
Citation: Han, M.; Li, A.; Gao, Z.;

Mu, D.; Liu, S. Hybrid Sampling and

Dynamic Weighting-Based

Classification Method for Multi-Class

Imbalanced Data Stream. Appl. Sci.

2023, 13, 5924. https://doi.org/

10.3390/app13105924

Academic Editor: Wenjie Zhang

Received: 11 April 2023

Revised: 8 May 2023

Accepted: 9 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hybrid Sampling and Dynamic Weighting-Based Classification
Method for Multi-Class Imbalanced Data Stream
Meng Han *, Ang Li, Zhihui Gao, Dongliang Mu and Shujuan Liu

School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China;
liang_jsj@163.com (A.L.); 17864195244@163.com (Z.G.); m1375544853@163.com (D.M.);
18638216892@163.com (S.L.)
* Correspondence: 2003051@nun.edu.cn

Abstract: The imbalance and concept drift problems in data streams become more complex in multi-
class environment, and extreme imbalance and variation in class ratio may also exist. To tackle the
above problems, Hybrid Sampling and Dynamic Weighted-based classification method for Multi-class
Imbalanced data stream (HSDW-MI) is proposed. The HSDW-MI algorithm deals with imbalance
and concept drift problems through the hybrid sampling and dynamic weighting phases, respectively.
In the hybrid sampling phase, adaptive spectral clustering is proposed to sample the data after
clustering, which can maintain the original data distribution; then the sample safety factor is used
to determine the samples to be sampled for each class; the safe samples are oversampled and the
unsafe samples are under-sampled in each cluster. If the data stream is extremely imbalanced, the
sample storage pool is used to extract samples with a high safety factor to add to the data stream. In
the dynamic weighting phase, a dynamic weighting method based on the G-mean value is proposed.
The G-mean values are used as the weights of each base classifier in the ensemble and the ensemble
is dynamically updated during the processing of the data stream to accommodate the occurrence of
concept drift. Experiments were conducted with LB, OAUE, ARF, BOLE, MUOB, MOOD, CALMID,
and the proposed HSDW-MI on 10 multi-class synthetic data streams with different class ratios and
concept drifts and 3 real multi-class imbalanced streams with unknown drifts, and the results show
that the proposed HSDW-MI has better classification capabilities and performs more consistently
compared to all other algorithms.

Keywords: data stream; multi-class imbalance; concept drift; hybrid sampling; classifier weighting

1. Introduction

Learning from non-stationary data streams remains a focal point in the research of
stream data mining, and significant progress has been made in obtaining useful models
from massive and rapidly generated data. Traditional static batch processing methods are
no longer suitable for non-static learning environments, which pose new requirements for
data stream processing [1]. New instances may arrive one by one or in batches, and the
incoming instances must be classified within a limited time frame with limited resources.

Classification algorithms should consider the issue of class imbalance in data streams.
Data streams generated in real-world applications often involve multiple classes and im-
balanced data ratios, and the ratio of classes may change as the stream continues, further
deteriorating the learning ability of classifiers [2]. The class with a larger number of in-
stances is referred to as the majority class, while the class with a smaller number of instances
is referred to as the minority class that usually contains the information of interest. In data
stream processing, the phenomenon of class imbalance becomes crucial because it occurs
in various fields, such as network intrusion detection (network access traffic continuously
arrives, and intrusion or attack traffic belongs to the minority class) [3], credit card fraud
detection (credit card transaction records continuously generate, and fraudulent transac-
tions on unsafe websites belong to the minority class) [4], disease diagnosis (in a large

Appl. Sci. 2023, 13, 5924. https://doi.org/10.3390/app13105924 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13105924
https://doi.org/10.3390/app13105924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13105924
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13105924?type=check_update&version=1

Appl. Sci. 2023, 13, 5924 2 of 20

amount of disease data, patients with a specific disease belong to the minority class) [5],
etc. Moreover, in multi-class imbalanced data streams, there may be constant changes
in concepts, resulting in concept drift, which can significantly reduce the classification
performance of classifiers [6].

Currently, there are relatively few methods for solving class imbalance problems
containing concept drift [7]. Moreover, most of the existing methods are used to solve
binary imbalance problems, which deal with only one minority class and one majority class.
In multi-class environments, it is more challenging to deal with imbalance and concept drift
problems. Not only is it necessary to deal with multiple minority classes, multiple majority
classes, and concept drift simultaneously, but the data stream may be extremely imbalanced,
and even the ratio of classes may change over time. Among the currently known methods,
the Metacognitive Online Sequential Extreme Learning Machine (MOS-ELM) [8] is the first
method that can handle multi-class imbalanced concept drift data streams with a variable
class ratio. The Adaptive Random Forest Resampling algorithm (ARFRe) [9] can be used to
solve the mixed concept drift problem with multi-class imbalance and variable class ratio.

However, current algorithms have several shortcomings. On the one hand, classifying
in extremely imbalanced data streams is a challenging task, as it further degrades the
classifier’s ability to recognize minority classes. On the other hand, existing sampling
methods do not take into account the original distribution of the data during the sampling
process. In this paper, we propose a Hybrid Sampling and Dynamic Weighting-based
classification method for Multi-class Imbalanced data streams (HSDW-MI) to address the
issues of imbalance, concept drift, and variable class ratio in data streams. The main
contributions of this work are shown below:

(1) A novel hybrid sampling method is proposed to solve the problem of imbalance and
variable class ratio in the data streams. In the hybrid sampling process, each class
is clustered by adaptive spectral clustering and then sampled based on the clusters
from each class. Meanwhile, a sample storage pool is designed to store samples with
a high safety factor in the data chunk to solve the problems caused by extremely
imbalanced and variable class ratio data streams. Finally, the safety factor of each
sample is calculated for each cluster obtained from each class, and each cluster of
the class is oversampled or under-sampled according to the safety factor and the
number of samples, so that a balanced data chunk is obtained and the original data
distribution is maintained well.

(2) A dynamic weighting method based on G-mean is investigated and proposed. The
G-mean value of each classifier on the current chunk is used as the weight of each base
classifier in the ensemble. As the data chunk arrives, if the weight of the base classifier
is not lower than the threshold set by the user, it will be added to the ensemble directly;
otherwise, the base classifier will be removed. The classifiers in the ensemble are
constantly in a dynamic updating process as a way to adapt to concept drift.

(3) The HSDW-MI algorithm proposed in this paper deals with imbalance and concept
drift in data streams by hybrid sampling phase and dynamic weighting phase and is
capable of handling data streams with extreme imbalance and variable class ratio. In
addition, detailed experiments are conducted to demonstrate the effectiveness and
feasibility of the algorithm, including parameter sensitivity experiments, ablation
experiments, and algorithm comparison experiments, and the experimental results
are comprehensively analyzed.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the related work on handling multi-class imbalanced data and data streams with concept
drift. Section 3 describes the workflow of the proposed HSDW-MI algorithm in detail.
Section 4 presents the experiments and discussions. Finally, Section 5 concludes the paper.

Appl. Sci. 2023, 13, 5924 3 of 20

2. Related Work
2.1. Multi-Class Imbalance Data Classification Method

With the intensive study of researchers, several types of solutions for handling multi-
class imbalanced data have been proposed. Currently, multi-class imbalanced data classi-
fication methods are mainly classified into data balancing methods and algorithm-level
classification methods.

Data balancing methods mainly balance data distribution by adding minority class
samples (oversampling) or removing majority class samples (under-sampling) [10]. Cur-
rently, data resampling methods can be divided into oversampling, under-sampling, and
hybrid sampling. In oversampling methods, Synthetic Minority Over-sampling Technique
(SMOTE) [11] is the most representative method, which artificially synthesizes new samples
based on minority class samples and adds them to the dataset. However, SMOTE can
generate incorrect samples, leading to overfitting problems. In under-sampling methods,
the combination of clustering methods and under-sampling can reduce the information loss
caused by under-sampling. Arafat et al. [12] proposed a clustering-based under-sampling
(CUS) method. By clustering majority class instances and under-sampling instances with
the most information, multiple balanced datasets are formed. This method achieves high
accuracy in classifying both majority and minority class instances. In hybrid sampling
methods, Random Balance [13] is a preprocessing strategy for binary imbalanced data,
using random class ratios for random under-sampling and SMOTE oversampling. Based on
this, Rodríguez et al. [14] proposed the MultiRandBal method, extending it to multi-class
imbalanced datasets. Unlike previous methods, this method uses randomly generated
priors for sampling instead of class ratios. Hartono et al. [15] combined dynamic ensemble
selection with MultiRandBal in their HAR-MI method, maintaining the diversity of data
and classifiers, and achieving higher performance with a small number of classifiers. In
this paper, we intend to borrow the idea of random balance strategy to determine the
number of samples per class based on the class proportion of each data chunk. In addition,
using spectral clustering to post-cluster the class instances of each chunk, which can better
preserve the original data distribution and avoid the problem of information loss due to
under-sampling [16].

Algorithm-level classification methods primarily involve ensemble learning tech-
niques. Ensemble learning is an effective approach for addressing multi-class imbalance
problems, as it generally outperforms single classifier methods. Hybrid ensembles, which
combine ensemble learning methods (such as Bagging or Boosting) with data resampling
techniques, create a balanced training set for the base learner [17]. This combination im-
proves the performance of the ensemble classifier when classifying multi-class imbalanced
data. Wang et al. [2] proposed two ensemble methods based on resampling, namely Multi-
class Oversampling Online Bagging (MOOB) and Multi-class Under-sampling Online
Bagging (MUOB). These algorithms adaptively adjust the weights of each class of samples
in the data stream using Poisson distribution to determine the sampling rate. They can
directly process multi-class data online and consider the algorithm’s performance in both
stationary and variable data streams. Vafaie et al. [18] introduced Improved SMOTE Online
Ensemble (ISOE) and Improved Online Ensemble (IOE) methods based on SMOTE, which
dynamically balance the training set. ISOE processes data instances through a sliding
window and sets a recall-based rate parameter as a sampling threshold to sample data
with SMOTE and train the ensemble after sampling. In IOE, only the rate parameter is re-
tained, and minority classes are oversampled using recall-based class weights. Czarnowski
et al. [19] proposed a method based on a weighted ensemble for classification and han-
dling class imbalance problems, called Weighted Ensemble with one-class Classification
and Oversampling and Instance selection (WECOI). By employing instance selection, a
balanced distribution between minority and majority class instances is achieved, and the
multi-class classification problem is then decomposed into a set of sub-problems involving
single-class classification.

