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Abstract: The objective of this study was to reveal the usefulness of image processing and machine
learning for the non-destructive evaluation of the changes in mint leaves caused by two natural
drying techniques. The effects of shade drying and open-air sun drying on the ventral side (upper
surface) and dorsal side (lower surface) of leaves were compared. Texture parameters were extracted
from the digital color images converted to color channels R, G, B, L, a, b, X, Y, and Z. Models based
on image features selected for individual color channels were built for distinguishing mint leaves in
terms of drying techniques and leaf side using machine learning algorithms from groups of Lazy,
Rules, and Trees. In the case of classification of the images of the ventral side of fresh and shade-dried
mint leaves, an average accuracy of 100% and values of Precision, Recall, F-Measure, and MCC of
1.000 were obtained for color channels B (KStar and J48 machine learning algorithms), a (KStar and
J48), b (KStar), and Y (KStar). The effect of open-air sun drying was greater. Images of the ventral
side of fresh and open-air sun-dried mint leaves were completely correctly distinguished (100%
correctness) for more color channels and algorithms, such as color channels R and G (J48), B, a and b
(KStar, JRip, and J48), and X and Y (KStar). The classification of the images of the dorsal side of fresh
and shade-dried mint leaves provided 100% accuracy in the case of color channel B (KStar) and a
(KStar, JRip, and J48). The fresh and open-air sun-dried mint leaves imaged on the dorsal side were
correctly classified at an accuracy of 100% for selected textures from color channels a (KStar, JRip,
J48), b (J48), and Z (J48). The developed approach may be used in practice to monitor the changes in
the structure of mint leaves caused by drying in a non-destructive, objective, cost-effective, and fast
manner without the need to damage the leaves.

Keywords: fresh mint leaves; dried leaves; image textures; classification; machine learning

1. Introduction

Plants commonly known as mint belong to the genus Mentha (Lamiaceae) and are of
great economic importance [1]. Mint leaves can be considered an aromatic and medicinal
plant material. Mint can alleviate flu, cold, fever, food poisoning, poor digestion, flatulence,
motion sickness, rheumatism, hiccups, sinus and throat ailments, and earaches [2]. Consum-
ing mint is highly desirable for its health benefits. However, this herb can only be grown
for a certain period of the year. To store mint for a long time, it should be dehydrated [3].
Drying reduces the water content of the plants, inhibits microorganism development and
biochemical reactions, and thus allows for preventing degradation, preserving and ex-
tending the shelf life of materials. Despite its disadvantages related to, among others, the
evaporation of volatile compounds, open-air sun drying is common, mainly in places with
plenty of solar radiation [4].
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During open-air sun drying, plants are in an open environment directly exposed to
solar radiation. This open exposure also results in direct exposure to contamination with
insects, dust, or sand particles [5]. Furthermore, it causes discoloration and loss of aroma,
which is important for consumers because it can reduce dehydrated-mint quality and
quantity. Thermal processing results in numerous reactions affecting the hue. The Maillard
reaction, degradation of chlorophyll pigment, and oxidation of ascorbic acid take place.
Open-air sun drying causes browning. Furthermore, it destroys the vitamin C content,
which is heat- and light-sensitive [3].

Another herb drying method that employs solar energy as a heating source is shade
drying. This drying approach protects photosensitive compounds while reducing light-
induced chemical reactions such as oxidation [6]. However, the drying time of shade drying
is longer than that of sun drying [7]. Additionally, shade drying is a better method for
drying herbs since it maintains the integrity of the trichomes [8]. Shade drying also causes
less damage to the epidermal surface than sun drying [9]. Nonetheless, due to its low
investment cost and high-quality dried products, shade drying, like sun drying, is still
popular in rural areas and small enterprises [10].

The leaf classification can be performed based on color, shape, and texture parameters
using computer vision [11]. Image processing can be used to detect leaves and extract leaf
parameters useful for leaf classification using machine learning algorithms [12]. Machine
learning techniques for developing Artificial Intelligence allow computers or machines to
learn from experience without explicit programming. The objective of machine learning
algorithms is to improve the performance of models using data [13]. Thanks to computer
vision-based methods for classifying leaves, various and powerful features can be extracted
from leaf images. The leaf features are easy to extract and analyze and can be used for the
identification of plants. Manual identification can be vulnerable to human error. Therefore,
automated system identification systems are desirable. In the case of mint leaf classification,
features from the digital images of the front and back sides of leaves can be taken into
account [14]. Intelligent computer models can be very effective in identifying herbs and
their properties [15].

In the available literature, there is a lack of information on the presence of classification
models based on textures of mint leaf images in the individual color channels R, G, B, L, a,
b, X, Y, and Z, computed using image analysis techniques to monitor the effect of natural
drying techniques on the changes in the structure of mint leaves. The novelty of the study
is to reveal that the changes that occur after leaf drying can be distinguished with computer
vision and machine learning applications. This study was aimed at comparing the effect of
shade drying and open-air sun drying on the ventral side (upper surface) and dorsal side
(lower surface) of mint leaves using image processing and machine learning. The reason
for undertaking the research was a need for a more complete understanding of the changes
occurring in the image textures of mint leaves caused by different drying techniques to
acquire new knowledge and develop the procedure for the detection of these changes.

