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Abstract: Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of
clustering algorithms and have a weak ability to handle high-dimensional data. To solve these
problems, we developed the viewpoint-driven subspace fuzzy c-means (VSFCM) algorithm. Firstly,
we propose a new cut-off distance. Based on this, we establish the cut-off distance-induced clustering
initialization (CDCI) method and use it as a new strategy for cluster center initialization and viewpoint
selection. Secondly, by taking the viewpoint obtained by CDCI as the entry point of knowledge, a new
fuzzy clustering strategy driven by knowledge and data is formed. Based upon these, we put forward
the VSFCM algorithm combined with viewpoints, separation terms, and subspace fuzzy feature
weights. Moreover, compared with the symmetric weights obtained by other subspace clustering
algorithms, the weights of the VSFCM algorithm exhibit significant asymmetry. That is, they assign
greater weights to features that contribute more, which is validated on the artificial dataset DATA2
in the experimental section. The experimental results compared with multiple advanced clustering
algorithms on the three types of datasets validate that the proposed VSFCM algorithm has the best
performance in five indicators. It is demonstrated that the initialization method CDCI is more effective,
the feature weight allocation of VSFCM is more consistent with the asymmetry of experimental data,
and it can achieve better convergence speed while displaying better clustering efficiency.

Keywords: fuzzy clustering; fuzzy c-means; cluster center initialization; machine learning; image
processing; fuzzy sets

1. Introduction

Clustering algorithms have received widespread attention and applications in various
fields, such as pattern recognition, biology, engineering systems, image processing, and so
forth [1–7]. For clustering algorithms, the data points in a given data set are divided into
several clusters, and the similarity between the data points in the same cluster is greater
than that in other clusters; meanwhile, there are strong differences among the clusters,
which contribute to the presentation of asymmetric data structure. In the early stage, hard
(Boolean) clustering was mainly studied, where every object strictly belonged to a single
cluster. For example, The DPC algorithm [8] is an excellent representative of this category.

Among numerous fuzzy clustering algorithms, the fuzzy c-means (FCM) algorithm is
one of the most commonly used methods [9–14]. In general, FCM attached equal impor-
tance to all features of data, establishing a symmetrical structure, which might often be
inconsistent with that of the original data. Therefore, the use of weighted processing has
become an important development direction. The weighted FCM (WFCM) algorithm [15]
grouped data according to the weighted categories of the separated features, and the
algorithm incorporated feature weights into commonly used Euclidean distances for clus-
tering. The feature-weighted fuzzy k-means (FWFKM) algorithm [16] was based on the
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fuzzy k-prototypes algorithm and a supervised algorithm. However, it still required two
objective functions to optimize the data partition and feature weights. The attribute weight
algorithm (AWA) [17] was a fuzzy weighted subspace clustering algorithm, which could
effectively find the important features of each cluster, that is, discover the asymmetry of
data. However, the disadvantage of the AWA algorithm was that it did not work when the
standard deviation of certain attributes was zero, as zero might be used as the denominator
in the learning rules. Improved versions have been proposed to overcome this weakness,
including the fuzzy weighted k-means (FWKM) algorithm [18] and the fuzzy subspace
clustering (FSC) algorithm [19,20]. In the objective function of FWKM, a small constant
was added when calculating the distance, which effectively avoided the problem caused
by the zero standard deviation of some attributes in AWA. Gan et al., proposed the FSC
algorithm, which used a strategy similar to the FWKM algorithm discussed earlier. How-
ever, they had a significant difference in the method of parameter setting. The constant
parameter introduced in FSC should be set manually, while that in FWKM was set through
a predefined formula.

However, when clustering is completed in a high-dimensional space, the traditional
clustering algorithms will expose obvious drawbacks [21–23]. For example, for any given
pair of data points in the cluster of a high-dimensional space, these points may be far apart.
Due to the lack of multi-dimensional space thinking, traditional algorithms may have some
deviations in calculating the distance, resulting in unsatisfactory clustering performance.
For most traditional clustering algorithms, a key challenge is that in many real-world
problems, data points in different clusters are often related to different feature subsets; that
is, clusters can exist in different subspaces [24–26]. Frigui and Nasraoui [27] proposed a
new approach called simultaneous clustering and attribute discrimination (SCAD). It used
continuous feature weighting, providing a richer feature correlation representation than
feature selection. Moreover, it also independently learned the associative representation
of features of each cluster in an unsupervised way. Later, Deng [28] studied the use of
intra-class and inter-class information, and proposed a new clustering method, called
enhanced soft subspace clustering (ESSC). However, many irrelevant data would affect the
clustering performance of fuzzy clustering algorithms. In other words, different charac-
teristic features should have different importance in clustering. Yang and Nataliani [29]
proposed a feature-reduction FCM (FRFCM) algorithm, which automatically calculated
the weight of a single feature while reducing the influence of these unrelated features.
Tang et al. [30] proposed a new kernel fuzzy clustering method called viewpoint-based
kernel fuzzy clustering with weight information granules (VWKFC). Because its new ini-
tialization algorithm is more efficient in selecting cluster centers, namely the kernel-based
hypersphere density initialization algorithm, combined with weight information particles
and viewpoint induction mechanisms, VWKFC is significantly superior to the other eight
existing related algorithms in processing high-dimensional data.

In the early stage, the clustering process was entirely data-driven. In fact, domain
knowledge could be used to assist the development of clustering. W. Pedrycz et al. [31]
introduced knowledge into a data-driven process, where knowledge was embodied through
viewpoints, thus giving a viewpoint-based fuzzy clustering algorithm V-FCM. Tang et al. [32]
proposed a new knowledge and data-driven fuzzy clustering algorithm, which was called
the density viewpoint-induced possibilistic fuzzy clustering algorithm (DVPFCM). There-
into, a new calculation method of density radius was proposed. Based upon this, the
hypersphere density-based cluster center initialization (HDCCI) algorithm was established
to obtain the initial cluster centers in densely sampled areas. Then, the high-density
points obtained by the HDCCI method were used as new viewpoints, and they would be
integrated into the DVPFCM algorithm.

The current problems of fuzzy clustering algorithms are mainly as follows:

• Sensitive to cluster initialization

Most fuzzy clustering algorithms are sensitive to the initial results of clustering. For
example, FCM, V-FCM, SCAD, ESSC, and FRFCM all rely on the result of the initialization
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method. Compared with them, the initialization processing mechanism in the DVPFCM
algorithm is better; that is, the initialization method HDCCI is based on the DPC algorithm.
However, the HDCCI algorithm still has a shortcoming existing in the calculation method
of cut-off distance. It uses a fixed and strict formula, which lacks a solid foundation and
proof process and can not adapt to various data sets.

• Weak adaptability to high-dimensional data

With the arrival of the big data era, the volume of information is constantly increasing,
and the dimensions are getting higher simultaneously, which forces clustering algorithms
to have the ability to deal with high-dimensional data properly. However, most clustering
algorithms are still weak in this aspect. When faced with high-dimensional data, FCM,
V-FCM, and DVPFCM have no corresponding measures. Obviously, none of them can
do this. SCAD, ESSC, and FRFCM all use subspace processing methods with different
weights, which are relatively, better. However, the algorithms mentioned above are purely
data-driven algorithms, and the clustering efficiency and accuracy of high-dimensional
data cannot reach the ideal level.

In this study, we put forward the VSFCM algorithm and the following is a brief
introduction.

On the one hand, we put forward a new optimized cut-off distance calculation method
based on the DPC algorithm, which can select the point with the highest density as the
viewpoint to induce the algorithm to find the cluster center more accurately. That is, the
cut-off distance-induced clustering initialization method CDCI provides a new initialization
strategy and perspective in this field. Under the guidance of this initialization method,
the number of iterations of the algorithm is reduced, and the accuracy of the algorithm is
also improved. On the other hand, we introduce viewpoints into subspace clustering to
improve the convergence speed of each subspace. Moreover, the separation term is added
between the clusters to minimize the compactness of the subspace clusters and maximize
the projection subspace of each cluster. On the basis of the CDCI and the viewpoint,
combined with the above fuzzy feature weight processing mode, the viewpoint-driven
subspace fuzzy c-means algorithm VSFCM is established.

