
Citation: Liu, T.; Wang, Z.; He, H.;

Shi, W.; Lin, L.; An, R.; Li, C. Efficient

and Secure Federated Learning for

Financial Applications. Appl. Sci.

2023, 13, 5877. https://doi.org/

10.3390/app13105877

Academic Editor: Byung-Gyu Kim

Received: 3 March 2023

Revised: 25 April 2023

Accepted: 28 April 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Efficient and Secure Federated Learning for Financial Applications
Tao Liu 1, Zhi Wang 2, Hui He 3,*, Wei Shi 3, Liangliang Lin 3, Ran An 3 and Chenhao Li 3,4

1 Business School, China University of Political Science and Law, Beijing 100088, China
2 The School of Software, Xi’an Jiaotong University, Xi’an 710049, China
3 The School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
4 Ant Rongxin (Chengdu) Network Technology Co., Ltd., Chengdu 610000, China
* Correspondence: huihe@xjtu.edu.cn

Abstract: Conventional machine learning (ML) and deep learning approaches require sharing cus-
tomers’ sensitive information with an external credit bureau to generate a prediction model, thereby
increasing the risk of privacy leakage. This poses a significant challenge for financial companies.
To address this challenge, federated learning has emerged as a promising approach to protect data
privacy. However, the high communication costs associated with federated systems, particularly for
large neural networks, can be a bottleneck. To mitigate this issue, it is necessary to limit the number
and size of communications for practical training of large neural structures. Gradient sparsification
is a technique that has gained increasing attention as a method to reduce communication costs, as
it updates only significant gradients and accumulates insignificant gradients locally. However, the
secure aggregation framework cannot directly employ gradient sparsification. To overcome this
limitation, this article proposes two sparsification methods for reducing the communication costs
of federated learning. The first method is a time-varying hierarchical sparsification method for
model parameter updates, which addresses the challenge of maintaining model accuracy after a high
sparsity ratio. This method can significantly reduce the cost of a single communication. The second
method is to apply sparsification to the secure aggregation framework. Specifically, the encryption
mask matrix is sparsified to reduce communication costs while protecting privacy. Experiments
demonstrate that our method can reduce the upload communication costs to approximately 2.9% to
18.9% of the conventional federated learning algorithm under different non-IID experiment settings
when the sparsity rate is 0.01.

Keywords: federated learning; gradient sparsification; secure aggregation; optimize communication
costs

1. Introduction

Financial institutions often need to analyze large datasets stored across multiple
servers or devices. A common solution is to merge the datasets into a central database [1],
which can present several privacy challenges. For instance, the institution may not have
the necessary authority or permission to transfer locally stored information, the data owner
may not want it shared, and the centralization of the data may increase the severity of
a data breach. To address these concerns, Federated Learning (FL) [2,3] has emerged
as a promising approach that enables users to jointly generate a global model without
explicitly sharing local private data. However, FL can be hindered by high communication
costs, as a significant number of devices send local updates to the central server [4]. The
aggregation model iteration depends on frequent communication between numerous clients
and a single server. Since there is a bandwidth resource limitation, it becomes essential
to utilize computing and communication resources efficiently to achieve optimal learning
performance in FL [5,6].

Compared to distributed learning, FL is susceptible to communication disruptions
between computing nodes. Consequently, the size of the parameter update vector trans-
mitted during aggregation becomes a crucial factor that influences the efficiency of FL. A
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larger vector size leads to a longer communication time and increases the average time
interval between two parameter aggregation operations on the server [6]. Furthermore,
longer transmission times increase the likelihood of facing abnormal situations such as
disconnection and network fluctuations, which raises the robustness requirements of the
FL algorithm. Therefore, to ensure high communication efficiency, updates should be
sent in a compressed and infrequent manner. Gradient sparsification [7] is a commonly
used method for gradient compression to reduce communication costs. The main idea of
gradient sparsification is to reduce the number of non-zero values in the gradient updates
by setting small or insignificant values to zero while retaining the important information
for the model updates. This approach can reduce the size of updates and the frequency of
communication between clients and the server, resulting in faster convergence and lower
communication overhead in FL. During each communication, the data volume transmitted
is the same regardless of whether it is transmitting the change value of a small or large
parameter. However, parameter updates with larger changes have a greater impact on the
performance of the updated model. Therefore, only parameters with large changes are
transmitted during parameter update transmission while parameters with small changes
are temporarily stored in local accumulation [8]. These parameters are then transmitted
to the server once the accumulated value reaches a certain threshold. The advantage of
this approach is that each communication transmits important parameter updates with
reduced communication volume.