The contribution of the article is far superior to the current state of the art. The inno-
vative nature of this study is related to the acquisition of new information, not found in
the literature, on 1629 texture parameters of fresh and dried mint leaves and the selection
of attributes with the highest discriminative power. The article presents a new approach
to assessing changes in mint leaves caused by natural drying techniques. The leaf classifi-
cation performed using models based on selected texture parameters extracted from the
digital color images converted to color channels R, G, B, L, a, b, X, Y, and Z built using
machine learning algorithms from groups of Lazy, Rules, and Trees is a unique approach to
distinguish dried and fresh mint leaves. For the first time, the assessment of the influence of
natural drying techniques on the structure of mint leaves was carried out using attributes
selected from sets of 1629 image textures from different color channels. Furthermore, moni-
toring the degree of changes in the structure of leaves under the influence of drying without
the need to damage or destroy the leaves can be a problem. The proposed approach may
be a non-destructive, objective, cost-effective, and fast practical solution to this problem.
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Justification for tackling the problem results from insufficient data in the literature on
an experimental and theoretical description of the changes in texture parameters of mint
leaf images as a result of the drying. The problem addressed in this study is to reveal,
with technological solutions, the textural changes caused by the drying techniques used to
preserve the mint leaf for a long time. The proposed solution is to combine the power of
computer vision and machine learning, as used in many different agricultural applications
today [16,17]. In this way, discrimination systems with non-destructive, non-biased, high-
accuracy, and autonomous capabilities can be developed. The proposed solution also does
not depend on a single machine learning algorithm or a single color space of images. The
robustness of the proposed approach was proven with different machine learning methods
and image textures from different color spaces determined experimentally.

2. Materials and Methods
2.1. Materials

The mint plants were grown in a garden located in central Poland. The experiments
were carried out in August. The plants were fully developed. The mint leaves were
collected with short petioles. Two or three leaves were taken from a single branch. In total,
one hundred and fifty leaves were sampled. The collection of leaves was divided into
two parts. The first part of the seventy-five leaves was intended for shade drying. The
remaining seventy-five leaves were subjected to open-air sun drying. Before drying, all
leaves were imaged on the ventral side (upper surface) and dorsal side (lower surface).

2.2. Drying of Mint Leaves

Two drying techniques were applied. The mint leaves were subjected to shade drying
and open-air sun drying. Both techniques were natural and used no dryers/dehydrators.
The leaves were spread evenly over white sheets of paper placed in boxes with low side
walls of about 5 cm. The leaves did not touch each other. Both shade and open-air sun
drying experiments started on the same day at 11 a.m.

2.2.1. Shade Drying

The box with mint leaves was placed in a shaded place at room temperature. The
leaves were turned over to the upper and lower sides every few hours. The color and
structure of the leaves were controlled during the experiment. The leaves were dried for a
week until they changed color and dried completely, as assessed organoleptically.

2.2.2. Open-Air Sun Drying

The experiment was carried out on a rainless, windless sunny day. The mint leaves
were exposed to direct sunlight. During drying, the leaves were turned on their upper and
lower sides every 15 min. When it was noticed that the leaves were beginning to curl, a
metal mesh was placed over them for a while to keep the leaves flat. Drying took three
hours to completely change the color of the entire leaf surface and to obtain dry leaves.

2.3. Image Analysis

One hundred and fifty fresh leaves directly after harvest were subjected to imaging
on the ventral and dorsal sides. The same leaves were imaged as the seventy-five shade-
dried leaves and seventy-five open-air sun-dried leaves after the drying experiments were
completed. Dried mint leaves were also imaged on both sides (ventral and dorsal). Digital
color imaging was performed in a dark room using a digital camera and LED (light-emitting
diode) as a light source. Leaves were imaged on a white background. Each image contained
five leaves. In total, the images of the following samples (classes) were acquired:

- ventral side of seventy-five fresh mint leaves subjected to shade drying:
- ventral side of seventy-five shade-dried mint leaves;
- ventral side of seventy-five fresh mint leaves subjected to open-air sun drying;
- ventral side of seventy-five open-air sun-dried mint leaves;
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- dorsal side of seventy-five fresh mint leaves subjected to shade drying;
- dorsal side of seventy-five shade-dried mint leaves;
- dorsal side of seventy-five fresh mint leaves subjected to open-air sun drying;
- dorsal side of seventy-five open-air sun-dried mint leaves.

The sample images of the ventral sides of fresh and dried mint leaves are shown in
Figure 1. The ventral side of fresh leaves was light green. Shade-dried leaves turned dark
green. In the case of open-air sun-dried leaves, there was a clear change of color to brown
as a result of drying. The exemplary leaves imaged on their dorsal side are presented in
Figure 2. On the dorsal side of the leaves, all samples were lighter than on the ventral side.
However, the effect of drying was similar. Shade-dried leaves changed color to darker
green, whereas under the influence of open-air sun drying the leaves turned brown.
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Figure 1. The images of the ventral side (upper surface) of fresh and dried mint leaves. Figure 1. The images of the ventral side (upper surface) of fresh and dried mint leaves.

The obtained images were uploaded to a computer with programs for image process-
ing and classification using a USB cable. After changing the image background to black
and converting the images to the BMP file format, the image processing was carried out
using the MaZda software (Łódź University of Technology, Institute of Electronics, Łódź,
Poland) [18–20]. First, the mint leaf images were converted to individual color channels
R, G, B, L, a, b, X, Y, and Z. The exemplary images of the ventral side (upper surface) of
fresh and dried mint leaves (Figure 3) and the dorsal side (lower surface) of fresh and dried
mint leaves (Figure 4) reveal the differentiation of images depending on the color channel
and visible changes in leaves caused by drying. The image segmentation was performed to
separate the leaves from the black background based on the pixel brightness intensity, and
ROIs (regions of interest) were determined. Each ROI contained one whole mint leaf. For
each ROI in each of the nine color channels, 181 texture parameters based on the histogram,
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gradient map, autoregressive model, run-length matrix, and co-occurrence matrix were
extracted. In total, 1629 textures were determined for each leaf image.

