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Abstract: Internet of Things (IoT) technologies serve as a backbone of cutting-edge intelligent systems.
Machine Learning (ML) paradigms have been adopted within IoT environments to exploit their
capabilities to mine complex patterns. Despite the reported promising results, ML-based solutions
exhibit several security vulnerabilities and threats. Specifically, Adversarial Machine Learning
(AML) attacks can drastically impact the performance of ML models. It also represents a promising
research field that typically promotes novel techniques to generate and/or defend against Adversarial
Examples (AE) attacks. In this work, a comprehensive survey on AML attack and defense techniques
is conducted for the years 2018–2022. The article investigates the employment of AML techniques
to enhance intrusion detection performance within the IoT context. Additionally, it depicts relevant
challenges that researchers aim to overcome to implement proper IoT-based security solutions. Thus,
this survey aims to contribute to the literature by investigating the application of AML concepts within
the IoT context. An extensive review of the current research trends of AML within IoT networks
is presented. A conclusion is reached where several findings are reported including a shortage of
defense mechanisms investigations, a lack of tailored IoT-based solutions, and the applicability of the
existing mechanisms in both attack and defense scenarios.

Keywords: Internet of Things (IoT); Cybersecurity; intrusion detection; adversarial machine
learning (AML)

1. Introduction

Cybersecurity is growingly considered a major concern for different computer appli-
cations. It needs to be noticed for all types of network traffic to ensure that any potential
security issues are noticed and detected such as any kind of intrusions and attacks. Within
IoT, the constraints of resources can affect the efficiency of the well-known security solu-
tions making them luring targets for cyber-attacks. This reflects the necessity of tailored
solutions to address the related-security issues in IoT networks.

Recently, Machine Learning techniques have been increasingly adopted within several
research fields. In particular, they have been integrated into IoT frameworks in order
to enhance security and reinforce privacy. ML techniques have been gaining the upper
hand because they relaxed the human intervention constraint through sophisticated algo-
rithms that support decision-making tasks in a timely manner. In fact, ML-based models
can analyze the traffic passed through devices and detect abnormal behaviors given the
resource-constraint characteristic and the three main layers of IoT systems. ML techniques
can be categorized into: (i) Supervised learning, (ii) Unsupervised learning, and (iii) Re-
inforcement learning approaches. In addition, they can also be grouped based on their
architecture into (i) Traditional shallow learning and (ii) Deep learning techniques [1,2].
One should note that the direct application of traditional ML techniques proved to be
inefficient in handling data in an IoT environment [3,4]. This can be inferred from several
reasons related to ML algorithms in terms of complexity, scalability, real-time processing,
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data dimensionality, and data distribution. Firstly, ML algorithms introduce some complex
challenges because of memory, computational complexity, and diversity of data types.
Secondly, they are to some extent unable to provide scalable solutions, specifically for IoT
devices due to energy constraints. Thirdly, ML algorithms are not designed to process
large streams of data in real time. In other words, they typically assume training the entire
data collection which is not fit for the IoT environment. Fourthly, their performance is con-
siderably affected by the curse of dimensionality usually associated with real-world data.
Lastly, the use of data out of the underlying data distribution is used for ML model train-
ing and testing in which attackers can craft adversarial examples and cause performance
degradation [3,4].

Although there is active research work to manage the aforementioned limitations,
there is limited work to study the effect of AML on ML-based IoT solutions. These solutions’
limitations are usually characterized by classification and detection issues where ML models
are vulnerable to adversarial samples. The adversary can inject adversarial samples to
affect the model decision boundary and therefore misclassify the analyzed data [3,5].

Researchers have reported the potential vulnerability of ML models to adversarial
attacks [1,3,4]. This has promoted researcher efforts related to Adversarial Machine Learn-
ing (AML) challenges. In fact, AML mainly concerns the intersection of computer security
and machine learning fields. Specifically, it works on analyzing the attacks that aim to
degrade the performance of ML-based models. It also investigates the process of generating
and detecting the crafted adversarial examples and how eventually incorporate possible
defensive mechanisms. The area has been extensively associated with applications dealing
with images as primary data modality. On the other hand, it is still growing within the
fields of network traffic analysis and IoT [6,7].

There are several elements that reflect the crucial need to conduct the proposed
survey. Those elements stem from the sacristy of studying the effect of AML attacks and
defenses in the IoT context. As such, this survey focuses on investigating the current
advances and trends of AML applied to the IoT-based IDS domain. It considers the unique
characteristics of IoT and their challenges when adopting ML-based intrusion detection
solutions. It identifies the recent and important methods for both crafting and defending
adversarial examples. Accordingly, the importance of this survey comes from its objectives
of presenting a comprehensive review of the AML attacks and defenses against the IoT
environment in the context of the ML-based intrusion detection domain.

Contribution & Structure

This article investigates the application of AML concepts within the IoT context. It
surveys the current trends of AML within the IoT environment considering the most rep-
utable science databases such as Springer [8], IEEE Xplore [9], arXiv [10], ScienceDirect [11],
and Research Gate [12]. The framework adopted for this survey is given in Figure 1.
Network Intrusion Detection Systems (NIDS) require real-time analysis of sensitive data
which reflects the robustness and security needs. Only fifteen papers address those topics.
This indicates the sacristy of research studies toward the intersection between those two
fields. The analysis of these works reveals the effectiveness of AML crafting techniques
in enhancing ML-based NIDS models. Moreover, the defense mechanisms have not been
explored sufficiently with a considerable lack of benchmark datasets. The structure of this
manuscript is illustrated in Figure 2. As seen, it includes the following: Section 2 introduces
the main specifications and security challenges found in IoT networks.
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Figure 2. The structure of the survey.

The adversarial machine learning area, including various aspects of causes and char-
acteristics, crafting methods, threat models, defense mechanisms, and evaluation metrics,
is investigated in Section 3. In Section 4, we survey the state-of-the-art research that applies
adversarial machine learning techniques to enhance IoT robustness. We then discuss the
surveyed papers and present the main findings of this research in Section 5. Finally, the
conclusions and future work are presented in Section 6.

2. Internet of Things (IoT): Specifications & Security Challenges
2.1. Architecture of IoT

The features of IoT platforms have attracted great attention from research and indus-
trial communities for advancing people’s daily life. Several architectures of IoT have been
proposed as seen in Figure 3. The three-layer model [13,14] which consists of three layers
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where groups of networks standards, technologies, and services are placed [13,15,16] was
initially proposed. The latter three layers are detailed below:
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2.1.1. Perception Layer

It represents the first layer of IoT architecture that is used for indicating the objects at
the physical level. The objects work within the adjacent environment by sensing, collecting,
and processing information. It is defined as smart objects with the following common
characteristics:

• Communication: objects have connectivity to the internet and to other objects to collect
data, update status and collaboratively provide proper services.

• Identification: objects have unique identification and can be located based on their
physical location.

Further characteristics that can be also added to IoT-application are outlined below:

• Addressability: objects can be configured either directly or remotely.
• Processing capabilities: objects have embedded processing capabilities to handle

shared information by the sensors and direct the actuators.
• User interface: objects have an appropriate interface for easing the user’s experience.

One should note that multiple protocols are being currently adopted. Namely, RFID,
Bluetooth, IEEE 802.11ah, IEEE 802.15.4e, and Z-Wave are widely used [17–19].

2.1.2. Network Layer

This layer is located between the perception and application layers as a mediator to
transmit the data and information. This layer works on transmitting and processing the
network traffic and data alongside connecting IoT infrastructure components including
smart objects, network devices, and servers. Multiple protocols are adopted such as
Wi-Fi, IPv6, GSM, and others for the purpose of linking devices with smart services.
Moreover, specific protocols are created and used such as the 6LoWPAN protocol due
to the low computational power of IoT devices. The criteria for selecting protocols for
specific applications can be summarized as follows: the network’s capacity, the node’s
computational power, and the required transmission speed.

The wireless protocols are more adopted since the wireless sensor network has unique
features that ease its installation and expansion in different environments. In the case of
wired networks, it offers better transmission rates with more reliable connections which is
recommended to be used in crucial environments of IoT [17–19].
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2.1.3. Web/Application Layer

This layer is the third layer in IoT architecture where services are provided to the end
users via proper software that hides the heterogeneity of the underlying layers. All the
data are going through several pre-processing steps including storing, aggregation, and
analysis. Thus, the data are used by IoT software in various aspects including but not
limited to transportation, health, education, business, logistics, home, and many others.
The adopted technologies vary from cloud computing which works on data provided by
previous layers of resources remotely to edge computing in which the performance of IoT
networks is enhanced through distributing the workflow between end nodes. The data are
also managed in this layer considering their different formats [17–19].

Although the three-layer model represents the main characteristics of IoT, it lacks
important aspects for tackling IoT research issues. As such, the five-layer model is proposed
that incorporates two more layers namely, the processing and business layers alongside
perception, transport, and application layers. The perception and application layers apply
their same functionalities in the three-layer model. For the other different layers, it starts
with the transport layer which is located between the perception and processing layers
to handle the transmission of the sensor data in-between by networks such as wireless,
LAN, and Bluetooth. It is followed by the processing layer where data analytics techniques
are applied to substantial amounts of data received from the previous layer including
storing, analyzing, and processing capabilities. These capabilities require employing
several technologies such as big data analytics modules. The final layer is the business
layer that represents the management console where all the components of IoT such as
applications, business, and users’ privacy are controlled.