Appl. Sci. 2023, 13, 5924 4 of 20

2.2. Concept Drift Data Streams Learning Method

Concept drift is one of the challenges frequently faced in data stream learning tasks.
In concept drift data streams, the data distribution changes over time. Zhang et al. [7] de-
scribed the generation of concept drift, which occurs when the joint probability distribution
at two time points t and t + 1 changes, which is noted as Pt(X, y1) 6= Pt+1(X, y2). Currently,
according to the speed of drift change, it can be classified as sudden drift, gradual drift,
incremental drift, and recurrent drift, as shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 22

2.2. Concept Drift Data Streams Learning Method

Concept drift is one of the challenges frequently faced in data stream learning tasks.

In concept drift data streams, the data distribution changes over time. Zhang et al. [7]

described the generation of concept drift, which occurs when the joint probability distri-

bution at two time points t and t+1 changes, which is noted as 1 1 2(,) (,)t tP X y P X y . Cur-

rently, according to the speed of drift change, it can be classified as sudden drift, gradual

drift, incremental drift, and recurrent drift, as shown in Figure 1.
D

at
a

di
st

ri
bu

tio
n

Time

D
at

a
di

st
ri

bu
tio

n

Time

Sudden Gradual

D
at

a
di

st
ri

bu
tio

n

Time

Incremental
D

at
a

di
st

ri
bu

tio
n

Time

Recurring

Figure 1. Concept drift types.

The current concept drift data stream learning methods can be divided into active

detection methods and passive adaptive methods [20]. Active detection methods usually

use a window mechanism to deal with concept drift. The classic Leveraging Bagging (LB)

[21] adapts to the current data stream’s changing rate and automatically detects concept

drift through the adaptive window (ADWIN) [22], but it does not include a mechanism

for handling imbalanced data streams. Adaptive Random Forests (ARF) [23] modified

ADWIN by using a lower threshold to detect warnings and drifts, and updating the en-

semble by replacing the background tree when real drift occurs. ARF can detect and re-

spond to concept drift more quickly, but at the cost of higher time and space complexity.

The Comprehensive online Active Learning method for Multiclass Imbalance Data

streams with concept drift (CALMID) [24] is the first algorithm to simultaneously handle

mixed drift and varying multi-class imbalanced data streams, using ADWIN as the drift

detector. Unlike the LB and ARF, CALMID will create and train a new base classifier with

weighted samples from the initialized training sample sequence and add the new classi-

fier to the ensemble when concept drift is detected. At the same time, CALMID assigns

weights to samples according to their classification difficulty, improving the classifier’s

ability to classify difficult and minority class samples. Instead, Boosting-like Online Learn-

ing Ensemble (BOLE) [25] uses DDM [26] to detect and handle concept drift, setting addi-

tional parameters for DDM to further improve the ensemble’s classification performance.

In addition, BOLE adopts a higher error limit to accept ensemble classifier votes and ex-

periments show that this strategy helps to improve classification accuracy. In passive

adaptive methods, the performance of ensemble members is periodically evaluated, and

the best classifiers in the ensemble are retained through dynamic updates during the

learning process. Compared to active detection methods, passive adaptive methods can

adaptively adjust classifier parameters according to the characteristics and changes of data

streams after combining ensemble learning, and have better robustness for complex data

streams [27]. The Online Accuracy Updated Ensemble (OAUE) [28] uses a chunk-based

ensemble to weigh ensemble members with the final instances in each chunk, enabling

rapid tracking of data changes, achieving higher classification accuracy, and adapting to

various types of concept drift. The algorithm proposed in this paper is a passive adaptive

Figure 1. Concept drift types.

The current concept drift data stream learning methods can be divided into active
detection methods and passive adaptive methods [20]. Active detection methods usually
use a window mechanism to deal with concept drift. The classic Leveraging Bagging
(LB) [21] adapts to the current data stream’s changing rate and automatically detects concept
drift through the adaptive window (ADWIN) [22], but it does not include a mechanism for
handling imbalanced data streams. Adaptive Random Forests (ARF) [23] modified ADWIN
by using a lower threshold to detect warnings and drifts, and updating the ensemble
by replacing the background tree when real drift occurs. ARF can detect and respond
to concept drift more quickly, but at the cost of higher time and space complexity. The
Comprehensive online Active Learning method for Multiclass Imbalance Data streams with
concept drift (CALMID) [24] is the first algorithm to simultaneously handle mixed drift and
varying multi-class imbalanced data streams, using ADWIN as the drift detector. Unlike
the LB and ARF, CALMID will create and train a new base classifier with weighted samples
from the initialized training sample sequence and add the new classifier to the ensemble
when concept drift is detected. At the same time, CALMID assigns weights to samples
according to their classification difficulty, improving the classifier’s ability to classify
difficult and minority class samples. Instead, Boosting-like Online Learning Ensemble
(BOLE) [25] uses DDM [26] to detect and handle concept drift, setting additional parameters
for DDM to further improve the ensemble’s classification performance. In addition, BOLE
adopts a higher error limit to accept ensemble classifier votes and experiments show that
this strategy helps to improve classification accuracy. In passive adaptive methods, the
performance of ensemble members is periodically evaluated, and the best classifiers in the
ensemble are retained through dynamic updates during the learning process. Compared
to active detection methods, passive adaptive methods can adaptively adjust classifier
parameters according to the characteristics and changes of data streams after combining
ensemble learning, and have better robustness for complex data streams [27]. The Online
Accuracy Updated Ensemble (OAUE) [28] uses a chunk-based ensemble to weigh ensemble
members with the final instances in each chunk, enabling rapid tracking of data changes,
achieving higher classification accuracy, and adapting to various types of concept drift. The
algorithm proposed in this paper is a passive adaptive method, which dynamically updates
the ensemble classifier by observing the G-mean of each base classifier in the ensemble on
data chunks.

Appl. Sci. 2023, 13, 5924 5 of 20

3. The Proposed HSDW-MI Algorithm
3.1. Training Process of HSDW-MI Algorithm

In existing data stream classification methods, sampling techniques simply add or
remove instances randomly, neglecting the original data distribution and the importance of
individual instances. Moreover, the ratio of classes in the data stream may change over time,
causing minority and majority classes to transform. Current methods have not extensively
studied such variable data streams. Addressing concept drift, variable data streams, and
extremely imbalanced data streams simultaneously presents a significant challenge for data
stream learning tasks.

To address these issues, this paper proposes a hybrid sampling and dynamic weighting
based multi-class imbalanced data stream ensemble classification algorithm, HSDW-MI.
The HSDW-MI is a block-based ensemble classification method. The framework and symbol
definitions of the HSDW algorithm are shown in Figure 2 and Table 1, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22

current class and the number of samples to be sampled in each cluster in step

(3).

(7) If the current class is minority class, then the number of samples of the current

class is further judged whether it is lower than the number of samples to be

sampled obtained in step (2). If not, go directly to the oversampling phrase and

oversample the samples with high safety factor of the current class based on the

clusters divided into the current class and the number of samples to be sampled

for each cluster in step (3).

(b) Dynamic weighting phase.

(1) Dynamic weighting phases are responsible for dynamically updating the classi-

fiers in the ensemble to accommodate concept drift. In the dynamic weighting

phase, the algorithm trains a classifier Cnew on the balanced data chunk to add

to the ensemble.

(2) For the classifiers in ensemble E, the algorithm calculates the G-mean value of

the classifier on the current data chunk as the weight of each classifier.

(3) By setting the update threshold θ to remove the classifiers whose weights are

lower than θ in the ensemble during training process, so as to ensure the dy-

namic update of the ensemble classifiers.

(4) Finally, the updated ensemble is used to predict the samples in the current data

chunk and obtain the final classification results.

Data Streams

Adaptive Spectral
Clustering

Calculate the
class ratio

Calculate the sample
safety factor

Minority class?

Sample Storage Pool

Under-sampling samples
with low safety factor

Oversampling samples
with high safety factor

Number of samples <
oversampling required?

Extract samples from the
sample storage pool

Yes

No

Yes

No

Extract samples

Hybrid Sampling phrase

Get the balanced
data chunk

Store
samples

Dynamic weighting phase

Train a new
classifier Cnew

C1

C2

Cn

.

.

.

Ensemble E

Calculate the
classifier's G-mean
values as weights

Join

Updated ensemble

C1

C2

Cn

.

.

.

Classification
results

Time

Set update threshold θ

Dynamic update
classifiers

Figure 2. The framework of HSDW-MI algorithm.

Figure 2. The framework of HSDW-MI algorithm.

Table 1. HSDW-MI symbol definitions.

Symbols Definitions

S Data stream
D Data chunk
D′ Balanced data chunk
E Ensemble of classifiers

Cnew New created classifier
θ Update threshold of classifiers

In order to solve the above problems, this paper proposed HSDW-MI, an ensemble
classification algorithm for multi-class imbalanced data streams based on hybrid sampling
and dynamic weighting. HSDW-MI is a chunk-based method, and the procedure of this
ensemble algorithm framework for processing data streams is shown in Figure 2. The
HSDW-MI algorithm proposed in this paper is divided into hybrid sampling phase and
dynamic weighting phase, and the work flow of the algorithm is as follows:

Appl. Sci. 2023, 13, 5924 6 of 20

In training, the data stream is passed in as chunks denoted as an ordered collection of
elements S = {D1, . . . , Dt−1, Dt}.

(a) Hybrid sampling phase.

(1) To begin with, the algorithm enters the hybrid sampling phase, which is
responsible for dealing with the imbalances that exist in the incoming data
chunk.

(2) In the hybrid sampling phase, the number of samples needed to sample each
class in the current data chunk is determined by calculating the class ratio of
the current chunk.

(3) Then, the samples of each class in the data chunk are clustered by adaptive
spectral clustering, and a number of samples for each cluster in each class
is determined based on the number of samples to be sampled for each class
obtained in step (2).

(4) After that, the safety factors of all samples in each class are calculated and
ranked in descending order.

