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Abstract: In order to improve the performance in terms of detecting objects colliding in virtual reality,
the ant colony algorithm was used to detect collisions. In the preliminary detection stage, the OBB
bounding box and the spherical bounding boxwere used to detect the collision of objects, and the ob‑
jects that may collide were selected. In the accurate detection stage, the model was sampled, and the
feature pairs were used as the set to be detected for detecting collisions, the collision detection prob‑
lem of the three‑dimensional model was transformed into a nonlinear optimization problem of the
distance between the feature pairs in the two‑dimensional discrete space. The ant colony algorithm
was introduced to solve the problem, and the pheromone concentration and update rules of the ant
colony algorithm were optimized to improve the efficiency of the algorithm. The simulation results
showed that, compared with the commonly used collision detection algorithms, our algorithm had
high accuracy in detecting collisions and was less time‑consuming.

Keywords: collision detection; virtual reality; ant algorithm

1. Introduction
Collision detection, also known as interference detection or contact detection, is a clas‑

sic problem in the field of system simulation, computer graphics and other research fields.
The primary task of collision detection is to detect whether there is contact between objects
in a virtual scene, that is, to detect whether they occupy an identical space. When they oc‑
cupy an identical space, it means that there is a collision between the models [1,2]. Since
the last century, many researchers have studied the technology of collision detection, but
due to the influence of the level of computer hardware, the collision detection algorithms at
that time generally could not fulfill the real‑time needs of application scenarios. In recent
years, with the development of science and technology, real‑time collision detection tech‑
nology has evolved swiftly. At the same time, with the development of computer graphics
technology, real‑time simulations of intricate scenes have received extensive attention, and
the real‑time and precision requirements of collision detection algorithms are also rising.
There are two main types of collision algorithms: those based on the time domain and
those based on the space domain [3].

The traditional collision detection algorithm has several problemswhen detecting col‑
lisions in complex virtual scenes. The number of model patches in complex scenes is large,
and the detection time is long and cannot ensure the real‑time performance of collision de‑
tection. When the parts are moving, the position is constantly changing, and the efficiency
of collision detection is low [4]. Therefore, many scholars are constantly researching and
optimizing collision detection technology. For example, in order to improve the safety of
digital subtraction angiography (DSA) equipment in the treatment of cardiovascular dis‑
eases, Hu Anlin combined the oriented bounding box (OBB) algorithm with the GJK algo‑
rithm and proposed a hybrid collision detection algorithmbased on separation distance [5].
A collision detection system named SOLTD, which was based on an AABB bounding box
level developed by Eindhoven University in the Netherlands, used a simplified separation
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axis test method to perform overlapping tests between AABBs to improve the efficiency of
detecting collisions. Bergen adopted the basic idea of GJK and developed SLTF by combin‑
ing the incremental culling technology based on axial bounding box sweeping and cutting.
The algorithm improved the efficiency of the algorithm by caching the separation axis of
the previous frame’s object pair and using the coherence between frames to judge the po‑
tentially intersecting object pairs [6]. Lin‑Canny performed interval subdivision on the
polyhedron and constructed the corresponding region for each feature, thereby creating a
feature‑based collision detection algorithm [7].

In addition to the above research directions, many scholars have introduced an in‑
telligent group algorithm for detecting depth based on bounding volume hierarchy tech‑
nology: Hui Xue‑Wu used a bounding box and a particle swarm optimization algorithm
for detecting collisions in virtual reality and used a binary tree structure to store the cross‑
space features of a bounding box, which effectively improved the accuracy of detecting
collisions. However, the particle swarm optimization algorithm is not efficient for search‑
ing; therefore, the algorithm is not suitable for large‑scale scenarios. Jin Han‑Jun proposed
an algorithm for detecting collisions between convex polyhedrons based on a genetic al‑
gorithm. He mainly discussed the method of calculating the shortest distance in collision
detection, that is, the calculation of the shortest distance was summed up as an optimal so‑
lution to a nonlinear programming problem with constraints. According to experiments
to verify the surface, the genetic algorithm has fast calculation speed and high calcula‑
tion accuracy, but it is only suitable for detecting collisions between convex polyhedrons.
Wang Yi proposed a random collision detection algorithm based on the particle swarm op‑
timization algorithm. This method transforms the problem of detecting objects colliding
in three‑dimensional space into an optimization problem in a discrete two‑dimensional
space and then uses the particle swarm optimization algorithm to solve it. The algorithm
can deal with detecting collisions between arbitrary polyhedron models while ensuring
efficiency and has good versatility. However, it is not guaranteed to find all feature pairs
of the collision, and there is room for improvement in terms of speed and accuracy [8–10].

