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Abstract: In order to reduce the negative impact of severe occlusion in dense scenes on the perfor-
mance degradation of the tracker, considering that the head is the highest and least occluded part
of the pedestrian’s entire body, we propose a new multiobject tracking method for pedestrians in
dense crowds combined with head tracking. For each frame of the video, a head tracker is first used
to generate the pedestrians’ head movement tracklets, and the pedestrians’ whole body bounding
boxes are detected at the same time. Secondly, the degree of association between the head bounding
boxes and the whole body bounding boxes are calculated, and the Hungarian algorithm is used to
match the above calculation results. Finally, according to the matching results, the head bounding
boxes in the head tracklets are replaced with the whole body bounding boxes, and the whole body
motion tracklets of the pedestrians in the dense scene are generated. Our method can be performed
online, and experiments suggested that our method effectively reduces the negative effects of false
negatives and false positives on the tracker caused by severe occlusion in dense scenes.

Keywords: head tracking; intersection over containment; Hungarian algorithm; deep learning

1. Introduction

Multiple-object tracking (MOT) is a kind of general algorithm that can be applied
in various fields of computer vision, such as video surveillance, autonomous driving,
human–computer interaction, and the medical field. In these scenarios, we can use MOT
algorithms to compute the positions, shapes, speeds, trajectories and other information of
targets in tracked videos, and further accomplish the functions of object behaviour analysis
or object counting. In addition, the reliable motion tracklets generated by MOT algorithms
could also effectively compensate for the missed detections in object-detection tasks, and
help the detectors to perform more accurately.

In the real MOT tasks in dense crowds, occlusions among pedestrians are always very
difficult for trackers. This phenomenon is manifested when the view of some pedestrians
is completely or partially covered by other pedestrians who are closer to the camera.
Occlusions make it difficult to perceive pedestrians’ visual clues, i.e., the information of
targets is lost. The key to the tracking algorithm is to gather enough target information
to determine where the targets are, and assign a unique ID for each target. Therefore,
occlusions expose a great number of challenges to the reliability for pedestrian tracking,
which may lead to unstable tracklets and even loss of targets. These phenomena cause
the rise of some metrics, such as mostly lose (ML), false negative (FN), false positive (FP),
identity switch (IDSw), and other indicators for MOT, and the decline of indicators, such as
multiple object-tracking accuracy (MOTA), ID F1 score (IDF1), and higher-order tracking
accuracy (HOTA). To the researchers of MOT algorithms, this is not what they expect to see.

Compared with the general MOT scenes, the huge number of targets in the dense
crowd leads to more serious mutual occlusions among the targets, because the frequency
and coverage of occlusions in the dense crowd become more critical. This phenomenon is
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manifested in the real video recordings that the target A in the video blocks another target
B, and the target B blocks the target C at the same time. These layer-by-layer occlusions
cause the relationship among the targets to become more chaotic, and bring more instability
for the MOT task. The way to effectively handle occlusions, especially severe and frequent
occlusions in dense crowds, has always been a difficult issue for MOT tasks in crowds. At
present, most MOT systems cannot deal with serious occlusion problems, nor can they
provide criteria for judging when to terminate the unconfirmed tracklets and when to
restart the killed tracklets of targets, and there is no corresponding guidance method to
reobtain the targets when they are lost.

In conventional MOT algorithms, rather than any single part of the target, researchers
directly select the entire target as the object to be tracked. Those methods, as the current
mainstream research methods [1–6], had indeed achieved considerable results. However,
when conducting multiobject research in dense crowds, the effectiveness of those methods
will be greatly reduced. As mentioned above, the relationships among the targets in dense
crowds are extremely chaotic. One target is likely to block several other targets, causing
the motion and appearance features of these targets to be lost in overwhelming quantities.
The trackers cannot capture enough valid information, which leads to a significant drop in
their performance.

The head is the highest and least occluded part of a pedestrian. It is reflected that in
dense crowd scenes, the detector for heads can detect a large number of heads, but the
detector for full bodies cannot. As shown in Figure 1, in this picture, the head detector
has successfully located and recognized the majority of heads, but the full body detector
fails. Furthermore, compared to the pedestrian’s entire body, the head has a smaller size,
which indicates that even if some heads are occluded in some frames, they are more likely
to reappear soon due to the fact that they only occupy small areas in the entire frame.
Fortunately, the trackers tend to recover the tracklets of short-term occluded targets. In
short, the head has become an ideal object to track. Therefore, using the head to track
instead of body tracking in dense crowds can reduce the negative effects of severe occlusions
to a considerable extent.

Figure 1. On the premise of inputting the same picture, the head detector used in our approach detects
64 head bounding boxes, whereas a general full-body detector (which is an original implementation
of Faster-RCNN) can only detect 46 of the 71 targets.