(5) Based on the safety factor of the samples, the samples with a high safety factor
in each class are stored in the sample storage pool. If the storage pool is full,
the old samples are deleted and new samples are added.

(6) Judge whether the current class is a minority class. If not, the samples with
low safety factor in each cluster are removed based on the clusters divided
into the current class and the number of samples to be sampled in each cluster
in step (3).

(7) If the current class is minority class, then the number of samples of the current
class is further judged whether it is lower than the number of samples to be
sampled obtained in step (2). If not, go directly to the oversampling phrase
and oversample the samples with high safety factor of the current class based
on the clusters divided into the current class and the number of samples to be
sampled for each cluster in step (3).

(b) Dynamic weighting phase.

(1) Dynamic weighting phases are responsible for dynamically updating the classi-
fiers in the ensemble to accommodate concept drift. In the dynamic weighting
phase, the algorithm trains a classifier Cnew on the balanced data chunk to
add to the ensemble.

(2) For the classifiers in ensemble E, the algorithm calculates the G-mean value of
the classifier on the current data chunk as the weight of each classifier.

(3) By setting the update threshold θ to remove the classifiers whose weights
are lower than θ in the ensemble during training process, so as to ensure the
dynamic update of the ensemble classifiers.

(4) Finally, the updated ensemble is used to predict the samples in the current
data chunk and obtain the final classification results.

3.2. Two Phases of the HSDW-MI Algorithm
3.2.1. Hybrid Sampling Phase of HSDW-MI Algorithm

This section describes the workflow of the proposed hybrid sampling method based
on adaptive spectral clustering, sample safety factor, and sample storage pool. Firstly,
adaptive spectral clustering clusters each class, and by sampling based on the clusters of
each class, the original data distribution is better maintained. Next, the sample safety factor
is introduced for oversampling or under-sampling samples, allowing for better distinction
between majority and minority classes. Finally, a sample storage pool is proposed for
storing samples with high safety factors, addressing variable and extremely imbalanced
data streams.

Initially, a class ratio-based sampling method is proposed to determine the number
of samples to be sampled for each class. The class ratio is determined by the number of

Appl. Sci. 2023, 13, 5924 7 of 20

classes in the current chunk. After sampling, the number of samples of each class in the
data chunk needs to be equal to the class ratio, as is shown in Equation (1).

n
′
ci
=

(
1
c
− nci

d

)
d (1)

where d denotes the total number of samples in the current chunk, c denotes the number
of classes, 1

c is the class ratio,
nci
d is the proportion of the sample size nci of class ci in the

total sample size d, and the calculation result n
′
ci

is the number of samples that need to be
sampled for class ci.

Then, adaptive spectral clustering is proposed to cluster and divide the clusters for
each class in the data chunk. Sampling based on clusters after clustering can better maintain
the original data distribution. Compared to other clustering methods, spectral clustering
has better clustering performance on complex data distributions, is less susceptible to local
optima, and can handle high-dimensional data. Due to the varying samples distributions
in each data chunk, the number of clusters for spectral clustering must be adjusted to
achieve the best clustering results as new data chunks arrive. This allows clustering to
adaptively conform to the current data distribution. In this paper, the Calinski–Harabasz
index is employed to determine the optimal number of clusters for each class [29], and
the score of the Calinski–Harabasz index is calculated within the range of [2, 10]. The
Calinski–Harabasz index evaluates the inter-class variance and the intra-class variance,
where higher values indicate greater effectiveness, as illustrated in Equation (2).

s =
SSB
p− 1

/
SSW

nci − p
=

tr
(

Bp
)

tr
(
Wp
) × nci − p

p− 1
(2)

where p denotes the number of clusters, SSB is the inter-class variance, SSW is the intra-
class variance, Bp is the inter-class distance, Wp is the intra-class distance, and s is the
Calinski–Harbasz index score.

Afterwards, according to the obtained number of clusters of class ci, the number of
samples in the clusters and the number of samples to be sampled n

′
ci

, the number of samples
to be sampled in each cluster of class ci is calculated, as shown in Equation (3).

n
′
p =

(
np/nci

)
× n

′
ci

(3)

where np is the number of samples of cluster p, np/nci is the proportion of cluster p in
the total number of samples of class ci, and n

′
p is the number of samples that need to be

sampled for cluster p.
Next, a sampling method based on sample safety factor is proposed, in which the safety

factor of each sample is calculated for each cluster obtained from each class. The safety
factor of samples is determined based on the class labels of their neighboring instances. In
this paper, the k-NN is used to find the k samples near to sample xi, and the safety level of
xi is determined by the similarity between these k samples and sample xi. k-NN uses the
Euclidean distance as the distance metric between samples, as shown in Equation (4).

Edistance =

√
n

∑
i=1

(ai − bi)
2 (4)

Janicka et al. [30] suggested the application of similarity to extend sample type iden-
tification in the study of imbalanced problems, utilizing the safety level factor formula
proposed by Lango et al. [31]. This approach achieved improved results in the domain
of static imbalanced classification. Consequently, this paper adopts the safety level factor

Appl. Sci. 2023, 13, 5924 8 of 20

based on the similarity between classes to address multi-class imbalanced data streams.
The degree of similarity between classes is presented in Equation (5).

µcicj =
min

(
nci , ncj

)
max

(
nci , ncj

) (5)

where nci is the number of samples of class ci, ncj is the number of samples of class cj, and
µcicj is the similarity between class ci and class cj. This method of calculating the similarity
between classes is to better distinguish the minority class from the majority class. If the
number of samples between class ci and class cj is close, these two classes will be more
similar and have less impact on each other. Conversely, the larger the difference in sample
size between class ci and class cj, the lower the similarity between the two classes and
majority class will have the more negative effect on the classification of the minority class.

The calculation of the sample safety factor based on the level of similarity between
classes is shown in Equation (6).

sa f e(xci) =
1
k

k

∑
j=1

kcj µcicj (6)

where xci is a sample of class ci, kcj is the number of samples from this class cj in the
neighborhood of ci, and k is the total number of neighbors.

Meanwhile, a sample storage pool is introduced to store samples with high safety
factors in both minority and majority classes of the data chunk. The selected samples for
each class are independently stored within the sample storage pool. When the number of
minority class samples in the subsequent data chunk does not reach the required amount
for oversampling, the samples of the current minority class, stored from the previous chunk,
are extracted from the storage pool and added to the present data chunk for oversampling
purposes, catering to extremely imbalanced data streams. Storage pools also store samples
of majority classes to address data streams with varying class ratios. In such data streams,
majority classes may transition into minority classes as the stream evolves. The samples
in the sample storage pool are continuously updated as new chunks arrive, with fresh
samples possessing high safety factors replacing the older ones. The sample storage pool
should not be excessively large, as this may result in increased memory consumption. In
this paper, the size of the sample storage pool is determined based on the chunk size and
the number of classes, as illustrated in Equation (7).

dsp =
d
c

(7)

where d is the chunk size, c is the number of classes, and dsp is the size of the sample storage

pool. In the sample storage pool, each class stores a total of n
dsp
ci =

dsp
c samples, and the

storage space of class ci is noted as πci .
Finally, judge whether the current class is a minority class and sample the clusters of

each class based on the adaptive spectral clustering, as well as the sample safety factor. If the
current class is majority class, under-sampling is performed, and samples with low safety
factor are removed according to each cluster in the current class that needs to be sampled.
If the current class is a minority class, oversampling is performed and the samples with
high safety factor are copied into the data chunk according to each cluster in the current
class. If the number of samples of the minority class is lower than the number of samples
to be sampled, the samples of the current class are extracted from the sample storage pool
and added to the data chunk, and then the over-sampling phase is performed. As a result,
the balanced data chunk is obtained and the original data distribution is well maintained.

The hybrid sampling phase of the HSDW-MI algorithm determines the number of
each class to be sampled based on the class ratio and uses adaptive spectral clustering
to cluster each class and then sample it, which can better maintain the original data

Appl. Sci. 2023, 13, 5924 9 of 20

distribution. Meanwhile, sampling based on sample safety factor can retain samples with
high safety factor, thus helping the classifier to better identify minority and majority classes.
In addition, setting the sample storage pool to store samples with high safety factor and
updating them continuously during the training process allows the algorithm to adapt
to extremely imbalanced data streams and data streams with variable class proportions.
The pseudo-code of the hybrid sampling phase of the HSDW-MI algorithm is shown in
Algorithm 1.

Algorithm 1. The Hybrid Sampling Phase of HSDW-MI

Input: Data stream S = {D1, . . . , Dt−1, Dt}, Data chunk Dt = <xi, yi>, Data chunk Dt size d,
Sample storage pool SP, The number of neighbors k = 7;

Output: Banlanced Balanced data chunks
{

D′
1, . . . , D′

t−1, D′
t

}
1 Initialize sample storage pool SP← ∅
2 for Dt in S
3 According to Dt to obtain the number of classes m, the ratio of classes 1

m and the number of samples of each class;
4 Calculate the size of the sample storage pool SP according to Equation (7) dsp;
5 for i←1 to m do
6 Calculate n′ci , which is the number of classes ci to be sampled, according to Equation (1);
7 Initialize smax and pbest;
8 for p←2 to 10 do
9 Calculate the Calinski-Harbasz index s for class ci at cluster p according to Equation (2);
10 if s > smax
11 smax = s;
12 pbest = p;
13 End if
14 End for
15 Dividing class ci into pbest clusters by adaptive spectral clustering;
16 for p←2 to pbest do
17 Calculate the number of n′p to be sampled for each cluster in class ci according to Equation (3);
18 for each sample xj in cluster p
19 Find the k samples which are near to sample xj by using k-NN;
20 Calculate the safety factor of sample xj according to Equations (5) and (6);
21 End for
22 Sort each sample in cluster p in descending order based on the safety factor;
23 if πci is full

24 Remove
n

dsp
ci
np

old samples from πci ;
25 End if
26 for xj in cluster p

27 πci ← πci ∪
{

xj

}
;

28 End for
29 if n′p < 0
30 Remove the last n′p samples from the cluster p;
31 else
32 if np < n′p
33 Extract the top n′p − np samples from πci and add them to the cluster p;
34 End if
35 Copy the top n′p samples from cluster p and add them to cluster p;
36 End for
37 End for
38 End for

Lines 1–4 of Algorithm 1 represent the initialization of the sample storage pool and the
acquisition of the initial parameter values of the current data chunk. Lines 5–6 represent
the determination of the number of samples to be sampled for the current class based on
the class ratio. Lines 7–17 represent the adaptive spectral clustering to find the best number

Appl. Sci. 2023, 13, 5924 10 of 20

of clusters and calculate the number of samples to be sampled for each cluster. Lines
18–21 represent the calculation of the sample safety factor. Lines 22–28 represent obtaining
samples with high safety factor from the clusters and storing them in the sample storage
pool. Lines 28–35 represent the under-sampling or oversampling operation performed on
the current class.