Appl. Sci. 2023, 13, 206 5 of 20 
 

 
Figure 2. The images of the dorsal side (lower surface) of fresh and dried mint leaves. 

The obtained images were uploaded to a computer with programs for image pro-
cessing and classification using a USB cable. After changing the image background to 
black and converting the images to the BMP file format, the image processing was carried 
out using the MaZda software (Łódź University of Technology, Institute of Electronics, 
Łódź, Poland) [18–20]. First, the mint leaf images were converted to individual color chan-
nels R, G, B, L, a, b, X, Y, and Z. The exemplary images of the ventral side (upper surface) 
of fresh and dried mint leaves (Figure 3) and the dorsal side (lower surface) of fresh and 
dried mint leaves (Figure 4) reveal the differentiation of images depending on the color 
channel and visible changes in leaves caused by drying. The image segmentation was per-
formed to separate the leaves from the black background based on the pixel brightness 
intensity, and ROIs (regions of interest) were determined. Each ROI contained one whole 
mint leaf. For each ROI in each of the nine color channels, 181 texture parameters based 
on the histogram, gradient map, autoregressive model, run-length matrix, and co-occur-
rence matrix were extracted. In total, 1629 textures were determined for each leaf image. 

 
Figure 3. The images of the ventral side (upper surface) of fresh and dried mint leaves in selected 
color channels R, G, B, L, a, X, and Y. 

Figure 2. The images of the dorsal side (lower surface) of fresh and dried mint leaves.

Appl. Sci. 2023, 13, 206 5 of 20 
 

 
Figure 2. The images of the dorsal side (lower surface) of fresh and dried mint leaves. 

The obtained images were uploaded to a computer with programs for image pro-
cessing and classification using a USB cable. After changing the image background to 
black and converting the images to the BMP file format, the image processing was carried 
out using the MaZda software (Łódź University of Technology, Institute of Electronics, 
Łódź, Poland) [18–20]. First, the mint leaf images were converted to individual color chan-
nels R, G, B, L, a, b, X, Y, and Z. The exemplary images of the ventral side (upper surface) 
of fresh and dried mint leaves (Figure 3) and the dorsal side (lower surface) of fresh and 
dried mint leaves (Figure 4) reveal the differentiation of images depending on the color 
channel and visible changes in leaves caused by drying. The image segmentation was per-
formed to separate the leaves from the black background based on the pixel brightness 
intensity, and ROIs (regions of interest) were determined. Each ROI contained one whole 
mint leaf. For each ROI in each of the nine color channels, 181 texture parameters based 
on the histogram, gradient map, autoregressive model, run-length matrix, and co-occur-
rence matrix were extracted. In total, 1629 textures were determined for each leaf image. 

 
Figure 3. The images of the ventral side (upper surface) of fresh and dried mint leaves in selected 
color channels R, G, B, L, a, X, and Y. 

Figure 3. The images of the ventral side (upper surface) of fresh and dried mint leaves in selected
color channels R, G, B, L, a, X, and Y.



Appl. Sci. 2023, 13, 206 6 of 18Appl. Sci. 2023, 13, 206 6 of 20 
 

 
Figure 4. The images of the dorsal side (lower surface) of fresh and dried mint leaves in different 
color channels R, G, B, L, a, X, and Y. 

2.4. Classification of Fresh, Shade and Open-Air Sun-dried Mint Leaves 
The classification of leaf samples was performed using WEKA machine learning soft-

ware (Machine Learning Group, University of Waikato) [21–23]. The influence of two dry-
ing techniques on the ventral and dorsal sides of mint leaves was compared. Models based 
on selected image features for individual color channels were built for distinguishing 
fresh vs. shade-dried mint leaves on the ventral side, fresh vs. open-air sun-dried mint 
leaves on the ventral side, fresh vs. shade-dried mint leaves on the dorsal side, and fresh 
vs. open-air sun-dried mint leaves on the dorsal side. First, the attribute (texture) selection 
was performed using the Best First algorithm with the Correlation-based Feature Selection 
(CFS) subset evaluator [24,25]. The attributes were selected separately from the datasets 
including texture parameters of images in each of color channels R, G, B, L, a, b, X, Y, and 
Z belonging to color spaces RGB, Lab, and XYZ. The classification analysis was performed 
using a test mode of 10-fold cross-validation. Various machine learning algorithms such 
as IBk, KStar and LWL from the group of Lazy, JRip and PART from Rules, Bayes Net and 
Naive Bayes from Bayes, Logistic, Multilayer Perceptron and RBF Classifier from Func-
tions, Random Forest, J48 and LMT from Trees, and Filtered Classifier, Multi Class Clas-
sifier and Logit Boost from Meta were tested. 

