear mechanisms in the two test methods used. In the dry sand/rubber
wheel test, the Alloy 33 and Inconel 718 only represented higher wear resistance than substrate 16Mo3
steel. In abrasive blasting tests all coatings had higher wear resistance than 16Mo3 steel; however,
Stellite 6 coatings represented an approximately 5 times higher durability than other investigated
(Inconel 625, Inconel 718, and Alloy 33) coatings.

Keywords: pad welding; Stellite 6; Inconel 625; Inconel 718; Alloy 33; abrasive comparison; wear
behavior

1. Introduction

The consumption of energy for living and production reasons is still increasing. Ther-
mal power units such as boilers are developing in the direction of larger capacity and
higher work parameters. Intensive temperature corrosion and wear erosion of boiler water
walls has become one of the crucial problems for power generation devices to solve [1].
In addition, the high temperature corrosion and erosion protection deposited coatings
should manifest uniform thickness, and reasonable wear resistance [2]. Metallic protective
coatings deposited by means of welding/cladding processes are often applied in many
industries [3,4], especially on steel tubes and water walls in advanced power generation
boilers to improve their performance and extend their lifetime (which mainly depends on
what coating material has been used). Various chemical [5], welding, and welding-related
processes [6] were employed for surface modification of materials [7,8], cladding [9], and
other coating deposition methods [10–12]. Common welding methods such as MMA (Man-
ual Metal Arc) deposition [13] provide thick (4–5 mm), good-wear behavior and a relatively
low cost of treatment, but they absorb a lot of coating material and produce coatings with
high-dimensional instability [14]. In view of the ever-increasing costs of high-alloy coating
materials, the energy industry expects coatings with a thickness of approximately 2 mm
with as flat a surface as possible. They require the production of a thick-enough coating to
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ensure that the minimum acceptable thickness is obtained in places exposed to operating
conditions. Furthermore, there are a lot of sophisticated and advanced solutions such as
laser cladding [15,16] and laser hybrid [17] deposition, which provide smooth and sound
coatings, but application on large areas and geometrically complicated surfaces such as
heat exchangers or steel tubes in power generation boilers are not applicable because of the
high cost of producing.

CMT (Cold Metal Transfer) as a variant of the MAG welding process from FRONIUS
is considered as interesting for thin metal sheet welding [18] and the protective or remanu-
facturing coatings deposition processes [19]. Low welding power and a safely low dilution
of the deposited material with substrate material as well as good stability and wettability,
together with a relatively high productivity demonstrate its potential use for applying
metallic coatings by pad welding [20]. Subsequently, the surfaces of the deposited coatings
were remelted by the TIG process to obtain smooth surfaces without gaps and irregularities,
characteristic of MAG/CMT surfacing. There are scientific reports about the significant
influence of the protective coating’s surface-shape imperfections on its wear resistance
and corrosion resistance in boiler-work conditions [21]. Abrasive wear, as defined by
ASTM, is due to hard particles that are forced against and moved along a solid surface.
Wear is defined as damage to a solid surface that involves progressive loss of material,
and is due to relative motion between that surface and a contacting substance [22]. The
tribological performance of cladded material is usually related, with the properties of
microstructure [23].

Literature analysis of the problem of surfacing nickel alloys [24] confirms the validity
of the CMT method [16]. Generally, it is possible to obtain flawless and high-quality
padding welds. The Heat Affected Zone (HAZ) could be thin, when compared to the
similarly produced weld by classical MIG (Metal Inert Gas) welding. The size and geometry
of crystallites in the weld zone, i.e., large dendrites, are similar to those obtained in a
classic MIG process. The residual stresses are found to be minimal. This work by Benoit
et al. demonstrates that the CMT welding is fully suitable for the welding of high nickel
alloys [17].

Four protective coatings were made on the substrate of 16Mo3 steel from various
high-alloy materials, such as Inconel 718, Inconel 625, Stellite 6 and Alloy 33, which are
used by default to work in increased and high-temperature applications [25]; however, in
this work, tests were carried out to verify the wear resistance at room temperature, because
previous reports for this temperature level are few.