3.2.2. Dynamic Weighting Phase of HSDW-MI Algorithm

In the dynamic weighting phase, a dynamic weighting method based on G-mean
values is proposed. The G-mean value of each classifier in the ensemble on the current
chunk is used as the weight of each base classifier in the ensemble. As the data chunk
develops, if the weight of the current classifier is not lower than the threshold set by the
user it will be directly added to the ensemble, otherwise the current base classifier will be
removed. The classifiers in the ensemble are always in a dynamic updating process as a
way to accommodate class imbalance and concept drift.

The HSDW-MI algorithm trains a base classifier Ct on the balanced data chunk
D
′
t obtained after hybrid sampling and adds it to the current ensemble Et, denoted as

Et =
{

Ct
1, Ct

2, . . . , Ct
n,
}

.
Then, the weights wt =

{
wt

1, wt
2, . . . , wt

n,
}

of the base classifiers in the ensemble are
updated on the current data chunk. The weights represent the adaptation of the base
classifiers to the current data chunk and indicate the importance of the base classifiers.

To better accommodate class imbalance and concept drift in data streams, as well as to
improve the classification capability of the ensemble, this section uses the G-mean value
as the formula for the base classifier weights. G-mean is a common metric for algorithm
performance evaluation in the imbalance field. Compared with other metrics, G-mean is
more concerned with the classification performance of minority class, and it indicates a poor
classification of minority class samples when the G-mean value is low [32]. The formulas
for G-mean and as base classifier weights are shown in Equations (8) and (9), respectively.

GMt =

(
n

∏
i=1

TPi
TPi + FPi

) 1
n

(8)

wt
j = GMt

j × wt−1
j (9)

where wt
j is denoted as the weight of the base classifier Ct

j (j ∈ {1, . . . , L}) on the data chunk

D
′
t, and wt−1

j is the weight of the base classifier Ct
j on the previous data chunk. The weights

of the base classifier on the previous data chunk D
′
t−1 are added with the aim of decreasing

the weights of the base classifier over time, thus reducing the influence of the ensemble on
previous concepts and improving the adaptability of the ensemble to new concepts. When
the updated weight of the base classifier in the ensemble is below the set threshold θ, the
base classifier will be removed.

If a classifier is deleted, on the one hand, it may be because the classifier is created
too early and no longer fits the current data concept, and, thus, the weight is reduced. On
the other hand, a concept drift may have occurred in the current chunk, which causes a
dramatic decrease in the classifier’s performance.

Ensemble E uses Equation (10) to predict the classification result of instance xi in data
chunk D

′
t, where sign(·) is the sign function.

∧
yj = sign

(
m

∑
j=1

wt
jC

t
j (xi)

)
(10)

The pseudo code of the dynamic weighting phase of the HSDW-MI algorithm is shown
in Algorithm 2.

Appl. Sci. 2023, 13, 5924 11 of 20

Algorithm 2. The Dynamic Weighting Phase of HSDW-MI

Input: Data stream S = {D1, . . . , Dt−1, Dt}, Data chunk Dt = <xi, yi>, Ensemble E = {C1, C2, . . . , Cn}
Ensemble size L, Update threshold θ.

Output: Ensemble E = {C1, C2, . . . , Cn}, Predicted label
∧
y.

1 Train a base classifier C on Dt, E←{C};
2 Initialize the weights of the current classifier;
3 for Dt in S
4 According to the hybrid sampling phase to get the balanced data chunk D′

t ;
5 for j←1 to L do
6 Calculate the G-mean value of the classifier Ct

j trained by the current data chunk D′
t using

Equation (8): GMt =

(
n
∏
i=1

TPi
TPi+FPi

) 1
n

;

7 Update the weights of classifier Ct
j using Equation (9): wt

j = GMt
cj
× wt−1

j ;
8 if wt

j < θ

9 Remove classifiers that are below the threshold θ in the ensemble: E← E−
(

Ct
j

∣∣∣wt
j < θ

)
;

10 Create a new base classifier Cnew on the data chunk D′
t and add Cnew to E;

11 Initialize the weights of Cnew, wt
Cnew
← 1 ;

12 end if
13 end for
14 end for

15 Output ensemble E and predicted label
∧
y.

Lines 1–2 of Algorithm 2 represent the training of the initial base classifier in the
ensemble and initialize the weights. Lines 3–4 represent obtaining the balanced data chunk
by hybrid sampling. Lines 5–7 represent the dynamic weighting process of the classifiers in
the ensemble. Lines 8–14 represent removing the base classifiers in the ensemble whose
weights are below the threshold θ. Line 15 represents the output of the final result.

3.3. Complexity Analysis of the Algorithm

The time complexity and space complexity of the proposed HSDW-MI are analyzed
as follows.

(1) Time complexity: Let N samples in the data stream be divided into D data chunks,
then the number of samples in each data chunk is N/D. The time required for adaptive
spectral clustering to cluster the classes in the data chunk is Tsp. The time to calculate
the safety factor of the samples is Tsf. The time to create a new classifier is Tnew
and the time to predict the classifier in the ensemble E containing m classifiers is
O(N × mlogN). Therefore, the time required to process the data stream containing N
samples is O((Tsp + (Tsf × N/D) + Tnew) × D + O(N × mlogN).

(2) Space complexity: The sample storage pool of the HSDW-MI algorithm is determined
based on the chunk size and the number of classes, so the space consumed is a
constant, and its space complexity is O (1).

4. Experimental Design

This section describes the experiments of the algorithm in detail. All experiments are
repeated 10 times and the results shown are averaged. Section 4.1 presents the experimental
datasets and evaluation metrics. Section 4.2 presents the parameter sensitivity experiments.
Section 4.3 presents the ablation experiments, which focus on analyzing the contribution
of the components of the algorithm. Section 4.4 compares the performance of HSDW-MI
with other algorithms under several evaluation metrics. The experimental environment is
Windows 10 i5-12500H 2.50 GHz CPU 16 GB. The algorithms proposed in this paper are
implemented in Python and all comparison algorithms are implemented in Massive Online
Analysis (MOA) [33].

Appl. Sci. 2023, 13, 5924 12 of 20

4.1. Datasets and Evaluation Metrics

The experimental datasets used synthetic and real data streams. Synthetic data streams
are generated by an MOA data stream generator, where parameters, such as the number of
samples, number of classes, number of attributes, class distribution, class ratio, and concept
drift type, could be set. Attributes refer to the number of attributes for each sample, class
refers to the number of classes, class distribution refers to the proportion of samples in each
class, and class ratio refers to the proportion of samples in each class.

In the synthetic data stream, two types of data streams are set based on whether
the class ratio varies or not, which are stationary data streams and variable data streams.
Additionally, different degrees of class ratio and different types of concept drift are set
for each type of data stream. Among them, we consider that the data stream is extremely
imbalanced when samples of multiple minority classes whose ratio are all below 10%. The
concept drift types contain sudden drift (S), gradual drift (G), and incremental drift (I).
The sample size, attribute count, and class count of the 10 synthetic data streams were
uniformly set to 200,000, 20, and 5, respectively, while the class distribution, class ratio,
and drift were different. The real data streams used are PokerHand, Kddcup 99_10% and
Statlog(shuttle); all of them are multi-class imbalanced data. The features of the synthetic
and real data streams are shown in Table 2.

Table 2. Data stream feature.

Data Stream Instance Attribute Class Class Distribution Class Ratio Drift

ImbSta_Stream 200,000 20 5 5/4/3/2/1 (0.33; 0.26; 0.2; 0.13; 0.08) -
ImbSta_Extreme_Stream 200,000 20 5 20/4/3/2/1 (0.67; 0.14; 0.1; 0.06; 0.03) -
ImbSta_SG 200,000 20 5 5/4/3/2/1 (0.33; 0.26; 0.2; 0.13; 0.08) 2
ImbSta_Extreme_SG 200,000 20 5 15/4/3/2/1 (0.6; 0.16; 0.12; 0.08; 0.04) 2
ImbSta_Extreme_SIG 200,000 20 5 15/5/2/2/1 (0.6; 0.2; 0.08; 0.08; 0.04) 3

ImbVar_Stream 200,000 20 5 5/4/3/2/1→ 1/3/2/5/4 (0.33; 0.26; 0.2; 0.13; 0.08)
→ (0.08; 0.2; 0.13; 0.33; 0.26) -

ImbVar_Extreme_Stream 200,000 20 5 20/4/3/2/1→ 1/1/2/6/20 (0.67; 0.14; 0.1; 0.06; 0.03)
→ (0.03; 0.03; 0.06; 0.21; 0.67) -

ImbVar_SG 200,000 20 5 5/4/3/2/1→ 1/2/3/4/5 (0.33; 0.26; 0.2; 0.13; 0.08)
→ (0.08; 0.13; 0.2; 0.26; 0.33) 2

ImbVar_Extreme_SG 200,000 20 5 15/4/3/2/1→ 2/1/15/4/3 (0.6; 0.16; 0.12; 0.08; 0.04)
→ (0.08; 0.04; 0.12; 0.16; 0.6) 2

ImbVar_Extreme_SIG 200,000 20 5 15/5/2/2/1→ 1/2/2/5/20 (0.6; 0.2; 0.08; 0.08; 0.04)
→ (0.03; 0.07; 0.07; 0.16; 0.67) 3

PokerHand 830,000 10 10 - - -
Kddcup 99_10% 494,000 42 23 - - -
Statlog(shuttle) 58,000 9 7 - - -

In multi-class environments, the traditional evaluation metrics for two-class classifi-
cation algorithms cannot reflect the performance of multi-class classification algorithms
anymore. Therefore, researchers have improved the evaluation metrics of the two-class
problem and extended them to the evaluation metrics of the multi-class problem.