2.2. Characteristics of IoT

IoT has multiple features and characteristics that make it distinguished and can be
summarized as follows [3,14]:

• Heterogeneity: IoT networks contain several types of devices that work together to
form a reliable communication channel. This means different technologies, protocols,
paradigms, and capabilities are used based on constraints related to the computational
power of the hardware. Such technologies include wireless sensor networks (WSN),
radio-frequency identification (RFID), near-field communication (NFC), and others.

• Large-Scale Architecture: A massive number of IoT network devices are connecting at
a large scale level which leads to constraints on communication capabilities. Multiple
challenges are introduced with regard to this matter in terms of design, storage,
speed, efficiency, accessibility, and security of IoT networks. It requires standardized
technologies to enhance performance and ensure proper scalability.

• Power and Cost Constraints: Due to the huge increasing number of IoT-connected
devices, low-power, and low-cost solutions are used to adapt the complexity of these
networks and smooth their workflow.

• Interconnectivity: Connections between IoT devices are used to conduct global and
local information at various times and from any place. The type of connectivity can
be determined based on the IoT-provided services. Local connections take place in
services such as autonomous vehicles while the global ones can be seen in smart home
services where access requires management of critical infrastructure.

• Close Proximity: IoT networks have used close proximity where dedicated short-
range communication instead of using network-centric communications as in the
traditional Internet. This minimizes the use of central authority through key enabling
technologies of IoT such as Device-to-Device communication (D2D) and Machine-to-
Machine communication (M2M).

• Reliability and Latency: IoT networks have supported the workflow of critical services
using Ultra-Reliable and Low Latency communication. This can help these services
such as robotic surgery, intelligent transportation system, and others by ensuring strict
criteria in terms of delay and reliability of IoT network performance.



Appl. Sci. 2023, 13, 6001 6 of 33

• Autonomic Computing: IoT networks are considered an autonomic computing system
that includes self-configuration, self-optimization, self-healing, and self-protection
properties. Their properties contribute by allowing automatic configuration, automatic
performance boosting, automatic error detection, and automatic defense mechanism,
respectively. These properties support the operation of IoT systems in emergency and
disaster situations [20].

• Intelligence: Smart services are incorporated with IoT networks where a decision is
made in a timely manner. This can be achieved by performing analysis and processing
on the massive amount of IoT-generated data followed by taking proper actions
without human intervention.

Additionally, there are multiple areas where IoT applications are adopted such as
smart environment, smart agriculture, smart transport, smart health, smart energy, defense
manufacturing, and industrial engineering [21].

2.3. Challenges of IoT Security and Potential Attacks

The original design of the Internet was not considering the emergence of modern
technologies which in turn make the deployment of IoT hard on top of the existing networks
and security solutions. Moreover, the underlying infrastructure of the Internet has several
limitations in terms of scalability, complexity, configuration, and resource constraint. A
lot of applications are presented by IoT networks for a vast number of end-users making
security and privacy more challenging topics in such an environment. The limitation of the
computational power of IoT devices complicates the process of providing efficient security
mechanisms. Moreover, the variety of IoT devices increases the attack surface in which
they are being targeted by different attacks [22,23]. According to the aforementioned IoT
architecture layers, three possible attack surfaces can be summarized as follows [24]:

• Perception Surface. In this direct surface, physical devices are found where attacks
are conducted on units such as sensors, actuators, microcontrollers, RFID readers, and
others. Identification, communication, and collection of information are performed by
these devices making them targeted by several physical and logical attacks including
vandalism, Denial of Service (DoS), eavesdropping, jamming, and others.

• Network Surface. Wired and wireless sensor networks are used to connect IoT devices
which reflects the necessity of integrating them at a large scale. Due to that large-scale
topology, IoT networks’ surface is exposed to attacks while the data is transmitted
using low-efficient security protocols [25]. Several attack scenarios can be seen such as
scanning open ports to access the victim’s networks and steal sensitive information.
The attack types include man in the middle, spoofing, DoS, traffic analysis, jamming,
and others.

• Application/Web Surface. Web mobile software-based applications are used increas-
ingly to control and share the services provided by IoT devices via either clouds or
servers. Several mobile platforms ease the process of deploying relative applications
due to the use of open architecture such as the Android operating system. However,
this introduces a new vector for exploiting threats and launching attacks on IoT de-
vices. Such attacks include bluejacking, eavesdropping, blue-snarfing, DoS, and others.
Additionally, cloud computing presents an additional attack vector where end-users
can get data breaches, DoS, flooding attacks, and others on the cloud surfaces.

3. The Rise of Adversarial Machine Learning (AML)

Recently, researchers have reported the potential vulnerability of ML models to adver-
sarial attacks [1,3,4]. This has promoted researchers’ efforts toward AML challenges. In fact,
AML is concerned with the intersection of computer security and machine learning fields. It
analyzes the attacks that aim to degrade the performance of ML-based models. It also inves-
tigates the process of generating and detecting the crafted adversarial examples and how
eventually incorporate possible defensive mechanisms. The area has been extensively asso-
ciated with applications dealing with images as primary data modality. On the other hand,
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it is still growing within the fields of network traffic analysis and IoT [6,7]. This section sum-
marizes the rise of AML from four main perspectives: understanding AML, modeling the
adversary, defending against adversarial examples, and related performance evaluation.

3.1. Understanding Adversarial Examples
3.1.1. Adversarial Examples Causes and Characteristics

The criticality of adversarial examples has driven many questions about the causes
behind them and how they are constructed. The analysis of such problems supports the
mitigation efforts provided by researchers to manage this vulnerability. One of the causes
can be the inability of the model to generalize and predict accurately the pattern of unseen
data. Moreover, Goodfellow et al. [26] investigated the effect of adding perturbations
to a regularized model for enhancing prediction performance. However, the reported
results did not confirm the expected improvement. Other researchers [27] investigated the
non-linearity of ML models in increasing the chance of constructing adversarial examples.
They claimed that both linear and non-linear models can be considered for constructing
adversarial examples by injecting inputs with small perturbations. According to Goodfel-
low et al. [26], the linear behavior of the model, in which each individual input feature
is normalized, can also yield adversarial examples. Moreover, perturbing one dimension
of each input will not affect the classification accuracy as effectively as perturbing all the
dimensions of the inputs [28]. When dealing with adversarial examples, there are three
main characteristics to be considered as follows [28]:

• Transferability. Adversarial examples can be constructed and used across several
architectures and parameters of ML models which perform the same tasks. This
characteristic shows the capability of those examples to be constructed by a known
substitute model and then used to attack relevant unknown target models. Transfer-
ability can be categorized into two types [29]:

• Cross-data transferability: This happens when the training of both substitute and
target models uses similar machine-learning techniques but with different data.

• Cross-technique transferability: This happens when the training of both substitute
and target models uses the same data but with different machine-learning techniques.

• Regularization Effect. Adversarial examples can be used to enhance model robustness
using adversarial training. Adversarial training solutions is adopted as defense mech-
anisms by several researchers. However, constructing large adversarial examples is
costly in terms of computational power compared to other regularization mechanisms
such as dropout [30].

• Adversarial Instability. Adversarial examples can lose the adversarial characteristics
when physical effects are applied including rotation, translation, rescaling, and light-
ing [31]. This leads to the classification of these examples correctly which motivates
attackers to enhance the robustness of adversarial examples construction methods.

However, some limitations can be faced when dealing with adversarial examples. This
is inferred from the restriction in the perturbation numbers added where it is preferred
to keep it at a low scale. Moreover, there might also be more optimization constraints on
crafting the perturbations itself such as original content preserving, non-distinguishable
perturbed input sample, and payload-constrained input [32]. This section may be divided
by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.

3.1.2. Adversarial Examples Magnitude Measurement

For crafting adversarial examples, gradient-based methods are widely adopted for
adding perturbation using specific distance metrics [28,33,34]:

• The L0 norm of perturbations—measures the number of mismatched (non-zero) el-
ements between original and adversarial samples in the vector where the features’
perturbed number is minimized.
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• The L1 norm of perturbations—measures the total number of absolute values of the
differences between original and adversarial samples in which the features’ perturbed
number is minimized.

• The L2 norm of perturbations—measures the Euclidean distance between original
and adversarial samples in which the Euclidean distance between those data points
is minimized.

• L∞ norm of perturbations—measures the maximum difference between the original
and adversarial samples in which the maximum amount of perturbation is applied on
any feature.

3.1.3. Adversarial Examples Crafting Methods

The crafting methods of adversarial examples have been widely investigated and a
framework might be proposed for further clarification. It is worth noting that the efficiency
of crafting adversarial examples comes from minimizing the total perturbation as much as
possible to avoid being easily detected. Accordingly, there are two possible steps that are
repeated iteratively where datapoint X is replaced with X + δX until the adversarial goal is
achieved and the perturbation δX is applied. An explanation of all equations notations is
presented in Table 1. The following is the main steps of crafting methods of adversarial
examples [28]:

a. Direction Sensitivity Estimation.

In this step, the sensitivity of applying changes to inputs features is measured by
analyzing the data distributions around specific datapoint where the model decision
boundary is possibly affected and changed. Accordingly, there are several techniques for
performing direction sensitivity estimation such as the following:

• Limited-memory Broy-den, Fletcher, Goldforb, Shanno (L-BFGS). This method has
been proposed by Szegedy et al. [6] for crafting adversarial examples through a
minimization problem. In such a scenario, the adversary constructs with L2-norm an
image X′ similar to the original image X where X′ can be labeled as a different class.
This is considered a complex problem to be solved due to the use of nonlinear and
non-convex functions. They tried to search for an adversarial sample by finding the
minimum loss function additions to L2-norm according to the following formula [28]:

minc. ‖ X− X
′ ‖2 +lossF,l(X

′
) (1)

where c is a hyper-parameter that is randomly initialized by linear search; ‖ X− X
′ ‖2

is L2-norm and lossF,l(∗) is the loss function. Thus, the problem is transformed into a
convex optimization process but with complicated and expensive calculations [28,35].