2. Materials and Methods

For the cladding process (hardfacing), a low-energy version of the Fronius (Aus-
tria) CMT (Cold Metal Transfer) [26] welding method was used. The unique control
system of the CMT process, which detects short circuits and assists the droplet detach-
ment by retracting the filler wire, resulted in a reduced amount of heat introduced into
the treated material during the process and the possibility of precise control of coating–
substrate dilution [27]. The heat is transferred into the deposited material only during
the impulse arc phase, which is very short-lived. This feature allows for the applica-
tion of surfaced layers, characterized by a low-dilution ratio, with the substrate (D),
which should be from 1 to 10%, which significantly affects the properties of the de-
posited welds. In this study four protective coating materials, Inconel 718 (according
to EN-ISO 18274—SNi7718/NiFe19CrNb5Mo3), Inconel 625 (according to EN-ISO 18274—
SNi6625/NiCr22Mo9Nb), Alloy 33 (EN 1.4591/X1CrNiMoCuN33-32-1) and Stellite 6 (ac-
cording to AWS A5.21/ERCCoCr-A) were deposited on 16Mo3 (according to EN 10028)
steel tubes, with a diameter of 60.3 mm, a wall thickness of 8 mm, and 150 mm-long
samples. Metallographic tests were carried out via an optical microscope produced by
the Olympus BX51M, equipped with a camera for digital recording of the image. The
microstructure of the coating was investigated by scanning electron microscopy (SEM),
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using JEOL JSM-7600F with an EDX Oxford Instrument detector X-MaxN typu SDD (Silicon
Drift Detector) microscope.

As a supplement to the metallographic research, hardness measurements in the cross-
section, perpendicular to the longitudinal axis of the substrate and coating system, were
performed using the Vickers method HV 0.2 using the Leitz Wetzlar (Germany) 8375
microscope. The wear resistance of the CMT cladded coatings, as well as of 16Mo3 steel
(for comparison), was determined in accordance with the dry sand/rubber wheel test,
according to ASTM G65, procedure B. In that test, the abrasive medium (50–70 mesh silica
sand) had been continuously fed between the investigated surface and the rotating rubber
wheel. The testing schematic is shown on Figure 1a. In Figure 1b the test stand, home-made
at the Warsaw University of Technology (Faculty of Mechanical and Industrial Engineering)
is shown. That test is often used for the wear resistance evolution of different materials in
the mining, mineral, oil processing and power generation industry [28].
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view of the test stand according to ASTM G65 requirements.

Wear resistance under abrasive blast tests were carried out on a special SciTeeX com-
pany (Poland) device presented in Figure 2b. The stand consists of the following elements:
working chamber (A), abrasive tank with feeding system (B), filtration–ventilation system
of the working chamber (C), used abrasive discharge tank (D) and control system (E).
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The working chamber is equipped with a pneumatic lance with a replaceable tip
(pneumatic nozzle) and a sample holder Figure 2a. The design of the holder enables the
adjustment of the angle of the samples in relation to the blasting stream axis. The tank
with the feeding system (B) has been equipped with a valve that allows adjustment of the
pressure of the abrasive stream. The used abrasive goes to the tank (D), located below the
working chamber. The control system is equipped with a controller that allows for the
regulation of the process duration and an emergency switch (E).

3. Results and Discussion

Recently, the requirements of users of such coatings have increased and are no longer
limited, mainly to a low dilution of the deposited coating with the substrate <6%. Due to
high material costs, a low thickness (for this depositing method) of ~2 mm and the highest
possible smoothness of the working surface are expected. The above-described conditions
were used as criteria for the selection of parameters for the coating production process.
The conditions of the surfacing process were shaped individually for each of the tested
types of surface materials, due to the distinct differences in their physical and chemical
properties. The samples were made by means of CMT cladding in accordance with the
conditions presented in Table 1. The protective coating was created by a multi-pass spiral
application on a rotating pipe. The overlap between the stitches was 20% of the stitch width.
The excess heat concentrated in the base material during multi-pass welding [30,31] was
evacuated by pouring water inside the pipe at a temperature of 20 ◦C, at a rate of 5 L/min.
Simultaneously, the surface of the deposited coatings were remelted by the TIG process
to obtain a smooth surface without gaps and irregularities characteristic of MAG/CMT
surfacing. The TIG torch was located 40 mm behind the CMT torch. TIG welding allows
for a smooth surface and a high metallurgical cleanliness of welds [32]. In Table 2 the
parameters of coating surface TIG remelting process were presented.

Table 1. CMT cladding process parameters.

Process Parameters Unit INCONEL 718 INCONEL 625 ALLOY 33 STELLITE 6

Travel speed mm/min 26 24 33 14
Rotational speed of cladded pipe RPM 13.1 14.5 12.7 7.2

Welding current A 243 245 256 245
Welding arc voltage V 20.5 20 20.5 19

Wire feed rate m/min 9.5 10.5 10.6 10.5
Gas flow rate L/min 15 14.5 15 14
Wire diameter mm 1.2 1.2 1.2 1.2
Shielding gas - Ar Ar Ar Ar

Table 2. The parameters of TIG remelting cladded coatings surface.