In order to solve the problem of poor performance of multiple pedestrian trackers in
dense crowd, and considering that the head is more suitable as a tracking object for MOT
tasks in dense crowds, we proposed a novel approach for multiple pedestrian tracking
in dense crowds combined with head tracking, and we named it as Tracking Pedestrians
with Head Tracker (TraPeHat). Our method matched the head bounding boxes with the
whole-body bounding boxes on the basis of obtaining the head movement tracklets, and
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replaced the head bounding boxes in the head tracklets with the whole-body bounding
boxes according to the matching results to generate the final full-body trajectories. On the
basis of ensuring the tracking accuracy, our method effectively reduced the number of false
negatives and false positives caused by occlusions, and improved the actual performance
of the multiobject tracker in dense crowds. It demonstrated certain practical values because
it can be placed in many venues, such as airports, stations, gymnasiums, shopping centers,
crossroads, etc. An official implementation of our paper can be found in https://github.
com/TUT103/THT.git (accessed on 23 December 2022).

Our paper has the following contributions.

• Inheriting the work of [7], which only tracks the pedestrians’ heads, we extended the
tracked objects to the whole bodies of pedestrians, which are more common in the
field of multiobject tracking.

• To accomplish the task of matching pedestrians’ head and body bounding boxes,
we proposed a novel bounding box similarity calculation method, Intersection over
Containment (IoC), by which, with the help of the Hungarian algorithm, we can
efficiently complete the matching work of the head bounding box and the whole-body
bounding box belonging to the same pedestrian.

• We used the MOT20 [8], SCUT-Head [9], HT21 [7], and CrowdHuman [10] datasets to
conduct a series of related experiments to demonstrate the feasibility and effectiveness
of the above methods.

2. Related Work
2.1. Tracking by Detection

Tracking by detection (TDB) is a common paradigm in the MOT field. TDB has the
characteristics of high accuracy, relatively fast speed, and real-time performance. It has
been the mainstream method in the field of MOT in the past.

The detection algorithm is the cornerstone of the operation of the TDB paradigm. The
addition of the convolutional neural network (CNN) [11] enabled the detection algorithms
to achieve rapid development in both detection accuracy and running speed [12–19].
Powerful detection algorithms could be introduced to TDB trackers to obtain better tracking
performance. RetinaNet was a typical object detector essentially composed of CNN plus
feature pyramid networks (FPN) [20] plus two fully convolutional networks (FCN) [21].
By using the loss function focal loss, the weights of samples that are difficult to classify
were increased, and the ratios of positive and negative samples were effectively controlled.
RetinaNet was used by various MOT algorithms, such as RetinaTrack [22] and Chained
Tracker [23]. The version of You Only Look Once (YOLO) [24] detectors had gone through
from V1 to V5, and the latest YOLO version detectors generally achieved good balance
between accuracy and speed, and it was used by a large number of methods [25–27].
There are many improved versions in the follow-up, and the best performance is You Only
Look Once X (YOLOX) [28], which is a very popular detector at present. CenterNet [29]
abandoned the widely used anchors in traditional detection algorithms, and derived the
center points, widths, heights, offsets, and other information of the targets by introducing
heat map, and used the anchor-free method to obtain the bounding boxes of the targets.
CenterNet had also been widely used due to its simplicity and efficiency [30–34]. In general,
the vast majority of trackers only implement MOT algorithms through the bounding boxes
from the current frames.

DeepSort [35] is a classic MOT algorithm that complies with the TDB paradigm, and
it was improved from the SORT algorithm. In order to predict the trajectories of the
targets, researchers usually use state estimation filters, like the Kalman filter [36] and
Alpha–Beta filter [37,38]. Before running DeepSort, it is helpful to use an independent
detector like YOLOV3 to detect the targets of interest in each frame of the video, then
use the Kalman filter, Hungarian algorithm [39], feature extractor, and other components
to comprehensively consider the motion law, appearance similarity, motion similarity,
and other information of the target bounding boxes, with the step of Kalman prediction,
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matching, and Kalman updating to calculate the target motion tracklets. DeepSort runs
fast, can meet real-time requirements, and has high accuracy, so it is one of the most widely
used MOT algorithms in the industry at present. There are many improved versions of
DeepSort, like MOTDT and ByteTrack. ByteTrack is a typical and well-known tracker
among the improved works. In contrast to general MOT algorithms that directly discard
the bounding boxes with lower confidence, ByteTrack reused the bounding boxes with
lower confidence by executing the Kalman filter and Hungarian algorithm twice. The first
usage was between bounding boxes with high confidence and tracklets, and the second
usage was between bounding boxes with lower confidence and the unmatched tracklets in
the first time. It should be noted that the reason for the low confidence of the bounding
boxes is general occlusion and indistinctness, and occlusions indicate that the appearance
information of those objects is mixed with other bounding boxes, so only the motion law
is considered in the second matching, and the appearance information is not considered.
Researchers familiar with DeepSort will soon understand ByteTrack.

2.2. Jointly Learns the Detector and Embedding

The TDB paradigm performs the detection task and tracking task separately. This kind
of algorithm has good accuracy and is easy to understand, but the disadvantages are also
obvious, i.e., separate execution of detection and tracking requires more reasoning time.
This kind of model is not easy to achieve a real-time effect on edge devices, so the Jointly
Learns the Detector and Embedding (JDE) [40–42] paradigm came into being.

