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Abstract: As an important research direction in image and video processing, set-based video recogni-
tion requires speed and accuracy. However, the existing static modeling methods focus on computa-
tional speed but ignore accuracy, whereas the dynamic modeling methods are higher-accuracy but
ignore the computational speed. Combining these two types of methods to obtain fast and accurate
recognition results remains a challenging problem. Motivated by this, in this study, a novel Manifolds-
based Low-Rank Dictionary Pair Learning (MbLRDPL) method was developed for a set-based video
recognition/image set classification task. Specifically, each video or image set was first modeled as a
covariance matrix or linear subspace, which can be seen as a point on a Riemannian manifold. Second,
the proposed MbLRDPL learned discriminative class-specific synthesis and analysis dictionaries by
clearly imposing the nuclear norm on the synthesis dictionaries. The experimental results show that
our method achieved the best classification accuracy (100%, 72.16%, 95%) on three datasets with the
fastest computing time, reducing the errors of state-of-the-art methods (JMLC, DML, CEBSR) by
0.96–75.69%.

Keywords: set-based video recognition; image set classification; manifold learning; fast and accurate
classification; discriminative dictionary learning

1. Introduction

With the development of imaging technology, people can increasingly easily obtain
multimedia data, such as images and videos. Additionally, much multimedia data are
usually stored in the form of image sets, such as personal photo albums, multi-view photo
albums, and video frame sets. Therefore, studies of set-based video recognition or image
set classification methods are needed.

In set-based video recognition or image set classification tasks, only the spatial in-
formation of the video is considered. Thus, the key problems of image set classification
(ISC) task are how to model the image sets and how to measure the distance between
model representations; additionally, the choice of modeling strategy is the basis of distance
measurement. The existing ISC modeling methods can be grouped into two types: static
and dynamic modeling methods. Classical static modeling methods include Covariance
Discriminative Learning (CDL) [1], Multi-Model Fusion Metric Learning (MMFML) [2], etc.
This type of method provides a unique modeling representation for each image set and
then performs distance metric learning based on the representation. However, although the
calculations of such methods are fast, their classification accuracy is usually uncompetitive.

Classical dynamic modeling methods include Image-Set-based Collaborative Repre-
sentation and Classification (ISCRC) [3], Regularized Nearest Points (RNP) [4], etc. With
this type of method, sparse representation or collaborative representation is usually used
to simultaneously learn the representation coefficients (which is also known as dynamic
modeling) and the distance between different image sets. The classification performance
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of dynamic modeling methods is usually more accurate than that of the static model-
ing methods; however, better performance is achieved at the expense of computational
efficiency. For example, suppose that we have N gallery image sets. When classifying
one probe image set, the dynamic modeling methods need to solve N sparse or collabo-
rative optimization problems, which is time-consuming. To reduce the computing time
required for solving N sparse or collaborative optimization problems, Liu et al. proposed
the Convolutional Encoder-based Block Sparse Representation (CEBSR) [5] model to learn
K discriminative dictionaries for K categories. When classifying one probe set, CEBSR
only needs to solve K sparse optimization problems, and K < N is satisfied. Moreover,
CEBSR uses the image set matrix as the feature representation of the probe set, neglecting
the importance of set modeling. Additionally, solving the sparse representation problem
is time-consuming. Recently, Gu et al. proposed the projective Dictionary Pair Learning
(DPL) [6] algorithm, which decomposes the original sparse representation into a linear
reconstruction problem by introducing the analysis dictionaries, thereby considerably
speeding up the sparse representation computing. Therefore, introducing DPL into the ISC
field is a compelling idea.

To increase the efficiency and accuracy of image set classification, in this study, we de-
veloped a new Manifolds-based Low-Rank Dictionary Pair Learning (MbLRDPL) method,
which combines the advantages of both static and dynamic modeling methods. Specifically,
static modeling (i.e., covariance matrix or linear subspace) is first used to model each
image set; second, the Manifolds-based Discriminative Dictionary Learning algorithm,
i.e., MbLRDPL, is developed by introducing DPL into the ISC task. In addition, the nuclear
norm is imposed on the synthesis dictionaries for further strengthening the discriminative
ability. The flowchart of the proposed method is shown in Figure 1.