The methods chosen for classification are frequently used for machine learning. Any 
machine learning method used produces successful results if the extracted features 
strongly represent the target data. The physical changes caused by drying directly affect 
the pixel distribution in the image. For this, the texture-based extracted features are strong 
aids for distinguishing the drying method. In different spaces, the texture changes are also 
different. Some spaces show changes more clearly. For example, the green channel of the 
image is used in studies involving the segmentation of the retinal blood vessel, because in 
this channel the blood vessel is more vivid [26]. Therefore, examining the changes in tex-
ture on different channels may provide a more accurate distinction. In addition to the 
powerful features, the chosen classification algorithm also has a significant effect on suc-
cess. Although strong features generally provide successful results, different learning 
methods provide different accuracy due to their methodology. In this context, extracting 
texture features from different channels and obtaining results with different classification 
algorithms makes the choice of method in this study powerful. The methodological steps 
of the study are shown in Figure 5. After all these steps, different result metrics and indi-
cators showing the performance of the study are shared in the result section to show that 
all the experiments were done correctly. As a result, the confusion matrices with 

Figure 4. The images of the dorsal side (lower surface) of fresh and dried mint leaves in different
color channels R, G, B, L, a, X, and Y.

2.4. Classification of Fresh, Shade and Open-Air Sun-dried Mint Leaves

The classification of leaf samples was performed using WEKA machine learning
software (Machine Learning Group, University of Waikato) [21–23]. The influence of two
drying techniques on the ventral and dorsal sides of mint leaves was compared. Models
based on selected image features for individual color channels were built for distinguishing
fresh vs. shade-dried mint leaves on the ventral side, fresh vs. open-air sun-dried mint
leaves on the ventral side, fresh vs. shade-dried mint leaves on the dorsal side, and fresh
vs. open-air sun-dried mint leaves on the dorsal side. First, the attribute (texture) selection
was performed using the Best First algorithm with the Correlation-based Feature Selection
(CFS) subset evaluator [24,25]. The attributes were selected separately from the datasets
including texture parameters of images in each of color channels R, G, B, L, a, b, X, Y, and Z
belonging to color spaces RGB, Lab, and XYZ. The classification analysis was performed
using a test mode of 10-fold cross-validation. Various machine learning algorithms such as
IBk, KStar and LWL from the group of Lazy, JRip and PART from Rules, Bayes Net and
Naive Bayes from Bayes, Logistic, Multilayer Perceptron and RBF Classifier from Functions,
Random Forest, J48 and LMT from Trees, and Filtered Classifier, Multi Class Classifier and
Logit Boost from Meta were tested.

The methods chosen for classification are frequently used for machine learning. Any
machine learning method used produces successful results if the extracted features strongly
represent the target data. The physical changes caused by drying directly affect the pixel
distribution in the image. For this, the texture-based extracted features are strong aids
for distinguishing the drying method. In different spaces, the texture changes are also
different. Some spaces show changes more clearly. For example, the green channel of the
image is used in studies involving the segmentation of the retinal blood vessel, because
in this channel the blood vessel is more vivid [26]. Therefore, examining the changes in
texture on different channels may provide a more accurate distinction. In addition to
the powerful features, the chosen classification algorithm also has a significant effect on
success. Although strong features generally provide successful results, different learning
methods provide different accuracy due to their methodology. In this context, extracting
texture features from different channels and obtaining results with different classification
algorithms makes the choice of method in this study powerful. The methodological steps of
the study are shown in Figure 5. After all these steps, different result metrics and indicators
showing the performance of the study are shared in the result section to show that all the
experiments were done correctly. As a result, the confusion matrices with accuracies for
each class, the average accuracies and values of Precision, Recall, F-Measure, and MCC
(Matthews Correlation Coefficient) were determined [27–30].
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3. Results

The results of the classification of fresh mint leaves and leaves dried using two natural
drying techniques were obtained. The effect of shade drying and open-air sun drying
on the ventral and dorsal leaf sides was assessed. The distinguishing of samples was
carried out using models including textures selected separately for each color channel
from color spaces RGB, Lab, and XYZ. Models were developed using different machine
learning algorithms. It was found that KStar from the group of Lazy, JRip from the group of
Rules, and J48 from the group of Trees were the most effective. These algorithms provided
the highest average accuracies of the classification of up to 100% for the selected datasets,
which meant distinguishing the samples entirely correctly. Therefore, the results obtained
by the KStar, JRip and J48 algorithms were chosen to be presented in this paper.

3.1. The Effect of Shade Drying and Open-Air Sun Drying on the Ventral Side (Upper Surface) of
Mint Leaves

In the case of the ventral side (upper surface) of mint leaves, the classifications were
carried out to compare the structure of fresh vs. shade-dried leaves and fresh vs. open-air
sun-dried leaves. The models were built separately for color channels R, G, and B from
color space RGB, color channels L, a, and b from color space Lab, and color channels X, Y,
and Z from color space XYZ.

3.1.1. Classification of the Images of the Ventral Side of Fresh and Shade-dried Mint Leaves

For models built based on selected textures of images in color channels R, G, and B
from color space RGB, fresh and shade-dried mint leaves were classified with an average
accuracy reaching 100% only in the case of color channel B and KStar and J48 machine
learning algorithms (Table 1). This meant that both fresh and shade-dried leaves were
completely correctly classified. Also, the results of Precision, Recall, F-Measure, and MCC
(Matthews Correlation Coefficient) equal to 1.000 were the most satisfactory. In the case of
color channel G, all presented algorithms (KStar, JRip, J48) provided an average accuracy
of 97.5%. However, models built using KStar and JRip classified fresh leaves with an
accuracy of 95% and shade-dried leaves with an accuracy of 100%. In contrast, the model
developed using J48 was characterized by an accuracy of 100% for fresh leaves and 95% for
shade-dried leaves. The lowest accuracies of distinguishing fresh and shade-dried mint
leaves were determined for models built based on textures selected from images in color
channel R. For the KStar and J48 algorithms, average accuracy reached 92.5%. The model
built using JRip provided the lowest average accuracy, at 90%, and values of Precision,
Recall, and F-Measure of 0.900 and MCC of 0.800 for both fresh and shade-dried classes.