In the field of imbalanced classification, Recall and Precision are able to reflect the
performance of learning models on individual class. Recall is more concerned with the
algorithm’s ability to classify minority class samples, while Precision is more focused on
majority class samples. To evaluate the average performance of the algorithm in a multi-
class imbalanced environment, it is necessary to average the Recall and Precision values for
each class to obtain macro-Recall and macro-Precision, as shown in Equations (11)–(14).

Recall =
TPi

TPi + FPi
(11)

Precision =
TPi

TPi + FNi
(12)

Appl. Sci. 2023, 13, 5924 13 of 20

macro− Recall =
1
n

n

∑
i=1

Recalli (13)

macro− Precision =
1
n

n

∑
i=1

Precisioni (14)

The F1-score is the harmonic mean of Recall and Precision, which tries to balance these
two metrics and does not ignore the majority class samples. Additionally, in this paper, the
macro-F1-score is used as the evaluation metric of the algorithm, as shown in Equation (15).

macro− F1− score =
2×macro− Recall×macro− Precision

macro− Recall + macro− Precision
(15)

4.2. Parameter Sensitivity Experiments

Parameter sensitivity experiments are able to demonstrate the parameter sensitivity
of the proposed HSDW-MI algorithm. In this subsection, we conducted experiments on
three parameters, which are chunk size D, number of base classifiers N, and ensemble
update threshold θ. Parameter sensitivity experiments were conducted on 10 synthetic
data streams, and the results obtained are the average values. Table 3 shows the parameter
sensitivity experiments on five stationary data streams, and Table 4 shows the parameter
sensitivity experiments on five variable data streams.

Table 3. Results of parameter sensitivity experiments on stationary streams.

Size of Chunk D Number of Base Classifiers N Updating Threshold of Ensemble θ

500 1000 1500 2000 2500 3000 5 10 15 20 0.2 0.3 0.4 0.5 0.6

mR 89.90 92.74 93.94 94.15 93.98 93.96 91.98 94.09 93.93 94.15 92.87 93.62 93.74 94.15 93.90
Gm 89.74 92.66 93.89 94.05 93.89 93.93 91.93 93.04 93.67 94.05 92.81 93.56 93.71 94.05 93.83
mP 86.21 89.26 90.24 91.02 90.42 90.43 89.60 90.26 90.78 91.02 90.29 90.82 90.96 91.02 90.87
mF1 87.65 90.75 91.97 92.27 92.14 92.03 90.08 90.10 91.94 92.27 91.01 91.63 91.91 92.27 92.08

Table 4. Results of parameter sensitivity experiments on variable streams.

Size of Chunk D Number of Base Classifiers N Updating Threshold of Ensemble θ

500 1000 1500 2000 2500 3000 5 10 15 20 0.2 0.3 0.4 0.5 0.6

mR 90.09 91.24 92.06 92.33 92.26 92.20 90.83 91.77 92.07 92.33 91.45 91.79 92.08 92.33 92.17
Gm 89.88 90.97 91.69 91.81 91.78 91.62 90.19 90.90 91.48 91.81 91.00 91.22 91.60 91.81 91.78
mP 87.05 88.50 89.15 89.70 89.38 89.15 87.84 88.91 89.42 89.70 88.58 88.94 89.24 89.70 89.21
mF1 87.88 89.21 90.33 90.38 90.30 90.21 88.91 89.87 90.31 90.38 89.46 89.71 90.27 90.38 90.27

As shown in Tables 3 and 4, the performance of the algorithm improves as the chunk
size increases and works best when D = 2000. This indicates that as the chunk size increases,
minority classes in the chunk obtain more instances, allowing the classifier to better fit the
current chunk. However, the performance of the algorithm is slightly lower when D = 2500
and D = 3000 than D = 2000, which is because the size of the storage pool is dependent on
the chunk size. When concept drift occurs, the storage pool stores instances on the current
drifted chunk and the larger the chunk the more drifted instances are stored. This will
lead to more drift instances being sampled in the hybrid sampling phase, which further
affects the final classification results. The experiment on the variation of the number of base
classifiers shows that increasing the number of base classifiers helps the algorithm to obtain
better performance. Similarly, as the updating threshold θ of the ensemble increases, the
algorithm obtains a small improvement in its effectiveness. That is because setting a higher
update threshold helps the ensemble to remove unqualified classifiers in time and keep
the classifiers to adapt to the drift after the concept drift occurs. In conclusion, variations

Appl. Sci. 2023, 13, 5924 14 of 20

in chunk size, number of base classifiers and ensemble update threshold θ can affect the
algorithm, where the algorithm performs best when the chunk size D = 2000, number of
base classifiers N = 20 and update threshold θ = 0.5.

4.3. Ablation Experiments

In this subsection, we analyze the contribution of each component of HSDW-MI for
the classification results. First, only the dynamic weighting component is retained in
the algorithm, which forms HSDW-MI-sc-sp-s. Then, the sample safety factor sampling
component is added based on the previous step, which forms HSDW-MI-sc-sp. Second, the
storage pool is added based on the previous step, which forms HSDW-MI-sc. Finally, the
spectral clustering is added based on the previous step, which forms HSDW-MI. In order to
highlight the effect of the ablation experiment, we use the variable, extremely imbalanced
ImbVar_Extreme_SIG data stream with mixed drifts as the experimental data stream, as
shown in Figures 3 and 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22

Figure 3. Results of ablation experiment on the ImbVar_Extreme_SIG stream.

Figure 4. Macro-Recall of ablation experiment on the ImbVar_Extreme_SIG stream.

Figure 3 displays the results of each component on macro-Recall, G-mean, macro-

Precision, and macro-F1-score metrics. As illustrated in Figure 3, the complete version of

the algorithm, HSDW-MI, exhibits the best overall performance on these four metrics, fol-

lowed by HSDW-MI-sc. In terms of macro-Precision, HSDW-MI-sc-sp-s achieves 94.29,

ranking 1st, while HSDW-MI-sc-sp scores 83.49, ranking 4th. This reveals that when sam-

pling is not added, the algorithm focuses more on the majority class samples and exhibits

greater accuracy for these samples. However, when sampling is added, the learnability of

the majority class samples is impaired. Nevertheless, with the addition of the storage pool

and spectral clustering, the algorithm’s macro-Precision value is enhanced, demonstrating

an improved ability to classify majority-class samples.

Figure 4 presents the macro-Recall variation curves of each component of the HSDW-

MI algorithm on the ImbVar_Extreme_SIG data stream. As shown in Figure 4, the worst

performance comes from HSDW-MI-sc-sp-s, which only includes dynamic weighting, as

it can only handle concept drift in the data stream and lacks mechanisms to address im-

balance and variable data streams. The performance of HSDW-MI-sc-sp improves with

the addition of sample safety factor sampling, which better handles imbalance problems.

Adding the storage pool further enhances HSDW-MI-sc performance, particularly in

phases without concept drift. This is because the selected experimental data streams are

extremely imbalanced, and extracting stored instances from the storage pool during the

macro-Recall G-mean macro-Precision macro-F1-score
50

60

70

80

90

100
 HSDW-MI
 HSDW-MI-sc
 HSDW-MI-sc-sp
 HSDW-MI-sc-sp-s

0 25 50 75 100 125 150 175 200
50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 HSDW-MI-sc
 HSDW-MI-sc-sp
 HSDW-MI-sc-sp-s

Figure 3. Results of ablation experiment on the ImbVar_Extreme_SIG stream.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22

Figure 3. Results of ablation experiment on the ImbVar_Extreme_SIG stream.

Figure 4. Macro-Recall of ablation experiment on the ImbVar_Extreme_SIG stream.

Figure 3 displays the results of each component on macro-Recall, G-mean, macro-

Precision, and macro-F1-score metrics. As illustrated in Figure 3, the complete version of

the algorithm, HSDW-MI, exhibits the best overall performance on these four metrics, fol-

lowed by HSDW-MI-sc. In terms of macro-Precision, HSDW-MI-sc-sp-s achieves 94.29,

ranking 1st, while HSDW-MI-sc-sp scores 83.49, ranking 4th. This reveals that when sam-

pling is not added, the algorithm focuses more on the majority class samples and exhibits

greater accuracy for these samples. However, when sampling is added, the learnability of

the majority class samples is impaired. Nevertheless, with the addition of the storage pool

and spectral clustering, the algorithm’s macro-Precision value is enhanced, demonstrating

an improved ability to classify majority-class samples.

Figure 4 presents the macro-Recall variation curves of each component of the HSDW-

MI algorithm on the ImbVar_Extreme_SIG data stream. As shown in Figure 4, the worst

performance comes from HSDW-MI-sc-sp-s, which only includes dynamic weighting, as

it can only handle concept drift in the data stream and lacks mechanisms to address im-

balance and variable data streams. The performance of HSDW-MI-sc-sp improves with

the addition of sample safety factor sampling, which better handles imbalance problems.

Adding the storage pool further enhances HSDW-MI-sc performance, particularly in

phases without concept drift. This is because the selected experimental data streams are

extremely imbalanced, and extracting stored instances from the storage pool during the

macro-Recall G-mean macro-Precision macro-F1-score
50

60

70

80

90

100
 HSDW-MI
 HSDW-MI-sc
 HSDW-MI-sc-sp
 HSDW-MI-sc-sp-s

0 25 50 75 100 125 150 175 200
50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 HSDW-MI-sc
 HSDW-MI-sc-sp
 HSDW-MI-sc-sp-s

Figure 4. Macro-Recall of ablation experiment on the ImbVar_Extreme_SIG stream.

Figure 3 displays the results of each component on macro-Recall, G-mean, macro-
Precision, and macro-F1-score metrics. As illustrated in Figure 3, the complete version of the

Appl. Sci. 2023, 13, 5924 15 of 20

algorithm, HSDW-MI, exhibits the best overall performance on these four metrics, followed
by HSDW-MI-sc. In terms of macro-Precision, HSDW-MI-sc-sp-s achieves 94.29, ranking
1st, while HSDW-MI-sc-sp scores 83.49, ranking 4th. This reveals that when sampling is
not added, the algorithm focuses more on the majority class samples and exhibits greater
accuracy for these samples. However, when sampling is added, the learnability of the
majority class samples is impaired. Nevertheless, with the addition of the storage pool and
spectral clustering, the algorithm’s macro-Precision value is enhanced, demonstrating an
improved ability to classify majority-class samples.