The innovations of this study are reflected in the following aspects. First of all, a
new cut-off distance is proposed, improving the cluster center initialization effect and also
serving as a new viewpoint selection method, which can better adapt to the clustering data
structure and speed up the clustering process. Secondly, the fuzzy weight is introduced,
that is, a weight that is added to each cluster and dimension to reflect the contribution
degree of each feature to the clustering. Among them, smaller weights are assigned to
features with a larger proportion of noise point values to reduce their participation in
clustering and indirectly weaken their impact on clustering results. Finally, a new method
of separation between clusters is given. The average value of the initialized cluster centers
is used as the reference point for separation between clusters. Additionally, combined with
the optimized weight allocation, the distance between clusters can be effectively increased.

The paper is organized as follows. Section 2 reviews existing related algorithms.
Section 3 describes the proposed clustering initialization method CDCI and the viewpoint-
driven subspace fuzzy c-means algorithm VSFCM in detail. Section 4 presents the experi-
mental results of the VSFCM algorithm and several other relevant algorithms on artificial
data sets and some data sets of machine learning. Section 5 gives a summary and outlook
for further research.

2. Related Work

In this section, we review several clustering algorithms closely related to our work.
Assuming that the data set X= {xj}n

j=1 is a set of n samples, we divide the data into
c (2 ≤ c ≤ n) clusters to get a set of cluster centers V = {vi}c

i=1. Each sample xj and cluster
center vi are positioned in Rl space where l is the data dimension.
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The objective function of the FCM algorithm [33] is as follows:

JFCM =
n

∑
j=1

c

∑
i=1

um
ij d2

ij (1)

Among them, uij is the degree of membership, which ranges from 0 to 1, and needs

to satisfy the constraint
c
∑

i=1
uij = 1(j = 1, 2, · · · , n). dij

2 =
∥∥xj − vi

∥∥2 represents the Eu-

clidean distance between the i-th cluster center and the j-th sample, and m ∈ (1, +∞) is a
fuzzy coefficient.

Frigui and Nasraoui [27] established two versions of the SCAD algorithm. SCAD1
attempts to balance the two terms of a composite objective function and introduces a penalty
term to determine the optimal attribute-related weight. Moreover, SCAD2 introduces a
fuzzy weighted index to minimize the single-item criterion. In subsequent experiments,
we choose to compare our algorithm with SCAD1, so only its expression is shown here:

JSCAD1 =
n

∑
j=1

c

∑
i=1

um
ij

l

∑
k=1

wikd2
ijk +

c

∑
i=1

θi

l

∑
k=1

w2
ik, (2)

Thereinto, the distance formula is dijk =
∣∣∣xjk − vik

∣∣∣, θi is a weighted constraint ex-
pressed as

θ
(t)
i = K

n
∑

j=1
(ut−1

ij )
m l

∑
k=1

wt−1
ik dt−1

ijk

l
∑

k=1
(wt−1

ik )
2

. (3)

Here K is a constant, and the superscript t − 1 is the previous iteration of the t-th.
Frigui and Nasraoui proved that SCAD1 and SCAD2 had similar behavior and yielded
similar clustering results.

Deng et al. [28] proposed the enhanced fuzzy weighted soft subspace clustering (ESSC)
algorithm. The most prominent advantage of this algorithm is its ability to minimize the
intra-class distance while maximizing the inter-class distance. The objective function of the
algorithm is as follows:

JESSC =
c

∑
i=1

n

∑
j=1

um
ij

l

∑
k=1

wik

∣∣∣∣∣∣xjk − vik

∣∣∣∣∣∣2 + γ
c

∑
i=1

l

∑
k=1

wik ln(wik)− η
c

∑
i=1

(
n

∑
j=1

um
ij )

l

∑
k=1

wik(vik − v0k)
2. (4)

Here η and γ are constants, η ∈ [0, 1], γ ∈ [1,+∞]. Moreover, wik is the feature

weight, which satisfies
c
∑

i=1
wik = 1(k = 1, 2, · · · , l). The third term is the weighted inter-

class separation term, v0 represents the center point of this data set, and the expression is

v0 =

n
∑

j=1
xj

n
(5)

Because the ESSC algorithm considers both distances within and between classes and
uses the idea of entropy information, it has certain advantages in soft subspace clustering
algorithms belonging to the same category. One disadvantage of ESSC is that more param-
eters need to be set manually, and how to select the appropriate parameters of it is still an
open question.

Yang and Nataliani [29] came up with the feature-reduction FCM (FRFCM) algo-
rithm. It calculates a new weight for each feature by adding feature-weighted entropy
to the FRFCM objective function. Then, during the iteration, the cluster centers and the
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fuzzy membership matrix are updated with these new weights. It not only improves the
performance compared with the FCM algorithm but also can select important features
by weighting and reducing the feature dimension by discarding unimportant features.
Therefore, the algorithm can automatically reduce the feature dimension and achieves a
good clustering effect.

The V-FCM [31] algorithm optimizes the FCM algorithm by introducing the view-
points. The viewpoints are represented by typical characteristic data of artificial selection,
such as average value, maximum value, and minimum value. The objective function of the
algorithm is as follows:

JV−FCM =
n

∑
j=1

c

∑
i=1

l

∑
k=1

um
ik ‖ xjk − gik ‖ 2. (6)

The V-FCM algorithm still has problems that it is not suitable for processing high-
dimensional data, is sensitive to the initialization of cluster centers, and the selection of
viewpoint types will also affect the clustering results.

The DPC algorithm [8] assumes that the cluster center is surrounded by neighbors
with lower local density, and they are at a relatively large distance from any points with a
higher local density. For all data points xj, it is necessary to calculate their local density and
the minimum distance δj between itself and other points with higher local density ρk. The
formulas are (j ∈ {1, 2, · · · , n}):

ρj = ∑ f (djk − r), (7)

f (x) =

{
1, x = djk − r < 0
0, other

, (8)

δj = min
{

djk

∣∣∣ρk > ρj, k ∈ {1, 2, · · · , n}
}

. (9)

Here djk is the distance between two data points and r is the density radius. The local
density reflects the number of data points within the radius r. For the point with the largest
local density value, its δj = max

{
djk

∣∣∣k 6= j, k ∈ {1, 2, · · · , n}
}
(j ∈ {1, 2, · · · , n}). In the

DPC algorithm, according to the ρ− δ distribution map, the data point with high density
and a larger distance from the data point with a higher density are regarded as the cluster
center. The reason is that the true cluster center has a large value of ρj and δj, while the δ of
the noise point is small.

Recently, Tang et al. [32] proposed the density viewpoint-induced possibilistic fuzzy
c-means (DVPFCM) algorithm. It provides a new initial method called the hypersphere
density-based cluster center initialization (HDCCI) method, which is served for the view-
point selection. On the basis of it, and combined with the advantages of FCM and PFCM, the
DVPFCM algorithm is proposed. The specific objective function of DVPFCM is expressed
as follows:

JDVPFCM = ∑n
j=1 ∑c

i=1

(
aum

ij + btp
ij

)∥∥xj − hi
∥∥2

+
σ2

m2c∑c
i=1 ∑n

j=1

(
ϕj − tij

)p
. (10)

where

hi =

{
vi, i 6= q
xd, i = q

, (11)

Here m and p are the fuzzy coefficients and the typical matrix fuzzy coefficient, respec-
tively. With the help of the viewpoint, its convergence speed has been improved, and its
robustness has also been strengthened.

Unfortunately, the above six algorithms, FCM, SCAD1, FRFCM, V-FCM, ESSC, and
DVPFCM algorithms, all have the problem that they are sensitive to the initialization of
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cluster centers. An improper initial value may cause the result to converge to a local optimal
value or cause a slow clustering process, which has a great impact on the clustering result
and also contributes to the unstable result of the algorithm.