However, the current sparse method still has some limitations. A deep neural network
derives its powerful learning ability from its deep structure, where each layer performs a
specific function. For instance, in convolutional neural networks (CNN) used for image
recognition, each CNN layer corresponds to different feature extraction capabilities. As the
number of network layers increases, the extracted features become more and more abstract.
Moreover, the parameters of each deep neural network layer have distinct characteristics,
with the numerical values differing by orders of magnitude. Therefore, when the model
parameters are flattened into a one-dimensional vector, the sparsification process could
result in smaller parameter values being covered by larger ones. However, the local update
of the local model, including both the feature extraction and classifier layers, in a round
may seem insignificant, but they still play an important role during the training process.
The reason is that the residual of the local update not uploaded can accumulate over
time, causing a delay. Such a delay can eventually deviate the iteration direction from the
required descent direction of the current model parameters [9]. If this delay accumulates
over multiple rounds, it can cause significant issues. When larger parameters always cover
smaller parameters, sparsification can lead to a greater loss. Therefore, it is crucial to
consider the impact of sparsification and ensure that smaller parameters are not neglected
in the updating process.

Another primary concern for FL systems is protecting user privacy. A series of
studies [10,11] have demonstrated that FL can leak sensitive information through the
sharing of intermediate model updates. To address this issue, FL commonly integrates
Differential Privacy (DP) [12], Homomorphic Encryption (HE) [13], and Secure Multiparty
Computation (SMC) [14] for model training, which ensures that the transmitted model
information remains confidential. HE enables aggregations to be performed on encrypted
data [15,16]; however, it is computationally intensive to execute computations in the
encrypted domain. SMC can be used to securely aggregate local model updates without
leaking them but it also suffers from the communication bottleneck typical of conventional
distributed training. Bonawitz et al. (2017) proposed Secure Aggregation (SA) [17], which
permits a server to calculate the sum of large data vectors held by mobile devices in
a secure manner without disclosing each user’s individual contribution. Nevertheless,
implementing SA necessitates significant additional resources in terms of communication
and computing to ensure privacy protection.

The challenge of Federated Learning (FL) lies in building a protocol that ensures
privacy protection and computational and communication efficiency, without significantly
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affecting accuracy. In this paper, we propose an efficient and secure FL framework based
on gradient and mask sparsification, which comprises two components: time-varying
hierarchical gradient sparsification and encryption mask sparsification. The time-varying
hierarchical gradient sparsification algorithm balances the numerical size differences of the
network parameters at different layers, reducing the loss caused by the sparsification pro-
cess. Additionally, we sparsify the encryption mask in the secure aggregation framework,
reducing the total amount of data sent, thereby improving communication efficiency and
ensuring security. Our contributions can be summarized as follows:

1. We propose an efficient and secure FL framework based on gradient and mask sparsi-
fication, which addresses the challenges of privacy protection and computational and
communication efficiency in FL.

2. We introduce a time-varying hierarchical gradient sparsification algorithm that bal-
ances the numerical size differences of the network parameters at different layers,
thereby reducing the loss caused by sparsification. Moreover, we propose to sparsify
the encryption mask in the secure aggregation framework to reduce the total amount
of data sent, improve communication efficiency, and ensure security.

3. Our experiments on the MNIST, Fashion-MNIST, and CIFAR-10 datasets prove that
our method can reduce the upload communication costs to approximately 2.9% to
18.9% of the conventional FL algorithm when the sparsity rate is 0.01.

The structure of this work is organized as follows. Section 2 provides an introduction
to the related works and current scholarly advancements in gradient sparsification and
secure aggregation. In Section 3, we present an efficient and secure federated learning
framework that incorporates time-varying hierarchical gradient sparsification and encryp-
tion mask sparsification. Section 4 outlines the experimental settings and methodology,
including the results. Finally, in Section 5, we present our conclusions regarding the
proposed framework.

2. Related Works
2.1. Gradient Sparsification

In the field of FL communication optimization, numerous approaches have been
suggested to address the communication bottleneck issue. Zinkevich et al. (2010) [18]
proposed an asynchronous update system that allows each node to independently update
the model, free from the influence of other nodes with slower update rates, from a system
perspective. In the area of communication transmission, reducing the traffic for each
round is a direct method used to decrease communication time. Gradient sparsification,
a prevalent gradient compression method, is employed to decrease the communication
burden [19].

Strom et al. (2015) [20] proposed a gradient-dropping method, which only sends
gradients larger than a predefined constant threshold, and all other gradients are accumu-
lated in the locally saved residuals and are temporarily not sent. This method can achieve
up to 3 orders of magnitude compression ratio of uploaded data. However, in the actual
training task, it is difficult to choose the appropriate values for the threshold. Due to the
different thresholds for the different tasks and models, artificial scheduling can introduce
significant experimental costs. In order to overcome this problem, Dryden et al. (2016) [21]
enhanced Strom’s sparsification method. In contrast to the fixed threshold of the Storm
method, the sparsity rate s is fixed. For example, when s = 0.001, only the top 0.1% of
the gradient update vector is transmitted and other parts of the gradient update are kept
locally for the time being. Their experiments showed that with a sparsity rate of s = 0.001,
their method could only slightly reduce the convergence speed and the final accuracy of
the speed training model.

Lei Ba et al. (2016) [22] argued that normalizing each layer is crucial for gradient con-
vergence. Lin et al. (2018) [23] proposed the Deep Gradient Compression (DGC) algorithm,
which includes momentum correction, a local gradient client, momentum factor masking,
and warm-up training, to address the issue of gradient redundancy in distributed training.