Process Parameters Unit INCONEL 718 INCONEL 625 ALLOY 33 STELLITE 6

Travel speed mm/min 26 24 33 14
Rotational speed of cladded pipe RPM 13.1 14.5 12.7 7.2

Welding current A 250 250 250 250
Gas flow rate L/min 16 16 16 16
Shielding gas - Ar Ar Ar Ar

3.1. Metallographic Research

Figure 3 shows the general view of the samples made for the purposes of the tests
described in the article. An example of a padding weld, made with an Inconel 718 coating
material, left part of the sample after the remelting of the surface in the next stage of the
process using the TIG welding method.

In the first phase, the analysis was carried out via an optical microscope produced by the
Olympus company, equipped with a camera for digital recording of the image. An observa-
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tion was conducted of metallographic samples of the four coatings, under ×25 magnification
presented on Figures 4–7.
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To calculate the amount of dilution (D), the characteristic geometric elements (Figure 8)
of the single pass were measured. Dilution was calculated using the following formula:

D =
dilution zone area

dilution zone area + clad layer area
100% (1)
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Figure 8. Diagram showing geometrical parameters of a CMT cladded single bead with operating
parameters from Table 1: height (h), depth (d), width (w).

The results of the measurements and the calculated dilution are shown in Table 3.
The average values of four randomly prepared (perpendicular to the longitudinal axis)
cross-sections for each kind of coatings are shown. The lowest dilution for Inconel 625
equals 1.47%, and the highest for Inconel 718 equals 6.55%. All the results are within the
range ensuring adequate metallurgical joining to the substrate and furthermore, avoiding
excessive dilution of the coating with the substrate material. The thicknesses shown in
Table 3 show the average of the five cross-sectional measurements determined by the
Olympus computer program.

Table 3. Average of coating’s thickness value (with standard deviation) and dilution rate calculated
on the base of macroscopic research.

Coating Material Coating Thickness, h (mm) Dilution, D (%)

Inconel 625 2.2 (0.15) 1.47
Inconel 718 1.7 (0.22) 6.55

Alloy 33 2.06 (0.17) 3.74
Stellite 6 2.1 (0.13) 5.51

3.2. Coatings Characterization by Means of SEM and EDX

The coatings characterization in the as-cladded conditions are shown in Figure 9. All
of them present the homogeneous microstructure of fusion-deposited metallic coatings
with visible interface between substrate and coating material. The microstructures of the
interfaces in all researched coatings indicate a low dilution of coating material with the
substrate. Continuous and quite sharp interface were revealed in all researched issues. No
cracks, pores or other structural defects were visible. The fine-grained matrix is composed
of primary dendrites. The matrix microstructure is a characteristic state formed in the
conditions of nonequilibrium cooling of liquid alloys, which was also obtained in the arc
surface-melting process. Table 4 compares the chemical composition of filler materials
(as nominal state) and the chemical composition of deposited coatings researched by the
EDX procedure. The chemical composition value of the deposited coating is the average
value of three tests performed at half the thickness of the coating. The results of chemical
composition comparison confirm a very low dilution of Inconel 625 and Alloy 33 and a little
bit higher in the case of Inconel 718 and Stellite 6. This is clearly indicated by the increase in
iron concentration on the coatings relative to the nominal material. The calculated dilution
(Table 3) value of the coatings with the substrate is clearly correlated with the results of the
chemical composition (Table 4) of coating materials in the nominal state and deposition by
means of arc cladding.
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Figure 9. SEM microstructure of arc deposited coatings (a) Inconel 625; (b) Inconel 718; (c) Alloy 33;
(d) Stellite 6.

Table 4. Chemical composition of nominal filler material specified at standards and chemical compo-
sition measured by means of EDX in a cross-section of cladded coating, in wt%.

Coating Material Ni Cr Mo Co C Mn Si Fe Ti Al W Nb + Ta

Inconel 625

nominal base
(63.43) 20 ÷ 23 8 ÷ 10 0 ÷ 1 0 ÷ 0.1 0 ÷ 0.5 0 ÷ 0.5 0 ÷ 1 0 ÷ 0.4 0 ÷ 0.4 - 3.15 ÷ 4.15

cladded coating 1.93 9.42 - 0.1 - - 0.81 0.23 0.17 - 3.94
Inconel 718

nominal 50 ÷ 55
(50.68) 17 ÷ 21 2.8–3.3 0 ÷ 1 0 ÷ 0.08 0 ÷ 0.35 0 ÷ 0.35 18 0.65 ÷ 1.15 0.2 ÷ 0.8 - 4.75 ÷ 5.5