By summarizing the characteristics of the existing collision detection algorithms at
this stage, we find that although the research results regarding collision detection algo‑
rithms have been relatively rich, they are mainly used to deal with collision detection be‑
tween the two models. When dealing with the problem of detecting collision in large‑
scale complex scenes, the current algorithms still have problems and cannot deal with the
problem of detecting collisions between objects quickly and accurately. In order to solve
the above problems, this paper introduced the ant colony algorithm into the random col‑
lision detection algorithm, and combined the bounding volume hierarchy technology to
study and design the Sphere‑OBB‑MACO algorithm. The algorithm is divided into two
steps: in the initial detection stage, the OBB bounding box and the spherical bounding box
are combined to form a hybrid hierarchical bounding box for detecting collisions, and the
bounding boxes that may collide are selected. In the accurate detection stage, the selected
bounding boxes are sampled, and the sampled feature pairs are used to form the search
space. The improved ant colony algorithm was introduced to solve the optimization prob‑
lem of the search space. Compared with other collision detection algorithms, this paper
uses the OBB bounding box and the spherical bounding box to construct the bounding vol‑
ume hierarchy instead of a single bounding box for detection in the preliminary detection
stage. Although the time consumed in the preliminary detection stage becomes longer, it
improves the accuracy of collision detection and reduces the time required for accurate
detection. Because of the large number of feature pairs in complex scenes, the ant colony
algorithm with higher search efficiency was selected in the accurate detection stage to re‑
place the particle swarm algorithm used by other researchers, and the defects of the ant
colony algorithm are improved.
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2. Construction of the Bounding Volume Hierarchy
As a logical structure, the bounding volume hierarchy is also a hierarchical structure,

which has the following two characteristics: the root node of the tree has no precursor,
and all nodes except the root node only have one precursor; all nodes in the tree can have
0 or more successors. For a balanced m‑ary tree with n nodes, the time spent traversing
a tree is f (m) = m2logmn. When m = 2, f (m) is the smallest. In summary, the tree
structure of this study was a binary tree. In order to construct it conveniently, this study
chose the top‑down method with the highest perfection to construct the binary tree. The
core problems of the top‑down constructionmethodwere how to determine the split plane
and maximize the adjacent geometric elements in the space into the same subspace, and a
split point and a split axis can determine the split plane. For the splitting axis, according to
calculations of the variance of the triangular surface axis, the axis with the largest variance
is the splitting axis. As the splitting point, we can take the average value of the coordinates
of the projection points on the splitting axis of the midpoint of all the triangular primitives
in the bounding box.

The compact spherical bounding box is theweakest, but the structure is simple, which
can reduce the time required for detecting collisions. The structure of the OBB bounding
box is complex, but it has excellent compactness, which can improve the accuracy of de‑
tecting collisions. Therefore, this study chose the spherical bounding box with the weak‑
est tightness but the simplest structure, and the OBB bounding box with a complex cal‑
culation but excellent tightness to construct the hybrid hierarchical bounding box, which
combined the advantages of the two bounding boxes as much as possible to improve the
efficiency of detecting collisions. Figure 1 shows the process of constructing the bounding
volume hierarchy.
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Optimization of the Traditional Method of Constructing an OBB Bounding Box
The traditional method of constructing an OBB bounding box is based on the trian‑

gular patch information of the geometric model, using the statistics of the mean and the
unitized covariance matrix. The specific steps are as follows:
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(1) The vertex coordinates of the triangular patch are added and divided by the number
to obtain the mean value, and then the covariance of the vertex’s coordinate vector is
calculated, the mathematical model is derived from Yu Mei’s article [11].

m =
∑n

i=0
(

pi + qi + ri)
3n

(1)

Cjk =
∑n

i=o(pi
j·pi

k + qi
j·qi

k + ri
j·ri

k)

3n
(2)

pi = pi − m

qi = qi − m

ri = ri − m

(2) Three eigenvectors of the covariance matrix C are obtained, which are orthogonal to
each other. In order to determine the three axial coordinates of theOBBbounding box,
the feature vector is unitized. The difference between the maximum and minimum
projection values on the coordinate axis is the size of the OBB bounding box.