SPD manifold

GM

Tangent space

Tangent space

Input Different modeling MbLRDPL classifier

C log( )C log( )C D log( )P C

Y TYY

TYY D
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Figure 1. Flowchart of the proposed MbLRDPL method. A video is first modeled as a covariance
matrix or linear subspace, then embedded into Euclidean tangent space: log(C) or YYT ; finally, it is
fed into the proposed MbLRDPL classifier for learning discriminative dictionaries.

The rest of this paper is organized as follows: Section 2 provides an overview of related
studies. In Section 3, the MbLRDPL algorithm is proposed. The experiments and results are
described in Section 4. A discussion and the conclusions are outlined in Sections 5 and 6,
respectively.

2. Related Works

In this section, we review two related aspects: image set classification and dictio-
nary learning.
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2.1. Image Set Classification

So far, many research works have been made in computer vision [7–11], especially in
the image set classification [1–4,12–18] field. In this subsection, as shown in Figure 2, we
briefly review two types of image set classification methods: static and dynamic model-
ing methods.

Image set classification/

Set-based video 

recognition

Dynamic modeling 

methods 

Figure 2. The tree diagram of image set classification methods, and these methods can be grouped
into two categories: static and dynamic modeling methods.

2.1.1. Static Modeling Methods

With static modeling methods, each image set is modeled with some unique, fixed
methods, such as parametric distribution function, subspace, covariance matrix, multiorder
statistics, and domain (or hypersphere). For instance, CDL [1] and Log-Euclidean Metric
Learning (LEML) [13] algorithms use covariance matrices to represent image sets and
then use logarithm kernels to map the modeling representations to the Hilbert space to
easily measure the similarity between image sets. Projection Metric Learning (PML) [12]
models each image set as a subspace (i.e., a point on a Grassmann manifold), and directly
learns a projection matrix on a Grassmann manifold to reduce the computational cost.
The MMFML [2] algorithm jointly uses multiple representation models to represent one
image set, which aims to fully use the complementarity between different representation
models. Discrete Metric Learning (DML) [14] also combines static and dynamic modeling
methods; however, it ignores the importance of dictionary learning. Since static modeling
can markedly reduce the sample, the computing time of static modeling methods is usu-
ally fast. However, most of these static modeling methods only focus on learning more
discriminative feature representations after obtaining static models, ignoring the design of
a powerful classifier, resulting in limited classification results.

2.1.2. Dynamic Modeling Methods

With dynamic modeling methods, each image set is modeled with some dynamic
method, such as affine hull, convex hull, and so on. These modeling methods usually rely on
learning of sparse or collaborative representation coefficients. For instance, in the ISCRC [3]
algorithm, each probe image set or video was modeled as affine or convex hulls; then, these
models were collaboratively reconstructed using all gallery image sets or videos. In the
RNP [4] algorithm, the image sets were also modeled as affine hulls. Based on this modeling,
the authors developed a new objective function to simultaneously learn the modeling
coefficients and the distance metric. Similar to RNP, Dual Linear Regression Classification
(DLRC) [16] also modeled image sets as affine hulls and reconstructed a virtual image using
two different image sets; the distance between the two reconstruction images was used
as the distance between the image sets. However, in DLRC, in each distance calculation,
only two image sets were used: it cannot use the useful information from other gallery
image sets. Based on DLRC, two new algorithms, Pairwise Linear Regression Classification



Appl. Sci. 2023, 13, 6383 4 of 14

(PLRC) [17] and Discriminative Residual Analysis (DRA) [18], were then developed by
introducing different unrelated subspaces. Specifically, PLRC maximized the unrelated
distance between two image sets and minimized the related distance to improve the
classification results. DRA learned a projection matrix to project the reconstruction residual
to a more discriminative space. In other words, the PLRC algorithm was first used to
compute the related and unrelated distances between any two gallery image sets, and then,
the projection matrix was used to learn a more discriminative space. Since the above related
and unrelated distances were independently computed, Joint Metric Learning-based Class-
specific representation (JMLC) [15] jointly learned the related and unrelated metrics and
extended PLRC and DRA to the large-size image set classification task. Although dynamic
modeling methods provide higher-accuracy recognition performance, they usually need
to solve some sparse or collaborative optimization problems, and these problems are
usually time-consuming.