Appl. Sci. 2023, 13, 5877 4 of 17

This algorithm can achieve a compression ratio of 270× to 600× without compromising
accuracy. Felix Sattler et al. (2019) [8] proposed the Sparse Ternary Compression (STC)
framework to compress the locality of deeply compressed Top-k gradient compression and
optimal Golomb coding, effectively reducing communication costs in non-IID FL scenar-
ios. Han et al. [24] proposed a fairness-aware gradient descent method that ensures all
clients provide an equal number of updates. Additionally, they proposed a novel online
learning formulation and algorithm that can determine the near-optimal communication
and computational trade-off while minimizing the overall training time. This trade-off is
controlled by the degree of gradient sparsity. Qiu et al. [25] presented the first study on
the unique issues that arise when introducing sparsity at training time in FL workloads.
They then proposed ZeroFL, a framework that relies on highly sparse operations to accel-
erate on-device training. Some studies quantified the sparse gradient based on gradient
sparsification [23,26], ensuring that non-zero element values in the updated gradient vector
belonged to a preset numerical set. Subsequently, the parameter update vector could be
coded based on the parameter update vector’s sparsity to further reduce transmission
volume. However, although the above-mentioned works significantly reduced the com-
munication overhead, there was an obvious impact on the model performance. Moreover,
privacy issues arose as they directly exposed the model updates to other entities.

2.2. Secure Aggregation

The secure aggregation framework utilizes the Diffie–Hellman (DH) protocol for key
exchange [27]. Multiple participants exchange public keys and upon completion of local
training, the gradient is not directly transmitted. Instead, a mask matrix, equal in size to the
gradient matrix, is generated according to the DH protocol’s public key. This random mask
is then added to the original gradient to mask the actual gradient information [28,29]. As a
result, the server cannot obtain the participants’ gradient information. However, the secure
aggregation framework faces communication bottlenecks since the gradient sparsification
method cannot be directly applied to protect user privacy.

The inherent shortcomings of these methods motivated us to find a better way to
combine gradient sparsification with the secure aggregation algorithm. In general, there are
two ways to achieve this goal, including sparsing the encrypted gradient and encrypting
the spared gradient.

2.2.1. Sparse the Encrypted Gradient

After local training, each participant calculates the gradient information to be sent
and uses the gradient sparsification method for Top-k selection to record the location
of the gradient to be sent. Subsequently, the encrypted mask is added to the original
gradient, and then only the information at the position corresponding to the record on
the masked gradient is sent according to the previous record. In this way, the gradient is
protected and the server cannot collect the real gradient information. However, there is a
problem with this method. Even if each participant has a relatively similar trend toward
the descending direction of the gradient, it cannot guarantee that all Top-k positions will
completely overlap in each round of training. As a result, when a participant encrypts a
specific part of the gradient vector, another participant holding the symmetric mask may
not have the corresponding Top-k gradient at that location. Therefore, the encryption mask
at that location will not be sent and the mask cannot be eliminated in the aggregation
process. The mask that cannot be eliminated is equivalent to adding noise to a component
position of the gradient vector. If the influence of the mask is too large, it will have a great
impact on the overall convergence direction, as well as the convergence speed and accuracy,
of the global model. In the case of multi-party participation, this situation may be more
serious and it is not feasible to directly sparsify the encrypted gradient vector.
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2.2.2. Encrypt the Spared Gradient

If all positions of the local sparse gradient vector are mask encrypted and sent, this
method can ensure that the mask can be eliminated. However, this global sparse gradient
encryption scheme violates the original intention of gradient sparsification because the
encrypted mask will cover the communication costs reduced by gradient sparsification. If
we want to achieve this level of encryption, the communication costs will be huge. If the
encrypted gradients are float numbers, the number of encrypted gradients sent by each
participant is no different from the traditional security aggregation framework. At the same
time, due to the gradient sparsification method in the local calculation process, this scheme
will undoubtedly increase the training time compared to the original scheme, which is a
negative optimization scheme.

Compared to the previous works, our proposed method can achieve efficient compu-
tation and communication for secure aggregation, without compromising accuracy.

3. Efficient and Secure Federated Learning Based on Gradient and Mask Sparsification

In this section, we focus on the detailed designs of the proposed efficient and secure
FL framework. Firstly, we propose a time-varying hierarchical sparse method for updating
the model parameters. This method allows participants to send only critical updates when
communicating with the server, thereby significantly reducing communication costs. Sec-
ondly, we combine the characteristics of gradient sparsification and the secure aggregation
framework to ensure that the effect of gradient sparsification on communication optimiza-
tion is not masked by the encryption mask matrix. Our joint design aims to optimize
communication efficiency while maintaining data security.

3.1. Time-Varying Hierarchical Gradient Sparsification

The hierarchical gradient sparsification of the network can reduce the loss caused
by the sparsification process. In the early stages of training, network parameters usually
undergo significant changes. However, after a certain number of update iterations, the
amplitude of the changes decreases. Capitalizing on this feature, we propose a time-
varying hierarchical gradient sparsification (THGS) algorithm. This algorithm builds upon
hierarchical sparsification and reduces the sparsity rate with an increase in iteration rounds.
Eventually, it reaches a set lower bound, as illustrated in Algorithm 1.