• Fast Gradient Sign Method (FGSM). This method has been proposed by Goodfellow
et al. [26] for crafting adversarial examples where the cost function is calculated with
regard to the gradient direction. FGSM is different from LBFGS since it uses the
L1-norm and does not perform iterative processes which makes it an excellent choice
when it comes to computational cost and time. In such a scenario, misclassification
can occur by adding perturbations according to the following formula [28]:

Xadv = X + εsign(∇X J(X,Ytrue)) (2)

where Xadv is the adversarial example of X, X is the original sample and ε is a hyper-
parameter that is randomly initialized to control the amplitude of the disturbance.
Additionally, sign (_) is a sign function, and J (_) is the cost function with respect to the
original sample with the correct label Ytrue and ∇X J is the gradient of X. However,
this method is subjected to label leaking where other researchers suggest replacing the
correct label Ytrue with the predicted label [28,35,36].

• Iterative Gradient Sign Method (IGSM). This method has been proposed by Kurakin
et al. [36] for crafting adversarial examples by optimizing the FGSM method. Per-
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turbations are iteratively applied into several smaller steps followed by clipping the
results which guarantees that these perturbations are close to the original samples.
It is worth noting that the non-linearity of IGSM is in the gradient direction where
multiple iterations are required. This reflects the simplicity of this method compared
to L-BFGS and its higher success rate of the resulting adversarial samples compared to
FGSM. For each iteration, the following formula is used where ClipX ,ε(∗) denotes [X
− ε, X + ε] [28]:

Xadv
0 = X, Xadv

N+1 = ClipX ,ε{X
adv
N + αsign(∇X J(Xadv

N ,Ytrue))} (3)

Moreover, IGSM has two distinct types of adversarial goals: (1) minimizing the
confidence of the original prediction and its belongingness to the original class, or (2) maxi-
mizing the confidence of the prediction and its belongingness to the class with the lowest
probability instead of the correct class [28,35].

• Iterative Least-Likely Class Method (ILCM). This method has been proposed by
Kurakin et al. [37] for crafting adversarial examples by perturbing the target class
and replacing it with the least-likely probability class for the dataset disturbance. It
leads to a degradation in the classifier performance with significant errors such as
misclassifying a dog as a car. The ILCM differs from FGSM and L-BFGS by identifying
the exact wrong class for the adversarial examples. Moreover, it is suitable to be
used when handling datasets with a considerable number of distinct classes such as
ImageNet. In such a scenario, perturbations can be added according to the following
formula [28]:

Xadv
0 = X, Xadv

N+1 = ClipX ,ε{X
adv
N + αsign(∇X J(Xadv

N ,YLL))} (4)

where the least-likely probability class is represented by YLL. There is another option
where the least-likely class is replaced with a random class as the target class which is
thereby called an iteration random class method [28,35].

• Jacobian Based Saliency Map (JSMA). This method has been proposed by Papernot
et al. [38] for crafting adversarial examples using the model’s Jacobian matrix. It
works by using the gradients of relative output and input components to construct
a saliency map and build the gradients based on the impact of each pixel. The L0
distance norm is utilized where a limited number of the image pixels are modified,
and they represent the most important pixels based on the saliency map. Therefore,
gradients are significantly important in perturbing the pixel and making the prediction
of the image towards the target classes. It can be performed as follows [28]:

I. Firstly: Calculate the forward derivative ∇F(X) according to the following
formula:

∇F(X) =
∂F(x)

∂X
=

[
∂Fj(x)

∂Xi

]
i∈1...M,j∈1...N

(5)

II. Secondly: Construct the saliency map S based on the calculated forward deriva-
tive.

III. Thirdly: Select the pixel with the highest importance using the saliency map
in an iterative manner until either classifying the output as the target class or
maximum perturbation is achieved.

It is worth noting that JSMA is used for targeting misclassification attacks with several
strengths such as a high success rate, and a high transfer rate, however, it is its main
disadvantage related to its high computational cost [28,35].
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Table 1. Notations of equations.

Symbol Definition

min Minimum distance
C Random hyperparameter
X Original image

X′, Xadv Adversarial image
||X − X′||2 L2-norm

LossF,l (X′) The loss function of (X′)
ε Random hyperparameter

Sign (*) Sign function
J(*) Cost function
Ytrue Correct label of X
∇XJ(∗) The gradient of X

ClipX,ε (∗) Denotes [X − ε, X + ε]
YLL Least likely (the lowest probability) target class
∇F(x) Forward derivative

b. Perturbation Selection.

In this step, the knowledge of sensitivity is used by the adversary to select the most
suitable perturbation for exploiting the model. This includes two methods as below:

Perturb all the input dimensions. Some researchers investigated the manipulation of
all input dimensions where direct sensitivity estimation methods are used. In the [26] ex-
periment, FGSM is utilized to evaluate the gradient sign direction for each input dimension
and thereby minimizes the Euclidean distance between the original inputs and the related
adversarial samples. However, applying such a method can be detected easily since the
number of perturbations is large.

Perturb the selected input dimension. Some researchers investigated the perturbation
of a selected number of input dimensions with the use of the saliency map [38]. This
method contributes to limiting the number of perturbations effectively but at the price of
higher computation cost.

3.2. Modelling the Adversary

The crucial use of ML models has encouraged the specifications of threat models which
in turn highlights possible adversarial attack scenarios and conditions. This contributes
to enhancing defense mechanisms properly by tailoring them towards specific attacks
followed by measuring their performance. Huang et al. [7] introduced the AML concept
where adversarial attacks are presented through a taxonomy modeling the adversarial
threats according to the following aspects: goals, knowledge, and capabilities.

3.2.1. Adversarial Capabilities

Adversarial capabilities represent the potential impact of an adversary when attacking
the ML models which can be grouped into two categories: Influence, and Specificity [7,29,39].

a. Influence:

This category focuses on the adversary’s influence on certain classification elements
such as changing the dataset or the algorithms when running attacks on the target model.
Such attacks include causative, evasion, or exploratory attacks where there is an influence
over either the training dataset or the testing dataset, or both. Consideration of training
and testing phases is used to clarify more about the adversary’s influence according to
his/her capabilities in those phases, as follows [29,39]:

• Training Phase Influence: In this phase, attacks take place by influencing or corrupting
the model performance in which the datasets alteration is performed, and can be
summarized as follows:
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1. Data Injection: The adversary can affect the target model by injecting adversarial
samples and inserting them into the training dataset. This can happen with some
control over the training dataset but not over the learning algorithm.

2. Label manipulation: The adversary can modify the training labels only and
gain the most vulnerable label to degrade the model performance. The label
perturbations can happen with some control over the training dataset and can be
applied in a random manner to the distribution of training data. An experiment
indicates that a random perturbation of the training labels can degrade the
performance of shallow ML models significantly [40].

3. Data Manipulation: The adversary can poison the training dataset before it has been
used for training the target model. The adversary can modify both the labels and
input features of the training data and affect the decision boundary. The training
data can be accessed but without the need to access the learning algorithm.

4. Logic Manipulation: The adversary can manipulate the learning algorithm and
affect its workflow logic which thereby makes the ML model under his/her control.

• Testing Phase Influence: In this phase, attacks take place to force the target model
to produce incorrect outputs without influencing it. These types of attacks use other
techniques to extract useful information rather than influencing the training phases,
and can be summarized as follows:

1. Model Evasion: The adversary can evade the target model by crafting adversarial
samples during the testing phase.

2. Model Exploratory: The adversary can gain various levels of knowledge about
the target model in terms of the learning algorithm and training dataset distribu-
tion pattern, as follows:

i. Data Distribution Access: The adversary can access the training dataset
distribution of the target models. The substitute local model is built to
imitate the target model in classifying a set of distribution samples. This
helps in generating adversarial samples where they are used on the target
model for misclassification purposes.

ii. Model Oracle: The adversary can only query the target model by in-
putting a set of samples and checking the related output labels. This
access is carried out as an oracle and followed by creating a substitute
local model to be used on the obtained results from the query. Then the
adversary uses the adversarial samples from the substitute model to affect
the target model.

iii. Input–Output Collection: The adversary can collect from the target model
the input—output pairs to analyze the possible patterns. This is carried
out without accessing the training dataset distribution.

b. Specificity:

This category focuses on attack specificity in which the determination of attack effects
is clarified. It considers the attacks with multiple vectors alongside a specific vector against
the target model. Attacks within this category can be further classified as follows [4,29,39]:

• Targeted: The adversary defines specific targets when performing attacks causing
model misclassification into certain classes.

• Indiscriminate: The adversary has no defined targets where performing attacks causes
general misclassification without specifications.

3.2.2. Adversarial Knowledge

There are various levels of knowledge about the target model where an adversary
can perform the attacks. Possible knowledge elements include training data, learning
algorithms, feature space, cost function, and tuned parameters. Accordingly, the adversary
knowledge about the target model can fall into three types of categories as shown in
Figure 4 [39]:
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• Complete Knowledge: It is called White-Box Attack where the adversary has access
to the whole learning process including data collection, feature extraction, feature
selection, learning algorithm, and model-tuned parameters. In such a scenario, the
target model is open source and access to the training dataset may be available or not
to the adversary.