Moreover, these algorithms also have other problems. The FCM algorithm is the most
classic algorithm, but the actual efficiency and accuracy of processing high-dimensional
data of it are usually not ideal. Although the V-FCM algorithm combines viewpoints
to simplify the algorithm process and improve the convergence speed of the algorithm,
its anti-noise ability is still weak. The ESSC algorithm proposes a weighted subspace
clustering objective function based on entropy, which greatly increases the intra-cluster
compactness and inter-cluster separation. However, more parameters need to be manually
set, which increases the uncertainty of the algorithm. The characteristic of FRFCM is to
select important features by weighting and to reduce the feature dimension by discarding
unimportant features, but it fails to take the spatial features of the data into account.

The DPC algorithm is a hard clustering algorithm with a fast running speed, but its
density radius is difficult to determine. The cluster center needs to be obtained by observing
the density–distance distribution graph, for which it is easy to generate human error. The
DVPFCM algorithm is slightly weaker when processing high-dimensional data. In addition,

r =
max(dij)

c is proposed in DVPFCM, which is used to calculate the density cut-off radius,
but there is no rigorous proof that the radius obtained is appropriate. Actually, this formula
cannot achieve a good result in many cases, and the robustness is not very ideal. The
comparison of these algorithms is summarized in Table 1.

Table 1. Comparison of advantages and disadvantages of each algorithm.

Algorithm Advantage Disadvantage

FCM Classic algorithm can automatically find
cluster centers.

Sensitive to cluster center initialization, poor
noise immunity.

V-FCM Simplified clustering process, fast convergence. Poor noise immunity, sensitive to cluster center
initialization.

DPC Can quickly determine cluster centers.
The density radius is difficult to determine; cluster
centers are not easy to obtain, and there are often

human errors.

SCAD Fuzzy weighted index is introduced to obtain
better weight value. Sensitive to cluster center initialization.

ESSC Taking the distance between clusters into
account, using entropy information.

Sensitive to cluster center initialization, more
parameters need to be set manually.

FRFCM
Select important features by weighting, and

reduce feature dimension by discarding
unimportant features.

Sensitive to cluster center initialization without
considering the spatial characteristics of the data.

DVPFCM
With the help of new viewpoints and typical
values, there is relatively stronger robustness;

there is a better initialization strategy.

Processing high-dimensional data appears weak,
and the cut-off distance is not perfect.

In a word, the existing algorithms still have great defects in the initialization of cluster
centers and the processing of high-dimensional data. For this reason, we focus on solving
these two types of problems.

3. Proposed VSFCM Algorithm

In this section, a new cluster initialization method named the cut-off distance-induced
clustering initialization (CDCI) is proposed first. Based on the CDCI, the viewpoint-
driven subspace fuzzy c-means algorithm (VSFCM) is established subsequently, which has
introduced the subspace clustering mode and fuzzy feature weight processing mechanism
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and combined with the separation formula between clusters optimized with the viewpoint.
Its algorithm idea is shown in Figure 1.
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3.1. Cluster Initialization Method Induced by Cut-Off Distance

Here is a new cluster center initialization method. The following is the corresponding
flowchart (Figure 2).

The DPC algorithm is used as the start point, where the local density ρ of the data
point and its minimum distance δ between itself and other points with higher local density
still use the previous calculation formulas, namely (7) and (9).

In this study, we put forward a new cut-off distance as follows:

cd = min((cd1 + cd2)/2, cd1). (12)

Among them,

cd1 = Dposition, cd2 =
dmax

2c
. (13)

We arrange dkj in ascending order, and we might as well write the resulting ordered
sequence as D (d1 ≤ d2 ≤ . . . ≤ dmax). Moreover, n is the number of data points, and c is
the number of clusters. dkj is the distance from the data point xk to xj. The cut-off distance
recommended by the DPC algorithm should make the average number of neighbors of
each data point about 1–2% of the total data. So, we choose the cut-off distance according
to the upper limit ratio of 2%, which can be taken as position = round(2%×M), where
M = 1

2 n(n− 1). Hence we get Dposition, namely cd1.This is the first factor.
Then, the data are divided into c clusters in the form of containing the maximum

distance dmax as the radius. Additionally, the reference number is dmax
2c , which is recorded

as cd2. In the actual processing, cd1 and cd2 are combined as another factor (cd1 + cd2)/2.
Considering that the average number of neighbors is about 1–2% of the total data, and

selecting the smaller one of the two factors, (12) is obtained. Then, naturally, we use the
new local density calculation formula:

ρk = ∑ f (dkj − cd). (14)
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Next, we introduce parameters τj (j = 1, · · · , n) to calculate the initial cluster centers
directly. The formula is as below:

τj = ρj × δj. (15)

The traditional DPC algorithm uses the ρ− δ distribution map to subjectively select
the cluster centers, which is easy to cause human error. In contrast, the initialization method
we proposed can automatically select a more appropriate cut-off radius so that the selected
initial cluster center is closer to the true value. Specifically, we calculate the parameters
τj (j = 1, · · · , n) and sort them from small to large, and then select the point of the largest
value of τj as the first initial cluster center. In the next high-density point selection process,
we limit the distance between the current cluster center and other selected cluster centers to
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be greater than the cut-off distance, ensuring that we can choose the initial cluster centers
and viewpoints more conveniently, efficiently, and accurately.

3.2. The Mechanism of the VSFCM Algorithm

Here, we show the main idea of the viewpoint-driven subspace fuzzy c-means (VS-
FCM) algorithm. Its flowchart is shown below (Figure 3).
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The first initial cluster center selected by the CDCI method is recorded as xe (i.e.,
the point of the largest value of τj), which is taken as the viewpoint. The position of our
viewpoint is constantly changing with iteration. The row number of the viewpoint in the
cluster center matrix is q = arg(min(dqe)) with dqe = ‖ vq − xe ‖ . That is, we replace the
cluster center closest to the viewpoint as the viewpoint.

We use three parts to complete the construction of the objective function. In the first
part, the fuzzy feature weight is combined with the classical FCM algorithm, and the cluster
centers and the viewpoint are integrated together. The second part is an adaptive fuzzy
weight penalty term, which uses the parameter ϕi that can be automatically calculated. The
third part represents the inter-cluster separation term, in which the fuzzy feature weight
and the cluster center that is integrated with the viewpoint are used, and the centroid of the
initialization cluster center serves as the reference point for inter-cluster separation. The
objective function is expressed as follows:

JVSFCM =
c

∑
i=1

n

∑
j=1

um
ij

l

∑
k=1

wt
ik

∣∣∣∣∣∣xjk − hik

∣∣∣∣∣∣2 + c

∑
i=1

ϕi

l

∑
k=1

wt
ik − η

c

∑
i=1

(
n

∑
j=1

um
ij )

l

∑
k=1

wt
ik‖ v0k − hik ‖2. (16)

Among them (i = 1, . . . , c).

hi =

{
vi, i 6= q
xe, i = q

, v0 =
c

∑
i=1

vi/c . (17)

The following constraints are imposed (i = 1, . . . , c, j = 1, . . . , n)

c

∑
i=1

uij = 1,
l

∑
k=1

wik = 1. (18)

Here, hi is the cluster center fused with the viewpoint. When i = q, hi is replaced with
the point of maximum value of τ, namely the viewpoint. The reference point of separation
between clusters is the above (17). The fuzzy weight wt

ik is the weight of the k-th feature
of the i-th cluster, in which the fuzzy coefficient t is used, and generally t > 1. ϕi is the
parameter used to implement the fuzzy weight penalty. Parameter η is used to adaptively
adjust the value of the separation term between clusters.