Because m in Equations (1) and (2) is only a simple average of the coordinates, the
coordinate’s position will shift when the model’s structure is not uniform. Therefore, this
study used the centroid to determine the center of the OBB bounding box. The specific
steps are as follows:

Firstly, the local coordinate system of the triangle is established, where the static mo‑
ment of the triangle on the X axis and the Y axis is:

Sxi =
∫

Ai

ydA

Syi =
∫

Ai

xdA

Ai : the area of the i th triangle.
dA : the microarea at this point.
The centroid position of the triangle is:

xi =
Syi

Ai
, yi =

Sxi

Ai

(3) The coordinates obtained above are in the local coordinate system and need to be
converted into global coordinates. Finally, the combined centroid coordinates are

Xc =
∑n

i=1 Ai·Xci

∑n
i=1 Ai

Yc =
∑n

i=1 Ai ·yci
∑n

i=1 Ai
(3)

Zc =
∑n

i=1 Ai·Zci

∑n
i=1 Ai

By including Equation (3) into Equation (2), the improved covariancematrix can be obtained.
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3. An Improved Ant Colony Algorithm Based on Random Collision Detection
3.1. The Random Collision Detection Algorithm

If the twomodels are regarded as two feature sets, the problem of detecting collisions
between the models can also be regarded as the process of judging whether there is at least
a pair of feature pairs between the models that meets the threshold condition of a collision.
In this way, the collision detection problem is transformed into an optimization problem
in a discrete space composed of two object features [12,13].

Randomcollisiondetection is a collisiondetection algorithm for approximate response
detection. The algorithm performs feature sampling on the model, and the sampled fea‑
ture pairs form a search space. Random collision detection transforms the collision detec‑
tion problem of the three‑dimensional model into a discrete two‑dimensional space. The
optimization problem in terms of space can be expressed by the following formula:

min f (x) = f (x1, x2, x3, . . . . ., xn) (4)

ai < xi < bi; i = 1, 2, 3, . . . , n

The feature point pair (ai, bi) in the two‑dimensional space is the solution of the equa‑
tion above, and the task of random collision detection is to search for the pairs of feature
points that may collide. If the twomodels collide, there must be at least one pair of feature
pairs between the two models, and the distance between the feature pairs must be within
the distance threshold of a collision. D represents the distance between feature pairs and
δ is the collision distance threshold.

minD ≤ δ (5)

In the space of virtual reality, theremay bemultiple collision points when twomodels
collide, so there may be multiple feature pairs, which is a multi‑peak optimization prob‑
lem. Since the object may be moving at all times, the position of the optimal solution and
the fitness of the solution space are constantly changing [14–17]. If the task of collision de‑
tection is regarded as a whole from the first moment, then this solution space is a complex
and constantly changing multi‑peak environment.

3.2. Random Collision Detection in the 3D Model
For three‑dimensionalmodels, selecting points as the feature pairs of randomcollision

detection can improve the operational efficiency of the algorithm. Therefore, the combina‑
tions of feature points of themodel are usually selected as the feature pairs to be detected in
random collision detection. In practical applications, because the three‑dimensionalmodel
is a three‑dimensional structure, its position is generally determined by the vertex coordi‑
nates of the model, so the distance between the models will generally be transformed into
the distance between the vertex coordinates or geometric primitives. Therefore, the colli‑
sion distance threshold (δ) mentioned above was used to judge the distance between the
three‑dimensional models [18–21].

The nonlinear optimization problem requires an objective function to be selected as
the fitness function to be optimized. For collision detection, precise detection is described
as the test of a junction between patches. Therefore, the centroid of the triangular patch of
the three‑dimensional model was selected as the feature point of the sampling algorithm.
When the centroids’ spacing is lower than a certain value, the patches intersect, and the
model intersects. Let the two centroid coordinates be (x1, y1, z1), (x2, y2, z2). The centroid
spacing is as follows:

d =
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (6)

When the distance between the centroids is less than the collision distance threshold,
collision occurs between the models.
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In the stage of accurate collision detection, the geometric primitives thatmay collide in
the preliminary detection stage are selected for feature sampling, and the sampled feature
points are used as the set to be detected for detecting a collision. The three‑dimensional
model to be detected in the space is mapped to the two‑dimensional space. The problem of
detecting a collision in the three‑dimensional model is transformed into a nonlinear opti‑
mization problem of the distance between the feature pairs in the discrete two‑dimensional
space. An intelligent algorithm is needed to solve this problem.

Intelligent algorithms are inspired by the laws of nature. According to their princi‑
ples, they imitate algorithms for solving problems, such as genetic algorithms, simulated
annealing algorithms and artificial neural network algorithms. There are many intelligent
algorithms. To be applied to the field of collision detection, we first need to understand
the problems that the optimization algorithm can solve and analyze the essence of the col‑
lision problem and then design and improve the optimization method that can be applied
to detect collisions.