• Partial Knowledge: It is called Grey-Box Attack where an adversary does not have
access to the training dataset and is equipped with partial knowledge about the
learning process in terms of learning algorithms and the feature space. However, the
adversary is not aware of either the training dataset or the tuned parameters.

• Zero Knowledge: It is called Black-Box Attack where an adversary does not have any
knowledge about the majority of learning process elements including the training
dataset, learning algorithm, and feature space. In such a scenario, the adversary
queries the target model in which feedback on crafted query adversarial samples is
used to enhance other substitute models.
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The adversary can evolve from a black box to a white box through an iterative learning
process with the use of an inference mechanism to reach the required level of knowledge [4,39].

3.2.3. Adversarial Goals

The adversarial impact on the target ML model is used to clarify the main objectives
behind the adversarial attacks as seen in Figure 5. Accordingly, the adversarial goals can be
categorized based on the incorrectness of the model, as follows [29]:

• Confidence Reduction: The adversary reduces the confidence of the target model
classification process. This can be seen in an example of an image recognition task
where a “stop” sign is recognized with a lower confidence value with regard to the
correct class belongingness.

• Misclassification: The adversary modifies the prediction of an input example and is
misclassified on the decision boundary to a different class. This can be seen in an
example of an image recognition task where a “stop” sign is recognized in another
class that is different from the “stop” sign class.

• Targeted Misclassification: The adversary works on crafting adversarial examples and
modifying the input point to be misclassified by the target model into another specific
class. This can be seen in an example of an image recognition task where the “stop”
sign is recognized into another specific class like the “go” sign.

• Source/target Misclassification: The adversary works on crafting adversarial examples
and modifying specific input points to be misclassified by the target model into another
specific class. This can be seen in an example of an image recognition task where the
“stop” sign is recognized into another specific class like the “go” sign.
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3.3. Defenses against Adversarial Examples

Since there are many methods used for crafting adversarial examples, it is essential
to ensure the proper robustness of ML solutions against those vulnerabilities. According
to the literature, defenses towards adversarial examples can be classified using distinct
categories [32]. However, for the sake of clear mapping, the adopted classification is
categorized into three main types as shown in Figure 6.
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Figure 6. Taxonomy of the AML defense mechanisms is subdivided into three categories: (1) Data-
based Modification, (2) Model-based Modification, and (3) Other Defense Techniques [26,41–78].

3.3.1. Data-Based Modification

This category covers the techniques of modifying the data and its related features
during either the training phase or the testing phase based on the attacker’s capabilities.
Such techniques include:

a. Adversarial Training:
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Adversarial training has been widely adopted in many research studies to enhance the
robustness of ML solutions against adversarial attacks and show their defects [26,41]. The
main notion behind this technique is reducing the potential misclassification results when
data perturbation is fed to the ML solutions. It works on adding adversarial examples
to the training data alongside generating new adversarial examples during the training
epochs. Through these epochs, the characteristics of adversarial examples are controlled
by the loss function where the hyper-parameters are tuned accordingly. By equalizing the
number of both original examples and adversarial examples during training, the models
can give better adversarial training results.

Adversarial training is used also to handle the regularization problems and thereby
avoid overfitting. Since adversarial training is correlated to the training phase where white-
box attacks take place, it is not robust to black-box attacks where new adversarial examples
are presented [28,32]. Therefore, a study investigated the use of the ensemble adversarial
training concept where different training data of pre-trained models are combined and
then allow the model to generalize well on unseen inputs [42].

b. Blocking the Transferability:

Since transferability is a unique characteristic of adversarial examples, defenses in
this context prevent the adversarial examples’ transferability and thereby prevent black-
box attacks. As mentioned previously, transferability can happen to models with different
architectures or trained on different training datasets. A labeling method has been proposed
to prevent the transferability between models [44]. It relies on adding a NULL label to
the dataset to mitigate the adversarial examples effects where the model can detect them
more efficiently. For this purpose, three steps are performed which start with training the
target model as an initial step. It is followed by finding the NULL probabilities within the
examined dataset and ends with adversarial training. A higher probability is assigned to
the NULL label when there is more perturbation, and the probabilities of other labels are
also increased for the original labeling. Thus, the method eases the detection of adversarial
examples by annotating the perturbation as a NULL label instead of classifying it into
one of the ranges of original labels. It also does not affect the model accuracy for the
classification process of original datasets [35].

c. Input Transformation:

Some research studies have found the data transformation technique useful for enhanc-
ing the model’s robustness against adversarial attacks such as FGSM [26], DeepFool [79],
and universal disturbance attacks [45–47]. Such transformation includes data compression,
variance minimization, bit-depth reduction, and input reconstruction which are utilized to
prevent adversarial perturbations. In terms of compression, JPEG and Display Compres-
sion Technology (DCT) compression methods are used in mitigating attacks by performing
compression over different image data formats such as JPEG. After training the model on
those inputs, the overall accuracy is enhanced, and the attack disturbance effect can be
controlled. However, the compression techniques are not well effective against more pow-
erful and advanced attacks like Carlini & Wagner attacks [80,81]. Moreover, the increase of
compression amount affects the original accuracy of the models while the decrease of its
amount is not sufficient in eliminating the adversarial examples impact.

In terms of input reconstruction, a cleaning process is applied to the adversarial
examples to transform them into legitimate examples in a reverse way. After the transfor-
mation takes place, the adversarial effect on the models’ classification will be removed.
An example of such work is presented using a deep contractive autoencoder technique,
where a denoising autoencoder is used for cleaning adversarial examples [50]. However,
the transformation techniques can be also used by the adversary to make the adversarial
examples further stronger in the face of defense mechanisms [35,82].

d. Data Randomization:

Research in this category deals with applying different modification operations on
adversarial examples such as random resizing and padding. This means that random
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sequences are added to the adversarial examples which reduces their effectiveness signifi-
cantly. Some researchers use the two randomization operations including random resizing
and random padding in the test phase. Accordingly, both non-iterative and iterative ad-
versarial attacks can be reduced in an effective manner [48]. Other researchers utilize
a separate module for conversing data where several operations of randomization are
performed such as Gaussian randomization during the training phase which strengthens
the model’s capability [49].

e. Adversarial Robust Features Development:

Some studies focus on utilizing feature space in defending adversarial attempts against
the classification process. They investigate developing adversarial robust features by study-
ing the underlying data in terms of natural spectral geometric aspect and its relationship
with the metric of interest. Their results reflect the effectiveness of the proposed approach
and guarantee that any function of the dataset can have a lower bound of robustness while
ensuring variation in outputs [51].

3.3.2. Model-Based Modification

This category covers the techniques of modifying the model through the methods of
parameter tuning, feature selection, and so on. Such techniques include the following:

a. Feature Squeezing:

The typical features space is generally large with several least essential elements that
can facilitate exploiting potential vulnerabilities of ML solutions. These vulnerabilities
lead to a large interference where the adversaries can craft adversarial examples and
benefit from the model’s high sensitivity. Feature squeezing is achieved by reducing the
feature and minimizing the complexity of data representation. The first feature squeezing
method works on reducing the color-bit depth by having encoded color with fewer values.
The second one applies a smoothing filter with the use of local and non-local techniques
where mapping several inputs to a single value is performed. This enhances the model
performance by reducing its complexity and makes it more robust but at the cost of
classification accuracy. Note that some weaknesses of this technique have been recently
reported [43].

b. Feature Masking:

Deep learning models can incorporate several layers when performing classification
tasks. There are some sensitive features within the model inputs that need to be hidden
from the adversary. Researchers found that adding a masking layer before processing the
classified model can avoid potential exploitation. The masking layer works on both the
original and the adversarial examples of images and calculates the most sensitive features
which have the highest weight. Thus, the technique changes the corresponding weights of
this additional layer to zero which leads to more privacy [52].

c. Gradient Hiding:

Some ML techniques such as decision tree, random forest, and K-Nearest Neighbor (K-
NN), yield non-differentiable models which make gradient-based attacks ineffective. This
inspires researchers to study the effectiveness of hiding the gradient information of models
so they cannot be used to craft adversarial examples. This technique is utilized specifically
for mitigating gradient-based attacks by causing numerical instabilities and restraining the
adversary attempt in gradient estimation [53]. However, both black-box and white-box
scenarios can be applied successfully and defeat this defense mechanism. It happens
by training a surrogate classifier which is used for gradient estimation and adversarial
examples generation due to the transferability characteristic of those examples [42].

d. Gradient Regularization:

Another defense solution related to gradient is proposed by the researchers in [57,58].
In particular, they used a regularization of input gradient which can be defined as a
robustification method for training differentiable Deep Neural Network (DNN) models



Appl. Sci. 2023, 13, 6001 16 of 33

that integrate a penalty term with the gradient of loss function. In this scenario, the
output variation is due to a change in the input in which a small perturbation does not
affect the model output. The authors showed also that the interpretability of adversarial
perturbations is increased through the adopted regularization. However, it increases the
complexity in terms of computational power by a factor of two.

e. Defensive Distillation:

The basic idea of distillation was proposed for knowledge transfer from large to small
networks [83]. This idea is adopted also as a defense mechanism by using the probability
distribution vector produced by the first model as input to the second model. The model
with large and intensive computations is simulated by a small model without changing
the neural network architecture and degrading the accuracy of model performance. This
helps in smoothing the training process and enhancing the model’s ability of generalization
to become more resilient against adversarial examples. The steps associated with the
defensive distillation experiment can be summarized as follows:

• First Step: Datasets are labeled using the probability vectors produced by the first
DNN. The newly produced labels are soft labels which are different from hard labels.