Note that (16) can be transformed into:

J =
c

∑
i=1

n

∑
j=1

um
ij

l

∑
k=1

wt
ik[(xjk − hik)

2 − η(v0k − hik)
2] +

c

∑
i=1

ϕi

l

∑
k=1

wt
ik. (19)

The solution process is given below. We use the Lagrangian multiplier method for
(19), and it becomes an optimization problem of the following formula:

J′ =
c

∑
i=1

n

∑
j=1

um
ij

l

∑
k=1

wt
ik[(xjk − hik)

2 − η(v0k − hik)
2] +

c

∑
i=c

ϕi

l

∑
k=1

wt
ik −

n

∑
j=1

λj(
c

∑
i=1

uij − 1)−
c

∑
i=1

ζi(
l

∑
k=1

wik − 1). (20)

In order to minimize (20), the following three partial derivative relations need to
be satisfied:

∂J
′

∂uij
= 0,

∂J
′

∂hik
= 0,

∂J
′

∂wik
= 0, i = 1, . . . , c, j = 1, . . . , n, k = 1, . . . , l. (21)

For the convenience of expression, we set

Dij =
l

∑
k=1

wt
ik[(xjk − hik)

2 − η(v0k − hik)
2]. (22)
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Firstly, we give the solution process of uij. Starting from ∂J
′

∂uij
= 0, we get

∂J′

∂uij
= mum−1

ij Dij − λj = 0. (23)

From (23), we obtain

uij = (
λj

mDij
)

1
m−1

. (24)

Because 1 =
c
∑

i=1
uij =

c
∑

i=1
(

λj
mDij

)
1

m−1
, it follows that

(
λj

m
)

1
m−1

=
1

c
∑

l=1
D
− 1

m−1
l j

. (25)

Substituting (25) into (24), we have

uij =
D
− 1

m−1
ij

c
∑

l=1
D
− 1

m−1
l j

. (26)

The iterative formula of membership degree is obtained, and it involves the value
of η. Note that when η is very large, Dij may become negative, which is obviously not
what we want. For this reason, we can naturally give the following constraints (i = 1, . . . , c,
j = 1, . . . , n, k = 1, . . . , l):

(xjk − hik)
2 − η(v0k − hik)

2 ≥ 0. (27)

Therefore, we can get

η = α0min
i,j,k

(xjk − hik)
2

(v0k − hik)
2 . (28)

Here α0 is a constant, and α0 ∈ [0, 1].

Secondly, we show the solution process of hik. Starting from ∂J
′

∂hik
= 0, we have

(i = 1, . . . , c, k = 1, . . . , l)

∂J
′

∂hik
= 2

n

∑
j=1

um
ij wt

ik

[
(1− η)hik − xjk + ηv0k

]
= 0. (29)

It can be further calculated, and we can get

(1− η)
n

∑
j=1

um
ij wt

ikhik =
n

∑
j=1

um
ij wt

ik

(
xjk − ηv0k

)
. (30)

Regarding the solution of hik, there are two cases:
Case 1: From (17) we know that hik = xek when i = q (k = 1, . . . , l).
Case 2: When i 6= q, we can get from (30):

hik = vik =

n
∑

j=1

(
xjk − ηv0k

)
um

ij

n
∑

j=1
(1− η)um

ij

. (31)
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In summary, we can get

hik =


xek, i = q,

n
∑

j=1
(xjk−ηv0k)um

ij

n
∑

j=1
(1−η)um

ij

, i 6= q.
. (32)

Finally, we provide the solving process of wik. Starting from ∂J
′

∂wik
= 0 (i = 1, . . . , c,

k = 1, . . . , l), we can get

∂J′

∂wik
= twt−1

ik

(
n

∑
j=1

um
ij [(xjk − hik)

2 − η(v0k − hik)
2] + ϕi

)
− ζi = 0. (33)

Similarly, for the convenience of expression, we set

Tik =
n

∑
j=1

um
ij [(xjk − hik)

2 − η(v0k − hik)
2] + ϕi. (34)

From (33), we obtain

wik =

(
ζi

tTik

) 1
t−1

. (35)

Note that

1 =
l

∑
k=1

wik =
l

∑
k=1

(
ζi

tTik

) 1
t−1

. (36)

From (36), we have (
ζi
t

) 1
t−1

=
1

l
∑

p=1
Tip
− 1

t−1

. (37)

Substituting (37) into (35), we obtain

wik =
T
− 1

t−1
ik

l
∑

p=1
T
− 1

t−1
ip

. (38)

Among them t ∈ (1,+∞), ϕi is a penalty term parameter, which reflects the contribu-
tion of each attribute to the cluster centers. Moreover, the selection of its value is critical to
the performance of the clustering. In actual processing, we can define ϕi as the ratio of the
sum of the previous part of (19) and the fuzzy feature weight:

ϕi = K

n
∑

j=1
um

ij Dij

l
∑

k=1
wt

ik

(39)

Here K is a positive constant.
So far, the derivation process of cluster centers, membership degree matrix, and weight

matrix of the VSFCM algorithm have been fully explained.

3.3. Framework of the VSFCM Algorithm

The execution process of the CDCI method and the VSFCM algorithm is shown
respectively in Algorithms 1 and 2.
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Algorithm 1 Cut-off Distance-induced Clustering Initialization (CDCI)

Input: Data set X= {xk}N
k=1, number of clusters C.

Output: cluster center matrix H = {hi}C
i=1.

procedure CDCI (Data X, Number C)

1. H = [ ];
2. Calculate the cut− off radius cd according to (12);
3. Calculate the local density ρj of each point according to (14);
4. Calculate the distance δj of each point according to (9);
5. Calculate τj according to (15);

6. Rearrange τ =
{

τj

}n

j=1
from large to small, and get the corresponding X

′

after the original data set X is re-sorted by τ;

7. Select τ1 corresponding to x
′
1 as the first cluster center xe, and let H = H ∪ xe;

8. Let tt = 1, k = 2;
9. Repeat
10. while

∥∥x′k − H
∥∥ < cd

//If the distance between x′k and selected cluster center is
smaller than cd,

//then skip directly

11. k = k + 1;
12. H = H ∪ x′k;
13. tt = tt + 1;
14. Until tt = C
15. return H
16. end procedure

Algorithm 2 Viewpoint-driven subspace fuzzy C-means (VSFCM) algorithm

Input: Data set X= {xj}n
j=1, number of clusters C.

Output: Membership matrix U= {uij}c,n
i,j=1, cluster center matrix H = {hi}c

i=1, weight matrix

W= {wik}c,n
i,k=1.

procedure DVPFCM (Data X, Number C)

1. Set threshold ε and maximum number of iterations iM;
2. Run Algorithm 1, and get H(0) and the point xe with the highest density;
3. Do
4. iter = iter + 1;
5. Update U(iter)= [uij] by calculating memberships uik using (26);
6. Update H(iter) = [hi] by calculating centers hi using (32);
7. Update W(iter) = [wik] by calculating weights wik using (38);

8. while
∥∥∥H(iter) − H(iter−1)

∥∥∥ ≥ ε and iter ≤ iM;

9. return U(iter), H(iter),W(iter);

end procedure

4. Experimental Results

In this section, we validate the clustering ability of the proposed VSFCM algorithm
through a series of experiments. In the comparative experiment section, five relevant
algorithms are selected, including V-FCM, SCAD, ESSC, FRFCM, and DVPFCM. Among
the two algorithms of SCAD, the structure of the first one is more complex and closer to
the algorithm in this paper, so we chose it to compare with ours. In terms of initialization
methods, we compare our algorithm with the HDCCI algorithm and present it visually.

The testing data sets include two artificial data sets, 10 UCI machine-learning data sets,
and the Olivetti face database. The artificial data sets DATA1 and DATA2 are composed of
Gaussian distribution points obtained by generation tools. The tested UCI data sets [34]
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include Iris, Wireless Indoor Localization, Wine, Breast Cancer Wisconsin, Seeds, Letter
Recognition (A, B), Ionosphere, SPECT heart data, Aggregation, and Zoo. These UCI data
sets are popular and representative of the field of machine learning. The Olivetti face
database corresponds to a collection of 40 people and 10 pictures per person. We select
200 pictures corresponding to 20 people from it, with a total of 1024 attributes.

Table 2 counts the basic information of two artificial data sets and 10 UCI machine
learning data sets, which include a total number of instances, features, and reference
clusters. For all experiments, the default values are selected for the parameters, and the
specific settings are as follows: m = 2, t = 2, ε = 10−5. For convenience, the selection of cd
in the CDCI algorithm is calculated based on (12).

Table 2. Testing data sets.