Wang et al. earlier proposed a MOT method that integrates detection and reidentification.
They fed an image frame into a backbone network with FPN to obtain multilayer prediction
heads. The prediction head led to three prediction branches, namely the box classification,
the box regression, and the reidentification. These three branches had their own unique
loss functions, and were fused in the end. The most obvious feature of Wang’s method is
its fast speed; secondly, it is easy to understand with considerable accuracy. Later, Zhang
proposed his own improvements to Wang’s method, so that the advantages of JDE were
further explored. Zhang input a frame into Resnet34 integrating deep layer aggregation
(DLA). DLA has a large number of jump connections between low-dimensional and high-
dimensional information, so the feature information can be encrypted and decrypted.
The feature map was then fed into the detection branch and the reidentification branch,
the detection branch output the center points, center point offsets, and bounding box
sizes of the targets, and the reidentification branch was further extracted for the desired
features. Zhang’s method has the following advantages. First, according to the following
experiments, anchors are not suitable for the extraction of reidentification information.
Zhang eliminated the negative effects caused by the anchor-free method, so that the
reidentification branch was fully trained. Secondly, through multitask loss optimization, the
problem of feature conflict caused by feature sharing was solved. Finally, the disadvantage
of high-dimensional information on reidentification was eliminated by extracting low-
dimensional information (32-dimensional), and the reasoning was accelerated, because it
had been proven through experiments that extracting low-dimensional feature information
in the JDE field can achieve high tracking accuracy and efficiency. JDE has gained attention
by researchers due to its high accuracy and fast speed.

2.3. Tracking Method Based on Transformer

Because Transformer [43] was successfully used in natural language processing (NLP),
the subsequent versions of Transformer [44,45] have been continuously shining in this
field. Later, when DETR [46] was introduced as a vision variant of Transformer, researchers
started to realize that Transformer also has great potential value in the MOT field. As more
researchers follow up, Transformer is also fruitful in more computer vision tasks [47–49],
like classification, segmentation, image caption, lane line detection, etc.

TransTrack [50] was the first work to use Transformer for MOT. TransTrack consisted
of one encoder and two parallel decoders. The encoder input the feature map processed by
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CNN. The two decoders input the object query and the existing track query, respectively.
The outputs of the two decoders were matched by intersection of union (IoU) to obtain the
tracklets of objects’ motion.

The main difference between the main structure of TrackFormer [51] and TransTrack
is that the object query and track query were input into a shared decoder in TrackFormer,
and the decoder output two heads, which were the heads for classes and positions of boxes
for the tracklets.

TransCenter [52] is also a piece of work that used Transformer for MOT. When
TransCenter processes a frame from a video, it needs the feature maps of the current
frame and the previous frame to input two parallel deformable encoders (DE) and then
output the memory feature maps for the current frame (Mt) and previous frame (Mt−1),
respectively. Then they are sent to the query learn network (QLN) to generate dense mul-
tiscale query (DQt) and (TQt) for tracking and detection, respectively. Followed by two
parallel deformable track decoders (DTD) and deformable detect decoders (DDD), respec-
tively, for tracking and detection, DDD retrieves the current frame information from Mt
through DQt to output multiscale detection feature (DFt), and DTD retrieves the previous
frame information from Mt−1 through TQt to output the multiscale tracking feature (TFt).
Finally, the center heatmap (Ct) and bounding box sizes are estimated by DFt, and the
tracking displacement (Tt) is estimated by the previous frame heatmap Ct−1, DFt and TFt.

3. Main Architecture

Our goal is to design a multiobject tracking system, named TraPeHat. An overview of
the system is shown in Figure 2; our tacker is an online tracker. When our system receives
a new frame, it works as follows.

Figure 2. The main architecture of our proposal, Tracking Pedestrians with Head Tracker (TraPeHat).

Step 1 Detect and track each pedestrian’s head in the current frame, as well as detect each
pedestrian’s body.

Step 2 Integrate the information above. Specifically, pair the head bounding boxes with
the full-body bounding boxes by determining whether they belong to the same
pedestrian. If they do, we link these boxes to determine their relationship.
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Step 3 According to the matching results in Step 2, the head bounding boxes in the head
motion tracklets are replaced with the body bounding boxes, thus generating the final
desired pedestrian body motion tracklets.

3.1. Detector and Tracker

During pedestrians’ movements, head tracklets (including head bounding boxes) and
full-body bounding boxes are generated by using a head tracker and a body detector,
respectively. The design of the head tracker follows the TDB paradigm which consists of
a head detector and a head tracker. The whole-body detector was built based on Faster
RCNN [12]. Next, we will describe how our head tracker and body detector work in detail.

3.1.1. Head Detector

In the head detection task, we need to generate the head bounding box for each
pedestrian. The overall structure of our head detector is shown in Figure 3. It is an
end-to-end two-stage detector, which consists of four functional modules.

Figure 3. The architecture of the head detector in our proposal.