Researchers have generally introduced the particle swarm optimization algorithm to
solve optimization problems, but because of the low search efficiency of the particle swarm
optimization algorithm, it cannot be applied to complex search spaces. The robustness
of the algorithm is not good, it can easily miss the interference elements and the spatial
adjacency of the points is not easy to determine. Therefore, this study used the ant colony
algorithm to solve the optimization problem. The ant colony algorithm uses distributed
computing in the search process, and multiple individuals perform parallel computations
at the same time, which greatly improves the computing power and operating efficiency
of the algorithm [22,23].

3.3. The Traditional Ant Colony Algorithm
The ant colony algorithm is a probabilistic algorithm proposed by the Italian scholars

Dorigo et al. to find an optimal path. Ants leave pheromones every time during the round‑
trip process of finding food. The shorter the distance, the more ants return and leave more
pheromones, which will attract more ants to leave more pheromones. Over time, all ants
move to the path with the most pheromones [24].

The basic ant colony algorithm is described as follows. The mathematical model is
derived from M. Dorigo’s article [25]. The probability of ants moving from one city to
another city is:

Pk
ij(t) =

|τij(t)|α ·|ηij(t)|β

∑sϵJK (i) |τis(t)|α ·|ηis(t)|β
jϵJk(i) (7)

The initial amount the pheromone τij(0) = c, JK(i) represents the set of cities that
the ants choose next, ηij represents the expected number of ants moving from i to j, and
the pheromone’s heuristic factor α represents the degree of influence of the amount of
information on the selected path. The ants are affected by the pheromone when selecting
the path. This kind of wizard is the expected heuristic factor β. When an ant completes a
round trip, the pheromone is expressed as follows:

τij(t + 1) = (1 − p)·τij(t) + ∆τij (8)

∆τij =
m

∑
k=1

∆τk
ij

ρ represents the evaporation coefficient of the pheromone on the path, 1− ρ represents
the persistence coefficient of the pheromone, ∆τij represents the increase in the pheromone
in this iteration process and ∆τk

ij represents the amount of the pheromone left by the ants
during this iteration.

∆τk
ij =

Q
LK
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where Q is a pheromone constant, which represents the total amount of pheromone re‑
leased by ants once in a cycle; LK represents the length of the path that the ants have trav‑
eled during this tour.

3.4. Optimization of the Ant Colony Algorithm
The traditional ant colony algorithm has two defects. As a large space search algo‑

rithm, the ant colony algorithm will perform a blind search in the early stages to generate
a large number of invalid paths, and the convergence speed is slow; after all the ants have
completed a pheromone update, the concentration of pheromones left on the shorter paths
is higher than that on the longer paths. Under the action of positive feedback, ants will be
attracted to pass through the path with more pheromones. However, if the algorithm has
not found the optimal solution but rather the suboptimal solution at the beginning, the sub‑
optimal solution will soon hold the absolute advantage and fall into the local optimal solu‑
tion. In order to solve these problems, this study improved the ant colony algorithm [26,27]
as follows.

(1) When selecting the next node, the ant is required to compute the transition probability
of all the adjacent nodes linked to the current node and then select the route with the
highest probability. The main factors affecting the probability of a transition are the
factor of the pheromone’s influence α and the expectation heuristic factor β. The
pheromone’s concentration and volatilization status in the ant colony algorithm are
different in different stages: a low pheromone concentration and easy volatilization
in the early stage; in the later stages, the concentration of pheromones is high and
difficult to volatilize, but the traditional ant colony algorithm does not distinguish
the ant colony’s state. The values of the parameters α, β are fixed, and the ant colony
algorithm is more likely to fall into the local optimal solution in this case [28].

Therefore, the algorithm needs to dynamically modify the value of α, β during itera‑
tion, and these take different values at different stages. In the initial stage, most ants do not
find a reasonable path. At this time, the random search ability of ants should be enhanced
to reduce the value of α, β; in themature stage, most antswill find a better solution. In order
to improve the convergence speed of the algorithm, the value of α, β should be increased:

α′ = α Nc
n (9)

β′ = β Nc
n (10)

α′, β′ are the values of the optimized factor of the pheromone’s influence and the
expected heuristic factor, n is a constant value, and Nc is the value of the current iteration.