ID Name Instances Features Clusters

D1 Iris 150 4 3
D2 Wireless Indoor Localization 2000 7 4
D3 Wine 178 13 3
D4 Breast cancer 569 30 2
D5 Seeds 210 7 3
D6 Letter Recognition (A, B) 1155 16 2
D7 Ionosphere 351 33 2
D8 SPECT heart data 267 22 2
D9 Aggregation 788 2 7
D10 Zoo 101 17 7
D11 DATA1 300 2 3
D12 DATA2 180 3 3

4.1. Evaluation Indicator

We use two types of evaluation indicators: hard clustering effectiveness indicators
and soft clustering effectiveness indicators. Moreover, the superscript “(+)” indicates that
the larger the value of the indicator, the better the clustering performance. The superscript
“(−)” indicates the opposite meaning.

Since fuzzy clustering algorithms divide data points into the clusters with the highest
corresponding membership, hard clustering indicators can also be used to evaluate their
clustering effects.

The hard clustering effectiveness indicators selected are the following three kinds.

(1) Classification rate

The classification rate (CR) [32] reflects the proportion of data that are correctly classi-
fied. The formula is:

CR(+) =

C
∑

i=1
ei

n
. (40)

in which ei is the number of objects found correctly in the i-th cluster, and n is the number
of all objects in the data set.

(2) Normalized mutual information

Normalized mutual information (NMI) [35] reflects the statistical information shared
between two clusters:

NMI(+)(W, V) =

I
∑

i=1

J
∑

j=1
q(i, j) log q(i,j)

q(i)q(j)√
G(W)G(V)

. (41)

Here W, V are the two distributions of the data set. Supposing that W, V have I and J
clusters, respectively. In addition, q(i) = |wi |

n , and |Wi| is the number of objects contained
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in the cluster Wi. q(i, j) =
|Wi∩Vj|

n , and G(W) = −
I

∑
i=1

q(i) log q(i). The structure of the

calculation formula of G(V) is similar.

(3) Calinski–Harabasz indicator

The Calinski–Harabasz (CH) indicator [36] is a measure from the perspective of
distance within a cluster and dispersion between clusters:

CH(+) =

c
∑

i=1
ni × d(vi, v)

c− 1
/

c
∑

i=1

n
∑

k=1
d(xk, vi)

n− c
. (42)

Here ni corresponds to the number of objects contained in cluster i, and v is the average
of the cluster centers.

The following two kinds of soft clustering effectiveness indicators are used.

(4) The extension indicator of ARI

The EARI [37] indicator is a fuzzy extension of the adjusted rand indicator (ARI) [38,39],
and its purpose is to describe the similarity of two clustering results.

Assuming that R and Q are two hard partitions, corresponding to k and v clusters,
respectively, there are some definitions in the ARI indicator as follows:

e represents the number of pairs of data belonging to the same class in R and to the
same cluster in Q meanwhile.

f represents the number of pairs of data belonging to the same class in R and to the
different clusters in Q meanwhile.

g represents the number of pairs of data belonging to the different classes in R and to
the same cluster in Q meanwhile.

h represents the number of pairs of data belonging to the different classes in R and to
the different clusters in Q meanwhile.

According to the above definition, given two membership matrices B1 and B2, it is
obvious that e, f, g, and h can be rewritten as below when r and q are two soft partitions:

e = |W ∩Y| =
n

∑
j2=2

j2−1

∑
j1=1

W(j1, j2)⊗Y(j1, j2), (43)

f = |W ∩ Z| =
n

∑
j2=2

j2−1

∑
j1=1

W(j1, j2)⊗ Z(j1, j2), (44)

g = |X ∩Y| =
n

∑
j2=2

j2−1

∑
j1=1

X(j1, j2)⊗Y(j1, j2), (45)

h = |X ∩ Z| =
n

∑
j2=2

j2−1

∑
j1=1

X(j1, j2)⊗ Z(j1, j2). (46)

Among them,

W= {W(j1, j2)
∣∣∣W(j1, j2) = ⊕k

i=1
(
rij1 ⊗ rij2

)
, j2 = 2, · · · , N, j1 = 1, · · · , j2 − 1

}
(47)

is the set of data pairs belonging to a cluster in B1. Similarly, Y is the set of data pairs
belonging to the same cluster in B2. And

X= {X(j1, j2)
∣∣∣X(j1, j2) = ⊕i1,i2∈[1,k]|i1 6=i2

(
ri1 j1 ⊗ ri2 j2

)
, j2 = 2 · · ·N, j1 = 1 · · · j2 − 1

}
(48)

is a set of data pairs that do not belong to the same cluster in B1. Similarly, Z is a collection
of data pairs that do not belong to the same cluster in B2. ⊗,⊕ are t-norm and s-norm,
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and min, and max are often used for actual processing, respectively. EARI is specifically
obtained by the following formula:

EARI(+) =
e− (e+ f )(e+g)

e+ f+g+h
(e+ f )+(e+g)

2 − (e+ f )(e+g)
e+ f+g+h

. (49)

(5) Xie–Beni indicator

The Xie–Beni (XB) indicator [40] is a highly recognized indicator of the effectiveness of
fuzzy clustering, whose formula is as below:

XB =

c
∑

i=1

n
∑

k=1
um

ikd(xk, vi)

n×mini 6=jd
(
vi, vj

) . (50)

4.2. Artificial Data Sets

Table 2 gives the basic information of all the data sets used in the experiment. Let
us first discuss the artificial data sets DATA1 and DATA2. Figure 4 is a data distribution
diagram of DATA1.
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As shown in Figure 4, the clusters of three colors correspond to three classes of the
DATA1, the red triangle “4” represents the cluster center of each cluster, and the black
solid square“�” represents the reference point for inter-cluster separation. The cluster
centers are V1 = [−6.1545,−3.8668], V2 = [5.3800, 1.4988], and V3 = [−3.0078,−10.0121].
After calculation, we get X0 = [−1.2809,−4.1416], V0 = [−1.2607,−4.1267]. We express
the weight of the full space as w

′
1 = w

′
2 = w

′
3 = [0.5, 0.5], three subspace weights are

expressed as w1 = [0.9, 0.1], w2 = [0.4, 0.6], w3 = [0.6, 0.4]. The corresponding separation
between clusters can be expressed respectively as:

Jfull_space =
3

∑
i
((w

′
i1)

2
(Vi1 −V01)

2 + (w
′
i2)

2
(Vi2 −V02)

2) = 34.36 (51)

JESSC_subspace =
3

∑
i
((wi1)

2(Vi1 − X01)
2 + (wi2)

2(Vi2 − X02)
2) = 44.38 (52)

JVSFCM_subspace =
3

∑
i
((wi1)

2(Vi1 −V01)
2 + (wi2)

2(Vi2 −V02)
2) = 44.49 (53)
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Among them, v0 =
c
∑

i=1
vi/c, x0 =

n
∑

j=1
xj/n. Here vi is obtained by using our proposed

CDCI method.
In this example, the separation between clusters in the subspace is significantly greater

than the separation between clusters in the full space, which means that the subspace
clustering has higher inter-cluster separation and better clustering effect than the full-space
clustering. In particular, the separation between full-space clusters and the separation
between subspace clusters can also be used as separations under different distance metrics.

Compared with the ESSC algorithm, which is also a subspace algorithm, our algorithm
has been improved to some extent. That is, replace x0 with v0 in its formula. Moreover, the
effect of subspace separation of our algorithm is slightly better than it, and ours is more
stable. When faced with more complex data sets or more scattered and irregular data sets,
our algorithms can still maintain a good result. In a word, our proposed algorithm can get
better separation between clusters, which can get better results.

Figure 5 is the distribution diagram of each dimension of DATA2, and Table 3 is the
distribution of each algorithm on DATA2.
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Table 3. Dimensional weight distribution of algorithms on DATA2.