Resnet50 with FPN. First, Resnet50 [53] was used as the backbone network, coupled
with feature pyramid networks (FPNs) to extract multiscale features. In this scenario,
FPNs downsampled gradually through a bottom-up operation under the effect of Resnet
to obtain C1-C4, and then gradually upsampled M1-M4 through a top-down operation,
and used the prediction heads to obtain multiple predictions with the same dimension and
different sizes.

CSPM Model. Next, consider that there are many similarities between head detection
and face detection tasks. For example, the shapes of the target bounding boxes are similar
(approximately a square), and the differences between the targets’ appearance features are
small. Therefore, both tasks have the difficulty of being easily confused among targets. For
this, our method used a context-sensitive prediction module (SCPM) [54] derived from a
face detection method named PyramidBox [55]. Inspired by Inception-ResNet [56], it took
the predictions from the previous FPN module as input, and had multiple convolutions
working in parallel, which were implemented by SSH [57] and DSSD [58]. SSH increased
the receptive field of the model by configuring more and wider convolutional prediction
models in parallel before other convolutional layers, which is the embodiment of Inception.
DSSD added a residual block to each prediction module to increase the depth of the
model, which was considered from the perspective of Resnet. The introduction of SSH and
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DSSD enhanced the model prediction module from the perspective of breadth and depth
respectively, making it more capable of capturing wider and deeper feature information.

Transpose Convolutions. Then, we performed a transposed convolution [59] operation
on the features of all pyramid levels. The convolution operation is essentially a downsam-
pling operation. After the image passes through several convolution layers, a tensor is
obtained, and its size is generally smaller than the size of the original image. Although the
transposed convolution is essentially an upsampling operation, which could be considered
the reverse operation of the convolution, it can be used to increase the size of the tensor
and improve the spatial resolution of the feature mapping.

RPN and two heads. Finally, we used a region proposal network (RPN) [12] to generate
target region proposals. RPN consists of four steps: generate anchors that may have targets,
use Softmax classifier to identify the positive anchors, use bounding box regression to
fine tune the selected positive anchors, and generate proposals through the proposal layer.
Finally, the regression and classification heads are used to provide position offsets and
target class confidence scores, respectively.

3.1.2. Head Tracker

Next, the outputs of head detector were input to the head tracker. The head tracker is
an improved version of the particle filter [60]. The specific execution flow is as follows.

Initialization. The tracklets were initialized at the beginning of the input video,
and the weight of each particle was equalled at the initialization. Each particle was
represented by a four-dimensional state space, with the states of each target being modelled
as (xc, yc, w, h, ẋc, ẏc, ẇ, ḣ), where (xc, yc, w, h) represent the center coordinates of x and y
axis, widths, heights of the bounding boxes, and the dotted represent the next prediction
for the bounding boxes. In addition, new tracklets were also initialized for the bounding
boxes that cannot match any existing tracklets.

Predict and Update. For the subsequent video frame, a ROI pooling operation was
performed on the feature maps of the targets of that frame. ROI pooling performed max
pooling on inputs of nonuniform sizes to obtain feature maps of fixed sizes. This operation
unified the sizes of the target feature maps without losing the local and shape information
of the targets. Our particle filter refreshed the state information of particles through the
prediction stage and update stage. In the particle prediction stage, the weight of each
particle was set according to the foreground classification score of the classification head
in Section 3.1.1. Then, we used the regression head in Section 3.1.1 to predict the position
of each particle. The method of using the regression head to predict the positions of the
particles is similar to that of [6], but the difference between them is that the bounding box
regression operation was applied to the particles instead of the target tracklets in [6]. In
the update stage of the particles, the weights of the particles were averaged to search the
positions of the targets, and the corresponding formula is shown in (1). Sk

t represents the
predicted position of the kth tracklets in the tth frame, M is the number of particles, pk,i

t
represents the position of ith particle associated with the kth tracklets in the tth frame;
furthermore, wk,i

t represents the weight of pk,i
t . We have

Sk
t =

1
M

M

∑
i=1

pk,i
t wk,i

t . (1)

Resample. The particle filter itself has degenerate problems [60], so we used resam-
pling techniques to replace less important particles. When the weights of particles on the
positions of the regression head were over the threshold N̂k

e f f , M particles of would be

resampled. The threshold N̂k
e f f is defined as shown in (2):

N̂k
e f f =

1

∑M
i=1(w

k,i
t )2

. (2)
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Cost Match. If the score of estimated state S of a tracklet was less than threshold µ, the
tracklet would be set to the inactive state. According to the constant velocity assumption
(CVS) model, the next positions of these tracklets were estimated. If the positions of
the new tracklets have a high similarity with the detection results, the tracking of these
tracklets will be resumed. The similarity calculation method is shown in (3), where α and
β are parameters representing weights, IoU represents the calculation of the IoU value
between two bounding boxes, and d1 represents the Bhattacharyya distance between the
corresponding color histograms in the HSV space [61], Li

t and N j
t respectively represent the

ith inactive and the jth newly initialized tracklets in the tth frame. Once the tracklets were
reidentified, we reinitialized the particles around their new positions. We have