Each participant in THGS calculates a model update, denoted as g, based on its local
private data. Assuming that the model update of the i-th layer is gi, THGS first identifies the
Top-k largest values of gi. At the same time, THGS sets a threshold δ to the k-th largest value
in gi. Then, THGS calculates a mask vector g̃i for sparsification. Specifically, we set the
element to 1 in g̃i if the value on the corresponding index of gi is greater than the threshold
δ. Conversely, if the corresponding value of gi is smaller than the threshold δ, the element
is set to 0 in g̃i. Next, THGS computes a sparse model update gi−sparse using the Hadamard
product of gi and g̃i, namely, gi−sparse = gi

⊙
g̃i. Simultaneously, THGS needs to calculate

a residual model update gi−residual of gi, which will be kept locally and accumulated in the
subsequent communication rounds. Specifically, gi−residual = gi− gi−sparse. Eventually, each
participant uploads the sparse model update gi−sparse to the server for further aggregation,
which significantly reduces the upload communication overhead.

We assume that the initial sparsity rate is s0, α is a constant attenuation factor, and the
lower limit of the sparsity rate is smin. In a deep neural network, the sparsity rate si of the
i-th layer parameter is:

si =


s0, i = 1

si−1 · α, i f si−1 · α > smin

smin, else

(1)
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Algorithm 1: THGS algorithm.
Input: w, L, s0, smin, α, gi
Output: wsparse, wresidual

1 wsparse ← torch.zeros_like(w);
2 wresidual ← torch.zeros_like(w);
3 for (i = 1, i ≤ L, i ++) do
4 g̃i ← to_vec(abs(gi);
5 k← int(len(g̃i)× si);
6 δ← TopK(g̃i, k);
7 zeros← torch.zeros_like(gi);
8 ones← torch.ones_like(gi);
9 g̃i ← torch.where(g̃i ≤ δ, zeros, g̃i);

10 g̃i ← torch.where(g̃i > δ, ones, g̃i);
11 gi−sparse ← g̃i � gi;
12 gi−residual ← gi − gi−sparse;
13 wsparse ← gi−sparse;
14 wresidual ← gi−residual ;

The process of sparsification can enhance the security of gradient updates in Federated
Learning (FL). In FL, gradient attacks can be conducted by the server, which takes the
simulated sample data as the input and the gradient sent by the client as the label to infer
the true input data. This can be achieved by taking the difference between the updated
gradient after the simulated sample data are sent to the initial model for training and the
updated gradient actually sent by the client as the penalty function. The simulated sample
data are then continuously optimized until the gradient calculated by the simulated sample
data and the gradient sent by the client reach a close degree of similarity. By doing this, the
simulated sample data will be similar to the local sample data of the client and the original
value of the client’s sample will be obtained.

The server can only upload a small percentage of the real gradient data such as one
percent or one thousandth, which weakens the server’s ability to carry out a gradient attack.
The label itself, as a penalty function, is incomplete data, making the simulated sample
fitted by this method far from the real sample. Sparsification can further reduce the amount
of data uploaded to the server, which ultimately weakens the server’s ability to carry out a
successful gradient attack.

3.2. Sparsify the Encryption Mask for Secure Aggregation

The purpose of applying the gradient sparsification method to the secure aggregation
framework is to reduce the cost of communication by sending gradients in important
directions while protecting user data privacy. Whether the secure aggregation framework
with gradient sparsification is effective depends on the following two conditions:

1. After aggregating the encrypted gradient updates of all participants, the server must
ensure that the masks used by participants for local data security are removed from
the final aggregation results after combining the encrypted gradient updates;

2. The amount of data transmitted during communication is significantly reduced when
using the secure aggregation framework with gradient sparsification compared to the
framework without gradient sparsification.

We propose a method to calculate the encryption mask matrix with zero local value, as
shown in Algorithm 2, to prevent the masking effect from concealing the impact of gradient
sparsification on communication optimization.

Each participant k calculates a local model update at round t, denoted as Gk
t , based

on its local private data and the previous residual local update. We first generate a shared
mask matrix maskr between every two participants. Assuming that the local update of the
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i-th layer is Gk
t [i], the Top-k largest values of Gk

t [i] are identified, where k = max(Rk, Rmin).
In addition, we set a threshold δ to the k-th largest value in Gk

t [i]. Then, we generate
a random uniform distribution mask matrix maske filtered by σ, where σ is a random
encryption mask filtering threshold. Specifically, if a mask value on a specific index of
maskr is greater than the threshold σ, we set the value to 0. Conversely, the value is retained.
The purpose is to minimize the impact of the mask matrix on the gradient. Next, we add
the mask matrix maske to Gk

t to generate the encrypted model update. Eventually, we
need to calculate another mask matrix maskt for sparsification. Specifically, if the values
on the same index of Gk

t and maske are both 0, the value on the corresponding index of
maskt is 0. Conversely, the value is set to 1. The local update that participant k needs to
upload is encode((Gk

t + maske)
⊙

maskt). In the meantime, we need to calculate a residual
local model update Gresidual = Gk

t
⊙¬maskt, which will be kept locally and accumulated

in the subsequent communication rounds. Such a design can guarantee privacy while
significantly reducing the upload communication overhead.