In the case of individual color channels from the color space Lab (Table 2), an average
accuracy of 100% and values of Precision, Recall, F-Measure, and MCC of 1.000 were
obtained for color channels a (KStar and J48) and b (KStar). Selected textures belonging to
these channels allowed for building models that completely and correctly distinguished
fresh and shade-dried mint leaves. For color channel L, the correctness of the classification
of both samples was also high, up to 97.5% for KStar and J48. The model developed
using the KStar algorithm correctly classified shade-dried leaves in 100% of cases and of
fresh leaves in 95%, while the remaining 5% of cases belonging to the actual class of fresh



Appl. Sci. 2023, 13, 206 8 of 18

leaves were incorrectly classified as shade-dried ones. The application of J48 resulted in
100% correctness of the classification of fresh leaves and 95% for shade-dried samples.

Table 1. The classification of images of the ventral side of fresh and shade-dried mint leaves based on
selected textures from color channels R, G, and B belonging to color space RGB.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel R

lazy.KStar 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Shade-dried 0.905 0.950 0.927 0.851

rules.JRip 90 10 Fresh
90

0.900 0.900 0.900 0.800
10 90 Shade-dried 0.900 0.900 0.900 0.800

trees.J48
90 10 Fresh

92.5
0.947 0.900 0.923 0.851

5 95 Shade-dried 0.905 0.950 0.927 0.851
Color channel G

lazy.KStar 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Shade-dried 0.952 1.000 0.976 0.951

rules.JRip 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Shade-dried 0.952 1.000 0.976 0.951

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951
Color channel B

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Shade-dried 1.000 1.000 1.000 1.000

MCC—Matthews Correlation Coefficient.

Table 2. The results of the classification of fresh and shade-dried mint leaves imaged on the ventral
side using models built based on selected textures from color channels L, a, and b from color space Lab.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-dried

Color channel L

lazy.KStar 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Shade-dried 0.952 1.000 0.976 0.951

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951
Color channel a

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Shade-dried 0.952 1.000 0.976 0.951

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Shade-dried 1.000 1.000 1.000 1.000
Color channel b

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951

MCC—Matthews Correlation Coefficient.
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Fresh and shade-dried mint leaves imaged on the ventral side were also classified
with a correctness reaching 100% and other classification performance metrics equal to
1.000 for one color channel (Y) from color space XYZ using the KStar algorithm (Table 3).
Models built based on selected textures from images in color channels X and Z produced an
average accuracy of up to 97.5%. In the case of color channel X, the model built using JRip
revealed accuracies of 100% and 95% for fresh and shade-dried mint leaves, respectively.
For J48, shade-dried leaves were correctly distinguished from fresh ones with an accuracy
of 100%, fresh samples were correctly classified as fresh in 95% of cases, and the remaining
5% of cases were classified as shade-dried leaves. For the color channel Z, fresh leaves were
correctly classified in 100% of cases and shade-dried samples in 95% of cases, for KStar
and JRip.

Table 3. The performance metrics of distinguishing images of the ventral side of fresh and shade-dried
mint leaves using selected textures from color channels X, Y, and Z from color space XYZ.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel X

lazy.KStar 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

trees.J48
95 5 Fresh

97.5
1.000 0.950 0.974 0.951

0 100 Shade-dried 0.952 1.000 0.976 0.951
Color channel Y

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Shade-dried 0.952 1.000 0.976 0.951

trees.J48
95 5 Fresh

95
0.950 0.950 0.950 0.900

5 95 Shade-dried 0.950 0.950 0.950 0.900
Color channel Z

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

trees.J48
95 5 Fresh

95
0.950 0.950 0.950 0.900

5 95 Shade-dried 0.950 0.950 0.950 0.900

MCC—Matthews Correlation Coefficient.

3.1.2. Classification of the Images of the Ventral Side of Fresh and Open-Air Sun-dried
Mint Leaves

In the next step of classification analysis, images of the ventral side of fresh and
open-air sun-dried mint leaves were compared using models based on selected textures
from individual color channels. Table 4 presents the results of distinguishing samples
using selected textures extracted from images in color channels R, G, and B. The obtained
results were very successful. An average accuracy of 100% and values of Precision, Recall,
F-Measure, and MCC of 1.000 were found in the case of each color channel as channels
R and G for J48, and channel B for all KStar, JRip, and J48 algorithms. It proved the high
differentiation of fresh and open-air sun-dried mint leaves in terms of selected textures
belonging to color space RGB and thus the great influence of open-air sun drying on the
structure of the outer surface of the mint leaves.

Very high correctness of classification of fresh and open-air sun-dried mint leaves
was also obtained for color channels L, a, and b from the color space Lab (Table 5). A
completely correct classification with an average accuracy of 100% was observed in the
case of models built based on selected texture parameters from images in color channels a
and b for all algorithms (KStar, JRip, and J48). A slightly lower average accuracy reaching



Appl. Sci. 2023, 13, 206 10 of 18

97.5% was determined for a model built using selected textures from color channels L and
the J48 algorithm.