Figure 4 presents the macro-Recall variation curves of each component of the HSDW-
MI algorithm on the ImbVar_Extreme_SIG data stream. As shown in Figure 4, the worst
performance comes from HSDW-MI-sc-sp-s, which only includes dynamic weighting,
as it can only handle concept drift in the data stream and lacks mechanisms to address
imbalance and variable data streams. The performance of HSDW-MI-sc-sp improves with
the addition of sample safety factor sampling, which better handles imbalance problems.
Adding the storage pool further enhances HSDW-MI-sc performance, particularly in phases
without concept drift. This is because the selected experimental data streams are extremely
imbalanced, and extracting stored instances from the storage pool during the steady
stage enables the algorithm to classify minority classes more accurately and effectively
cope with variations in class ratio. Finally, the addition of spectral clustering marginally
improves the overall performance of the algorithm. However, this addition allows the
algorithm’s performance to recover more quickly after concept drift compared to the
previous component, as spectral clustering clusters each class, and oversampling or under-
sampling based on clusters maintains the original class distribution.

4.4. Algorithm Comparison Experiments

In this subsection, we compare HSDW-MI on 10 synthetic and 3 real data streams with
other state-of-the-art algorithms that all of them can learn from multi-class data streams.
LB [21], ARF [23], BOLE [25], and OAUE [28] are the online ensemble algorithms, which
have concept drift detection mechanism and are mainly used to detect and solve drift
problems. MUOB, MOOB [2], and CALMID [24] are ensemble algorithms with imbalance
handling mechanism and are able to handle data streams with varying class ratio. The
default parameters of all algorithms are set to D = 2000, N = 20, and the ensemble update
threshold θ of HSDW-MI is set to 0.5.

Each comparison algorithm is evaluated by using four metrics, including macro-Recall,
G-mean, macro-Precision, and macro-F1-score. The results of the algorithm performance are
shown in Tables 5–8. The results of the algorithm with the best performance are highlighted
in bold.

Table 5. Macro-Recall results (%) of the comparison experiments.

Data Stream
Algorithm

LB OAUE ARF BOLE MUOB MOOB CALMID HSDW-MI

Stationary data
stream

ImbSta_Stream 96.44(3) 94.45(6) 96.70(2) 94.96(5) 82.52(8) 94.22(7) 96.06(4) 97.21(1)
ImbSta_Extreme_Stream 93.61(5) 92.14(6) 95.36(2) 91.17(7) 71.74(8) 94.40(4) 94.85(3) 97.13(1)
ImbSta_SG 90.40(4) 89.07(5) 90.75(3) 86.08(6) 78.13(8) 85.64(7) 91.09(2) 91.99(1)
ImbSta_Extreme_SG 88.19(3) 83.25(6) 88.13(4) 79.18(7) 66.05(8) 83.67(5) 90.85(2) 92.25(1)
ImbSta_Extreme_SIG 84.97(4) 80.75(6) 88.54(3) 77.45(7) 63.63(8) 81.82(5) 88.76(2) 92.18(1)

Variable data
stream

ImbVar_Stream 76.00(8) 91.75(4) 91.50(5) 92.02(3) 87.57(6) 92.11(2) 86.50(7) 92.64(1)
ImbVar_Extreme_Stream 90.61(4) 90.84(3) 90.47(5) 90.17(7) 71.06(8) 90.40(6) 91.97(2) 92.59(1)
ImbVar_SG 91.45(4) 89.26(5) 91.82(3) 87.17(7) 78.01(8) 85.66(6) 92.08(1) 91.91(2)
ImbVar_Extreme_SG 89.44(4) 85.23(6) 89.52(3) 82.88(7) 70.89(8) 88.90(5) 91.82(2) 92.51(1)
ImbVar_Extreme_SIG 89.23(4) 68.48(7) 90.23(3) 85.11(6) 61.99(8) 87.97(5) 90.97(2) 92.01(1)

Real Stream
PokerHand 30.81(4) 30.23(5) 27.26(7) 32.32(3) 7.82(8) 33.78(2) 29.50(6) 38.13(1)
Kddcup 99_10% 35.19(6) 28.29(7) 40.02(3) 44.80(1) 3.12(8) 37.81(5) 40.00(4) 41.09(2)
Statlog(shuttle) 44.13(7) 45.81(5) 50.12(4) 44.45(6) 17.61(8) 52.41(3) 56.73(2) 78.41(1)

Appl. Sci. 2023, 13, 5924 16 of 20

Table 6. G-mean results (%) of the comparison experiments.

Data Stream
Algorithm

LB OAUE ARF BOLE MUOB MOOB CALMID HSDW-MI

Stationary data
stream

ImbSta_Stream 96.37(3) 94.34(6) 96.63(2) 94.72(5) 82.19(8) 94.14(7) 95.96(4) 97.19(1)
ImbSta_Extreme_Stream 93.23(5) 91.05(6) 95.07(2) 90.12(7) 70.98(8) 94.14(4) 94.35(3) 97.09(1)
ImbSta_SG 90.13(4) 88.51(5) 90.36(3) 85.38(6) 75.89(8) 83.55(7) 90.76(2) 91.58(1)
ImbSta_Extreme_SG 86.94(3) 81.39(6) 86.63(4) 76.73(7) 61.40(8) 81.46(5) 87.86(2) 92.21(1)
ImbSta_Extreme_SIG 83.40(4) 78.72(5) 87.26(3) 74.70(7) 60.91(8) 78.14(6) 89.14(2) 92.17(1)

Variable data
stream

ImbVar_Stream 56.86(8) 91.13(5) 91.39(4) 91.72(2) 87.11(6) 91.55(3) 81.57(7) 92.12(1)
ImbVar_Extreme_Stream 90.23(3) 90.05(7) 90.17(4) 90.12(6) 70.98(8) 90.14(5) 91.58(2) 92.04(1)
ImbVar_SG 91.19(3) 88.71(5) 91.62(2) 86.51(6) 75.91(8) 84.05(7) 91.96(1) 91.05(4)
ImbVar_Extreme_SG 88.56(4) 83.76(6) 88.65(3) 80.73(7) 68.26(8) 87.41(5) 91.01(2) 91.95(1)
ImbVar_Extreme_SIG 87.85(3) 62.15(7) 87.55(4) 82.23(6) 57.97(8) 85.92(5) 90.12(2) 91.87(1)

Real Stream
PokerHand - - - - - - - 15.16(1)
Kddcup 99_10% - - - - - - - 5.47(1)
Statlog(shuttle) - - - - - - - 38.80(1)

Table 7. Macro-Precision results (%) of the comparison experiments.

Data Stream
Algorithm

LB OAUE ARF BOLE MUOB MOOB CALMID HSDW-MI

Stationary data
stream

ImbSta_Stream 92.85(3) 88.25(6) 96.21(2) 91.52(5) 70.76(8) 85.82(7) 91.91(4) 96.24(1)
ImbSta_Extreme_Stream 92.23(4) 88.11(6) 93.45(3) 90.79(5) 58.45(8) 80.14(7) 93.96(2) 94.07(1)
ImbSta_SG 83.07(5) 84.27(4) 92.69(1) 81.05(6) 65.41(8) 79.19(7) 90.02(3) 92.57(2)
ImbSta_Extreme_SG 84.62(4) 84.27(5) 86.43(2) 81.84(6) 57.42(8) 76.90(7) 86.89(1) 86.24(3)
ImbSta_Extreme_SIG 82.30(5) 81.72(6) 84.63(3) 82.75(4) 54.59(8) 74.54(7) 89.77(1) 85.96(2)

Variable data
stream

ImbVar_Stream 89.65(4) 89.75(2) 89.67(3) 88.29(6) 80.32(8) 90.45(1) 88.56(5) 88.26(7)
ImbVar_Extreme_Stream 89.23(4) 88.11(6) 90.47(2) 90.79(1) 58.45(8) 80.14(7) 90.33(3) 88.29(5)
ImbVar_SG 89.06(4) 84.50(5) 93.15(1) 83.23(6) 65.19(8) 79.26(7) 89.33(3) 92.71(2)
ImbVar_Extreme_SG 90.10(2) 85.56(6) 90.32(1) 87.68(5) 58.89(8) 81.76(7) 89.82(3) 88.32(4)
ImbVar_Extreme_SIG 91.30(3) 79.25(7) 91.36(1) 90.71(5) 58.80(8) 86.10(6) 91.35(2) 90.94(4)

Real Stream
PokerHand 44.28(1) 39.87(3) - 41.69(2) - 34.73(5) - 35.03(4)
Kddcup 99_10% - - - - - - - 56.91(1)
Statlog(shuttle) - - 13.48(3) 5.93(4) - 40.44(2) 6.86(5) 75.05(1)

Table 8. Macro-F1-score results (%) of the comparison experiments.