Algorithm 2: Secure Aggregation with Mask Sparsification on node k.
Input: T, dataset X, minibatch size b per node, the number of nodes N, sparsity

rate Rmin, threshold σ, α ,init parameters w = w[0], w[1], . . . , w[M]
Output: Gsparse

1 for t = 0, t ≤ T, t ++ do
2 Gk

t ← Gk
t−1;

3 for batch b ∈ B do
4 Sample data x from X;
5 Gk

t ← Gk
t + 1Nb5 f (x; wt);

6 maskr ← generate a mask matrix for DH protocol;
7 loss0 ← calculate loss value of local model;
8 β← loss0−lossk

lossk
;

9 Rk ← {Rk, Rmin};
10 for i = 1, i ≤ M, i ++ do
11 Select threshold: σ← Rko f |Gk

t [i]|;
12 masktop[i]← |Gk

t [i]| > σ;
13 for j = 1, j ≤ sizeo f Gk

t [i], j ++ do

14 maske[i][j] =
{

0 otherwise
maskr[i][j] maskr[i][j] < σ

15 maskt[i][j] =
{

1 otherwise
0 masktop[i][j] = 0∧maske[i][j] = 0

16 Gsparse ← encode((Gk
t + maske)�maskt)

17 Gresidual ← Gk
t �¬maskt

18 lossk ← loss0

The participants utilize the DH protocol key as a random seed to produce a uniformly
distributed mask matrix maskr ∈ [p, p + q). If two mask matrices correspond to the same
participants and hold the same key, they are considered equal. For each participant involved
in the training, the dynamic threshold can be ascertained by taking into account the total
number of model gradient updates N and the sparsity rate R.

R = (α + β− t
T
) · R (2)

where α is the constant attenuation factor and β is the loss change rate of the participant.
The greater the loss change, the more severe the change. t is the number of iterations and T
is the specified number of training rounds. The higher the number of iterations, the smaller
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the change. R is the gradient sparsity rate, where the upper limit is 1 and the lower limit is
the specified minimum sparsity ratio Rmin.

According to the threshold, we can filter out the mask matrix of the Top-k gradient
update. If G is the original local gradient update, there is:

∀gi ∈ G, masktop = |gi| ≥ σ (3)

σ is the random encryption mask filtering threshold:

σ = p +
k
x
· q (4)

where x is the number of participants and k is the random mask ratio.
maske is the random uniform distribution mask matrix filtered by σ and maskt is the

mask matrix for sparse transmission. Therefore, in order to ensure the safety of the original
gradient after sparsification, the gradient after sparsification is updated as:

Gsparse = encode((G + maske)�maskt) (5)

To make the encryption mask matrix sparse, a technique is used that involves setting a
certain proportion of the matrix elements to zero. This sparseness helps to optimize commu-
nication by reducing communication costs. In the original secure aggregation framework,
there was no deliberate effort to create a mask matrix with zero local values. However, such
a matrix is significant in optimizing the gradient sparseness of the security aggregation
framework. When certain positions in the mask matrix are set to zero, the corresponding
gradient updates do not need to be transmitted in that round of communication. As a
result, during the aggregation of the encrypted gradient updates at the server, there is no
problem with eliminating the mask. Furthermore, since the gradient update values for
these positions are not transmitted, the amount of communication data is reduced and
communication efficiency improves.

4. Safety Analysis

The secure aggregation framework is a multi-party encryption computing framework.
From the local gradient update encryption process for any participant, it can be inferred
that as the number of participants increases, the number of encryption masks also increases,
making the composition of the encryption gradient update more complex and making it
more difficult for the aggregation end to judge. The local gradient updates the ground truth.
It can be seen that when only two parties participate, the encryption situation is simpler
and the composition of the encrypted gradient update obtained by the aggregation end
is simpler. If the original gradient mask has an encryption effect, when multiple parties
participate, the encryption effect of the local gradient update of the participating parties
can also be guaranteed.

In a sparse security aggregation training scenario, the gradient update amplitude does
not meet the threshold and the mask component of the corresponding position is zero.
In this case, it will not be sent. If the encrypted gradient update meets the transmission
conditions, there are several situations: the gradient update amplitude meets the threshold
but the corresponding encryption mask is zero, the gradient update amplitude does not
meet the threshold but the corresponding encryption mask is not zero, and the gradient
update amplitude meets the threshold and the corresponding encryption mask is not zero.
The three situations are described as follows:

1. The gradient update magnitude meets the threshold but the corresponding encryp-
tion mask is zero. This situation is equivalent to transmitting the original gradient
update information. In the aggregation stage, due to the symmetry of the encryption
mask matrix, if another participant happens to select the original gradient update
information at the same position, the aggregation cannot infer whether the encryption
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mask at this position is zero during this round of aggregation. However, as the num-
ber of iterations increases, once the corresponding position is zero, the aggregation can
determine that the corresponding encryption mask is zero and reverse the previous
gradient data. The true value of the original gradient at the corresponding location
is exposed, although the gradient value does not represent the true data. Therefore,
the aggregation knows that the mask of some positions is zero, which is not enough
to expose the local data. Whether the encrypted information of the mask matrix can
be deduced according to the encrypted gradient of the training process and then the
original gradient information can be deduced inversely is the key to keeping local
data safe.