• Second Step: the second DNN model is trained using either the soft labels or both
hard and soft labels.

Due to the knowledge transfer between models, the second model is simplified in
terms of size, computational power, and training overhead keeping at the same time the
needed robustness [54]. However, the defensive distillation method is not effective against
some stacks such as Carlini and Wagner attack [80,81].

f. Model Verification:

ML models need a verification step to validate any processed input. As such, the
model input is assessed to ensure its adherence to the model’s properties and criteria
which in turn supports accurate detection of new unseen adversarial examples. One
research study demonstrates that this verification is an NP-complete problem and uses
the Satisfiability Modulo Theory (SMT) solver to address it. For robustness, it employed
Rectified Linear Unit (ReLU) activation function where neural networks are used with its
whole architecture without any simplification. This means not considering only limited
input regions and avoiding verification of only a problem approximation [55]. Moreover,
another research work [56] investigates the local adversarial robustness of DNNs by means
of discretization. Their proposed system indicates the consistency of the output label within
a specific neighborhood and is then applied through all the network layers.

g. Model Masking:

The researchers in [76] investigated other defense mechanisms by presenting a noise-
augmented classifier to perform masking and ensure robust classification. Accordingly,
they employed a very small noise within the logit output of the DNN model. The authors
showed that their incorrect logits mislead the attack. It was effective in mitigating the
low-distortion attacks and preserving the accuracy of the model.

h. Universal Perturbation defense method:

The universal perturbation defense method is used in defeating adversarial examples
where the ML model architecture includes a perturbation rectifying network (PRN). This
network is located before the input layer as a preprocessing layer. Both clean images and
images with perturbations are used for training the network. Another perturbations detec-
tor is additionally trained to denoise the inputs and extract features used to differentiate
between the PRN inputs and outputs [63]. Although the method gives satisfactory results
in identifying adversarial samples, the detector can be evaded using some attacks [84].

3.3.3. Other Defense Techniques

This category covers the techniques of using other supportive models in addition to
the main model for robustness reasons. Such techniques include the following:
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a. Ensemble Defenses

This technique combines multiple defense strategies to overcome adversarial attacks.
The combination can be made either in a parallel or sequential manner for extra protec-
tion [42]. In such context, PixelDefend [59] was introduced through the combination of
two defensive mechanisms including adversarial detection and input reconstruction [59].
However, the technique exhibits a considerable weakness against attacks. In particular,
the transferability property of adversarial examples impacts the effectiveness of PixelDe-
fend [85].

b. GAN–based Defenses

The idea of a Generative Adversarial Network (GAN) was first coined by Goodfellow
et al. [86]. Two neural networks including generator and discriminator were coupled in a
competitive manner in a defensive context against both white-box and black-box attacks. A
research study suggests the use of GAN to relocate the input image within the generator
range through the reduction of reconstruction error before being fed to the classifier. This
leads to reducing the possibility of adversarial examples by having the benign data points
closer to the generator range [60]. Another study uses a trained GAN in the cleaning
process of adversarial examples within the original dataset. Using different attacks and
datasets, the adversarial examples are scored lower than the original data points by the
GAN’s discriminator [61]. However, it is notable that the ability of interpretation and
generation plays a crucial role in the success of GAN. In addition, GAN requires a sufficient
level of training to ensure proper performance.

c. MagNet

MagNet [62] can be introduced as a framework that relies on two components to
defend against adversarial examples. Namely, these two components are a network of
detectors and a network of reformers. The first one is used to detect adversarial examples
from the original ones. On the other hand, the second component projects the adversarial
examples with small perturbations and transforms them into the original ones using an
automatic encoder. This technique shows effectiveness against black-box and gray-box
attacks while it shows a performance degradation in white-box attacks. Accordingly, using
more several encoders with a random selection might mitigate the adversary’s ability in
the scenario of white-box attacks.

3.4. Evaluation Metrics

In the following, we outline existing evaluation measures typically used by re-
searchers from different perspectives to assess the performance of Adversarial Machine
Learning techniques.

3.4.1. Statistical Measures

The first perspective is evaluating the classifiers’ performance using statistical mea-
sures widely used in the field of cyber security. This includes the confusion matrix with its
related metrics including accuracy, precision, recall, F-measure, ROC (receiver operating
characteristic) curve, and AUC (the area under the ROC curve). In terms of the confusion
matrix, it contains several values for classification results, either they are correctly or in-
correctly classified based on predefined classes. Most pre-mentioned metrics are inferred
from the confusion matrix values with different combinations. The model’s accuracy is
mainly concerned with its robustness where models with less vulnerability to adversarial
examples are preferred. The robustness of a model can be characterized based on two
essential elements:

• High accuracy results are reached when the model is used on training and test datasets.
• Input’s classification is consistently predicted the same for a given example.

In the context of adversarial examples, the models’ robustness is affected by the
perturbation size in which the model with high robustness means it requires a higher
possibility of minimum perturbation to cause misclassification.
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As such, these metrics cover the required information about the model and ease the
process of comparison between related research works [28].

3.4.2. Security Evaluation Curves

The second perspective is evaluating the security of classifiers using security evalua-
tion curves. Those curves can be used to investigate the classifiers’ performances when there
are multiple attacks with different attackers’ levels of strength and knowledge. As such,
those graph-based metrics are quite useful for comparing the different defense mechanisms
and reflecting their performance level [39].

3.4.3. Adversarial Examples-Related Measures

The third perspective is evaluating the security of classifiers using adversarial-related
measures. Those measures include:

• Success Rate: It is associated with the process of generating adversarial examples
where the increment of success rate relates to a decrease in the perturbation size. This
can be seen when a comparison is made between the generative methods of adversarial
examples where the iterative gradient sign method (IGSM) and the Jacobian-based
Saliency Map Attack (JSMA) method have a higher success rate than the fast gradient
sign method (FGSM). The first two methods generate adversarial examples with
lower or specific perturbations while the latter one performs large perturbations with
the chance of label leaking. Nevertheless, having adversarial examples with a 100%
success rate is quite difficult [28].

• Transfer Rate: It is associated with the transferability characteristic of adversarial
examples where those examples can be transferred across different models. As such,
the transfer rate is used for measuring which is the ratio of transferred adversarial
examples number to the total adversarial example number generated by the main
model. Transferability can be classified into targeted or non-targeted transferability
where it is measured by matching rate and accuracy rate, respectively. It depends on
two factors where the first one is the model parameters that contain its architecture,
capacity, and test accuracy. A better transfer rate when it comes to the first factor can
be achieved with similar architecture, small capacity, and high accuracy. The second
factor is the adversarial perturbation magnitude where the higher perturbation to the
original examples leads to a higher transfer rate [28].

4. Applications of AML towards Internet of Things (IoT) Robustness

In this section, the intersection between the Internet of Things (IoT) and Adversarial
Machine Learning (AML) is investigated. Different research works have conducted exper-
iments relevant to AML applications within IoT scenarios. For instance, authors in [64]
proposed an iterative pipeline of defense systems against adversarial examples. It mainly
encloses three elements: (i) A detector, (ii) An attack engine, and (iii) A defense mechanism.
The detector is a DL-based model used for visualization-based botnet detection. It contains
a feature extractor built using two consecutive convolutional layers and a classifier with a
fully connected layer. On the other hand, the considered attack engine combines gradient-
based adversarial attacks and GAN-based adversarial attacks. This includes FGSM [26],
DeepFool [79], projected gradient descent [64], and a custom generative adversarial net-
work named Pix2Pix conditional GAN [64]. Those components proceed harmonically
to simulate the process of adversarial examples and original data transformation which
are all used for crafting adversarial examples. For the defense mechanism, adversarial
training is employed to strengthen the system by updating the weights of the network
layers. The experiment results revealed the success of the system after a limited number
of iterations. The adversarial examples number of PGD method drops from 824 to 226
only. In [65], the authors proposed an ensemble defense system named, Def-IDS, to combat
adversarial attacks within Network Intrusion Detection Systems (NIDS) domain. Two
modules were associated to build the system. Namely, a multi-class generative adversarial
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network (MGAN) that aims at generating similar examples of the multi-class intrusions
instances through a single GAN model, and a multi-source adversarial retraining (MAT)
model intended to retrain the detector and thereby smooth the decision boundary for a
more robust classifier. It uses adversarial examples of several crafting methods including
FGSM [26], DeepFool [79], JSMA [38], and BIM attacks. The second module contributes
also to enhancing the detection of adversarial examples alongside ensuring the adversarial
examples’ transferability against multiple attacks. The resulting system was evaluated
using the CSECIC-IDS2018 dataset [87] and DNN model and yielded promising results. As
such, by applying the enhanced dataset to the training process, the intrusion detector is
getting more robust against both known and unknown adversarial attacks.

The researchers in [66] outlined an MBAGP-CNN system that incorporates vulnerabil-
ity verification and defense techniques using deep learning with a mixed batch adversarial
generation process. Crafting adversarial text-based CAPTCHAs is performed using several
attack methods such as FGSM [26], Iterative Fast Gradient Sign Method (I-FGSM) [36], and
the Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [66] algorithms. Specifi-
cally, the system works on breaking the transferability attack by feeding both the original
and the adversarial CAPTCHA images to the CNN model to perform the retraining process.
The authors demonstrated the enhanced generalization capabilities of the model where
it can defend against adversarial text-based CAPTCHAs compared with the image pro-
cessing filters and the transfer learning models. Competitive results have been achieved,
and the test accuracy of the defense model was only affected by 5% for three gradient-
based adversarial attacks. The study also investigated the effect of tuning the learning
rate in accelerating the convergence rate. However, even after performing a vulnerability
assessment, the risk of automatic malicious attacks still exists.