C = α ∗ IoU(Li
t, N j

t ) + β ∗ d1(Li
t, N j

t ). (3)

3.1.3. Body Detector

Several Fused GTs to One Proposal. The body detector needs to be competent in
dense crowds, but the reality is the objects overlapped heavily in dense crowds, and it
is difficult to deal with. Therefore, several ground-truth bounding boxes with high IoUs
were fused together to one proposal in our method, each fused bounding box represented
an independent object. The total objects after fusion are described as (4), where bi is the
proposed box, gi is the ground-truth bounding box, and G represents the set of all ground-
truth bounding boxes. θ is the threshold for IoU calculation. The fusing technique used
here can effectively distinguish multiple overlapping objects. The detector obtains some
sort of antiocclusion ability and achieve higher robustness. We have

G(bi) = {gi ∈ G|IoU(bi, gi) ≥ θ}. (4)

The overall structure of the whole-body detector is shown in Figure 4. We used the
following method to perform pedestrians’ body detection.

Predict Several Predictions for Each Proposal. There are multiple proposals for each
picture, and the instance predictions of each proposal are represented by a set of predicted
boxes as (5). Each predicted box is represented by (ci, li), where ci is the predicted category
with confidence, and li is the relative coordinates of the prediction, and K is a preset
constant, indicating that each proposal can predict up to K predictions. We have

P(bi) = {(c
(1)
i , l(1)i ), (c(2)i , l(2)i ), ..., (c(K)i , l(K)i )}. (5)

To calculate the differences, the Earth Mover’s Distance (EMD) method was introduced
in our approach, which is essentially a vector similarity measurement that can be used
to solve problems like Optimal Transport. Inspired by target detection algorithms such
as [62–64], we used EMD Loss as the loss function for dense detection algorithm. The
loss function is expressed as (6), where π represents a sequence of real numbers, and the
value of the kth item is the value k, gπk ∈ G(bi), where gπk represents the kth ground-truth
bounding boxes in the set of ground-truth, Lcls and Lreg represent the classification loss
and the regression loss, respectively. We have

L(bi) = min
π∈∏

K

∑
k=1

[Lcls(c
(k)
i , gπk ) + Lreg(c

(k)
i , gπk )]. (6)

Patched NMS. The body detector adopt a patched version of Non-Maximum Suppres-
sion (NMS) when dealing with multiple bounding boxes with high overlaps. Specifically,
when NMS suppresses one box for the other, it checks whether the two boxes belong to
the same proposal by adding an additional test, and if so, skips the step. The patched
NMS is used in conjunction with the fused examples, which has a significant effect in
crowd detection.
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Figure 4. The architecture of the body detector in our proposal. In this figure, on the far left side
at Section (a) is the basic structure of Faster-RCNN. After the fully connected layer, each proposal
predict multiple predicted bounding boxes (boxA and boxB). After using EMD Loss to solve the
losses between each predicted result and the ground truth bounding boxes, we used our patched
NMS to suppress redundant bounding boxes. The refinement module was used to further refine the
final results.

Refinement Model. Each fused example contained several bounding boxes, which
may lead to a higher risk of false positives. Hence a supplementary refinement module
might be added, and the module is optional according to the quality of output results. The
structure of the refinement module is shown in Figure 4b, which takes the predictions as
input and combines them with the proposal boxes, to correct the wrong predictions due to
the fusion.

3.2. Match

Bipartite Graph. Head bounding boxes and body bounding boxes obtained in
Sections 3.1.1 and 3.1.3 can be viewed as a bipartite graph. It is a special graph divid-
ing vertices into two disjoint and independent sets. The vertices in these two sets are
connected by edges, but not self-connected in one set. In our method, head bounding boxes
and body bounding boxes respectively constitute the two sets of the bipartite graph, and
the edges between two vertices were evaluated by the IoC calculation between the head
bounding boxes and the the full-body bounding boxes.

IoC and Cost Matrix. The IoC reflects the extent to one bounding box covered one
other bounding box, and is calculated in the ratio of the intersecting area between head and
full-body bounding boxes to the area of the entire-body bounding box. As shown in (7),
where Hi and Bj represent the ith head bounding box and the jth body bounding box. The
IoC’s value is normalized to [0, 1]. IoU is calculated in slightly different ways than IoC. The
IoU is the ratio of the intersecting area to the area of both two bounding boxes. Figure 5
shows the definition and difference between IoC and IoU.
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Figure 5. Definition and comparison of IoC and IoU.

We have

IoC(Hi, Bj) =
|Hi

⋃
Bj|

|Bj|
(7)

CostMatrix =

 IoC(H1, B1) . . . IoC(H1, Bn)
...

. . .
...