2. The magnitude of the gradient update does not meet the threshold but the cor-
responding encrypted mask component is not zero. This situation is equivalent
to transmitting random mask information. In the aggregation stage, according to
the symmetry of the encryption mask matrix, there are two situations for the corre-
sponding position: (1) another participant just selects the original gradient update
information and the encryption result of the random mask at the same position, and
(2) the absolute values of the encrypted values of the two participants are equal and
the signs are opposite. For the first case, as long as both positions have non-zero
values, the aggregation cannot directly determine whether the encryption mask is
zero and or judge the value of the original gradient update. However, once the sec-
ond situation, where the corresponding position is the opposite number, occurs, the
encrypted mask information will be directly exposed. According to the exposed mask
information, the aggregation can easily calculate the gradient of the corresponding
position of the participant during the whole training process to update the original
value.

3. The gradient update magnitude meets the threshold and the corresponding en-
crypted mask component is not zero. This situation is similar to the second one.
Since the corresponding position is part of the random mask matrix that is not zero
when at least one of the two positions contains the gradient update value, the value
of the corresponding position is not the opposite and the aggregation cannot directly
judge the mask condition. The multi-party training process often requires multiple
rounds of iterations. As the iteration progresses, ideally, at least one of the correspond-
ing positions will always have the gradient update range that meets the threshold.
However, in the actual training process, the corresponding mask appears to be the op-
posite number. The situation is very likely to happen. Once a similar mask is exposed,
the corresponding position will not have the corresponding encryption effect.

Three situations for sending parameters in the gradient sparse scenario expose a
security problem in the original local gradient encryption during the gradient update. The
local mask of zero is exposed, revealing only part of the original information, which is not
the complete gradient update information. Although encryption masks can encrypt the
components of local gradient updates of other participants, they prevent the aggregation
from inferring the original local gradient update. However, the random encryption mask
of the secure aggregation framework’s symmetry results in the gradient information of
some positions not being sent in this round due to the magnitude of the gradient update
not meeting the threshold.

Participants do not send gradients but must send masks. It is unknown whether
the gradient updates of the corresponding positions of other participants are sent during
the training process. Hence, to avoid errors caused by masks, participants are randomly
masked regardless of their non-zero value. The random mask information must be sent to
avoid random errors after aggregation. However, when the corresponding positions of both
parties do not need to send gradient update information, the values of the corresponding
positions will be the opposite numbers. In this case, the value of the mask is exposed, and
the subsequent training and previous encrypted gradient updates are ineffective.



Appl. Sci. 2023, 13, 5877 10 of 17

The mask of the corresponding position will not change since the DH protocol executes
only once in this training and involves multiple parties. Even when one party always
has a value in the corresponding position, due to the absolute value of the mask, positive
and negative values of equal size frequently appear in the corresponding positions. By
updating the information through multiple rounds of encrypted gradients, the aggregation
can easily infer the value of the mask.

Upon reviewing the training process of the original secure aggregation framework,
it can be seen that the aggregation end cannot obtain the original value of the encryption
mask and local gradient update because only one aggregation result is obtained and it is
not safe to split them. The random mask matrix protects the original value of the local
gradient update, but in turn, the local gradient update also protects the mask value from
being obtained by the aggregation. The composition of the two encryption results provides
high security.

Therefore, we use the dynamic sparsity rate method based on the training loss of
each participant, which helps to achieve faster convergence. At the same time, because the
sparsity rate of each participant is different, the index of the Top-k parameter will not have
a direct impact on the encryption location. A dynamic Top-k gradient parameter helps to
protect the original Top-k gradient update. Even if the local Top-k parameters are obtained,
the aggregate does not know the total number of Top-k parameters, and the encrypted
gradient update with the non-zero corresponding positions cannot determine which one
belongs to the original gradient update. Even in extreme cases, the index and encryption
location of Top-k do not overlap at all, but because the aggregation end cannot determine
the specific number of Top-k parameters, the original Top-k gradient update cannot be
inferred.

5. Experiments

To demonstrate the utility of our proposed approaches, we conducted a series of image
classification experiments on the MNIST, Fashion-MNIST [30], and CIFAR-10 datasets.
The MNIST dataset consists of 60,000 training samples and 10,000 test samples. Each
sample contains 28 × 28-pixel grayscale handwritten digits. The FMINST dataset is similar
to the MNIST dataset, except that the handwritten digits are replaced with commodity
images. The CIFAR-10 dataset contains 60,000 natural images in ten object classes, which
consist of 50,000 training pictures and 10,000 test pictures. We use the conventional FL
algorithm and the improved algorithm proposed in this paper to train the MNIST-MLP,
MNIST-CNN, CIFAR10-CNN, CIFAR10-VGG16, and other models. The goal of our experi-
ments is to demonstrate that compared to other FL algorithms with no compression, our
proposed method can achieve high computational and communication efficiency without
affecting accuracy.