(2) The volatilization factor ρ represents the degree of volatilization or the reduction in the
concentration of pheromones. When the factor is too large, the degree of pheromone
volatilization will be accelerated, and the convergence speed of the algorithm will be
reduced. If the factor is too small, this will reduce the speed of pheromone volatiliza‑
tion, resulting in too many pheromones and the algorithm falling into the local op‑
timal solution. The value of the factor of volatility in the traditional ant colony al‑
gorithm is fixed, so it needs to be improved to make it change dynamically. The
algorithm should make the volatile factor larger in the early stage, so that the algo‑
rithm has a strong global search ability; in the mature stage, the volatilization factor
should be gradually reduced to accelerate the convergence speed of the algorithm:

ρ = N
Nc+N (11)

The volatilization coefficient decreases linearly with an increase in the number of it‑
erations. N is the total number of iterations, and Nc is the value of the current iteration.
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(3) The reciprocal of the distance between the two nodes is the heuristic factor η. The
shorter the distance between the two nodes, the larger the heuristic factor, and the
higher the probability that the ants will choose the path. However, this relationship
can easilymake the ants fall into the local optimal solution. In this study, the heuristic
factor was improved, and the influence of the position of the starting point and the
end point on the probability of an ant selecting it is included in the formula as follows:

ηij =
1

doj+dij+djs
(12)

where doj is the distance from the starting point to node, and djs is the distance from the
node to the end point.

(4) The pheromone update rules greatly affect the efficiency of the ant colony in finding
the optimal path, and all the ants in the traditional ant colony algorithm simply up‑
date their pheromones after reaching the end point, and the advantages of ants walk‑
ing through shorter paths are not strongly reflected. Therefore, this study improved
the pheromone update strategy and added a reward and punishment mechanism,
strengthening the pheromone of an excellent path and weakening the pheromone of
a poor path.

Under the assumption that the optimal evaluation value is bt and the initial value is
0, the formula is as follows:

bt =
{

bt , bt(i) ≥ bt
bt(i), bt(i) < bt

(13)

where bt(i) is the local optimal evaluation of the ith generation of ants. When bt(i) is not
better than bt, the optimal solution remains unchanged as bt. When bt(i) is better than bt,
the optimal solution is updated and bt(i) becomes the optimal solution.

The pheromone is superimposed on the path that is superior to bt, and the pheromone
on the path that is not superior to the optimal solution bt is volatilized. The formula is as
follows:

τij(t + n) = (1 − p)·τij + ∆τij + ∆R (14)

∆R =

{
θ·∆τij , bt(i) ≥ bt
µ·∆τij , bt(i) < bt

(15)

θ = 0.5, µ = −0.5

4. Flow of the Algorithm
In the preliminary detection stage, the spherical andOBB bounding boxes are selected,

the binary tree is selected as the tree structure and the Bounding Volume Hierarchy is con‑
structed in a top‑down manner. The depth‑first traversal method is used to traverse the
tree’s structure, and the triangular primitive pairs without a collision are quickly removed.
In the accurate detection stage, the bounding box with a collision after preliminary detec‑
tion is processed by random sampling to form a search space composed of feature pairs.
The optimized ant colony algorithm is introduced to solve the optimization problem of the
search space, as shown in Figure 2. The specific steps are as follows:
(1) Establish a hierarchical bounding box for the target part to be detected and traverse

the hierarchical bounding box to see whether the leaf nodes intersect.
(2) If there is a collision between the leaf nodes, feature sampling is performed on the

primitive patches between the collision nodes to form a two‑dimensional discrete
search space.

(3) Initialize the ant population M, the pheromone intensity, visibility, population loca‑
tion and number of iterations of the algorithm.

(4) Calculate the optimal solution of each ant and the current global optimal solution and
select the optimal solution after a comparison.
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(5) Tomeet the final requirements, output the best individual that meets the collision threshold.
(6) Conduct the next test.
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5. Experiment and Results
5.1. Experiment

In order to test the performance of the algorithm proposed in this study for detect‑
ing collisions in virtual reality, simulation experiments were carried out. The experimen‑
tal environment was a PC (version 2019; Visual Studio, Seattle, WA, USA). The OpenGL
graphics library and C++were implemented on VS2019. The simulationmodel was a three‑
dimensional model of the equipment in a veneer production line. The number of models
was 90, and the average number of vertices in the object model was 750. Firstly, the perfor‑
mance of the sphere‑OBB‑MACO algorithm in terms of detecting collisions under different
feature pairs was simulated. Secondly, the performance of Sphere‑OBB‑MACO algorithm
in terms of detecting collisions with different ant colony sizes was compared, so that the
appropriate ant colony size could be selected. Finally, the performance of the most com‑
monly used virtual reality collision detection algorithms and the proposed algorithm was
compared. The number of simulations for detecting collisions was 300.

(1) Wang Yu believes that the number of feature pairs is an important factor affecting the
performance of collision detection algorithms and has done a series of experiments to
verify his conjecture [29]. The performance of the sphere‑OBB‑MACO algorithm in
terms of detecting collisions under different feature pairs was simulated. Five feature
pairs were selected to detect collisions using the sphere‑OBB‑MACO algorithm. The
two objects with the longest motion time were selected for detection. Table 1 shows
the time of collision detection.