Algorithms Clusters Weight of the Detected Three Features in Each Cluster

VSFCM
Cluster1 0.4394 0.2980 0.2626
Cluster2 0.3645 0.3285 0.3068
Cluster3 0.4380 0.2089 0.3531

FRFCM 0.3860 0.1960 0.4180

ESSC
Cluster1 0.3433 0.3321 0.3246
Cluster2 0.3896 0.2573 0.3532
Cluster3 0.3299 0.3400 0.3301

SCAD1
Cluster1 0.3284 0.3417 0.3299
Cluster2 0.3500 0.3096 0.3404
Cluster3 0.3393 0.3327 0.3280

From Table 3, we can find that the weight of the ESSC and SCAD1 algorithm does not
fluctuate very much around 0.3333, but our VSFCM algorithm has a large difference in
the attribution of weights. Taking Cluster 1 as an example, three weights, 0.3433, 0.3321,
and 0.3246 of ESSC, are very close. However, the weight values obtained by the VSFCM
algorithm are 0.4394, 0.2980, and 0.2626. From the VSFCM algorithm, it can be seen that the
first feature has a significant contribution to the clustering result, followed by the second
feature, and the worst is the third feature.

Table 4 shows the clustering results of several algorithms on two artificial data sets,
DATA1 and DATA2. Obviously, the performance of our algorithm is better than other
algorithms. Moreover, mainly due to the contribution of weight distribution, the values of
the five clustering indicators of the subspace clustering algorithms are obviously higher
than that of other algorithms.

Table 4. Clustering results on two artificial data sets.

Datasets Algorithms CH(+) NMI(+) EARI(+) CR(+) XB(−)

DATA1

V-FCM 26.1104 0.8529 0.8959 0.9400 0.3092
DVPFCM 26.2273 0.8997 0.9517 0.9667 0.2579

SCAD1 27.1581 0.9488 0.9795 0.9867 0.1760
ESSC 27.1549 0.9702 0.9954 0.9800 0.1716

FRFCM 27.1592 0.9830 0.9944 0.9933 0.1739
VSFCM 27.1597 0.9830 0.9957 0.9967 0.1663

DATA2

V-FCM 12.7069 0.7933 0.7735 0.8333 0.4738
DVPFCM 12.9600 0.9264 0.8037 0.8333 0.4636

SCAD1 13.6113 0.9368 0.9484 0.9667 0.3002
ESSC 14.1086 0.9222 0.9714 0.9778 0.3000

FRFCM 14.1692 0.9368 0.9793 0.9833 0.3330
VSFCM 14.2811 0.9534 0.9858 0.9889 0.2881

The bold represents the best value among all algorithms, and the underlined represents the second best.

4.3. UCI Data Sets

The UCI data sets adopted here include Iris, Wireless Localization, Wine, Seeds,
breast cancer Wisconsin, letter recognition (A, B), SPECT heart data, Aggregation, and Zoo.
Among them, Breast Cancer data is a common medical data set in machine learning, which
can be divided into two clusters. Figure 6 shows its Sammon mapping, where the yellow
and purple point sets represent two classes of the dataset respectively.
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Figure 7 shows the ρ− δ distribution diagram of Breast Cancer of two cluster center
initialization methods. In Figure 7, we can see that the first initial cluster center is well
determined, that is, the data point in the upper right corner. In the selection process of
the second initial cluster center, the boundary between the optional points of the CDCI
algorithm and other data points is very clear, while that of the HDCCI algorithm is fuzzy. So,
when we use the HDCCI algorithm to select the initial cluster center, it is easy to choose the
wrong one. In contrast, the initial cluster centers selected by our cluster center initialization
method CDCI are more in line with the characteristics of the ideal cluster centers.
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Table 5 describes the average value of the results of each clustering algorithm (includ-
ing V-FCM, SCAD, ESSC, FRFCM, DVPFCM, and our algorithm) running 20 times on the
selected UCI data sets. The adopted evaluation indicators here are the above-mentioned
three hard indicators (CR, CH, and NMI) and two fuzzy indicators (EARI and XB). Ac-
cording to the above five clustering indicators, the performance of the proposed VSFCM
algorithm is evaluated and compared with the existing three subspace clustering algorithms
and two fuzzy clustering algorithms combined with viewpoints. In order to observe the
results more conveniently, we bold the best result and underlined the second-best result.
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Table 5. Clustering results on UCI data sets.

Data Sets Algorithms CH(+) NMI(+) EARI(+) CR(+) XB(−)

Iris

V-FCM 11.8364 0.8498 0.9312 0.9533 0.2786
DVPFCM 11.8423 0.8705 0.9400 0.9600 0.2731

SCAD1 11.5894 0.7277 0.8712 0.8800 0.3205
ESSC 11.6442 0.7578 0.8861 0.9000 0.3117

FRFCM 11.6853 0.7665 0.8895 0.9067 0.2880
VSFCM 12.1360 0.8801 0.9568 0.9667 0.2628

Wireless Indoor
Localization

V-FCM 66.8676 0.8113 0.8730 0.9325 0.4845
DVPFCM 67.0487 0.8117 0.8733 0.9330 0.4764

SCAD1 79.9004 0.8508 0.9478 0.9445 0.4262
ESSC 80.1303 0.8549 0.9494 0.9460 0.4240

FRFCM 80.3587 0.8620 0.9529 0.9465 0.4113
VSFCM 81.6420 0.8981 0.9658 0.9605 0.3988

Wine

V-FCM 8.8531 0.6500 0.8598 0.8596 1.7169
DVPFCM 12.3937 0.6748 0.8712 0.8708 1.5531

SCAD1 12.5666 0.7710 0.8728 0.9270 1.4794
ESSC 12.8969 0.7710 0.8773 0.9270 1.2942

FRFCM 13.3068 0.7955 0.9031 0.9382 1.2786
VSFCM 14.4425 0.8212 0.9520 0.9494 1.2302

Breast

V-FCM 73.4053 0.6555 0.8850 0.9385 0.3178
DVPFCM 74.0104 0.6555 0.8850 0.9385 0.3146

SCAD1 108.1275 0.6320 0.9250 0.9297 0.2913
ESSC 108.7064 0.6507 0.9400 0.9332 0.2903

FRFCM 107.3007 0.6106 0.9244 0.9262 0.2940
VSFCM 110.5897 0.7084 0.9825 0.9420 0.2779

Seeds

V-FCM 16.0498 0.6423 0.8450 0.8762 0.6296
DVPFCM 16.0668 0.6545 0.8478 0.8810 0.5999

SCAD1 16.1163 0.6654 0.8487 0.8857 0.2508
ESSC 16.1378 0.6795 0.8580 0.8905 0.2493

FRFCM 16.2337 0.7026 0.8601 0.8952 0.2280
VSFCM 16.7541 0.7173 0.8745 0.9095 0.2269

Ionosphere

V-FCM 19.9278 0.1036 0.4159 0.6809 0.7634
DVPFCM 21.5964 0.1036 0.4180 0.6809 0.6566

SCAD1 32.2422 0.1320 0.4762 0.7094 0.4649
ESSC 31.6597 0.1271 0.4732 0.7066 0.5057

FRFCM 32.1711 0.1292 0.4738 0.7066 0.4804
VSFCM 32.3488 0.1320 0.4764 0.7094 0.4635

Letter Recognition
(A, B)

V-FCM 155.3391 0.7197 0.8948 0.9408 0.6633
DVPFCM 156.9256 0.7249 0.8965 0.9415 0.6561

SCAD1 195.6678 0.6655 0.9181 0.9293 0.6486
ESSC 198.4907 0.7189 0.9353 0.9395 0.6352

FRFCM 196.1744 0.6917 0.9288 0.9344 0.6390
VSFCM 199.5879 0.7249 0.9385 0.9415 0.6333

Aggregation

V-FCM 11.9580 0.9279 0.9755 0.9315 0.2790
DVPFCM 11.9818 0.9350 0.9769 0.9365 0.2787

SCAD1 11.8053 0.8666 0.9585 0.8985 0.2978
ESSC 11.9525 0.8991 0.9740 0.9061 0.2803

FRFCM 11.8163 0.9197 0.9805 0.9302 0.2763
VSFCM 12.0721 0.9460 0.9924 0.9429 0.2643

Zoo

V-FCM 1.1496 0.7864 0.8973 0.6832 0.2878
DVPFCM 1.1752 0.8029 0.9357 0.7030 0.2528

SCAD1 1.1858 0.8146 0.9672 0.7228 0.2636
ESSC 1.1915 0.8286 0.9795 0.7129 0.2493

FRFCM 1.2085 0.8319 0.9768 0.7228 0.2237
VSFCM 1.2194 0.8324 0.9807 0.7426 0.2170

The bold represents the best value among all algorithms, and the underlined represents the second best.
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As can be seen from Table 5, the six algorithms can be divided into three grades, the
worst is V-FCM and DVPFCM, the performance of FRFCM and ESSC is equivalent to or
better than that of SCAD1, and the best is the proposed VSFCM algorithm. Although
DVPFCM and V-FCM algorithms mentioned are generally inferior to the other three algo-
rithms, they can achieve better clustering performance on the Iris and Letter Recognition
(A, B) data sets measured by NMI and CR, respectively. This shows that for all data sets, no
one algorithm is always better than others.