Table 4. The distinguishing of fresh and open-air sun-dried mint leaves imaged on the ventral side
based on models including selected textures from color channels R, G, and B belonging to color
space RGB.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel R

lazy.KStar 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Open-air sun-dried 0.950 0.950 0.950 0.900

rules.JRip 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Open-air sun-dried 0.905 0.950 0.927 0.851

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000
Color channel G

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

rules.JRip 90 10 Fresh
95

1.000 0.900 0.947 0.905
0 100 Open-air sun-dried 0.909 1.000 0.952 0.905

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000
Color channel B

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

MCC—Matthews Correlation Coefficient.

Table 5. The classification of images of the ventral side of fresh and open-air sun-dried mint leaves
using models including selected textures from color channels L, a, and b from color space Lab.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel L

lazy.KStar 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Open-air sun-dried 0.950 0.950 0.950 0.900

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Open-air sun-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Open-air sun-dried 1.000 0.950 0.974 0.951
Color channel a

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000
Color channel b

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

MCC—Matthews Correlation Coefficient.
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The models built using selected textures from color channels belonging to color space
XYZ of images of the ventral side of leaves produced the lowest results for distinguishing
fresh and open-air sun-dried mint classes (Table 6). Samples were completely correctly
classified only in the case of models developed using the KStar algorithm for selected
textures from color channels X and Y. For other machine learning algorithms of JRip
and J48, an average accuracy of 95% was obtained for color channel X and 97.5% for
color channel Y. An average accuracy of the classification of fresh and open-air sun-dried
mint leaves reached 97.5% for a model including selected textures from color channel Z
developed using J48.

Table 6. The classification performance metrics for fresh vs. open-air sun-dried mint leaves imaged
on the ventral side based on models including selected textures from color channels X, Y, and Z from
color space XYZ.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel X

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Open-air sun-dried 0.950 0.950 0.950 0.900

trees.J48
95 5 Fresh

95
0.950 0.950 0.950 0.900

5 95 Open-air sun-dried 0.950 0.950 0.950 0.900
Color channel Y

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Open-air sun-dried 0.952 1.000 0.976 0.951

trees.J48
95 5 Fresh

97.5
1.000 0.950 0.974 0.951

0 100 Open-air sun-dried 0.952 1.000 0.976 0.951
Color channel Z

lazy.KStar 95 5 Fresh
92.5

0.905 0.950 0.927 0.851
10 90 Open-air sun-dried 0.947 0.900 0.923 0.851

rules.JRip 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Open-air sun-dried 0.905 0.950 0.927 0.851

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

MCC—Matthews Correlation Coefficient.

3.2. The Effect of Shade Drying and Open-Air Sun Drying on the Dorsal Side (Lower Surface) of
Mint Leaves

To assess the effect of different natural drying techniques on the structure of the dorsal
side of mint leaves, various classification models were developed. In the case of both the
classification of fresh vs. shade-dried mint leaves and fresh vs. open-air sun-dried leaves,
models included image textures selected separately for individual color channels R, G, B, L,
a, b, X, Y, and Z.

3.2.1. Classification of the Images of the Dorsal Side of Fresh and Shade-dried Mint Leaves

In the case of color channels R, G, and B from color space RGB, the images of the dorsal
side of shade-dried mint leaves were distinguished from the fresh ones with an average
accuracy of 75% for a model built based on selected textures from color channel G using the
KStar algorithm to 100% in the case of color channel B and KStar (Table 7). For the model
producing 75% correctness, fresh leaves were classified with an accuracy of 70% and shade-
dried samples with an accuracy of 80%. The values of Precision, Recall, and F-Measure were
in the range of 0.700–0.800, and MCC was equal to 0.503 for both classes. These results are
relatively low compared with the 100% accuracy and values of other metrics of 1.000 for
one model including selected texture parameters extracted from images in color channel B.
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For color channel G, average accuracy reached 82.5% (75% for fresh leaves and 90% for
shade-dried leaves) for the J48 algorithm. For models built for selected textures from images
in color channel R, average accuracy ranged from 77.5% (KStar) to 90% (JRip).

Table 7. The performance metrics of the classification of the dorsal side of fresh and shade-dried mint
leaves based on selected textures of images in color channels R, G, and B from color space RGB.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel R

lazy.KStar 75 25 Fresh
77.5

0.789 0.750 0.769 0.551
20 80 Shade-dried 0.762 0.800 0.780 0.551

rules.JRip 85 15 Fresh
90

0.944 0.850 0.895 0.804
5 95 Shade-dried 0.864 0.950 0.905 0.804

trees.J48
85 15 Fresh

87.5
0.895 0.850 0.872 0.751

10 90 Shade-dried 0.857 0.900 0.878 0.751
Color channel G

lazy.KStar 70 30 Fresh
75

0.778 0.700 0.737 0.503
20 80 Shade-dried 0.727 0.800 0.762 0.503

rules.JRip 85 15 Fresh
77.5

0.739 0.850 0.791 0.556
30 70 Shade-dried 0.824 0.700 0.757 0.556

trees.J48
75 25 Fresh

82.5
0.882 0.750 0.811 0.657

10 90 Shade-dried 0.783 0.900 0.837 0.657
Color channel B

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

trees.J48
95 5 Fresh

97.5
1.000 0.950 0.974 0.951

0 100 Shade-dried 0.952 1.000 0.976 0.951

MCC—Matthews Correlation Coefficient.