From Table 1, it can be seen that for detecting a collision between two objects, the
number of different sampling features of the selected two objects was directly related to
the number of feature pairs under the same accuracy in detecting collisions. At the same
detection rate, a greater number of sampling feature pairs for two objects means that more
feature quantities need to be iterated, so the process is more time‑consuming. For example,
when the number of feature pairs is 50002, it takes more time than when the number of
feature pairs is 10002. However, the large quantity of features can better reflect the spatial
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position attributes of the two objects, which is more conducive to accurate detection of a
collision. With the same number of feature pairs, the longer the iterative optimization time
of the sphere‑OBB‑MACO algorithm is, the more likely it is to achieve higher accuracy in
detecting collisions.

Table 1. Detection time of sphere‑OBB‑MACO algorithm with different feature pairs.

Duration/ms

Number of
Characteristic Pairs Detection Rate 20% Detection Rate 40% Detection Rate 60% Detection Rate 80%

10002 5.1 8.4 10.6 13.4
20002 7.0 11.1 12.9 16.4
30002 9.2 13.4 16.1 20.8
40002 12.3 15.6 18.5 22.0
50002 14.1 17.2 20.5 27.3

In the following, the detection collision logarithm A and the actual collision logarithm
B under different detection rates were compared to verify the influence of the number of
feature pairs on the performance of the algorithm for detecting collisions in virtual reality.

It can be seen from Table 2 that there is a certain gap between the logarithm of col‑
lisions obtained by the prediction of collisions based on the number of sampled features
and the logarithm of actual collisions of the object in virtual reality. When the number of
features is greater, the features involved in training are closer to the actual features of the
object, and the logarithm of detected collisions is closer to the actual value. When the num‑
ber of feature pairs is 10002, although the sphere‑OBB‑MACO algorithm could detect 80%
of the collisions with 1000 feature pairs, these collisions only accounted for 30.2% of the
actual total number of collisions. In the process of evaluating the collisions of the objects, it
may cause misjudgment. Therefore, the number of feature pairs sampled by objects in vir‑
tual reality has a significant impact on the accuracy of detecting collisions between objects.

Table 2. The collision detection ratio of sphere‑OBB‑MACO algorithm with different feature pairs.

(A/B) %

Number of
Characteristic Pairs Detection Rate 20% Detection Rate 40% Detection Rate 60% Detection Rate 80%

10002 7.3 15.2 22.1 30.2
20002 10 21.2 34.3 45.6
30002 13.3 27.8 39.6 51.2
40002 16.2 35.9 55.1 62.7
50002 20.0 44.1 65.4 85.3

If we combine the results of Tables 1 and 2, the number of feature pairs of objects
sampled in virtual reality had a significant impact on the collision detection time of the
sphere‑OBB‑MACO algorithm and the accuracy of the algorithm in detecting collisions.
Too high a sampling number will inevitably lead to a decrease in real‑time detection, and
too low a sampling number will lead to a decrease in the rate of detection. Therefore, in
actual operation, in order to ensure the accurate detection of collisions, an appropriate
number of sampling feature pairs should be selected.

(2) In order to verify the impact of the ant colony’s size on the performance of the collision
algorithm, different ant colony sizes were selected, and the sphere‑OBB‑MACO algo‑
rithmwas used for training on collisions of the equipment of a veneer production line.

It can be seen from Figure 3 that different sizes of the ant colony had a great influ‑
ence on the detection rate of the algorithm, and the detection rate maintained the law of
decreasing first and then increasing. When the number of feature pairs was 10002, the
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highest detection rate could be obtained if the number of ant colonies was 40. When the
number of feature pairs was 20002 and 30002, the highest detection rate could be obtained
if the number of ant colonies was 50. The highest detection rate could be obtained when
the number of feature pairs was 40002 and 50002 if the number of ant colonies was 60.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

sphere-OBB-MACO algorithm and the accuracy of the algorithm in detecting collisions. 

Too high a sampling number will inevitably lead to a decrease in real-time detection, and 

too low a sampling number will lead to a decrease in the rate of detection. Therefore, in 

actual operation, in order to ensure the accurate detection of collisions, an appropriate 

number of sampling feature pairs should be selected. 

(2) In order to verify the impact of the ant colony’s size on the performance of the colli-

sion algorithm, different ant colony sizes were selected, and the sphere-OBB-MACO 

algorithm was used for training on collisions of the equipment of a veneer production 

line. 