Through comparison, we further notice that the best clustering performance indicated
by NMI and CR is not always consistent with the best clustering performance indicated
by other indicators. That is, the clustering performance with higher NMI and CR values
does not necessarily possess higher XB, CH, and EARI values. Therefore, it is necessary to
comprehensively evaluate the performance of clustering algorithms with different metrics.

From Table 5, the following conclusions can be drawn:
First of all, due to the low dimension of small data sets, which contributes to the small

impact of weights on the results, V-FCM and DVPFCM (belonging to viewpoint-oriented
fuzzy clustering algorithms) can get better results on these data sets. In addition, the
viewpoint can guide the clustering algorithm to run in a more correct direction, so the NMI
and CR indicators of V-FCM and DVPFCM perform better on some data sets.

Secondly, for the weighted fuzzy clustering algorithms, SCAD, ESSC, and FRFCM
with more complex structures have a great advantage in processing multi-dimensional data
sets, owing to the efficiency and effect of clustering improved by the weight distribution.

Finally, our proposed algorithm VSFCM is obviously superior to the other algorithms
mentioned above. Because our algorithm well integrates the advantages of the two types
of algorithms and successfully improves the clustering effect.

In general, our proposed VSFCM algorithm is more ideal for obtaining initial cluster
centers and has better performance in various clustering evaluation indicators.

Table 6 reflects the dimension weight distribution results of the subspace algorithm
carried out on the Wine data set, presenting in the order of the weight values of each cluster
corresponding to the 13 features in the data. It can be seen from Table 6 that different
subspace clustering algorithms may have different degrees of importance to the same
feature. Similar results can be obtained with other UCI data sets. For multi-dimensional
data sets, the reasonable distribution of dimension weights can improve the accuracy
and efficiency of clustering, so our proposed VSFCM algorithm can achieve more ideal
clustering results.

Table 6. Wine’s ranking results of the detected 13 features in each cluster.

Algorithms Clusters Ranking Results of the Detected 13 Features in Each Cluster

VSFCM
Cluster1 12 6 9 11 5 4 2 8 7 3 1 10 13
Cluster2 4 13 6 5 10 8 2 12 11 1 9 7 3
Cluster3 10 12 5 7 6 8 1 13 9 11 4 3 2

FRFCM 10 2 13 12 11 7 3 6 9 5 8 4 1

ESSC
Cluster1 12 6 2 9 5 8 3 10 7 4 1 11 13
Cluster2 9 13 2 4 3 7 5 12 6 11 8 10 1
Cluster3 10 11 4 5 3 9 2 13 6 1 7 12 8

SCAD1
Cluster1 12 6 2 8 5 9 4 10 7 3 1 11 13
Cluster2 9 13 2 4 3 7 5 12 6 11 8 10 1
Cluster3 10 11 4 5 2 9 3 13 6 1 7 12 8

4.4. The Olivetti Face Database

The 400 pictures in the Olivetti face database were collected in different places, with
different light intensities and different emotional states of the same person (eyes open
or closed, smiling or not smiling). Our experiment uses the first 20 people’s pictures.
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Moreover, Figure 8 shows the histogram of its running results. Moreover, from Table 7, we
can see the clustering results of different relevant algorithms on this database.
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Table 7. Clustering results of the Olivetti face database.

Data Sets Algorithms V-FCM DVPFCM SCAD1 ESSC FRFCM VSFCM

face

CH(+) 0.2527 0.2664 0.2524 0.2520 0.2512 0.2570
NMI(+) 0.9573 0.9700 0.9516 0.9828 0.9591 0.9956
EARI(+) 0.9292 0.9654 0.9418 0.9975 0.9667 0.9964

CR(+) 0.6950 0.8350 0.7500 0.9450 0.8300 0.9850
XB(−) 0.9769 2.3237 1.2936 0.8954 0.7964 0.5651

The bold represents the best value among all algorithms, and the underlined represents the second best.

In Table 7, the CR value of our VSFCM algorithm on this data set can even reach
0.9850, while that of FRFCM, ESSC, SCAD1, DVPFCM, and V-FCM are significantly lower,
which are 0.8300, 0.9450, 0.7500, 0.8350, and 0.6950, respectively. As can be seen from the
histogram in Figure 8, the indicator values of our algorithm are obviously better than other
algorithms. When processing Olivetti’s face database, the indicators CR, NMI, and EARI of
our algorithm are all close to 1. It reveals that the weight distribution of our algorithm plays
an important role in the process of high-dimensional data (200 × 1024), which includes
reducing the weight of some less important dimensions while increasing the weight of
relatively important dimensions to improve the accuracy and efficiency of the algorithm.
Moreover, the proposed algorithm introduces the separation term between clusters to
increase the distance between clusters, and the initial cluster centers obtained by using the
cluster center initialization method CDCI are closer to the real ones, which prevents the
VSFCM algorithm from falling into the local optimal value or iterative divergence.

4.5. Time Complexity

Tables 8 and 9, respectively, present the average number of iterations of each algorithm
and the average calculation time per run (each algorithm was executed 50 times). The
number in parentheses indicates the ranking of the algorithm, and Arank indicates the
average ranking of the algorithm. Note that there is no iterative process in the HDCCI
algorithm, so its relevant statistical data is not needed here.
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Table 8. Average number of iterations of each algorithm.

V-FCM DVPFCM SCAD1 ESSC FRFCM VSFCM

D1 18 (3) 51 (6) 16 (2) 20 (4) 7 (1) 20 (4)
D2 37 (5) 121 (6) 12 (2) 13 (3) 10 (1) 19 (4)
D3 10 (2) 26 (6) 19 (5) 16 (4) 7 (1) 15 (3)
D4 7 (2) 22 (6) 13 (4) 12 (3) 5 (1) 16 (5)
D5 42 (4) 104 (5) 15 (3) 15 (3) 8 (1) 12 (2)
D6 10 (2) 56 (6) 16 (4) 19 (5) 11 (3) 9 (1)
D7 9 (2) 20 (5) 16 (4) 46 (6) 6 (1) 12 (3)

Arank 2.9 (2) 5.7 (6) 3.4 (4) 4 (5) 1.3 (1) 3.1 (3)
The bold represents the best value among all algorithms, and the underlined represents the second best.

Table 9. Average running time of each algorithm.

V-FCM DVPFCM SCAD1 ESSC FRFCM VSFCM

D1 0.4836 (6) 0.1836 (5) 0.1189 (4) 0.0345 (1) 0.0934 (2) 0.1150 (3)
D2 4.7661 (5) 11.2978 (6) 1.0110 (3) 0.5590 (1) 1.2039 (4) 0.9489 (2)
D3 0.0473 (1) 0.1282 (5) 0.1839 (6) 0.0763 (2) 0.1146 (4) 0.0960 (3)
D4 0.3458 (2) 0.6581 (5) 0.6268 (4) 0.2555 (1) 1.0447 (6) 0.5627 (3)
D5 0.1581 (6) 0.0473 (1) 0.1011 (3) 0.0796 (2) 0.1507 (5) 0.1287 (4)
D6 0.1549 (1) 0.4161 (4) 0.5214 (5) 0.2669 (3) 1.6541 (6) 0.2050 (2)
D7 2.1087 (5) 4.2933 (6) 1.1066 (3) 1.3857 (4) 1.0721 (2) 0.6442 (1)

Arank 3.7 (3) 4.6 (6) 4 (4) 2 (1) 4.1 (5) 2.6 (2)
The bold represents the best value among all algorithms, and the underlined represents the second best.