IoC(Hm, B1) . . . IoC(Hm, Bn)

. (8)

Hungarian algorithm. An IoC operation was performed between each head bounding
box and each body bounding box in the current frame. The cost matrix is shown in (8),
where m is the number of rows and n is the number of columns, i.e., m head boxes and n
body boxes detected in the frame. Then the cost matrix was processed by the Hungarian
algorithm. As an allocation algorithm, the Hungarian algorithm completed the matching of
the targets’ (pedestrians) head bounding boxes and body bounding boxes as (9). We have

indicesH , indicesB = Hung(CostMatrix). (9)

3.3. Replacement

According to the matching of head bounding boxes and full-body bounding boxes in
Section 3.2, we replace head bounding boxes in the head motion tracklets in Section 3.1.2
with body bounding boxes obtained in Section 3.1.3. For those body bounding boxes
without matched head bounding boxes, and head bounding boxes without matched body
bounding boxes, both types of boxes are discarded directly.

4. Experiment
4.1. General Settings
4.1.1. MOT20 Dataset

A large amount of experimental work was based on the MOT20 [8] dataset from the
MOT Challenge [65]. MOT20 is a dataset concerning multiobject pedestrian tracking in
dense crowds. The number of targets in MOT20 is overwhelming, and thus the targets in
the dataset have abnormally serious occlusions, and the frequency of occlusions is relatively
higher than other typical datasets. In MOT20, there are four video sequences lasting 357 s,
a total of 8931 frames and 1,336,920 targets in the training set (average 149.7 targets per
frame). There are four video sequences lasting 178 s in the training set, with 4479 frames
and 765,465 targets in total, and 170.9 targets per frame on average [8]. Those raw videos
were shot in many places during the day or night with dense pedestrians, including squares,
stations, and streets. With indoor and outdoor, and day and night sequences, the rich scene
elements can fully demonstrate the performance of the tracker.

The role of cross-validation is to reduce the negative impact of overfitting, and obtain
as much effective information as possible from limited training data. Because the training
set of MOT20 consists of four video sequences, we used fourfold cross-validation when
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training. In each fold, three videos were used for training and one video was used for
testing, as shown in Figure 6.

Figure 6. Fourfold cross validation for training and testing.

4.1.2. Metrics

We used CLEAR [66] evaluation indicator that comprehensively consider FP, FN,
and ID-Switch, which has a more common name called MOTA. The CLEAR reflects the
tracking quality of tracker more comprehensively. However, the CLEAR ignores the ID
characteristics of multiple targets, so we introduced IDF1 [67] additionally to make up
for the lack of MOTA in this regard. In addition, HOTA [68] is an indicator that had just
been proposed in recent years, which can reflect the effects of detection and matching in a
balanced manner.

4.1.3. Some Details

When proceeding to the matching process in Section 3.2, we cut the body bounding
boxes before performing the IoC operation. It was done by keeping only the top 35 pixels
of the body bounding box and extending it upward by five pixels. In addition, we cut off
the left and right 20% of the body bounding boxes, and only the middle 60% was kept, as
shown in Figure 7. The reason for that is that the sizes of most of the head bounding boxes
in the MOT20 dataset are generally less than 50 pixels, and the heads are generally located
in the top and middle of the bodies, so the information on both sides and lower positions of
the body bounding boxes is somewhat redundant. The matching accuracy was improved
by eliminating redundant information of body bounding boxes.

Figure 7. The blue box in the figure is the original full body bounding box of the pedestrian, and the
red bounding box is obtained after the above blue box is processed. The processing method has been
shown in the figure: the shaded part of the blue box will be discarded, then expanded to generate the
red box. Rather than the blue box, the red bounding box and the head bounding box are used for
IoC operation.

The numbers mentioned above, or being named as a set of parameters, could be
used to clip the head bounding boxes in the MOT20 dataset. In order to find a better set
of parameters, we changed some parameters without changing other settings. Observe
the performance of our method on the MOT20 dataset in Table 1. In Table 1, it can be
found that {−20%, 5 pixels, 35 pixels} performed best, and we used this set of data in
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follow-up experiments. The differences among different sets of parameters are actually
not very obverse. According to our statistics, the pedestrians’ heads in the MOT20 dataset
occupy 25 ∗ 27 pixels on average. We also recommend using {−20%, five pixels, 35 pixels}
as parameters in videos other than MOT20. If TraPeHat doesn’t perform well in other
videos, randomly select a few frames, detect and calculate the average pixels occupied by
pedestrian heads in these frames, then adjust parameters proportionally. Of course, we do
not recommend adjusting a parameter of {−20%} because the variance of pedestrian head
and body ratio is generally not too great.

Table 1. The impact on TraPeHat when using different parameters to cut the body bounding boxes.
After considering the two most important tracking indicators, MOTA and HOTA, the group parame-
ters of {−20%, five pixels, 35 pixels} performs best. (CutA: Ratios of pixels to cut off on left and right
sides. Patch: Pixels patched to the top. CutB: Pixels kept at the bottom).