It can be seen from Figure 3 that different sizes of the ant colony had a great influence 

on the detection rate of the algorithm, and the detection rate maintained the law of de-

creasing first and then increasing. When the number of feature pairs was 10002, the highest 

detection rate could be obtained if the number of ant colonies was 40. When the number 

of feature pairs was 20002 and 30002, the highest detection rate could be obtained if the 

number of ant colonies was 50. The highest detection rate could be obtained when the 

number of feature pairs was 40002 and 50002 if the number of ant colonies was 60. 

 

Figure 3. Collision detection rate of different ant colony size. 

(3) We selected the equipment of a veneer production line for the problem of detecting 

collisions. The number of feature pairs was 50002, the ant colony size 𝑚 = 60, the 

initial pheromone influence factor and the expected heuristic factor 𝛼 = 𝛽 = 1, the 

maximum number of iterations 𝑁 = 100 and the set value 𝑛 = 50. Three algorithms, 

namely sphere-OBB (the hierarchical bounding box algorithm), sphere-OBB-ACO 

and sphere-OBB-MACO, were compared and analyzed, and the final results are 

shown in Figure 4. 

Figure 3. Collision detection rate of different ant colony size.

(3) We selected the equipment of a veneer production line for the problem of detect‑
ing collisions. The number of feature pairs was 50002, the ant colony size m = 60,
the initial pheromone influence factor and the expected heuristic factor α = β = 1,
the maximum number of iterations N = 100 and the set value n = 50. Three algo‑
rithms, namely sphere‑OBB (the hierarchical bounding box algorithm), sphere‑OBB‑
ACO and sphere‑OBB‑MACO,were compared and analyzed, and the final results are
shown in Figure 4.

From Figure 4, it can be seen that all three algorithms achieved stable results after
30 ms. Among them, the detection rate of the sphere‑OBB‑MACO algorithmwas the high‑
est (about 0.85) and sphere‑OBB was the worst (about 0.65).

The experimental results showed that the optimized sphere‑OBB‑MACO collision de‑
tection algorithm was better than the traditional bounding box algorithm and the tradi‑
tional random collision detection algorithm.

(4) In the fourth experiment, Smagulovak’s BOX‑LSTM algorithm [30], Shen Xue Li’s
BOX‑PSO algorithm [31], JIN Yan‑Xia’s BOX‑DNN algorithm [32] were selected for
comparisonwith the algorithmdesigned in thispaper so as to judgewhether the algorithm
designed in this paper was superior to the algorithms designed by other researchers.

According to Figure 5, the four collision detection algorithms all obtained stable de‑
tection results within 55 ms. Among them, the detection rate of the sphere‑OBB‑MACO
algorithm was the highest (about 0.85), followed by the BOX‑DNN algorithm (about 0.82)
and the BOX‑PSO algorithm (about 0.8); BOX‑LSTM was the worst (about 0.76). From
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the perspective of the convergence time of detection, the BOX‑LSTM algorithm had the
shortest detection time of about 42 ms, while the BOX‑DNNwas the most time‑consuming
(about 50 ms), and the BOX‑PSO and sphere‑OBB‑MACO algorithms were in the middle
(about 45 ms).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 

Figure 4. The detection efficiency of three algorithms. 

From Figure 4, it can be seen that all three algorithms achieved stable results after 30 

ms. Among them, the detection rate of the sphere-OBB-MACO algorithm was the highest 

(about 0.85) and sphere-OBB was the worst (about 0.65). 

The experimental results showed that the optimized sphere-OBB-MACO collision 

detection algorithm was better than the traditional bounding box algorithm and the tra-

ditional random collision detection algorithm. 

(4) In the fourth experiment, Smagulovak’s BOX-LSTM algorithm [30], Shen Xue Li’s 

BOX-PSO algorithm [31], JIN Yan-Xia’s BOX-DNN algorithm [32] were selected for 

comparison with the algorithm designed in this paper so as to judge whether the 

algorithm designed in this paper was superior to the algorithms designed by other 

researchers. 

According to Figure 5, the four collision detection algorithms all obtained stable de-

tection results within 55 ms. Among them, the detection rate of the sphere-OBB-MACO 

algorithm was the highest (about 0.85), followed by the BOX-DNN algorithm (about 0.82) 

and the BOX-PSO algorithm (about 0.8); BOX-LSTM was the worst (about 0.76). From the 

perspective of the convergence time of detection, the BOX-LSTM algorithm had the short-

est detection time of about 42 ms, while the BOX-DNN was the most time-consuming 

(about 50 ms), and the BOX-PSO and sphere-OBB-MACO algorithms were in the middle 

(about 45 ms). 

Figure 4. The detection efficiency of three algorithms.