In [88], the effect of various levels of data poisoning attacks on four ML models was
investigated. Namely, Gradient Boosted Machines, Random Forests (RF), Naive Bayes
(NB), and Feedforward Neural Network (FNN) models were used in the experiments that
were intended to evaluate their robustness and compare the degradation results using
different poisoning rates ranging from 5% to 30%. ToN_IoT [89] and UNSW NB-15 [90]
datasets which contain a combination of benign and malicious instances were used in the
experiments. The results revealed that the model performance is affected negatively in a
correlation with the data poisoning increment level in terms of metrics such as accuracy
and detection rates. Especially, the performance degraded significantly when associating
the considered models with a 30% data poisoning rate. However, the study focuses only
on the impact of poisoning attacks without considering any defense mechanism intended
to reinforce the model’s robustness. Additionally, a disparate feature set is used by the
adopted classifiers which complicates the adversary attack attempt by increasing the
time complexity.

A hierarchical ensemble learning method was introduced in [67] to defend against
adversarial examples for network security classifiers. Particularly, a set of features based
on the destination ports visited by a host and TCP resets behavior are used. These features
set aims at distinguishing between benign and malicious traffic and detecting network
scanning. In a botnet detection scenario, the target classifier accuracy dropped to 47% after
performing an adversarial attack. Nevertheless, the proposed defense system enhances
accuracy again to reach 100%. However, enhancing the robustness comes at the cost of
computational complexity for the defender.

The researchers in [68] investigated the generation of adversarial examples by modify-
ing the models’ features. The difference between benign and malicious traffic is derived
using the features that correspond to higher relevance weight. For this purpose, Infor-
mation Gain Ratio is used for selecting the most key features followed by applying a
perturbation to those selected features. Several ML models including Bayesian Network,
Support Vector Machine (SVM), Decision Tree (DT), and Random Forest were deployed in
this research as NIDS. They were evaluated against Denial of Service (DoS) attacks using
an IoT network dataset. All models’ performances proved to be affected and decreased
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by up to 47%. On the other hand, the use of adversarial training improved the model’s
robustness against adversarial attacks.

In [91], the authors presented Kitsune, which is a specific deep learning-based NIDS for
an IoT environment. It contains four components: (i) Packet parser, (ii) Feature extractor, (iii)
feature mapper, and (iv) Anomaly detector. Furthermore, the Mirai [92] dataset was used
to evaluate the performance of Kitsune against four popular attacks. Namely, FGSM [26],
JSMA [38], C&W [80,81], and ENM [91] were considered in white-box attack scenarios. The
authors conducted experiments for measuring the success of both integrity and availability
attacks, and the standard LP distance metrics [28,33,34] were used for comparison. The
success rate of the integrity attacks for all the aforementioned algorithms reached 100%.
In terms of availability attacks, C&W [80,81] and ENM [91] yielded success rates of 100%
while FGSM [26] and JSMA [38] resulted in worse performance with 4% and 0% success
rates, respectively. The authors summarized that adjusting traffic features in a limited
range with only 1.38 of input features can allow adversaries to craft effective adversarial
examples that are capable of bypassing NIDS.

Different crafting methods of adversarial examples such as FGSM [26], PGD, and BIM
were used in [69] to evaluate the robustness of Feedforward Neural Networks (FNN) and
Self-Normalizing Neural Networks (SNN). The work investigated the classification perfor-
mance of these models within intrusion attacks scenario. The BoT-IoT [93] dataset was used
to study the robustness of the outlined models. The experiment results revealed that SNN
outperforms FNN when dealing with adversarial examples. The study suggested the role of
self-normalizing features in the superior performance of SNN. Therefore, the effectiveness
of feature normalization in enhancing models’ robustness was also investigated.

The authors in [94] investigated the robustness of smart speakers’ systems towards
adversarial examples threats. Several ML models including Decision Tree (DT), Random
Forest (RF), k-Nearest Neighbors (kNN), AdaBoost, and Neural Networks (NN) were
utilized. A new dataset enclosing network traffic of the smart home environment was
collected within 9 days with different microphone settings. Different adversarial techniques
were applied to the original traffic features including the constant padding and additive
white Gaussian noise (AWGN) techniques. The classification accuracy of the models was
measured based on different scenarios taking into consideration the used protocols and
network constraints. In [70], the effect of adversarial examples against six classifiers was
explored. Particularly, KitNET [92], Multi-Layer Perceptron (MLP), Logistics Regression
(LR), Decision Tree (DT), Support Vector Machine (SVM), and Isolation Forest (IF) were used
in the different experiment scenarios. Specifically, the authors used grey-box and black-box
adversarial attacks, as two attack scenarios, to evaluate the model’s robustness. One should
mention that the attack method relies on Particle Swarm Optimization (PSO) [95] used for
Traffic Mutation to mutate the given traffic using non-payload-based features. The authors
investigated three different defensive schemes, including Adversarial training, features
selection, and adversarial feature reduction, to strengthen their method. The experimental
results proved the effectiveness of the method with more than 97% evasion rate and more
than 50% evasion rate reduction for attack and defense schemes, respectively.

The researchers in [96] performed an adversarial attack against Kitsune, a deep
learning-based NIDS through a black-box scenario. The feature selection has been per-
formed using saliency maps in which the most critical features were identified. They used
a combination of saliency map and FGSM [26] methods to craft the adversarial examples
and attack an IDS for IoT networks named, Kitsune. Two attack scenarios from the Mi-
rai dataset [92] have been considered to evade detection which included an IoT botnet
attack and a video streaming application. In the first scenario, the attacker tries to modify
and alter malicious traffic while in the latter one, he tries to manipulate benign traffic
to be misclassified as malicious one. Although the modification was minimal with only
0.005% of the malicious packet bytes, the experiment results yielded an attack success rate
exceeding 95%.
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The authors in [71] investigated evading the NIDS detection through traffic time
change technique. They introduced a timing-based adversarial network traffic reshap-
ing attack named, TANTRA. The attack can use the timestamp attributes to reshape the
malicious traffic without affecting the packet’s content. Several DL-based NIDS methods
were selected including KitNET [92], Autoencoder, and Isolation Forest which were further
assessed using the Kitsune [92] and CIC-IDS2017 [97] datasets. The attack method proved
its efficiency and gained a high success rate of 99.99%. Additionally, the authors proposed
a defense mechanism by applying adversarial training on the models’ benign and reshaped
traffic. In [98], the utilization of generative adversarial networks (GAN) in detecting the
adversarial examples and enhancing the NIDS robustness was studied. The researchers
suggested maintaining attack features based on the generative adversarial networks (MAC-
GAN) which is a framework for anomaly detection attacks. This framework contained two
main components. The first one relies on manual analysis of the attack characteristics while
GAN represents the second component that is intended to evade the detection models. The
features of the network traffic can be classified into either perturbable or non-perturbable.
The first category is the only one chosen for modification by GAN’s generator. The CI-
CIDS2017 and Kitsune datasets were used in the evaluation of the framework that includes
multiple NIDS classifiers. These classifiers include KitNET, Isolation Forest, Gaussian
Mixture Modelling (GMM), Support Vector Machine (SVM), Stacked Autoencoder (SAE),
and Restricted Boltzmann Machine (RBM). The experimental results showed a degradation
in the classifiers’ performance. For instance, KitNET [92] True Positive Rate (TPR) dropped
from 99.8% to 0% after the attacks. The researchers in [99] used multiple adversarial ex-
amples crafting methods including JSMA [38], FGSM [26], and C&W [80,81] attacks. The
attacks were performed to evaluate multiple classifiers’ performances such as MLP, RF, DT,
and SVM using the BoT-IoT [93] and UNSW NB-15 [X] datasets. The experiment results
confirmed the strength of the aforementioned adversarial attacks against machine learning
classifiers. SVM was the most affected classifier with a decrease of accuracy of around 50%
on both datasets. On the other hand, RF showed great robustness among other classifiers
with a decrease in accuracy by 21%. In terms of attacks, C&W [80,81] was the most effective
attack when associated with UNSW-NB15 [90] dataset. On the other hand, FGSM [26]
performed well on the Bot-IoT dataset. However, JSMA [38] yielded less effect on both
datasets with respect to performance metrics including accuracy, F1-measure, and recall.

The effect of FGSM [26] attack against DL-based NIDS such as Gated Recurrent Unit,
LSTM, and CNN was explored in [72]. CICIDS2018 [87] dataset was used for three scenarios
of the training phase. Namely, original examples training, adversarial examples training,
and a combination of both prementioned training were investigated in this research. The
experiment results revealed the importance of adversarial training defense techniques in
enhancing the models’ resilience. Particularly, LSTM model robustness has been improved
in terms of accuracy. However, the decision boundary was affected after the adversarial
training. Recently, the authors in [73] designed a Graph Neural Network (GNN) based
solution to generate API graph embedding and identify malware from benign applications.
For defensive purposes, the Generative Adversarial Network (GAN)-based algorithm,
called VGAEMalGAN, was intended to attack the graph-based GNN Android malware
model. Specifically, this contributes to hardening the detection model against adversarial
inference attacks by retraining the model with the GAN-generated samples after being
labeled as malware. In [74], the researchers studied the effect of a Membership Inference
Attack (MIA) against a wireless classifier over the air. Such an attack infers some confiden-
tial information such as waveform, channel, and device characteristics. A proactive defense
mechanism is proposed by developing a shadow MIA model to fool the adversarial attempt.
The mechanism has successfully reduced the MIA effect on the classifier’s accuracy and
enhanced the privacy of the wireless signal classifier.