Cut A Patch CutB MOTA↑ MOTP↑ IDF1↑ Idsw↓ HOTA↑

−20% 5px 35px 55.0755.0755.07 78.55 52.18 4342 41.1141.1141.11
−15% 5px 35px 55.04 78.54 52.16 4347 41.10
−25% 5px 35px 55.06 78.5678.5678.56 52.1952.1952.19 4354 41.11
−20% 0px 35px 54.99 78.56 52.15 4383 41.09
−20% 10px 35px 55.09 78.53 52.18 431843184318 41.11
−20% 5px 30px 54.81 78.55 52.04 4322 41.00
−20% 5px 40px 55.02 78.54 52.16 4348 41.08

4.2. Ablation Study on Match Methods

CTC. As we all know, a bounding box is a rectangle surrounded by four coils. In this
section, we used CTC to denote the coordinates of the top center point of the head and
body bounding boxes. Because the head is generally located at the top and middle of the
body, the CTC of most pedestrians’ head bounding boxes should be very close to the CTC
of their body bounding boxes, or even express the same pixel, as shown in Figure 8.

Figure 8. All subplots in this figure come from the MOT20 dataset, in which the positions of the heads
are demarcated by the yellow bounding boxes and the positions of the bodies are demarcated by the
blue bounding boxes. A general rule can be concluded from this figure: pedestrians’ head bounding
boxes are more likely to be located in the middle and upper positions of their body bounding boxes.

LD and ED. To demonstrate the effectiveness of the IoC as an input weight for the
association algorithm, we experimented with a variety of different weights. The location
deviation (LD) of CTC coordinates of the two bounding boxes could be taken into account.
LD maximizes confidences for head bounding boxes whereas those boxes are just above
and centered on the body bounding boxes, as shown in (10), where loc_dev_x(∗) and
loc_dev_y(∗) denote the location deviation between the body bounding boxes and the head
bounding boxes from the x and y directions, respectively, and α and β are hyperparameters.
The Euclidean distance (ED) is a simple and crude measurement between two bounding
boxes, as shown in (11), and this is used as the only calculation criterion for the degree of
association. For LD and ED, the subsequent CostMatrix should also be changed, and the
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specific details will not be repeated. In (10) and (11), the CTC points of the head and body
bounding boxes are denoted as Hi and Bj for the purposes of convenient expression and
understanding. We have

LD(Hi, Bj) = α ∗ loc_dev_x(Hi, Bj) + β ∗ loc_dev_y(Hi, Bj) (10)

ED(Hi, Bj) = Eus_dis(Hi, Bj). (11)

The final results of the ablation study on match methods are shown in Table 2, from
which it is not difficult to find that IoC achieves the best results. We speculate that the
reason for this phenomenon is that IoC not only takes into account the distribution of the
top center of the bounding box sets, but also reflects the extent to which the head bounding
boxes are contained by the body bounding boxes, thus achieving the best results.

Table 2. After changing the method of measuring the similarities between heads and bodies in
TraPeHat, the final performances of TraPeHat on the MOT20 dataset are shown. The directions of
arrows indicate smaller or larger values are desired for the metric.

Method MOTA↑ IDF1↑ HOTA↑

ED 37.89 34.46 34.52
LD 51.47 46.83 39.68
IoC(Ours)IoC(Ours)IoC(Ours) 55.0755.0755.07 52.1852.1852.18 41.1241.1241.12

4.3. Head Detection and Head Tracking Methods

SCUT-Head. SCUT-Head [9] is a large-scale head detection dataset, with 4405 images
and 111,251 head labels in total. The dataset consists of two parts, Part A and Part B. Part
A came from the surveillance cameras in certain university classrooms, and Part B was
collected from the Internet, so the background of the images in this part is relatively wider.
We compared our method with several common detectors on the SCUT-Head dataset,
as shown in Table 3. The evaluation indicators like precision, recall and F1 scores were
involved. It can be seen from Table 3 that our method is better than other general methods.

Table 3. The comparison between different head detection methods.

Method Precision% Recall% F1

FasterRCNN [12] 87 80 0.83
RFCN+FRN [9] 91 84 0.87
SMD [69] 93 90 0.91
HSFA2Net [70] 94 92 0.93
TraPeHat(ours)TraPeHat(ours)TraPeHat(ours) 959595 939393 0.940.940.94

HT21. HT21 [7] is a large-scale pedestrian head tracking dataset in dense scenes. It
consists of a training set and a testing set, with a total of 13,410 images and 2,102,385 head
bounding boxes, and 6811 head motion trajectories, each frame contains 156.78 goals
on average. SORT was mainly composed of Kalman filter and Hungarian algorithm. It
detected bounding boxes and then tracked them, and it was a classic multiobject tracker.
With the help of high-speed cameras, the IoU value between the same target in the previous
and present two frames is considerable. Based on that idea, ref. [71] proposed the tracking
algorithm V_IOU. Tracktor++ [6] cleverly used the function of bounding box regression of
object detector to achieve target tracking. Comparing the above methods with our method
in Table 4, we can see that our method has great advantages in various indicators.
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Table 4. The comparison between different head tracking methods on HT21 dataset.