2.2. Dictionary Learning

Dictionary learning has been widely studies and applied for many artificial intelligence
tasks, such as image classification, image compression, image denoising, etc. To date,
many dictionary learning methods have been developed, which can be categorized into
unsupervised and discriminative dictionary learning methods.

2.2.1. Unsupervised Dictionary Learning Methods

Unsupervised dictionary learning methods do not use any label information in the
learning process. The most well-known unsupervised dictionary learning method is
K-singular value decomposition (K-SVD) [19], which combines the K-means clustering
algorithm and sparse representation to learn the most accurate representation. How-
ever, because label information is not used, the discriminative abilities of these methods
are limited.

2.2.2. Discriminative Dictionary Learning Methods

The discriminative dictionary learning methods consider the data’s label information
to enhance the discriminative and classification abilities of the representations. Since the
learned dictionaries have a stronger discriminative ability, the discriminative dictionary
learning classifiers have a stronger classification ability than sparse representation classifiers.
The representative discriminative dictionary learning methods include the Discriminative
KSVD (D-KSVD) [20] algorithm, analysis discriminative dictionary learning (ADDL) [21],
Deep Dictionary Learning (DDL) [22], Self-expressive Latent Dictionary Pair Learning
(SLatDPL) [23], and CEBSR [5] algorithms, among others. However, most of them are
single-image-based methods, so they cannot be effectively used in image set classification or
video recognition tasks. The CEBSR algorithm was used for image set classification, but it is
essentially still a single-image-based method because it used a probe image matrix to model
the image set. This leads to long computing time, and the classification performance cannot
be guaranteed. In addition, most of these methods need to solve some time-consuming l1
optimization problems, resulting in high time complexity.

3. Manifolds-Based Low-Rank Dictionary Pair Learning

Considering the fast computing of static modeling methods and the higher recognition
rate of dynamic modeling methods, in this study, we combined to achieve efficient and
accurate image set classification.

3.1. Problem Formulation

Assume that we have N training image sets (gallery videos), {Xk
i }N

i=1, which belong
to K classes, where Xk

i = [xk
i,1, xk

i,2, · · · , xk
i,mi

] ∈ Rp×mi denotes the ith gallery image set
which belongs to kth class. Here, xk

i,j ∈ Rp×1 denotes the jth image coming from ith gallery

video, mi is the number of sample images in Xk
i , and p denotes the dimensions of the
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image sample. We also assume that in the kth class, there are nk image sets. The important
notations in this paper are summarized in Table 1.

Table 1. Important notations used in the paper.

Notations Description

X, Y, C, · · · a matrix
x, d, · · · a vector

k, p, m, · · · scalar
Xk

i the ith gallery image set from kth class
xk

i,j the jth image coming from ith gallery video
	 the manifold replacements for subtraction
⊗ the manifold replacements for multiplication
|| · ||2s the geodesic distance metric
|| · ||F the Frobenius norm
|| · ||1 ||X||1 = ∑ij |xij|
|| · ||2 the L2 norm
|| · ||∗ the nuclear norm

To benefit from the advantages of static modeling method, we first use the following
covariance matrix (point on a Symmetric Positive Definite (SPD) manifold) and linear
subspace (point on a Grassmann Manifold (GM)) to model image sets, and we developed
two submethods: MbLRDPL-SPD and MbLRDPL-GM.

3.2. MbLRDPL-SPD

MbLRDPL-SPD uses the following covariance matrix to model the image set Xk
i :

Ck
i = 1

mi−1

mi
∑

j=1
(xk

i,j −mi)(xk
i,j −mi)

T , (1)

where mi denotes the mean vector of image set Xk
i . Thus, all our gallery image sets are

modeled to {Ck
i }N

i=1, and these models are points on a Riemannian manifold; more specifi-
cally, they are points on a symmetric positive definite manifold. Thereby, we construct the
following SPD-manifold-based distance learning problem:

min ||Ck
i 	 Dk ⊗ Ak

i ||2s + λ1||Ak
i ||1 (2)

where Dk and Ak
i denote the kth dictionary and the coding matrix on the SPD manifold,

respectively; ||Ck
i 	 Dk ⊗ Ak

i ||2s denotes the distance between image set Ck
i and the kth class

image set. Here, operators 	 and ⊗ are the manifold replacements for subtraction and
multiplication in Euclidean space, respectively. Furthermore, different from the L2 norm in
Euclidean space, || · ||2s is the geodesic distance metric on SPD manifolds.