Following the methodology of [2], we trained a shared model with 100 total clients, 10
of whom were selected randomly in each round. The number of local training iterations
was 5 and the training batch size was 50. We used the sample allocation matrix to simulate
non-IID (independent and identically distributed) training data in the real world and
provide different clients with an unbalanced sample from each class. Specifically, in order
to simulate the distributed characteristics of the dataset in the real world, the complete
training dataset needed to first be segmented and allocated to the client in the experiment.

5.1. Selection of Sparsity Rate and Attenuation Factor

Based on FedAvg, under the IID setting and the experimental configuration, the
gradient update operation uploaded by the customer during each iteration was sparsed
with different sparsity rates, and experiments with sparsity rates of s = 0.1, 0.01, and 0.001
were carried out, respectively. The experimental results are shown in Figure 1.
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Figure 1. The accuracy of the aggregation model updated with gradient sparsification with different
sparsity rates.

It can be seen that when the sparsity rate was 0.1, sparsity had almost no effect on the
convergence speed of the aggregation model and the final prediction accuracy. When the
sparsity rate was further increased to 0.01 and 0.001, the early iterations of the aggregation
model were slowed down. To a certain extent, the performance of the aggregation model
quickly improved after several rounds of iterations. Although the convergence speed itself
was somewhat lower than that of non-sparseness, the predictive ability of the final model
was hardly lost when it converged. The introduction of the algorithm had a negative
impact on the performance of the algorithm, which was mainly reflected in a reduction in
the convergence speed, but this loss was almost negligible compared to the reduction in
communication costs caused by sparseness, as shown in Figure 1. At a sparsity rate of 0.001,
the model took approximately 4 times the number of rounds to converge to the optimal
level compared to non-sparseness, but the amount of communication required for each
round was reduced to only one-thousandth of the original. In addition, the communication
costs were reduced by hundreds of times. In the same network environment, the time and
communication costs required to complete a round of sparse updates were much smaller.
Therefore, from the perspective of time, sparseness can speed up the acquisition of models.

When the sparsity increased, s gradually decreased, and it was possible to remove
important values from the local model update during the sparsification procedure. In
particular, in the early stage of federated training, the changes in the model updates were
relatively large, resulting in many large values. Therefore, when the server aggregated the
model updates submitted by the participants, some important gradient information was
missing, causing the gradient direction to deviate from the expected path and the model
performance to slowly improve. When the training of the model reached a certain stage,
the gradient itself had a lot of relatively small values. Therefore, gradient sparsification
barely resulted in a loss of important information, which did not affect the improvement of
the model performance.



Appl. Sci. 2023, 13, 5877 12 of 17

For the non-IID dataset, sparsity was still effective. Take a sparsity rate of s = 0.001
as an example. As shown in Figure 2, through the observation of the loss curve, it can be
seen that in some cases, after sparse convergence, the loss curve decreased more smoothly
than after non-sparse convergence. It is generally believed that the loss curve decreases
first and then increases because the model training is sufficient and further training will
result in the overfitting of the model. The goal of sparsification is to update only the most
important parameters, which allows each federation participant to transmit only those
updates. This approach avoids parts that may have been fitted in the local training model
of each client from being aggregated into the server’s aggregation model, thereby avoiding
the overfitting of the model, so that the generalization ability of the aggregation model can
be improved.

Figure 2. Under non-IID distribution, with a sparsity rate of s = 0.001, the learning curve of the
aggregation model under the sparse updates.

We assume that the constant attenuation factor β is 0.2, 0.5, and 0.8 respectively, and
the lower limit of the sparsity rate smin is 0.01. In the iterative process, under these three
sparsity rate settings, tests were carried out under the three conditions of non-IID-4, non-
IID-6, and non-IID-8, where non-IID-n (n = 1, 2, . . . 10) represents a sample with only n
types of tags in the client. The results are shown in Figure 3. The solid line represents
the experimental results of the FedAvg algorithm. The long dotted line (- spark) indicates
the experimental results using the conventional sparsification method based on FedAvg
and the short dotted line (- layerspares) indicates the experimental results using the THGS
method proposed in this paper based on FedAvg.

It can be seen that under the three constant attenuation factors, the time-varying
hierarchical training effect was better than the conventional sparsity update experimental
results. With the improvement of β, the effect of the algorithm continued to approach
the non-sparsification algorithm, and when β was 0.8, the loss caused by sparsification
could almost be ignored. There were no differences between the sparsification and non-
sparsification updates on the learning curve. Based on the experimental results, we can see
the optimization effect of the THGS method.
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  β = 0.2

  β = 0.5

  β = 0.8

Figure 3. Experimental results under non-IID-4/6/8 distribution with different β.

5.2. Communication Costs

Assuming that the total parameters of the model are m, only the space required to
store its gradient vector was calculated, and the subsequent operations such as coding and
compression were not considered. Assuming that each parameter is stored in a double-
precision floating point, the space required for storing a non-sparse gradient vector update
is m · 64bit.