5.2. Analysis of the Results
As described in the previous section, it was verified by experiments that the algo‑

rithm designed in this study was able to detect collisions in complex scenes and was also
superior to other algorithms. In the first experiment, five feature pairs were selected to
test the algorithm. It can be seen from the results that as the number of feature pairs in‑
creased, the time was longer. When the efficiency of detection was 80%, the algorithm
had a maximum difference of 13.9 ms. However, after comparing the logarithm of de‑
tected collisions with the logarithm of actual collisions, it was found that the greater the
number of feature pairs, the higher the accuracy of detecting collisions. In the second ex‑
periment, different ant colony sizes and sampling feature pairs were selected for collision
testing. The results showed that the ant colony size had a significant effect on the rate of
detecting collisions, and the detection rate had the shape of first rising and then falling.
When the number of feature pairs was 10002, the algorithm achieved the highest detection
rate when the ant colony’s size was 40. When the number of feature pairs was 20002 and
30002, the algorithm achieved the highest detection rate when the ant colony’s size was 50.
When the number of feature pairs was 40002 and 50002, the algorithm achieved the highest
detection rate when the ant colony’s size was 60. In the third experiment, the algorithm
designed in this study was compared with two traditional algorithms. The results showed
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that the algorithm designed in this study was always better than the traditional collision
detection algorithms. The accuracy of detection by the traditional hierarchical bounding
box algorithm (sphere‑OBB) could only reach 0.65. The accuracy of detection by the ant
colony algorithm sphere‑OBB‑ACO before optimization and the optimized ant colony al‑
gorithm sphere‑OBB‑MACO was 0.8 and 0.85, respectively. In the fourth experiment, the
algorithm developed in this study was compared with three published algorithms. The
three algorithms are similar to those of this study. They all introduced intelligent algo‑
rithms to solve optimization problems. The results showed that the algorithm from this
study had the highest accuracy for detecting collisions in complex scenes.
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From the experimental results, it can be seen that it is rational to introduce intelligent
algorithms to dealwith the problemof detecting collisions, as these can effectively improve
the efficiency of detection. However, due to the limitations of the intelligent algorithm
itself, researchers need to optimize the intelligent algorithm, so as to further improve the
efficiency of the collision detection algorithm. The results of the fourth experiment showed
that the ant colony algorithm was more suitable for dealing with the collision detection
problem of complex scenes. Therefore, when dealing with the collision detection problem
under different conditions, researchers need to flexibly use different algorithms to deal
with the problem.

6. Conclusions
This study designed, implemented and verified a new collision detection algorithm

with good performance, namely sphere‑OBB‑MACO, which is suitable for detecting colli‑
sions in complex scenes. The detection process of the algorithm is divided into two steps.
In the preliminary detection stage, the spherical and OBB bounding boxes are selected,
the binary tree is selected as the tree structure and the bounding volume hierarchy is con‑
structed in a top‑downmanner. The tree’s structure is traversed by the depth‑first traversal
method to quickly remove the triangular primitive pairs without collisions. In the accu‑
rate detection stage, the bounding boxes with collisions after preliminary detection are
processed by the random sampling method, and the feature pairs are used to form the
search space. The ant colony algorithm is introduced to solve the optimization problem
of the search space. To overcome the problems of a slow convergence speed and the local
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optimal solution in the ant colony algorithm, the pheromone update rule of the ant colony
algorithm has been optimized.

In the fifth section, the superiority of the algorithmdesigned in this studywas verified.
The sphere‑OBB‑MACO algorithm designed in this study was more efficient in detecting
collisions than traditional algorithms and some published algorithms in large‑scale com‑
plex scenes, but it had some limitations as follows:
(1) Detecting collisions of flexible objects. The improved algorithm in this study is limited to

rigid objects, but the detection of collisions between flexible objects is more difficult.
(2) In a simple scenario, due to the small number of models and the simple structure,

particle swarm optimization could be used to solve the optimization problem. For
detecting collisions between convex polyhedrons, a faster genetic algorithm should
be used to solve the optimization problem.
Although this study has made some improvements to the collision detection algo‑

rithm and achieved certain results in terms of efficiency, there are still many problems that
need to be further studied in the future as follows:
(1) Optimization of the complexity of the hierarchical tree’s structure space. The sphere‑

OBB structure requires more storage space than a single bounding box structure. In
the future, the storage space of the hierarchical tree needs to be optimized.

(2) Optimization of ant colony algorithm. In this study, the pheromone update rules and
the correlation coefficients of the ant colony algorithmwere improved to optimize the
ant colony algorithm. In the future, other intelligent algorithms could be introduced
to optimize the ant colony algorithm.

(3) In the future, the acceleration of computer hardware could be studied to further im‑
prove the efficiency of detection.
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