Data Stream
Algorithm

LB OAUE ARF BOLE MUOB MOOB CALMID HSDW-MI

Stationary data
stream

ImbSta_Stream 94.61(3) 91.24(6) 96.45(2) 93.21(5) 76.19(8) 89.82(7) 93.94(4) 96.72(1)
ImbSta_Extreme_Stream 92.91(4) 90.08(6) 94.40(2) 90.98(5) 64.42(8) 86.69(7) 94.40(2) 95.58(1)
ImbSta_SG 86.58(5) 86.60(4) 91.71(2) 83.49(6) 71.21(8) 82.29(7) 90.55(3) 92.28(1)
ImbSta_Extreme_SG 86.37(4) 83.76(5) 87.27(3) 80.49(6) 61.43(8) 80.14(7) 88.83(2) 89.14(1)
ImbSta_Extreme_SIG 83.61(4) 81.23(5) 86.54(3) 80.01(6) 58.76(8) 78.01(7) 89.26(1) 88.96(2)

Variable data
stream

ImbVar_Stream 82.26(8) 90.74(2) 90.58(3) 90.12(5) 83.79(7) 91.27(1) 87.52(6) 90.40(4)
ImbVar_Extreme_Stream 89.91(5) 89.45(6) 90.47(3) 90.48(2) 64.14(8) 84.96(7) 91.14(1) 90.39(4)
ImbVar_SG 90.24(4) 86.81(5) 92.48(1) 85.15(6) 71.03(8) 82.34(7) 90.68(3) 92.31(2)
ImbVar_Extreme_SG 89.77(4) 85.39(5) 89.92(3) 85.21(6) 64.34(8) 85.18(7) 90.81(1) 90.37(2)
ImbVar_Extreme_SIG 90.25(4) 73.47(7) 90.79(3) 87.82(5) 60.35(8) 87.02(6) 91.16(2) 91.47(1)

Real Stream
PokerHand 36.34(3) 34.39(4) - 36.41(2) - 34.25(5) - 36.51(1)
Kddcup 99_10% - - - - - - - 47.72(1)
Statlog(shuttle) - - 21.25(3) 10.46(5) - 45.65(2) 12.24(4) 76.69(1)

As shown in Tables 5 and 6, HSDW-MI achieves the best macro-Recall and G-mean
values for all synthetic and real data streams, ranking first, followed by the CALMID and
ARF algorithms. For stationary, extremely imbalanced streams, HSDW-MI outperforms all
other algorithms, with an average of 2.19% higher macro-Recall values and 3.13% higher G-
mean values. In variable streams, HSDW-MI performs best overall, particularly excelling on
ImbVar_Extreme_SG and ImbVar_Extreme_SIG with mixed drift, averaging 0.87% higher

Appl. Sci. 2023, 13, 5924 17 of 20

macro-Recall, and 1.35% higher G-mean values. The second-ranked algorithm is the state-
of-the-art CALMID, which effectively handles differences between majority and minority
classes using the asymmetric margin threshold matrix and uncertainty strategy. CALMID
also proposed a composite sample weight formula that assigns higher training weights to
newly arrived and minority samples, accommodating data stream imbalance and concept
drift. The ARF algorithm ranks third, even though it lacks a mechanism to handle class
imbalance. However, ARF requires significant time to maintain the detector and training
tree. LB, OAUE, and BOLE algorithms perform poorly on extremely imbalanced data
streams but achieve better results on other streams. The MOOB algorithm, with resampling
and time decay techniques, performs better only on data streams without concept drift, as
it lacks a mechanism to handle such drift. MUOB cannot adapt to complex data streams
because under-sampling results in substantial sample information loss. Overall, HSDW-MI
achieves the best macro-Recall and G-mean values, ranking first and demonstrating its
effectiveness in identifying minority class instances, especially in extremely imbalanced
data streams.

As shown in Tables 7 and 8, HSDW-MI attains better macro-Precision and macro-F1-
score values only on stationary data streams, while it is slightly outperformed by the ARF
and CALMID on variable data streams. This is because both macro-Precision and macro-F1-
score metrics focus more on majority class classification. In HSDW-MI, the class ratio-based
sampling approach calculates too many majority class samples requiring under-sampling,
which somewhat impairs the learnability of majority class samples.

For real data streams, HSDW-MI achieves the best results for macro-Recall and G-mean
values. On the PokerHand dataset, LB ranks first in macro-Precision and macro-F1-score,
while HSDW-MI has lower performance than other algorithms. It is worth noting that
most algorithms display 0 in G-mean, macro-Precision, and macro-F1-score. It is due to
the fact that the real data stream contains a large number of classes, and the number of
minority class instances may be single-digit, resulting in 0 values for macro-Precision,
macro-F1-score, and G-mean. This also demonstrates that HSDW-MI can handle the severe
lack of minority class samples and adapt to extremely imbalanced data streams.

To better illustrate each algorithm’s performance on data streams, we present the run
results of all algorithms on ImbSta_Extreme_SG, ImbSta_Extreme_SIG, ImbVar_Extreme_SG,
and ImbVar_Extreme_SIG data streams in the form of line graphs, as shown in Figures 5 and 6.

As shown in Figure 5a,b, the best performance in the stationary data streams is the
HSDW-MI algorithm, followed by the CALMID and ARF algorithms. The CALMID
and ARF algorithms also show better performance when no concept drift occurs, even
close to that of HSDW-MI. In the stage after the first drift in Figure 5a, the HSDW-MI
algorithm’s performance is slightly lower than the other algorithms, but HSDW-MI is able
to recover from the drift faster and its overall performance is still the best. As shown in
Figure 6a,b, the HSDW-MI algorithm still shows excellent performance in the stage without
concept drift in the variable data streams, followed by the CALMID, ARF, LB, and MOOB
algorithms. In conclusion, the HSDW-MI algorithm performs best when no concept drift
occurs, demonstrating the ability of the HSDW-MI algorithm to handle data streams with
extreme imbalance and variable class ratio and perform best. The macro-Recall values of
all algorithms drop sharply when drift occurs, in which CALMID and LB algorithms are
better able to adapt to concept drift and have better performance at the drift point, while
HSDW-MI algorithm is able to recover from the drift faster. That is because the dynamic
weighting strategy of the HSDW-MI algorithm is able to remove unqualified classifiers in
time, and, thus, the HSDW-MI algorithm is able to recover performance faster after the
drift occurring.

Appl. Sci. 2023, 13, 5924 18 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22

mation loss. Overall, HSDW-MI achieves the best macro-Recall and G-mean values, rank-

ing first and demonstrating its effectiveness in identifying minority class instances, espe-

cially in extremely imbalanced data streams.

As shown in Tables 7 and 8, HSDW-MI attains better macro-Precision and macro-F1-

score values only on stationary data streams, while it is slightly outperformed by the ARF

and CALMID on variable data streams. This is because both macro-Precision and macro-

F1-score metrics focus more on majority class classification. In HSDW-MI, the class ratio-

based sampling approach calculates too many majority class samples requiring under-

sampling, which somewhat impairs the learnability of majority class samples.

For real data streams, HSDW-MI achieves the best results for macro-Recall and G-

mean values. On the PokerHand dataset, LB ranks first in macro-Precision and macro-F1-

score, while HSDW-MI has lower performance than other algorithms. It is worth noting

that most algorithms display 0 in G-mean, macro-Precision, and macro-F1-score. It is due

to the fact that the real data stream contains a large number of classes, and the number of

minority class instances may be single-digit, resulting in 0 values for macro-Precision,

macro-F1-score, and G-mean. This also demonstrates that HSDW-MI can handle the se-

vere lack of minority class samples and adapt to extremely imbalanced data streams.

To better illustrate each algorithm’s performance on data streams, we present the run

results of all algorithms on ImbSta_Extreme_SG, ImbSta_Extreme_SIG, ImbVar_Ex-

treme_SG, and ImbVar_Extreme_SIG data streams in the form of line graphs, as shown in

Figures 5 and 6.

(a) (b)

Figure 5. Comparison algorithm of macro-Recall on the stationary stream. (a) ImbSta_Extreme_SG

stream; (b) ImbSta_Extreme_SIG.

(a) (b)

Figure 6. Comparison algorithm of macro-Recall on the variable stream. (a) ImbVar_Extreme_SG

stream; (b) ImbVar_Extreme_SIG.

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

Instance number (k)

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

Instance number (k)

Figure 5. Comparison algorithm of macro-Recall on the stationary stream. (a) ImbSta_Extreme_SG
stream; (b) ImbSta_Extreme_SIG.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22

mation loss. Overall, HSDW-MI achieves the best macro-Recall and G-mean values, rank-

ing first and demonstrating its effectiveness in identifying minority class instances, espe-

cially in extremely imbalanced data streams.

As shown in Tables 7 and 8, HSDW-MI attains better macro-Precision and macro-F1-

score values only on stationary data streams, while it is slightly outperformed by the ARF

and CALMID on variable data streams. This is because both macro-Precision and macro-

F1-score metrics focus more on majority class classification. In HSDW-MI, the class ratio-

based sampling approach calculates too many majority class samples requiring under-

sampling, which somewhat impairs the learnability of majority class samples.

For real data streams, HSDW-MI achieves the best results for macro-Recall and G-

mean values. On the PokerHand dataset, LB ranks first in macro-Precision and macro-F1-

score, while HSDW-MI has lower performance than other algorithms. It is worth noting

that most algorithms display 0 in G-mean, macro-Precision, and macro-F1-score. It is due

to the fact that the real data stream contains a large number of classes, and the number of

minority class instances may be single-digit, resulting in 0 values for macro-Precision,

macro-F1-score, and G-mean. This also demonstrates that HSDW-MI can handle the se-

vere lack of minority class samples and adapt to extremely imbalanced data streams.

To better illustrate each algorithm’s performance on data streams, we present the run

results of all algorithms on ImbSta_Extreme_SG, ImbSta_Extreme_SIG, ImbVar_Ex-

treme_SG, and ImbVar_Extreme_SIG data streams in the form of line graphs, as shown in

Figures 5 and 6.

(a) (b)

Figure 5. Comparison algorithm of macro-Recall on the stationary stream. (a) ImbSta_Extreme_SG

stream; (b) ImbSta_Extreme_SIG.

(a) (b)

Figure 6. Comparison algorithm of macro-Recall on the variable stream. (a) ImbVar_Extreme_SG

stream; (b) ImbVar_Extreme_SIG.

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

Instance number (k)

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

Instance number (k)

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

 HSDW-MI
 CALMID
 MOOB
 MUOB
 BOLE
 ARF
 OAUE
 LB

Instance number (k)

Figure 6. Comparison algorithm of macro-Recall on the variable stream. (a) ImbVar_Extreme_SG
stream; (b) ImbVar_Extreme_SIG.

5. Summary

To address the problems of multiclass imbalance and concept drift in data streams,
this paper proposed a multi-class imbalanced data stream classification algorithm based on
hybrid sampling with dynamic weighting (HSDW-MI). HSDW-MI processes data streams
in two phases. In the hybrid sampling phase, adaptive spectral clustering is used to
maintain the original data distribution after clustering and sampling. By calculating the
safety level of each sample using the sample safety factor, the classifier’s ability to identify
both minority and majority classes is effectively improved. To handle extremely imbalanced
and variable data streams, a sample storage pool is created to store samples with high
safety factor during the training process. Samples are extracted from the pool and added to
the data stream when the number of minority class samples is insufficient. In the dynamic
weighting phase, a dynamic weighting method based on G-mean values is proposed, with
G-mean values serving as the weights of the base classifier. The ensemble is dynamically
updated during data stream processing by adding new base classifiers and timely removing
old, unqualified ones, which allows the algorithm to adapt to concept drift. Experiments
verify that the proposed HSDW-MI exhibits superior classification capabilities and more
Stable performance than other algorithms.