Method MOTA↑ IDEucl↑ IDF1↑ MT↑ ML↓ ID Sw↓

SORT [1] 46.4 58.0 48.4 49 216 649649649
V_IOU [71] 53.4 34.3 35.4 80 182 1890
Tracktor++ [6] 58.9 31.8 38.5 125 117 3474
TraPeHat(ours)TraPeHat(ours)TraPeHat(ours) 63.663.663.6 60.360.360.3 57.157.157.1 146146146 939393 892

4.4. Body Detection Methods

CrowdHuman. CrowdHuman [10] is a widely used dense pedestrian detection dataset,
which consists of a training set, a testing set, and a validation set, with a total of 24,370
images, and an average of 23 targets per image. Pedestrian bodies in this dataset are often
occluded by other pedestrians, so it is not an easy task to detect full bodies in this dataset.
Comparing the full-body detection method used in our experiments with several common
methods, the results are shown in Table 5. It can be seen that the main technical indicators
of our method are in a leading position in this type of task.

Table 5. The comparison between different body detection methods on CrowdHuman dataset.

Method AP/% MR−2/%

Crowd Human Benchmark [10] 85.0 50.4
Adaptive NMS [72] 84.7 49.7
Soft-NMS [73] 88.2 42.9
PBM [74] 89.3 43.3
TraPeHat(ours)TraPeHat(ours)TraPeHat(ours) 90.790.790.7 41.441.441.4

4.5. Final Results on MOT20

For the performance of TraPeHat on the MOT20 training set, we ran and evaluated
in our local devices. Because the MOT20 testing set does not expose its ground truth,
our results were uploaded to the MOT Challenge website [65] for evaluation. The overall
performance results of the training set and test set are shown in Table 6.

We compared TraPeHat with some other trackers on the MOT20 dataset, the running
results of which were from the MOT Challenge website [65], as shown in Table 7, from
which we can see that our algorithm achieved a comparable effect. Our method is superior
to the other methods in Table 7 in most of the multiobject tracking indicators. From this, we
can learn that TraPeHat achieved higher MOTA, HOTA, and IDF1 scores, and the scores
of FP, FN were lower. However, the ML and ID-Switch indicators of FlowTracker were
slightly better than TraPeHat. We speculate that the reason for this phenomenon is as
follows. FlowTracker used optical flow to realize multiobject tracking, and the principle
of multiobject tracker based on optical flow method is that the appearance features of the
same pedestrian do not change significantly in two adjacent frames. TraPeHat, on the
other hand, did not use target appearance information in the matching stage. Therefore,
FlowTracker used more comprehensive appearance information than TraPeHat, and this
also gives FlowTracker an advantage when dealing with continuous targets and ID Switch.
But TraPeHat integrates head tracking which enforced the overall tracking performance on
MOTA, HOTA, and so on. It is worth mentioning that we did not use any deep learning
tricks to improve the accuracy in the whole experiments.
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Table 6. The performance of our method TraPeHat on MOT20 testing set.

Video Sequence MOTA↑ MOTP↑ HOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID Sw↓

Testing Set

MOT20-04 70.71 80.85 54.27 67.15 45 3 4724 2556 39
MOT20-06 68.94 81.05 47.38 55.76 162 8 4554 25,771 364
MOT20-07 53.05 76.98 40.48 55.19 117 147 5127 58,201 564
MOT20-08 52.25 78.45 39.18 49.37 248 202 7166 126,087 3375
OVERALL 55.07 78.55 41.12 52.18 572 360 21,571 212,615 4342

Table 7. We compared our online multiobject tracker TraPeHat with other modern tracking methods.
As the most valuable evaluation indicator in the field of multiobject tracking, the overall pros and
cons of the algorithm are sorted from top to bottom according to the MOTA value. We can see that
TraPeHat has achieved competitive results.

Algorithm MOTA↑ HOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID Sw↓

OVBT17 [75] 40.00 30.50 37.80 141 374 23,368 282,949 4210
SORT20 [1] 42.70 36.10 45.10 208 326 27,521 264,694 4470
GMPHD_Rd20 [76] 44.70 35.60 43.50 293 274 42,778 236,116 7492
IOU_KMM [77] 46.50 40.40 49.40 371 371 57,517 214,777 4509
FlowTracker [78] 46.70 35.60 42.40 345 249249249 54,732 217,371 335233523352
BBT [79] 46.80 35.80 42.20 312 289 35,014 236,176 3880
SFS [80] 50.80 32.70 41.10 341 251 50,139 220,932 3503
TraPeHat(ours)TraPeHat(ours)TraPeHat(ours) 55.1055.1055.10 41.1041.1041.10 52.2052.2052.20 572572572 360 21,57121,57121,571 212,615212,615212,615 4342

5. Conclusions

Building on the work of Sundararaman et al. [7], by using pedestrian head tracking,
we extended the tracked objects from the pedestrians’ heads to the pedestrians’ whole
bodies. In order to achieve the above goals, we proposed a bounding box similarity
measurement method named IoC, which can effectively complete the matching work of the
same target’s head bounding box and body bounding box. A series of related experiments
demonstrated the effectiveness of this method. We hope that this method can effectively
reduce the inconvenience caused by severe occlusions for pedestrian tracking tasks in dense
environments, and provide references for subsequent head tracking tasks.
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