The authors in [75] performed an adversarial machine learning-based partial-model
attack using a data poisoning technique. For IoT models, the attack was conducted within
the data collection and aggregation stage of IoT systems assuming the adversary’s knowl-
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edge of the decision output of the IoT fusion center. The success rate of the attack reached
83% reflecting the high vulnerability of IoT systems against such attacks. Multiple defense
mechanisms were proposed without actual implementation. This includes the development
of a robust anomaly detection mechanism in the IoT fusion center, improvement of privacy
protection for all IoT infrastructure layers, and adversarial training. Another ML-based
application designated to industrial IoT and its vulnerabilities to adversarial attacks were
studied in [77]. The authors adopted crafting methods of adversarial samples based on
the Jacobian-based saliency map technique against several classifiers. For the malware
attack scenario, two defense mechanisms were proposed. They include specific selection
criteria of adversarial samples for retraining the classifiers. The first mechanism employed
the distance from the malware cluster centered on adversarial sample selection while the
other used a probability measure derived from kernel-based learning (KBL) [100]. The
two sample selection methods increased the detection accuracy by 6% compared to the
random selection method. In [78], the researchers explored over-the-air spectrum poisoning
attacks against an IoT communication system. They pointed out the energy efficiency and
detection complexity of attacks. The considered attack targets the spectrum sensing period
and modifies the transmitter’s input data. The adopted defense strategy confirmed the
robustness of the transmitter by intentionally making wrong decisions in specific time
slots and thereby misleading the adversary. The time slots are selected based on the low
classification scores which means these slots are not close to the decision boundary.

In [101], the authors investigated malware detection in black-box attack scenarios
through the employment of a GAN-based algorithm namely (MalGAN). The proposed
algorithm utilized two detectors to generate adversarial examples attacks and thereby
bypassing the target detection models in non-IoT environments. For the experiment,
six classifiers were used including random forest (RF), logistic regression (LR), decision
trees (DT), support vector machines (SVM), multi-layer perceptron (MLP), and a voting-
based ensemble of these classifiers (VOTE). The detection rate was drastically reduced to
approximately zero showing the MalGAN method’s superiority. The attacker is able to
control adversarial examples by changing their probability distribution. For defending the
attacks, adversarial training is used where they showed insufficient solutions.

The authors in [102] investigated several classifiers’ resilience against multiple classi-
fiers such as Support Vector Machines (SVM), Random Forest (RF), Convolutional Neural
Networks (CNN), and Auxiliary-Classifier Generative Adversarial Networks (AC-GAN).
They are evaluated in darknet traffic and application detection context to control such
illegal activities. The CIC-Darknet2020 dataset is used in the performance evaluation where
RF performed the best. They used AC-GAN as a sample generator for poisoning attacks to
craft adversarial examples based on probability analysis. The reduction of performance in
some selected classes reached zero which reflected a successful attack target. Adversarial
training is employed as a defense mechanism to enhance models’ detection rates. A brief
of the surveyed papers is presented in Table 2.
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Table 2. Summary of the Surveyed Papers.

Reference Adversarial
Technique Defense Technique Classifier Dataset Threat Model Evaluation Metrics Results and Findings

Taheri et al. [64]

• FGSM
• DeepFool
• PGD
• GAN

• Adversarial
Training • CNN • CTU-13 White-box Attacks

• Accuracy
• F-measure

• The study presented a victim model which
achieved a 99% rate of both accuracy and
F-measure.

• The study examined the robustness of the
victim model where the misclassification
rate for FGSM attack dropped from 673 to
237 samples.

Wang et al. [65]

• FGSM
• DeepFool,
• JSMA
• BIM

• Adversarial
Training

• GAN
• DNN • CSECIC-

IDS2018 Black-box Attacks

• Precision
• Recall
• F-measure
• Accuracy

• The study showed that the proposed system
smoothed the decision boundary of the
detector to detect multi-source adversarial
examples.

• The study showed that the proposed system
does not affect the detection accuracy of
original inputs.

Dankwa and Yang [66]
• FGSM
• I-FGSM
• MI-FGSM

• Adversarial
Training • CNN • Private Not defined • Accuracy

• The study investigated the robustness of the
MBAGP-CNN model using K-fold
cross-validation.

• The accuracy of the proposed defense
model against FGSM, I-FGSM, and
MI-FGSM attacks ranges between 84.30%,
83.44%, and 82.20%, respectively.

Dunn et al. [88]
• Poisoning

Attacks (not
identified)

• None

• Gradient Boosting
Machine

• RF
• NB
• FNN

• ToN_IoT
• UNSW NB-15 White-box Attacks

• Accuracy
• Precision
• False Positive Rate

(FPR)
• Detection Rate

• The study showed that the model’s accuracy
was proportional to the level of poisoning
by up to 20% using both datasets

• The study concludes the need for further
investigation of models’ robustness in a
defensive context.

De Lucia and Cotton [67]
• Feature

Importance
• Ensemble

Defenses • Not defined • Private White-box Attacks • Accuracy

• The study presented a defense in depth
method through composing several
classifiers for the security of wire and
wireless networks

• The study lacks details about the attack
strategies, classifier, and used dataset.

Anthi et al. [68]
• Feature

Importance
• Adversarial

Training

• RF
• J48 DT
• Bayesian Network
• SVM

• Smart Home
IoT testbed White-box Attacks

• Precision
• Recall
• F-measure

• The study explored the usage of the feature
importance method for perturbation and
crafting adversarial examples

• The study confirmed the effectiveness of
adversarial training in enhancing
classification performance.
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Table 2. Cont.

Reference Adversarial
Technique Defense Technique Classifier Dataset Threat Model Evaluation Metrics Results and Findings

Clements et al. [91]

• FGSM
• JSMA
• C&W
• ENM

• None • Kitsune • Mirai White-box Attacks

• Accuracy
• False Positive Rate

(FPR)
• Success Rate
• ·

• The study explored different attack
strategies for enhancing the classifier’s
robustness.

• The study proposed further investigation of
bridging the gap between the network
traffic and the adversarial examples of the
DL-based model.

Ibitoye et al. [69]
• FGSM
• PGD
• BIM

• Feature
Normalization

• DNN
• SNN • BoT-IoT White-box Attacks

• Accuracy
• Precision
• Recall
• F-measure

• The study provided two different DL-based
NIDS models that are compared in terms of
several evaluation metrics.

• The study pointed out the impact of feature
normalization on both robustness and
detection rates.

Ranieri et al. [94]

• Constant
Padding

• Savitzky–Golay
filters

• Additive White
Gaussian Noise
(AWGN)

• None

• AB
• DT
• kNN
• RF
• NN

• Private Black-box Attacks • Accuracy

• The study investigated various privacy
threats that can exploit smart speakers such
as Google Home Mini smart speaker

• The study revealed the lack of sufficient
adversarial learning countermeasures for a
smart speaker system using different attack
strategies.

Han et al. [70]
• PSO-based

Traffic Mutation
Algorithm

• Adversarial
Training

• Feature
Selection

• Adversarial
Feature
Reduction

• KitNET
• MLP
• LR
• DT
• SVM
• IF

• Kitsune
• CIC-IDS2017

- Grey-box
Attacks

- Black-box
Attacks

• Precision
• Recall
• F-measure
• Detection Evasion

Rate (DER)
• Malicious traffic

Evasion Rate
(MER)

• Malicious
Probability
Decline Rate
(PDR)

• Malicious features
Mimicry Rate
(MMR)

• The study showed the automatic mutation
attack of original traffic while preserving an
affordable execution overhead

• The proposed method included both attack
and defense mechanisms to investigate the
robustness of various NIDSs using different
ML/DL models and non-payload-based
features.

Qiu et al. [96]
• FGSM
• Saliency Map • None • KitNET • Mirai Black-box Attacks

• Success Rate
• Accuracy
• False Positive Rate

(FPR)

• The study presented two scenarios of
adversarial technique attacks toward
DL-based NIDS in a black-box environment.

• The study showed the significant
degradation of NIDS detection accuracy
with only minimal manipulation for the
traffic.
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Table 2. Cont.

Reference Adversarial
Technique Defense Technique Classifier Dataset Threat Model Evaluation Metrics Results and Findings

Sharon et al. [71]

• Timing-Based
Adversarial
Network Traffic
Reshaping
Attack
(TANTRA)

• Adversarial
Training

• KitNET
• Autoencoder
• IF

• CICIDS2017
• Kitsune Black-box Attacks

• Detection Rate
• False Positive Rate

(FPR)

• The study presented a timing-based
adversarial network traffic reshaping attack
named, TANTRA that showed a promising
result.

• The study investigated the classifier
robustness by performing training on both
benign traffic and reshaped malicious traffic.

Zhong et al. [98] • WGAN • None

• KitNET
• IF
• RBM
• SAE
• SVM
• GMM

• CICIDS2017
• Kitsune Black-box Attacks

• True Positive Rate
(TPR)

• The study utilized the perturbable features
of traffic to bypass ML-based detectors.