Despite its merits, the algorithm still has some limitations due to the complexity
of multi-class imbalanced data streams. Although HSDW-MI can recover quickly after a
concept drift occurrence, its performance degrades more at the concept drift point compared
to other algorithms. Additionally, calculating the sample safety factor is time-consuming.
Future research will incorporate a drift detector into the algorithm, enabling it to address

Appl. Sci. 2023, 13, 5924 19 of 20

concept drift upon detection, and refine the sample safety factor calculation formula to
reduce time complexity.

Author Contributions: Conceptualization, M.H.; methodology, A.L.; software, A.L.; validation,
Z.G. and S.L.; formal analysis, Z.G.; investigation, A.L.; resources, D.M.; data curation, A.L.;
writing—original draft preparation, A.L.; writing—review and editing, M.H.; visualization, D.M.;
supervision, S.L.; project administration, M.H.; funding acquisition, M.H. and A.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Nature Science Foundation of China (62062004),
the Ningxia Natural Science Foundation Project (2022AAC03279) and the Graduate Innovation Project
of North Minzu University (YCX22191).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ancy, S.; Paulraj, D. Handling imbalanced data with concept drift by applying dynamic sampling and ensemble classification

model. Comput. Commun. 2020, 153, 553–560. [CrossRef]
2. Wang, S.; Minku, L.L.; Yao, X. Dealing with Multiple Classes in Online Class Imbalance Learning. In Proceedings of the 25th

International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 2118–2124.
3. Kaddoura, S.; Arid, A.E.; Moukhtar, M. Evaluation of Supervised Machine Learning Algorithms for Multi-Class Intrusion

Detection Systems. In Proceedings of the Future Technologies Conference (FTC) 2021; Springer: Berlin/Heidelberg, Germany,
2022; Volume 3, pp. 1–16.

4. Bin Sulaiman, R.; Schetinin, V.; Sant, P. Review of Machine Learning Approach on Credit Card Fraud Detection. Hum. Cent. Intell.
Syst. 2022, 2, 55–68. [CrossRef]

5. Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-learning-based disease diagnosis: A comprehensive review. Healthcare 2022,
10, 541. [CrossRef]

6. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng. 2018, 31,
2346–2363. [CrossRef]

7. Zhang, X.; Han, M.; Wu, H.; Li, M.; Chen, Z. An overview of complex data stream ensemble classification. J. Intell. Fuzzy Syst.
2021, 41, 3667–3695. [CrossRef]

8. Mirza, B.; Lin, Z. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classifica-
tion. Neural Netw. 2016, 80, 79–94. [CrossRef] [PubMed]

9. Ferreira, L.E.B.; Gomes, H.M.; Bifet, A.; Oliveira, L.S. Adaptive random forests with resampling for imbalanced data streams. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–6.

10. Abdi, L.; Hashemi, S. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl.
Data Eng. 2015, 28, 238–251. [CrossRef]

11. Zhu, T.; Lin, Y.; Liu, Y. Synthetic minority oversampling technique for multiclass imbalance problems. Pattern Recognit. J. Pattern
Recognit. Soc. 2017, 72, 327–340. [CrossRef]

12. Arafat, M.Y.; Hoque, S.; Farid, D.M. Cluster-based under-sampling with random forest for multi-class imbalanced classification. In
Proceedings of the 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA),
Malabe, Sri Lanka, 6–8 December 2017; pp. 1–6.

13. Díez-Pastor, J.F.; Rodríguez, J.J.; Garcia-Osorio, C.; Kuncheva, L.I. Random balance: Ensembles of variable priors classifiers for
imbalanced data. Knowl.-Based Syst. 2015, 85, 96–111. [CrossRef]

14. Rodríguez, J.J.; Diez-Pastor, J.F.; Arnaiz-Gonzalez, A.; Kuncheva, L.I. Random balance ensembles for multiclass imbalance
learning. Knowl.-Based Syst. 2020, 193, 105434. [CrossRef]

15. Hartono, H.; Risyani, Y.; Ongko, E.; Abdullah, D. HAR-MI method for multi-class imbalanced datasets. Telecommun. Comput.
Electron. Control 2020, 18, 822–829. [CrossRef]

16. Jadwal, P.K.; Jain, S.; Pathak, S.; Agarwal, B. Improved resampling algorithm through a modified oversampling approach based
on spectral clustering and SMOTE. Microsyst. Technol. 2022, 28, 2669–2677. [CrossRef]

17. Sainin, M.S.; Alfred, R.; Adnan, F.; Ahmad, F. Combining sampling and ensemble classifier for multiclass imbalance data learning.
In Proceedings of the International Conference on Computational Science and Technology, Labuan, Malaysia, 28–29 August 2021;
Springer: Singapore, 2017; pp. 262–272.

https://doi.org/10.1016/j.comcom.2020.01.061
https://doi.org/10.1007/s44230-022-00004-0
https://doi.org/10.3390/healthcare10030541
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.3233/JIFS-211100
https://doi.org/10.1016/j.neunet.2016.04.008
https://www.ncbi.nlm.nih.gov/pubmed/27187873
https://doi.org/10.1109/TKDE.2015.2458858
https://doi.org/10.1016/j.patcog.2017.07.024
https://doi.org/10.1016/j.knosys.2015.04.022
https://doi.org/10.1016/j.knosys.2019.105434
https://doi.org/10.12928/telkomnika.v18i2.14818
https://doi.org/10.1007/s00542-022-05287-8

Appl. Sci. 2023, 13, 5924 20 of 20

18. Vafaie, P.; Viktor, H.; Michalowski, W. Multi-class imbalanced semi-supervised learning from streams through online ensembles.
In Proceedings of the International Conference on Data Mining Workshops, Sorrento, Italy, 17–20 November 2020; pp. 867–874.

19. Czarnowski, I. Weighted Ensemble with one-class Classification and Over-sampling and Instance selection (WECOI): An approach
for learning from imbalanced data streams. J. Comput. Sci. 2022, 61, 101614. [CrossRef]

20. Han, M.; Zhang, X.; Chen, Z.; Wu, H.; Li, M. Dynamic ensemble selection classification algorithm based on window over
imbalanced drift data stream. Knowl. Inf. Syst. 2022, 65, 1105–1128. [CrossRef]

21. Bifet, A.; Holmes, G.; Pfahringer, B. Leveraging bagging for evolving data streams. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, 20–24 September 2010, Proceedings, Part I 21; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 135–150.

22. Bifet, A.; Gavalda, R. Learning from time-changing data with adaptive windowing. In Proceedings of the 7th SIAM International
Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; pp. 443–448.

23. Gomes, H.M.; Bifet, A.; Read, J.; Barddal, J.P.; Enembreck, F.; Pfharinger, B.; Holmes, G.; Abdessalem, T. Adaptive random forests
for evolving data stream classification. Mach. Learn. 2017, 106, 1469–1495. [CrossRef]

24. Liu, W.; Zhang, H.; Ding, Z.; Liu, Q.; Zhu, C. A comprehensive active learning method for multiclass imbalanced data streams
with concept drift. Knowl.-Based Syst. 2021, 215, 106778. [CrossRef]

25. De Barros, R.S.M.; de Carvalho Santos, S.G.T.; Júnior, P.M.G. A boosting-like online learning ensemble. In Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1871–1878.

26. Iwashita, A.S.; Papa, J.P. An overview on concept drift learning. IEEE Access 2018, 7, 1532–1547. [CrossRef]
27. Han, M.; Chen, Z.; Li, M.; Wu, H.; Zhang, X. A survey of active and passive concept drift handling methods. Comput. Intell. 2022,

38, 1492–1535. [CrossRef]
28. Brzezinski, D.; Stefanowski, J. Combining chunk-based and online methods in learning ensembles from concept drifting data

streams. Inf. Sci. 2014, 265, 50–67. [CrossRef]
29. Ertunç, E.; Karkınlı, A.E.; Bozdağ, A. A clustering-based approach to land valuation in land consolidation projects. Land Use

Policy 2021, 111, 105739. [CrossRef]
30. Janicka, M.; Lango, M.; Stefanowski, J. Using information on class interrelations to improve classification of multiclass imbalanced

data: A new resampling algorithm. Int. J. Appl. Math. Comput. Sci. 2019, 29, 769–781. [CrossRef]
31. Lango, M.; Stefanowski, J. Multi-class and feature selection extensions of roughly balanced bagging for imbalanced data. J. Intell.

Inf. Syst. 2018, 50, 97–127. [CrossRef]
32. Mahadevan, A.; Arock, M. A class imbalance-aware review rating prediction using hybrid sampling and ensemble learning.

Multimed. Tools Appl. 2021, 80, 6911–6938. [CrossRef]
33. Bifet, A.; Holmes, G.; Pfahringer, B.; Kranen, P.; Kremer, H.; Jansen, T.; Seidl, T. Moa: Massive online analysis, a framework for

stream classification and clustering. In Proceedings of the First Workshop on Applications of Pattern Analysis, Windsor, UK,
1–3 September 2010; pp. 44–50.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jocs.2022.101614
https://doi.org/10.1007/s10115-022-01791-5
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1016/j.knosys.2021.106778
https://doi.org/10.1109/ACCESS.2018.2886026
https://doi.org/10.1111/coin.12520
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1016/j.landusepol.2021.105739
https://doi.org/10.2478/amcs-2019-0057
https://doi.org/10.1007/s10844-017-0446-7
https://doi.org/10.1007/s11042-020-10024-2

	Introduction
	Related Work
	Multi-Class Imbalance Data Classification Method
	Concept Drift Data Streams Learning Method

	The Proposed HSDW-MI Algorithm
	Training Process of HSDW-MI Algorithm
	Two Phases of the HSDW-MI Algorithm
	Hybrid Sampling Phase of HSDW-MI Algorithm
	Dynamic Weighting Phase of HSDW-MI Algorithm

	Complexity Analysis of the Algorithm

	Experimental Design
	Datasets and Evaluation Metrics
	Parameter Sensitivity Experiments
	Ablation Experiments
	Algorithm Comparison Experiments

	Summary
	References