cladded coating 17.49 3.22 - 0.08 - 0.02 21.45 (0.92) 0.49 - 5.5
Alloy 33

nominal 30 ÷ 33
(29.04) 31 ÷ 35 - - 0 ÷ 015 0 ÷ 2 0 ÷ 0.5 Rest - - - -

cladded coating 32.34 1.7 - 0.01 0.6 0.2 35.33 - - - -
Stellite 6
nominal 2.5 28.92 0.013 rest 1.38 1.56 0.92 4.19 - - 3.9 -

cladded coating 27.55 1.2 1.1 0.92 13.14 - - 4.31 -

3.3. Hardness of the Coating-Substrate System

The microhardness distribution presented in Figure 10 indicates significant differences
in the hardness between Stellite 6 and other investigated high nickel alloys. The Vickers
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HV0.2 hardness measurements were taken in accordance with EN ISO 9015:2011. Hardness
of the substrate material (16Mo3 steel) is similar for all cases with a relatively small standard
deviation, compared to harder HAZ (Heat Affected Zone) in substrate deposited with
Stellite 6. In the deposited coatings, a nearly two times higher standard deviation from
the mean values than in the base material has been recorded, which is the effect of the
coarse-grained structure of the coatings crystallizing from the liquid.
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Figure 10. Distribution of microhardness in a cross-section of substrate material and the arc sprayed
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3.4. Wear Friction Resistance Test

For the abrasive wear tests, the samples were prepared according to the standard
ASTM G 65 with dimensions of 25 × 76 mm. The samples were shaped on an electro
erosive cutter. The thickness of the samples (substrate and coating), resulting from the
surface modification technique, were different and fell within the range recommended
in the standard, i.e., 3.2–12.7 mm. The surface of the samples were initially prepared by
grinding in accordance with the recommendations contained in the standard ASTM G 65.
The view of the prepared samples (on the example of Alloy 33) for abrasive wear tests is
shown in Figure 11a,b, and shows the view of the samples after the wear abrasion test.

The abrasive wear test was performed in accordance with procedure B, which as-
sumes the pressure of the wheel pressing against the sample at 130 N; the wheel performs
2000 revolutions during the test, which lasts 10 min, and corresponds to the friction dis-
tance of 1436 m. Before and after each test, the samples were weighed with a laboratory
balance with an accuracy of 0.001 g, and the weight loss ∆g was calculated. Two samples
of each material were prepared and tested. The result was presented as the mean value of
two measurements. The results are presented in Table 5, and the graphic visualization is
presented in Figure 12.

The observed surfaces of investigated coatings (certain samples from Inconel 625,
shown for example in Figure 10) have the typical morphology of an abrasive wear resis-
tance test. It was stated that two mechanisms are responsible for the wear of the surface.
Except for the expected rolling mechanism [33], the effect of the grooving mechanism was
found. This result is from shape-edge abrasive particles, which penetrated deep into the
investigated surface. The effect of the penetration was a larger amount of material removed
from the specimens, which initiated the grooving mechanism [34]. In contrast to the wear
mechanism for the Stellite 6 coating (grooving), the rolling mechanism was predominant in
the other investigated coatings.
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Table 5. The results of the comparison of the abrasive wear of the tested CMT cladded materials.

Material Sample No. Weight before
Test, (g)

Weight after
Test, (g)

Loss of Weight
∆g, (g)

Average Value
∆g, (g)

Relative 1 Abrasion
Resistance

16Mo3 1
2

85.489
83.369

84.865
82.764

0.624
0.605 0.6145 0.90

Alloy 33 1
2

109.992
112.522

109.436
111.966

0.556
0.556 0.556 1.0

Inconel 718 1
2

120.581
114.15

120.007
113.611

0.574
0.539 0.5565 0.99

Inconel 625 1
2

110.885
117.208

110.26
116.577

0.625
0.631 0.628 0088

Stellite 6 1
2

116.431
108.292

115.575
107.413

0.856
0.879 0.8675 0.64

Remark 1 relative to Alloy 33.

The presented test results show that the two coatings made of Alloy 33 and Inconel 718
represent the highest abrasive wear resistance. In turn, the worst abrasive wear resistance
is demonstrated by the coating produced with Stellite 6. The wear of the Stellite 6 coating
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in these conditions is about 30% higher than that of ordinary steel used in the construction
of boilers.