• The study verified the strength of GAN in
evading state-of-the-art ML-based detectors.

• ·

Pacheco and Sun [99]
• FGSM
• JSMA
• C&W

• None

• RF
• DT
• SVM
• MLP

• UNSW-NB15
• Bot-IoT White-box Attacks

• Accuracy
• Area Under the

Curve (AUC)
• Recall
• F-measure

• The study showed the effectiveness of
several attacks in decreasing the classifiers’
detection performance.

• The study utilized contemporary datasets
that reflected the modern network
environment to analyze the strength of
several attack methods.

Fu et al. [72] • FGSM • Adversarial
Training

• CNN
• LSTM
• GRU

• CICIDS2018 White-box Attacks • Accuracy

• The study explored different DL-based
NIDS while they are tested under FGSM
attack.

• The study investigated the effect of defense
mechanisms on the overall performance of
classifiers’ accuracy.

Yumlembam et al. [73] • GAN
• Adversarial

Training
• GAN

• GNN • CICMaldroid
• Drebin White-box Attacks

• Accuracy
• Precision
• Recall
• F-measure

• The study explored the effectiveness of
graph-based classification using GNN to
generate API graph embedding.

• The proposed detection system achieved an
accuracy of nearly 98.43% after retraining
using GAN-based- adversarial malware.

Shi et al. [74]
• Member

Inference Attack
(MIA)

• Adversarial
Training • DNN • Private Black-box Attacks • Accuracy

• The study showed an increase in member
sample accuracy while a decrease in
non-member samples.

• The study developed a defense scheme by
adding carefully crafted perturbations in the
classification process which affect the MIA
work.
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Table 2. Cont.

Reference Adversarial
Technique Defense Technique Classifier Dataset Threat Model Evaluation Metrics Results and Findings

Luo et al. [75]
• Poisoning

Attack

• Adversarial
Training

• Privacy
Improvement

• CNN
• SVM • Private White-box Attacks • Success Ratio

• The study revealed the vulnerabilities of IoT
systems towards adversarial machine
learning-based partial-model attack

• The attack disrupted the decision-making in
the process of data fusion of IoT with
limited control of only 8 IoT devices out of
20 devices.

Khoda et al. [77] • JSMA • Adversarial
Training

• SVM
• RF
• BN
• DNN

• Drebin White-box Attacks

• Accuracy
• Precision
• Recall
• F-measure

• The study focused on enhancing the defense
mechanisms of malware detection models
against adversarial samples.

• The defense mechanisms are based on
adversarial training where two sample
selection methods are used and
outperformed the random ones.

Sagduyu et al. [78]
• Poisoning

Attack

• Adversarial
Training

• Features
Development

• DNN • Private White-box Attacks
• Success Rate
• Misdetection Rate
• False Alarm

• The study investigated the AML attack’s
impact on over-the-air spectrum sensing
during both the test and training phases.

• The study showed the effectiveness of the
proposed defense mechanism in increasing
the errors in the adversary’s decisions and
preventing performance degradation of the
transmitter.

Weiwei et al. [101] • MalGAN • Adversarial
Training

• RF
• LR
• DT
• SVM
• MLP
• VOTE

• Private Black-box Attacks • TPR

• The study explored the use of GAN in
malware and black-box scenarios to
enhance the detection rate of IDS

• The study indicated the strength of the
proposed algorithm (MalGAN) in
decreasing the detection rate with the use of
adversarial retraining as a defense
mechanism.

Rust-Nguyen et al. [102]
• Poisoning

Attack
• Adversarial

Training

• SVM
• CNN
• RF
• AC-GAN

• CIC-
Darknet2020
dataset

White-box Attacks • Accuracy

• The study evaluated darknet traffic
detection with consideration of adversarial
attacks’ impact.

• The study reflected the successful attempt of
AML attacks against the best-performing
classifiers while the defense method is not
detailed.
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5. Discussion & Research Directions

Adversarial Machine Learning has been applied to evaluate the robustness of ML-
based NIDS by proposing context-related methods for attack, defense, or both. Despite the
noticeable progress in exploiting AML within NIDS applications, the surveyed works ex-
hibit a considerable scarcity of recent comprehensive surveys relevant to AML applications
within IoT frameworks, specifically.

In the case of attack methods, several adversarial crafting techniques have been pro-
posed. One can notice that FGSM [26] was the most used one followed by JSMA [38] and
C&W [80,81] attacks. However, FGSM [26] might be an impractical option for the NIDS
field since it works on perturbing each possible feature for crafting adversarial examples.
Those features exhibit high dependency, strong correlation, and hard constraints. This
makes the process impractical and even harder to deploy. Additionally, the process of
perturbation is challenging since the adversary needs complete control to perform such
an operation. In terms of attack strategies, most of the works assume a black box setting
that is suitable for simulating real-world attacks where the attacker can have access to
the system’s outputs with limited knowledge about the inputs. Additionally, the valid-
ity and properness of adversarial examples generated by generic crafting techniques are
not assessed sufficiently. This yields potential inconsistency in the generated adversarial
traffic. The features of network traffic are structured using specific data types and value
ranges. Namely, they can have binary, categorical, or continuous values compared to other
domains such as image recognition where such constraints are relaxed. Moreover, many
ML algorithms are designed to manage numerical values which require the conversion of
categorical values into multiple binary features. This conversion results in serious flaws
in applying the perturbations by the famous AML crafting methods such as FGSM [103].
It is worth noting the criteria for selecting the proper crafting techniques by considering
several important aspects such as computational power, features space, and perturbations
magnitude. Consequently, the validity of adversarial examples can be measured by ensur-
ing limited perturbations, defined values range, retained features semantic relations, and
preserved network traffic information [104].

Adversarial crafting methods have been performed against a wide range of ML-based
classifiers including both shallow and deep learning methods such as NB, SVM, DT, RF,
MLP, CNN, and DNN. Notably, the reported performance of these classifiers degraded
drastically. In particular, CNN, DT, and NB yielded the worst results. Additionally, one can
notice the lack of publicly available datasets for AML applications in the IoT domain. In
fact, most of the state-of-the-art works used Kitsune [92] and CICIDS (2017/2018) [87,97]
datasets. As such, there is an urgent need to have benchmarking datasets that reflect the
current IoT network structures and features in order to evaluate the performance of NIDSs
under adversarial machine learning attacks.

Even though different attack strategies have been studied, only a few research consider
defense mechanisms for enhancing the robustness of ML-based classifiers. Moreover, no
customized mechanisms have been proposed to defend IoT against AML attacks compared
to image recognition applications. Moreover, some studies did not incorporate any defense
solutions while others used a limited number of generic techniques. Actually, adversarial
training is the most used defense technique compared to feature reduction, ensemble
learning, and GAN-based defense. NIDS requires a real-time operation to allow proper
processing of the network’s traffic. However, several challenges such as process overhead,
computational power, and memory requirements are faced by defense mechanisms in
the context of NIDS in IoT environments. For example, feature reduction and adversarial
training might affect the decision boundary and yield a misclassification of the original
examples as negative cases. Additionally, ensemble learning leads to high complexity in
terms of the computational power of training and deploying the model. Thus, it is quite
challenging to balance between the good detection of original examples and the robust
performance towards adversarial ones.
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Recent research works have paid attention to Reinforcement Learning (RL) as a promis-
ing research area to tackle the IoT challenges [3]. RL is used with agents that can interact
with the surrounding environment for rewards as optimization targets. Such an agent is
linked with the IoT environment and exposed to several AML challenges including conver-
gence and real-time problems. Several significant research gaps are found that need to be
considered as extensions of IoT potential applications. Consideration needs to be given to
both the computational and storage overhead of RL [3,105]. Another trending solution is
the use of federated learning which allows the deployment of ML applications on the large
scale of IoT. It can provide decentralized, collaborative, and privacy-preservation solutions
while handling IoT specifications. However, it is also subjected to AML attacks that can
deceive the FL-based model and thereby requires more sophisticated defense methods for
further investigation [106].

6. Conclusion & Future Works

Machine learning approaches within IoT networks have been gaining an increasing
popularity since there are large constraints found within IoT environments. Thus, ML-
based NIDSs are widely adopted within IoT systems to enhance the detection rates of
any potential attacks and threats. However, those systems are subjected to adversarial
examples threats that degrade the overall performance significantly. This reflects the
importance of studying the AML characteristics and features to boost the robustness of the
ML-based detectors. This can help in mitigating catastrophic impacts on the IoT network
in the case of security issues. Thus, this study presents an in-depth overview of the latest
research progress on the intersection between IoT and AML fields. In such a context, a
wide variety of adversarial attack generation and defense methods have been explored
to analyze the current research works. The surveyed studies contribute to forming the
maturity levels of current research on AML and IoT in terms of three main aspects: attack
methods, defense methods, and evaluation metrics. Moreover, a discussion of the most
important findings and results are presented in terms of strength, weakness, and future
directions. To sum up, this paper extensively investigates, analyses, and discusses the
current literature works to find out gaps, shortcomings, and limitations. A conclusion is
reached where there are some specifications of IoT networks that require tailored solutions
to address the related issues. For future enhancement, federated learning (FL) represents an
emerging paradigm [14] that allows the deployment of ML applications on the large scale
of IoT and its highly constrained networks while maintaining their privacy and security.
Such a paradigm enhances the design of global detection models which are composed
of sub-models from other IoT devices in a distributed manner. This distributed learning
architecture can be explored further in future work to address potential security attacks
and possible robustness issues.
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