The higher accuracies of the classification of images of the dorsal side of fresh and
shade-dried mint leaves were obtained for the models built based on textures selected
separately for individual color channels of Lab space (Table 8). It indicated that the
differences in the image textures were more noticeable. All applied machine learning
algorithms provided 100% accuracy for textures from images in color channel a. Slightly
lower average accuracies reaching 97.5% (KStar, J48) and 95% (J48) were found in the case
of the color channels b and L, respectively.

Table 8. The classification of the dorsal side of fresh and shade-dried mint leaves using models
including selected image textures from color channels L, a, and b.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel L

lazy.KStar 70 30 Fresh
77.5

0.824 0.700 0.757 0.556
15 85 Shade-dried 0.739 0.850 0.791 0.556

rules.JRip 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Shade-dried 0.905 0.950 0.927 0.851

trees.J48
100 0 Fresh

95
0.909 1.000 0.952 0.905

10 90 Shade-dried 1.000 0.900 0.947 0.905
Color channel a

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Shade-dried 1.000 1.000 1.000 1.000

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Shade-dried 1.000 1.000 1.000 1.000



Appl. Sci. 2023, 13, 206 13 of 18

Table 8. Cont.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel b

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951

MCC—Matthews Correlation Coefficient.

In the case of models including selected image textures from color channels X, Y, and
Z, a completely correct classification was not observed (Table 9). The differentiation of the
structure of the dorsal side of fresh and shade-dried mint leaves allowed for distinguishing
both samples at an average accuracy of up to 97.5% (100% for fresh and 95% for dried
leaves) for color channel X and J48 as well as color channel Z and KStar and J48. An
average accuracy of 95% was determined for models developed based on selected textures
of images in color channel Y using all algorithms.

Table 9. The results of the classification of fresh and shade-dried mint leaves imaged on the dorsal side
using models built based on selected texture parameters from color channels X, Y, and Z of images.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Shade-Dried

Color channel X

lazy.KStar 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Shade-dried 0.905 0.950 0.927 0.851

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951
Color channel Y

lazy.KStar 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
95 5 Fresh

95
0.950 0.950 0.950 0.900

5 95 Shade-dried 0.950 0.950 0.950 0.900
Color channel Z

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Shade-dried 1.000 0.950 0.974 0.951

rules.JRip 95 5 Fresh
95

0.950 0.950 0.950 0.900
5 95 Shade-dried 0.950 0.950 0.950 0.900

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Shade-dried 1.000 0.950 0.974 0.951

MCC—Matthews Correlation Coefficient.

3.2.2. Classification of the Images of the Dorsal Side of Fresh and Open-Air Sun-dried
Mint Leaves

Very successful classifications were performed for the fresh and open-air sun-dried
mint leaves using models built based on selected textures of the dorsal leaf side images
converted to color channels R, G, and B (Table 10). Average accuracy reached 97.5% for
models developed using the KStar, JRip, and J48 algorithms based on features of images in
color channel B. All the other models produced an average accuracy of 92.5% in the case of
color channels R and G.
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Table 10. The differentiation of fresh and open-air sun-dried mint leaves in terms of selected image
textures of the dorsal leaf side based on models built for color channels R, G, and B from color
space RGB.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel R

lazy.KStar 95 5 Fresh
92.5

0.905 0.950 0.927 0.851
10 90 Open-air sun-dried 0.947 0.900 0.923 0.851

rules.JRip 100 0 Fresh
92.5

0.870 1.000 0.930 0.860
15 85 Open-air sun-dried 1.000 0.850 0.919 0.860

trees.J48
100 0 Fresh

92.5
0.870 1.000 0.930 0.860

15 85 Open-air sun-dried 1.000 0.850 0.919 0.860
Color channel G

lazy.KStar 95 5 Fresh
92.5

0.905 0.950 0.927 0.851
10 90 Open-air sun-dried 0.947 0.900 0.923 0.851

rules.JRip 100 0 Fresh
92.5

0.870 1.000 0.930 0.860
15 85 Open-air sun-dried 1.000 0.850 0.919 0.860

trees.J48
100 0 Fresh

92.5
0.870 1.000 0.930 0.860

15 85 Open-air sun-dried 1.000 0.850 0.919 0.860
Color channel B

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

rules.JRip 95 5 Fresh
97.5

1.000 0.950 0.974 0.951
0 100 Open-air sun-dried 0.952 1.000 0.976 0.951

trees.J48
95 5 Fresh

97.5
1.000 0.950 0.974 0.951

0 100 Open-air sun-dried 0.952 1.000 0.976 0.951

MCC—Matthews Correlation Coefficient.

In the case of the color space Lab, images of the dorsal side of fresh and open-air
sun-dried mint leaves turned out to be completely different in terms of selected textures
from color channels a (KStar, JRip, J48) and b (J48) (Table 11). The accuracies were equal
to 100% and the values of Precision, Recall, F-Measure, and MCC were 1.000 for both
classes. In the case of the color channel L, the correctness of classification was slightly lower,
reaching 97.5% for the model built using the JRip machine learning algorithm.

Table 11. The distinguishing of fresh and open-air sun-dried mint leaves imaged on the dorsal side
using models developed based on selected textures from color channels L, a, and b from color space Lab.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel L

lazy.KStar 95 5 Fresh
90

0.864 0.950 0.905 0.804
15 85 Open-air sun-dried 0.944 0.850 0.895 0.804

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

trees.J48
100 0 Fresh

95
0.909 1.000 0.952 0.905

10 90 Open-air sun-dried 1.000 0.900 0.947 0.905
Color channel a

lazy.KStar 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

rules.JRip 100 0 Fresh
100

1.000 1.000 1.000 1.000
0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000
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Table 11. Cont.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel b

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

MCC—Matthews Correlation Coefficient.