The optimization problem (2) is difficult to solve because we have not explicitly
defined the operators 	 and ⊗. However, Wang et al. [1] showed that we can embed the
SPD manifold into Euclidean tangent space via the logarithm function log(·). As a result,
the optimization problem (2) can be rewritten as

min ||log(Ck
i )− Dk Ak

i ||2F + λ1||Ak
i ||1 (3)

where Dk and Ak
i denote the dictionary and coding matrix in Euclidean spaces, respectively.

However, for Equation (3), we need to solve the L1-norm optimization problem, which is
often computationally demanding.
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To avoid the L1-norm optimization problem, problem (3) is extended to the following
problem by introducing the DPL algorithm:

min
K
∑

k=1

nk
∑

i=1
||log(Ck

i )− DkPklog(Ck
i )||2F

+λ1
K
∑

k=1

n̄k
∑

j=1
||Pklog(C̄k

j )||2F + λ2
K
∑

k=1
||Dk||∗

s.t. ||dk
j ||22 ≤ 1, k = 1, · · · , K; j = 1, · · · , m,

(4)

where Dk = [dk
1, dk

2, · · · , dk
m] ∈ Rp×m is the synthesis dictionary; Pk ∈ Rm×p is the analysis

dictionary; m is the number of atoms in the dictionary; {C̄k
j }

n̄k
j=1 are the complementary

data of Ck
j in the whole gallery sets, i.e., all the gallery sets that do not belong to the kth

class; n̄k is the number of complementary sets. Note that the first term in Equation (4) is
the fidelity term, which is used to ensure that the learned dictionaries effectively recon-
struct the input data. The second term is the discriminative term, which ensures that the
analysis subdictionary Pk can project the gallery sets of other classes into a null subspace.
The third term is the nuclear norm regularization term, which is used to guarantee that the
representation coefficients of samples from the same class have higher similarity.

This problem is solved in Section 3.4 to obtain the optimal dictionaries Dk, Pk, and
k = 1, · · · , K. When a new probe image set Z is considered, we only need to solve the
following problem to obtain its label:

label(Z) = arg min
k

||log(Cz)− DkPklog(Cz)||2F (5)

where Cz is the covariance model of Z.

3.3. MbLRDPL-GM

Different from MbLRDPL-SPD, MbLRDPL-GM uses linear subspace Yk
i to model

image set Xk
i , and the subspace matrix Yk

i can be solved by solving the following problem:

Xk
i Xk

i
T
= Yk

i ∆k
i Yk

i
T

, (6)

where ∆k
i is the eigenvalue matrix, and Yk

i is the eigenvectors matrix. Since the linear
subspace Yk

i is located on a Grassmann manifold, we first embed it to its tangent space
with Yk

i (Y
k
i )

T .
Then, the objective function of MbLRDPL-GM can be constructed as

min
K
∑

k=1

nk
∑

i=1
||Yk

i Yk
i

T − DkPkYk
i (Y

k
i )

T ||2F

+λ1
K
∑

k=1

n̄k
∑

j=1
||PkȲk

i (Ȳ
k
i )

T ||2F + λ2
K
∑

k=1
||Dk||∗

s.t. ||dk
j ||22 ≤ 1, k = 1, · · · , K; j = 1, · · · , m,

(7)

where Ȳk
i is the complementary matrix.