3.5. Wear Resistance under Abrasive Blasting

The tests of abrasive blasting wear resistance of the surfaced layers were carried out
with the following parameters:

• Type and granulation of the abrasive: broken steel grit WGH 40 (according to ISO 11124-3)
with a hardness of 60–68 HRC, with a homogeneous martensitic and/or bainitic
microstructure, with fine, well-spaced carbides, nominal fraction 0.43 mm;

• Angle of incidence of the abrasive jet in relation to the sample surface—60◦;
• Length of blasting jet: 100 mm;
• Diameter of pneumatic nozzle: 9 mm;
• Air pressure supplied to the nozzle: 4.3 bar (shown on the pressure gauge);
• Duration of the impact of the abrasive jet on the tested surface: six cycles, 10 s each.

The cladded samples with dimensions of 50 × 150 mm (half pipe) were prepared for
the tests. These samples were taken from the welded pipes by means of electrical discharge
cutting. The view of the prepared samples (on the example of a sample with a Stellite 6
coating) for the abrasive blasting test is shown in Figure 13a.
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Figure 13. View of the test specimens on the example of Stellite 6 coatings before (a) and after (b) the
abrasive blasting wear test.

The research test consisted of six cycles which were performed for each material, where
for each cycle, the time of the stream’s impact on the sample surface was 10 s. The total
time of exposure was 60 s. After each cycle, the degree of material wear was determined as
a loss of mass. For this purpose, the samples were weighed with a RADWAG PS 1000.R2
(Poland) electronic balance with an accuracy of 0.001 g. Table 6 presents the test results and
their graphic visualization is shown in Figure 12. The presented data show that the Stellite
6 padding weld had the best resistance to the blasting erosive jet.

Figure 13 shows the view of the samples (Figure 13a) before and (Figure 13b) after the
abrasive blasting wear test. The area of impact of the abrasive blasting stream on the tested
surfaces is clearly visible. Surface wear is difficult to determine by any other method than
weight loss assessment.

The results of the tests for the individual trial series (duration time 10 s), are presented
in Table 5 and in the graphical form in Figure 14. The obtained data show that for the
Inconel 625 deposited coating, the weight loss recorded in the subsequent treatment cycles
were smaller; for the layers made of Inconel 718 it slightly increased. This effect should be
related to the inhomogeneous microstructure in the thickness of the padding welds. For
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the remaining layers and the native material, the weight loss recorded in subsequent series
was at a comparable level. The test revealed that the wear resistance of Inconel 625 and
Inconel 718 during the abrasive blasting test at room temperature is close to 16Mo3, and
the wear of Alloy 33. The wear resistance of the Stellite 6 coating is the highest among
those compared.

Table 6. Results of abrasive blasting wear test.

Material
Starting

Weight (g)
Loss of Weight after the Next Machining Cycle Total Weight

Loss (g)
Relative 1 Abrasion

Resistance10 s 20 s 30 s 40 s 50 s 60 s

16Mo3 348.258 347.962 347.641 347.29 346.997 346.997 346.374 1.884 0.17
Inconel 625 387.205 386.929 386.636 386.337 386.045 385.75 385.451 1.754 0.19

Stellite 6 393.318 393.251 393.192 393.129 393.075 393.023 392.983 0.335 1
Alloy 33 396.202 395.994 395.719 395.453 395.174 394.898 394.628 1.574 0.21

Inconel 718 457.531 457.315 456.952 456.638 456.31 456.001 455.681 1.85 0.18

Remark 1 relative to Stellite 6.
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Figure 14. Total loss of weight after the abrasive blasting wear test.

4. Conclusions

Based on the experimental research carried out and discussion on the results, the
following can be stated:

1. The use of the CMT hardfacing process enables the production of cladder welds with
a minimal-volume fraction substrate material in coatings (small value of dilution),
which results in high layer properties.

2. Among the investigated coatings, Stellite 6 layer is the hardest, at about 500 HV0.2,
compared to materials such as Inconel 625, Inconel 718 and Alloy 33, which represent
a cladded zone hardness about 250 HV0.2.

3. Stellite 6 layer have the lowest wear resistance in the dry sand/rubber wheel test and
the highest wear resistance in the erosive blasting test. This proves the existence of
different wear mechanisms in the two test methods used.

4. In the dry sand/rubber wheel test, Alloy 33 and Inconel 718 only represent higher
wear resistance than substrate 16Mo3 steel.

5. In the abrasive blasting tests all coatings have a higher wear resistance than 16Mo3
steel; however, Stellite 6 coatings represents an approximately 5 times higher durabil-
ity than other investigated (Inconel 625, Inconel 718 and Alloy 33) coatings.
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