The classification of fresh and open-air sun-dried mint leaves based on image textures
of the dorsal leaf side revealed 100% correctness in the case of color channel Z and the
J48 algorithm (Table 12). For channel Z, other algorithms (KStar, JRip) also produced a
high average accuracy of 97.5%. Furthermore, an average accuracy of 97.5% was found
for models built using KStar and J48 based on selected textures of images in color channel
Y. In the case of individual color channels from color space XYZ, the lowest correctness
of distinguishing fresh and open-air sun-dried mint leaves based on image textures of the
dorsal leaf side was determined for color channel X. Average accuracy reached 95% for a
model developed using J48.

Table 12. The performance metrics of distinguishing fresh and open-air sun-dried mint leaves using
textures from images of the dorsal leaf side in color channels X, Y, and Z from color space XYZ.

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) Precision Recall F-Measure MCCFresh Open-Air Sun-dried

Color channel X

lazy.KStar 95 5 Fresh
92.5

0.905 0.950 0.927 0.851
10 90 Open-air sun-dried 0.947 0.900 0.923 0.851

rules.JRip 95 5 Fresh
90

0.864 0.950 0.905 0.804
15 85 Open-air sun-dried 0.944 0.850 0.895 0.804

trees.J48
100 0 Fresh

95
0.909 1.000 0.952 0.905

10 90 Open-air sun-dried 1.000 0.900 0.947 0.905
Color channel Y

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

rules.JRip 90 10 Fresh
92.5

0.947 0.900 0.923 0.851
5 95 Open-air sun-dried 0.905 0.950 0.927 0.851

trees.J48
100 0 Fresh

97.5
0.952 1.000 0.976 0.951

5 95 Open-air sun-dried 1.000 0.950 0.974 0.951
Color channel Z

lazy.KStar 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

rules.JRip 100 0 Fresh
97.5

0.952 1.000 0.976 0.951
5 95 Open-air sun-dried 1.000 0.950 0.974 0.951

trees.J48
100 0 Fresh

100
1.000 1.000 1.000 1.000

0 100 Open-air sun-dried 1.000 1.000 1.000 1.000

MCC—Matthews Correlation Coefficient.

Texture features from images in color channels R, G, B, L, a, b, X, Y, and Z and artificial
intelligence involving models built by traditional machine learning algorithms proved
to be useful for distinguishing fresh and shade drying or open-air sun-dried mint leaves.
Machine learning-based algorithms are considered an innovative approach to advancing
food drying technology. Machine learning algorithms have a superior capacity to predict
specific trends and patterns using large volumes of data. Machine learning-based strategies
are used, among others, for drying modeling to determine the optimal drying condition
to improve product quality and reduce energy consumption. Machine learning models
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can also be used for modeling to predict food properties during drying [31]. Machine
learning found application for the monitoring of different drying processes employed in
industry, for example, of convective drying, osmotic-convective drying, microwave drying,
infrared drying, microwave- and infrared-assisted drying, fluidized bed drying, spouted
bed drying, spray drying, rotary drying, deep bed drying, renewable drying, and freeze
drying [13,32]. In the case of mint, machine learning was also used to investigate drying
behavior and assess drying kinetics [33]. Additionally, machine learning algorithms were
successfully applied to discriminate between different mint samples [34]. Our research has
set new directions for the application of machine learning in the drying and discrimination
of mint. The research carried out with the use of traditional machine learning models
may be expanded in the future to include deep learning to distinguish fresh and dried
mint leaves.

4. Conclusions

This study aimed to analyze the changes caused by two different drying methods
on mint leaves. Because these changes cause significant changes in the nutrient content
of the leaf, it is important to provide drying with the least loss and to develop additional
techniques to do so. In order to clearly observe the effect of drying, the detectability of these
changes with computer vision and machine learning algorithms is adopted as a hypothesis.
The most obvious changes as a result of drying occur in leaf textures, and therefore texture
analysis is performed for computer vision. In experimental studies, different image spaces
and different machine learning techniques are used to prove that the proposed method is
scientifically sound.

The combination of digital color imaging and machine learning proved to be an
effective approach to the evaluation of the effect of natural drying techniques on mint
leaf structure. Models built based on selected textures of images in color channels R, G,
B, L, a, b, X, Y, and Z were useful for monitoring the changes in the ventral side (upper
surface) and dorsal side (lower surface) of mint leaves caused by shade drying and open-air
sun drying. Fresh and dried leaves were distinguished with an accuracy of up to 100%
using selected machine learning algorithms from groups of Lazy, Rules, and Trees. The
obtained results were promising, and the developed procedure involving image features
and machine learning could be used to evaluate the quality of mint leaves dried by other
techniques. When the accuracy rates obtained as a result of experimental studies are
examined, it is seen that the discrimination accuracy in all steps is generally above 90%.
Compliance and consistency of all results indicate the accuracy and robustness of the results.
Besides traditional machine learning, deep learning as well could be applied in further
studies for the classification of fresh and dried leaves. For the deep learning application,
data with more samples will be created in the future, and experiments will be carried out
with different deep learning models on this data. Different drying techniques will also be
included in the dataset.
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