This problem is solved in Section 3.4 to obtain the optimal dictionaries Dk, Pk, and
k = 1, · · · , K. When a new probe image set Z is considered, we only need to solve the
following problem to obtain its label:

label(Z) = arg min
k

||YzYT
z − DkPkYzYT

z ||2F (8)

where Yz is the subspace model of Z.
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3.4. Optimization

Here, we use symbol M to represent the modeling of the image sets, i.e., M can be a
linear subspace Y or a covariance matrix C. Additionally, we use the symbol E to represent
the Euclidean tangent space representation of M (i.e., E can be log(M) or MMT). Thus,
the optimization problems (4) and (7) can be rewritten as

min
K
∑

k=1

nk
∑

i=1
||Ek

i − DkPkEk
i ||2F + λ1

K
∑

k=1

n̄k
∑

j=1
||PkĒk

i ||2F + λ2
K
∑

k=1
||Dk||∗

s.t. ||dk
j ||22 ≤ 1, k = 1, · · · , K; j = 1, · · · , m,

(9)

Since our objective function (9) is a nonconvex problem, it cannot be directly solved.
Hence, the Alternating Direction Method of Multipliers (ADMM) method is used to it-
eratively optimize it. Specifically, to facilitate the solving of the objective function, some
auxiliary variables Ak

i and Jk, k = 1, · · · , K, i = 1, · · · , nk are introduced. Thus, prob-
lem (9) becomes

min
K
∑

k=1

nk
∑

i=1
||Ek

i − Dk Ak
i ||2F + λ1

K
∑

k=1

n̄k
∑

j=1
||PkĒk

j ||2F

+λ2
K
∑

k=1
||Jk||∗ + τ

K
∑

k=1

nk
∑

i=1
||PkEk

i − Ak
i ||2F

+ µ
2

K
∑

k=1
||Jk − (Dk +

Z
µ )||2F

s.t. ||dk
j ||22 ≤ 1, k = 1, · · · , K; j = 1, · · · , m,

(10)

where τ and µ are penalty parameters, and Z is the Lagrange multiplier. The above problem
can be solved with the alternating minimization method, i.e., fix other variables and update
the remaining variables in turn.

(1) Fix the other variables and update Ak
i . Ak

i can be obtained by solving the following
optimization problem:

Ak
i
∗

= arg min
Ak

i

||Ek
i − Dk Ak

i ||2F + τ||PkEk
i − Ak

i ||2F (11)

After solving Equation (11), we can obtain the following closed-form solution:

Ak
i = (DT

k Dk + τ I)−1(DT
k Ek

i + τPkEk
i ) (12)

(2) Fix the other variables and update Pk by solving the problem:

Pk
∗ = arg min

Pk

λ1

n̄k
∑

j=1
||PkĒk

j ||2F + τ
nk
∑

i=1
||PkEk

i − Ak
i ||2F (13)

After solving Equation (13), we can obtain the following closed-form solution:

Pk = τ
nk
∑

i=1
Ak

i (Ek
i )

T(λ1

n̄k
∑

j=1
Ēk

j (Ēk
j )

T + τ
nk
∑

i=1
Ek

i (Ek
i )

T + γI)−1 (14)

where γ = 10−4.
(3) Fix the other variables and update Dk by solving the problem:

Dk
∗ = arg min

Dk

nk
∑

i=1
||Ek

i − Dk Ak
i ||2F

+ µ
2 ||Jk − (Dk +

Z
µ )||2F + ρ||Dk − Sk + Tk||2F

(15)
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where Sk is the auxiliary variables, Tk is the Lagrange multiplier, and ρ is the penalty
parameter. This problem can be solved by iteratively computing the following equations:

Dk = (2
nk
∑

i=1
Ek

i Ak
i

T
+ 2ρ(Sk − Tk) + µJk − Z)(2

nk
∑

i=1
Ak

i Ak
i

T
+ 2ρI + µI)−1,

sk
j =


dk

j + tk
j , if

√
||ρdk

j + ρtk
j ||22 = ρ

ρdk
j +ρtk

j√
||ρdk

j +ρtk
j ||

2
2

, if
√
||ρdk

j + ρtk
j ||22 > ρ

Tk = Tk + (Dk − Sk),

(16)

where Sk = [sk
1, sk

2, · · · , sk
m] and Tk = [tk

1, tk
2, · · · , tk

m].
(4) Fix the other variables and update Jk by solving the problem:

Jk
∗ = arg min

Jk

λ2||Jk||∗ +
µ
2 ||Jk − (Dk +

Z
µ )||2F (17)

This problem can be directly solved by the singular value thresholding (SVT) [24]
operator D·(·)

Jk = Dλ2/µ(Dk +
Z
µ ) (18)