For a sparse gradient update vector with a sparsity rate of s, since there are a large
number of 0 elements in the vector, it is not necessary to store these vector vacancies. Only
the position index and corresponding value of the non-zero elements in the vector need to
be stored. Therefore, the space required to store them is:

m · s · 64bit + m · s · 32bit = ms · 96bit (6)

where 64bit represents the storage space of a double-precision floating point and 32bit
represents the position index of the non-zero elements in the storage sparse vector in



Appl. Sci. 2023, 13, 5877 14 of 17

the entire vector. Then, for the overall process of FL, the total communication overhead
required to train a model is:

cpercent = npercent · ((C · K) · (cup + cdown)) (7)

where npercent is the number of aggregation rounds required when the prediction accuracy
of the model reaches the target convergence accuracy, C · K is the number of clients selected
in each aggregation iteration, and cup and cdown represent the communication costs required
for a single client to upload and download a gradient update, respectively:cup =

{
m · s · 96bit, i f sparse

m · 64bit, else

cdown = m · 64bit

(8)

For the models used in the experiment, the parameter volumes of different models
could be obtained according to the above calculation method. The specific data are shown
in Table 1.

Table 1. Different model parameter sizes and update volumes.

MNINST Fashion-MNIST CIFAR-10

MLP CNN MLP CNN MLP VGG16

parameter size 159,010 582,026 159,010 582,026 5,852,170 14,728,266
update volume 1.2 M 4.44 M 1.2 M 4.44 M 44.6 M 112 M

According to the number of aggregation rounds required for convergence, the com-
munication costs required for the different algorithms to complete an FL under different
experimental conditions could be calculated. For simplicity, the upload communication
costs required to make the aggregation model reach 95% of the final average convergence
accuracy under the non-IID setting were calculated and the data are shown in Table 2.

Table 2. Under non-IID distribution, the upload communication costs required to reach 95% accuracy
when the final average convergence is achieved.

MNINST Fashion-MNIST CIFAR-10

MLP CNN MLP CNN MLP VGG16

FedAvg 840 M 1332 M 432 M 4.68 G 94.5 G 156 G
×13.6 ×6.11 ×7 ×19.8 ×34 ×24.6

FedProx 444 M 1154 M 552 M 5.78 G 77.5 G 128 G
×7 ×5.3 ×9 ×24.5 ×28 ×20.2

Ours 61.8 M 218 M 61 M 242 M 2.77 G 6.33 G

It can be seen that the compression of the uploaded data mainly came from the
gradient and mask sparsification proposed in this paper, which increased compression by
5.3 to 34 times. Considering that in an actual scenario the upload bandwidth of a device is
generally far less than the download bandwidth, the algorithm in this paper can reduce the
upload communication overhead by dozens of times. This optimization is considerable.
Since FedAvg and FedProx upload the whole model update during each communication
round, the communication overhead of each participant in each round is considerably
high. Moreover, FedAvg and FedProx require more rounds to converge compared to our
proposed framework. Therefore, FedAvg and FedProx always require more communication
overhead to achieve the targeted goal.
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5.3. Comparison with State-of-the-Art Methods

In this section, we compare our proposed framework with several state-of-the-art
methods to illustrate the effectiveness of our work. Figure 4 shows the prediction accuracy
of the VGG16 network on the CIFAR10 dataset. The results show that our proposed
framework can achieve higher accuracy than DGC and STC. In addition, the convergence
speed and stability of our method are superior to those of DGC and STC because in the early
stage of federated training, the changes in model updates are relatively large, resulting
in many large values. DGC and STC always adopt the same small sparsity ratio, thereby
missing some important gradient information. Therefore, the convergence speed will be
slow and the stability of the model will be poor in the early training stage. Since our
proposed framework adopts a time-varying hierarchical gradient sparsification strategy,
the important gradient information can be retained in the early training stage, which barely
affects the model performance and stability.
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Figure 4. Comparison with state-the-of-art methods.

6. Conclusions

In this paper, we present our research findings on the application of sparsity to secure
aggregation in federated learning. Our main contributions are:

• We propose an efficient and secure FL framework that can significantly reduce the
communication costs of a single communication while ensuring privacy.

• Our proposed framework results in fewer model performance losses than the tradi-
tional sparsity method.

• Experiments conducted under various non-IID experimental settings demonstrate
that the proposed algorithm can reduce the upload communication costs to about 2.9%
to 18.9% of the conventional FL algorithm when the sparsity rate is 0.01.

Overall, our research demonstrates the potential benefits of incorporating sparsity into
federated learning and presents a promising approach for achieving better communication
efficiency while maintaining data privacy and model performance.

Future work could involve adding gradient correction, batch-normalized updates,
and local gradients to the sparse gradient update process to maintain model accuracy after
high-ratio sparsification. Additionally, adaptive sparsity could be used to automatically
control the trade-off between optimal communication and computation. In terms of security
aggregation, a DH key exchange before each round of training may increase the training
time. Although the sparse mask matrix is conducive to increasing the training speed,
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the extra time needed for the DH key exchange may affect the overall communication
optimization. This aspect needs to be further studied.
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