It can be seen from the following two tables that the VSFCM algorithm ranks third in
terms of the average number of iterations and second in terms of average iteration time.
Compared with other clustering algorithms, the number of iterations and iteration time of
the VSFCM algorithm required are generally less. This shows that the convergence speed
of our proposed algorithm is relatively fast.

4.6. Discussion

This study proposes a new and more effective cut-off distance, using high-density
points to achieve the initialization of the cluster center and the selection of viewpoints.
This can effectively restrain the interference of noise (because the ideal cluster center has a
large value of the ρ and δ, but the δ value of the noise point is small). Therefore, the cluster
center initialization method CDCI in this study is better than the DPC and the HDCCI (the
initialization method of DVPFCM).

In addition, we test the performance of our proposed VSFCM algorithm and other
algorithms on two artificial data sets, 10 UCI data sets, and the Olivetti face database.
Through comparison, it is found that the proposed VSFCM algorithm performs better than
V-FCM, DVPFCM, SCAD1, ESSC, and FRFCM in five indicators, and the distribution of
feature weights of our algorithm is more in line with the characteristics of the data.

Finally, we compare the average number of iterations and iteration time of each
algorithm and discover that the number of iterations and iteration time required by the
VSFCM algorithm is generally less, which leads to the conclusion that the VSFCM algorithm
has a better convergence speed.

From a deeper perspective, the proposed VSFCM algorithm has better performance
due to the following aspects:

• First, the proposed cluster center initialization method CDCI can get the initial cluster
center close to the real data structure through the new cut-off distance. This not only
prevents the iterative divergence of the algorithm but also speeds up the convergence
of the algorithm and helps improve the accuracy of the algorithm;

• Second, as a part of the data structure of the VSFCM algorithm, the viewpoint serves for
the knowledge-induced clustering process. Moreover, it is combined with data to form
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a cluster driving force driven by both knowledge and data, inducing the clustering
algorithm to obtain more accurate clustering results. Moreover, the viewpoint is
introduced into the subspace fuzzy clustering, which can better guide the clustering
process of each cluster subspace;

• Third, the fuzzy weight is introduced, which can overcome the influence of outliers
on cluster analysis and speed up the convergence of clustering. Our algorithm adds
weights to each data as a whole to indicate the degree of contribution to clustering
and assigns smaller weights to noise points to reduce their participation in clustering,
thus weakening their impact on clustering results;

• Finally, the separation term between clusters is introduced into the objective function.
The reference point for separation between clusters is the average value of the initial
cluster centers, which is combined with the distribution of weights to improve the
accuracy of the algorithm by enhancing the ability to process data spatial distance.

Compared with the ESSC in [28], the proposed VSFCM algorithm has the following
advantages:

• The reference point for inter-cluster separation has been improved. In this study, v0
is used instead of x0. When we initialize the cluster center, outliers are automatically
removed, which weakens their influence of them on the reference points so that each
cluster can be separated more clearly;

• We use the viewpoint to guide the convergence of each projection subspace of soft
subspace clustering, which conforms to the data structure of clustering and accelerates
the clustering process.

Compared with the DVPFCM of [32], the proposed VSFCM algorithm has the follow-
ing advantages:

• The cut-off distance is optimized. The selection of cut-off distance is very important
and directly affects the clustering accuracy of the algorithm. Generally, the cut-off
distance should be selected so that the sphere space of the cut-off radius contains
1% to 2% of the total number of datasets. However, the calculation formula of the
cut-off radius of HDCCI has no corresponding rigorous scientific proof, which makes
it difficult to initialize the cluster center completely in line with the concept of DPC.
In contrast, the improved cut-off distance achieved better results while meeting the
DPC standards;

• Fuzzy weights are introduced. By assigning smaller weights to features with a larger
proportion of noise points and outliers, the influence of them on clustering results can
be indirectly weakened;

• Subspace clustering is employed. When faced with high-dimensional data, traditional
clustering algorithms have no effective processing measures. However, the algorithm
combined with subspace clustering has better adaptability to it. By continuously ad-
justing the weight of each subspace, the contribution of each subspace to the clustering
can be accurately described, making the clustering results better.

5. Conclusions

This paper has proposed a new subspace clustering algorithm, which is named
viewpoint-driven subspace fuzzy c-means algorithm (VSFCM), and has achieved good
clustering results. The main work and contributions of this paper are summarized
as follows:

First of all, in view of the problem that a large number of clustering algorithms are
sensitive to the initialization of cluster centers, we propose a new cut-off distance under
the system of the DPC algorithm and further provide a cut-off distance-induced clustering
initialization method CDCI, which is used as an initialization strategy for cluster centers
and also served as a new viewpoint selection strategy. It makes the initial cluster center
closer to the true cluster center, which not only improves the clustering convergence speed,
but also promotes the clustering accuracy to a certain extent.
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Secondly, by taking the viewpoint obtained by CDCI as being reflective of domain
knowledge, the fuzzy clustering idea driven by knowledge and data is proposed. Subse-
quently, we introduce the subspace clustering mode and fuzzy feature weight processing
mechanism and propose the separation formula between clusters, which is optimized with
the viewpoint. On the basis of these, we establish the viewpoint-driven subspace fuzzy
c-means algorithm (VSFCM). The viewpoint in it helps guide the clustering algorithm to
discover the real data structure and thus get better clustering results. Additionally, the
introduced separation term between clusters can maximize the distance between cluster
centers in real time, achieve the maximum separation between clusters, and also optimize
the internal mechanism of clustering.

Finally, by applying our proposed VSFCM algorithm and comparison algorithms
(V-FCM, SCAD, ESSC, FRFCM, and DVPFCM) to the three types of data sets, we can see
that the proposed VSFCM algorithm performs best in terms of the five indicators, and
exhibits stronger stability.

Our clustering algorithm has a certain degree of noise resistance [5,41,42], but its
effectiveness is not outstanding and can be further improved in the future. Moreover, there
is room for improvement in the number of iterations and iteration time of our algorithm,
which can be reduced by optimizing our algorithm structure and parameter settings.

In addition, the work of this study can be extended to the clustering of granular
information [30,43–45], which will offer new directions for data analysis. Moreover, we can
develop our fuzzy clustering algorithm in the field of fuzzy reasoning [46,47] and carry on
clustering for the fuzzy rules.
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Following are two abbreviation lists corresponding to the algorithm and symbols presented in

this manuscript, respectively.
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Abbreviations Full Name of Algorithms
FCM Fuzzy c-means algorithm.
DPC Clustering by fast search and finding of density peaks.
HDCCI Hypersphere density-based clustering centers initialization.
V-FCM A knowledge-driven fuzzy clustering algorithm with viewpoints.
DVPFCM Density viewpoint-induced possibilistic fuzzy c-means algorithm.
SCAD1 Simultaneous clustering and attribute discrimination—version 1.
ESSC Enhanced soft subspace clustering.
FRFCM A feature-reduction FCM.
VSFCM Viewpoint-driven subspace fuzzy c-means algorithm.
Symbols Interpretations
cd Cut-off distance.
ρ Local density of the data point.
δ Minimum distance between itself and other points with higher local density.
τ Product of ρ and δ.
c Number of cluster centers.
n, l Numbers and dimensions of the data, respectively.
X Data set.
xe Viewpoint.
m, t Fuzzy coefficients for membership degree and fuzzy weight, respectively.
hi Cluster center, i = 1, 2 , ..., c.
uij Membership degree, i = 1, 2, ..., c, j = 1, 2, ..., n.
wik Fuzzy weight, i = 1, 2, ..., c, k = 1, 2, ..., l.
ϕi Parameter for adaptive fuzzy weight penalty term, i = 1, 2, ..., c.
η Parameter for adjusting the value of the separation term between clusters.
v0 Reference point for inter-cluster separation.

Dij For the convenience of expression, Dij =
l

∑
k=1

wt
ik

[(
xjk − hik

)2
− η(v0k − hik)

2
]

.

Tik For the same reason, Tik =
n
∑

j=1
um

ij [(xjk − hik)
2 − η(v0k − hik)

2] + δi.
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