4. Experimental Results and Analysis

To test the validity of the MbLRDPL method, extensive comparison experiments were
performed on two challenging visual tasks, i.e., set-based video face recognition and set-
based object classification. The comparison methods include static modeling methods:
CDL, PML, LEML, MMFML and DML; dynamic modeling methods: ISCRC, RNP, DLRC,
PLRC, DRA and JMLC; dictionary learning methods: D-KSVD, ADDL, DDL, SLatDPL,
CEBSR. Among them, DML, JMLC, and CEBSR are the state-of-the-art methods. Moreover,
to further reduce the computing time, we first transformed the modeling matrix log(Ck

i )

or Yk
i (Y

k
i )

T into a vector and then performed Principal Component Analysis (PCA) [25] to
reduce its dimensions. Our experimental environment was as follows: MATLAB (R2016b),
Intel(R) Core(TM) i5 (3.0 GHz) with 24 GB of RAM. The codes of this method will be
available on 10 January 2023 via https://github.com/xzgao/MbLRDPL.

4.1. Experiments on Set-Based Video Face Recognition Task

The Honda/UCSD [26] and YouTube Celebrities (YTC) [27] datasets were used in this
part of the study. The Honda dataset contains 59 video sequences, and these videos belong
to 20 different categories (person). Each video contains approximately 300 to 500 frame
images. In each frame, only one person exists. For fair comparison, all frames were resized
to 20× 20 pixels. In our following experiments, one video from each category was randomly
selected for training (i.e., used as a gallery video), and the rest of the videos or image sets
were selected for testing (probe videos). The YTC dataset is collected from YouTube, which
consists of 1910 videos, and these videos belong to 47 different categories (celebrities). Each
video contains approximately hundreds of frame images; in most cases, in each frame
image, only one person is present. Similar the to Honda dataset, all frame images were
resized to 20× 20 pixels. For fair comparison, three image sets (video clips) were randomly
selected from each person for training (i.e., used as the gallery videos), and six image
sets were randomly selected for testing (i.e., used as the probe videos). Some illustrative
samples obtained from these datasets are shown in Figure 3. All experiments were repeated
10 times, and the average experimental results are summarized in Table 2.



Appl. Sci. 2023, 13, 6383 9 of 14

(a)  Honda (b)  YTC

(c)  ETH-80

Figure 3. Some examples of three datasets: (a) Honda (all images come from one video), (b) YTC (all
images come from different videos), and (c) ETH-80 (the images in the first row come from different
classes, whereas the images in the second row come from a same class but different image sets).

Table 2. Classification accuracy (%), training time (Tra. Time), and testing time (Tes. Time) (seconds)
of different methods on Honda and YTC datasets.

Method
Honda YTC

Accuracy Tra. Time Tes. Time Accuracy Tra. Time Tes. Time

ISCRC 96.41 ± 2.24 N/A 9.36 69.31 ± 2.02 N/A 1171
RNP 96.41 ± 2.16 N/A 2.49 70.35 ± 2.44 N/A 47.12

DLRC 34.36 ± 2.15 N/A 10.15 38.37 ± 6.70 N/A 183.2
PLRC 67.53 ± 6.64 N/A 33.84 49.26 ± 2.24 N/A 3102
DRA 70.12 ± 9.22 41.23 38.33 30.19 ± 0.35 2238 2482
JMLC 100.0 ± 0.00 N/A 1.81 71.89 ± 3.13 N/A 986
CDL 100.0 ± 0.00 3.56 8.58 69.18 ± 2.65 12.58 15.69
PML 96.67 ± 2.01 5.55 3.51 66.13 ± 3.16 65.58 18.37

LEML 97.18 ± 3.32 22.34 3.90 50.60 ± 3.01 400.6 39.96
MMFML 100.0 ± 0.00 2.53 0.02 71.32 ± 4.36 18.32 0.56

DML – – – 70.89 ± 9.75 10.38 0.30

MbLRDPL-SPD 100.0 ± 0.00 0.89 0.003 72.16 ± 2.44 9.73 0.47
MbLRDPL-GM 100.0 ± 0.00 0.78 0.002 71.85 ± 2.53 9.16 0.51

This table shows the following results: First, the proposed MbLRDPL method achieved
the highest classification accuracy on both the Honda and YTC datasets. Specifically, on the
Honda dataset, our method achieved 100% accuracy, which was higher than that achieved
by most of the other methods used for comparison. Especially compared with PML
and LEML (which also use static modeling), our proposed MbLRDPL performs much
better, demonstrating that our proposed LRDPL classifier has powerful classification ability.
On the YTC dataset, the proposed MbLRDPL achieved the higher accuracy of 72.16%,
providing lower error than other dynamic modeling methods (ISCRC, RNP, DLRC, PLRC,
DRA, and JMLC) by approximately 0.96%∼60.12%; this is a lower error than static modeling
methods (CDL, PML, LEML, and MMFML) by approximately 2.93%∼43.64%; and lower
error than the dynamic plus static modeling method DML by 4.36%. Second, we observed
that on the Honda and YTC datasets, our MbLRDPL was much faster than the other
methods in terms of training time (Tra. Time) and testing time (Tes. Time), even compared
with the hash method DML. Finally, we also observed that the dynamic modeling methods
were more sensitive to the size of dataset, because when using a large dataset (i.e., YTC),
their computing time was considerably longer.
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Since our MbLRDPL uses the dictionary learning scheme, Table 3 provides a compari-
son of the proposed model’s performance with that of some dictionary learning methods:
59.2% for D-KSVD [20], 62.3% for ADDL [21], 60.1% for DDL [22], 61.9% for SLatDPL [23],
and 66.31% for CEBSR [5] on the YTC dataset. These results were extracted from the
literature [5]. This table shows that our MbLRDPL method is substantially better than these
dictionary learning methods (providing and improvement of 5.85% over the best result
achieved by CDBSR), likely because the static modeling used in MbLRDPL can effectively
capture the discriminative information of each image set.

Table 3. Classification accuracy (%) of different dictionary learning methods on the YTC dataset.

Method Accuracy

D-KSVD 59.20
ADDL 62.30
DDL 60.10

SLatDPL 61.90
CEBSR 66.31

MbLRDPL-SPD 72.16
MbLRDPL-GM 71.85

4.2. Experiments on Set-Based Object Classification Task

In this part of the study, the ETH-80 [28] dataset was used to verify the performance of
the proposed method on a set-based object classification task. As shown in Figure 3c, this
dataset contains 80 image sets of 8 different categories including apples, cars, cows, cups,
dogs, horses, pears, and tomatoes; each category contains 10 image sets, and each image
set includes 41 different views images. Each image was resized to 20× 20 pixels. For fair
comparison, five image sets were randomly selected from each category for training (i.e.,
used as gallery sets), and the remaining image sets were selected for testing (i.e., used as
probe sets). We repeated this process 10 times, and we report the average experimental
results. The finally recognition rates and computing time of different methods are shown
in Figure 4.
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Figure 4. The (a) recognition rate (%), and (b) computing time (s) of different methods on ETH-80
dataset. These sub-figures demonstrate that our MbLRDPL achieves the highest recognition rate
(95%) with the fastest computing time.

As shown in Figure 4a, we found that the classification accuracy of MbLRDPL was the
highest, demonstrating that our proposed method can effectively deal with the object classi-
fication task. Specifically, MbLRDPL reduced the classification error of dynamic modeling
methods by at least 75.61% (ISCRC) and reduced the error of static modeling methods by at
least 33.33% (MMFML). These results indicate that our proposed MbLRDPL combines the
advantages of both static and dynamic modeling methods, which is an observation consis-
tent with our previous theoretical analysis. Additionally, we found that the static modeling
methods performed better than the dynamic modeling methods, demonstrating that the
static modeling methods are more suitable for object classification tasks. Compared with
dictionary learning methods, we found that our MbLRDPL outperformed these methods
by at least 6.25%, indicating that our LRDPL classifier has a more powerful classification
ability. Figure 4b again shows that MbLRDPL runs much faster than the methods used
for comparison, likely because the static modeling strategy can substantially reduce the
number of samples, and the subsequent LRDPL classifier runs quickly by avoiding the
L1-norm optimization problem.

In conclusion, compared with the state-of-the-art (SOTA) methods, we observe that (a)
on Honda dataset, the MbLRDPL and SOTA method JMLC both achieve 100% accuracy.
However, our MbLRDPL runs much faster (about 900 times) than JMLC in terms of testing
time; (b) on the YTC dataset, our MbLRDPL achieves 72.16% accuracy, reducing the errors
of SOTA methods JMLC, DML and CEBSR by 0.96%, 4.36%, and 17.36%, respectively.
MbLRDPL runs much faster than these SOTA methods; (c) on the ETH-80 dataset, our
MbLRDPL achieves 95% accuracy, reducing the errors of SOTA methods JMLC and CEBSR
by 75.69% and 55.56%, respectively. We find again that MbLRDPL runs much faster than
the comparison SOTA methods.

5. Discussion

Video recognition [29–31] is an important direction in computer vision and video pro-
cessing research. To date, many effective video recognition methods have been developed,
which can be grouped into two categories: temporal–spatial- and spatial-based video recog-
nition methods. In this study, only the spatial information of the video was considered; thus,
each video was considered an unordered image set. Additionally, the video recognition task
degenerated to a set-based video recognition or an image set classification task. According
to the speed and accuracy requirements for image set classification tasks, our MbLRDPL



Appl. Sci. 2023, 13, 6383 12 of 14

uses static modeling, i.e., the covariance matrix or linear subspace, to model each image set,
which considerably reduces the number of samples and accelerates the computing speed.
Additionally, a new powerful classifier called LRDPL was also proposed, which not only in-
creases the classification performance but also has a quick computing speed. Tables 2 and 3
show the classification accuracy, training time, and testing time of different methods on the
Honda and YTC datasets; the experimental results demonstrate that our proposed method
obtained the highest classification accuracy with the fastest computing time (training plus
testing time). In the object classification task, i.e., Figure 4, the same phenomenon can be
observed. Specifically, compared with static modeling methods, our MbLRDPL provides
higher classification accuracy and reduces the computing time; compared with dictionary
learning methods, MbLRDPL effectively increases the accuracy. This means that the static
modeling strategy can capture the discriminative features of image sets, and the LRDPL
classifier has powerful classification ability.

As a fundamental video processing algorithm, the proposed MbLRDPL can be ap-
plied to many video oriented tasks, such as video-based fugitive tracking, video retrieval,
video-based security monitoring, even action recognition, micro expression recognition,
etc. In addition, since MbLRDPL requires less testing/inference time while maintain-
ing recognition accuracy, it can be applied to some IoT edge devices via combining with
deep features.

Since MbLRDPL uses the iterative strategy to solve the parameters, we plotted the
convergence curves for the Honda and ETH-80 datasets to verify the convergence of the
MbLRDPL method. The convergence curves are shown in Figure 5, which shows that our
proposed MbLRDPL method can quickly converge (not more than 6 iterations), so we set
the maximum iterations to 20.
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Figure 5. Convergence curves of MbLRDPL-SPD and MbLRDPL-GM on (a) Honda and (b) ETH-80
datasets. We find the proposed MbLRDPL algorithm can converge very quickly.

6. Conclusions

In this paper, a novel manifold-based image set classification method called MbLRDPL
was proposed. By combining the manifold learning and dictionary pair learning algorithms,
MbLRDPL combines the advantages of both static and dynamic modeling methods: its
classification accuracy is high and its computing time is fast. Extensive experimental
results on both set-based video face recognition task and set-based object classification task
demonstrated the superiority of the proposed method. Given its excellent performance,
the proposed MbLRDPL can be applied to many video processing applications, such as
video-based fugitive tracking, video retrieval, video-based security monitoring, micro
expression recognition, etc. MbLRDPL can also be used in the edge computing field,
because it has very fast inference speed.
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The main limitations of the proposed algorithm include: (a) ignoring the importance
of feature learning; (b) only one representation is used to model image set or video, while
different representations can provide complementarity information; (c) when the number
of frames in a video is small, its covariance matrix may be influenced by noise disturbance.
Considering the limitations and applications of the research, our future studies include:
(a) designing a joint learning network for combining the deep features and MbLRDPL;
(b) constructing a new multi-model dictionary learning-based image set classification
method; (c) improving the robustness of the covariance matrix by introducing the fractional-
order embedding strategy.
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