
Citation: Li, Z.-X.; Lu, P.-S.; Wang,

G.-Y.; Li, J.-H.; Yang, Z.-H.; Ma, Y.-P.;

Wang, H.-H. Analysis of the

Composition of Ancient Glass and Its

Identification Based on the Daen-LR,

ARIMA-LSTM and MLR Combined

Process. Appl. Sci. 2023, 13, 6639.

https://doi.org/10.3390/

app13116639

Academic Editors: Giulia Festa

and Claudia Scatigno

Received: 21 April 2023

Revised: 16 May 2023

Accepted: 29 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Analysis of the Composition of Ancient Glass and Its
Identification Based on the Daen-LR, ARIMA-LSTM
and MLR Combined Process
Zhi-Xing Li 1,†, Peng-Sen Lu 1,†, Guang-Yan Wang 1,* , Jia-Hui Li 1, Zhen-Hao Yang 1, Yun-Peng Ma 1

and Hong-Hai Wang 2,*

1 School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China;
17837858022@163.com (Z.-X.L.); 18177753918@163.com (P.-S.L.); jiahuilee1211@163.com (J.-H.L.);
120210545@stu.tjcu.edu.cn (Z.-H.Y.); mayunpeng@tjcu.edu.cn (Y.-P.M.)

2 School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy
Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology,
Tianjin 300130, China

* Correspondence: wanggy@tjcu.edu.cn (G.-Y.W.); ctstwhh@hebut.edu.cn (H.-H.W.);
Tel.: +86-139-0211-3897 (G.-Y.W.)

† These authors contributed equally to this work.

Abstract: The glass relics are precious material evidence of the early trade and cultural exchange
between the East and the West. To explore the cultural differences and trade development between
early China and foreign countries, it is extremely important to classify glass cultural relics. Despite
their similar appearances, Chinese glass contains more lead, while foreign glass contains more
potassium. In view of this, this paper proposes a joint Daen-LR, ARIMA-LSTM, and MLR machine
learning algorithm (JMLA) for the analysis and identification of the chemical composition of ancient
glass. We separate the sampling points of ancient glass into two systems: lead-barium glass and
high-potassium glass. Firstly, an improved logistic regression model based on a double adaptive
elastic network (Daen-LR) is used to select variables with both Oracle and adaptive classification
characteristics. Secondly, the ARIMA-LSTM model was used to establish the correlation curve of
chemical composition before and after weathering and to predict the change in chemical composition
with weathering. Thirdly, combining the data processed by the above two methods, a multiple linear
regression model (MLR) is used to classify unknown glass products. It was shown that the sample
obtained by this processing method has a very good fit. In comparison with other similar types of
models like Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and Random
Forests based on classification and regression trees (CART-RF), the classification accuracy of JMLA is
97.9% on the train set. The accuracy rate on the test set reached 97.6%. The results of the research
demonstrate that JMLA can improve the accuracy of the glass type classification problem, greatly
enhance the research efficiency of archaeological staff, and gain a more reliable result.

Keywords: Daen-LR; ARIMA-LSTM; MLR; machine learning; cultural heritage; ancient glass classification

1. Introduction

Machine learning (ML) algorithms are a set of mathematical models and statistical [1]
methods that can be used in computer systems to learn and make predictions or decisions
based on patterns in data. In the field of archaeology, there are many examples of machine
learning algorithms applied in the direction of conservation and restoration, provenance
research, and the management of cultural heritage. In 1798, the German scientist M.H.
Klaproth conducted the first quantitative chemical study of Roman-era glass [2], improving
the procedure for weight analysis and devising various procedures for the determination
of non-metallic elements, accurately determining the composition of nearly 200 minerals
and various industrial products. In 2003, Professor Fuxi Gan and his research team used
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the proton-excited X-fluorescence (PIXE) technique to quantify the chemical composition
of a batch of ancient glass excavated in Yangzhou and Hubei, with the goal of studying the
origin, system, and preparation process of ancient Chinese glass [3]. As more and more
ancient silicate artifacts were unearthed, some scholars began to classify them based on their
chemical composition. In 1992, Korean scientist Lee Chul applied his chemometric pattern
recognition method to multivariate data to determine the classification of 94 ancient Korean
glass pieces using neutron activation analysis and principal component analysis [4]. In
2010, El-Taher, an Egyptian scholar, used instrumental neutron activation analysis (INAA)
and HPGe detector γ-spectroscopy to determine qualitatively and quantitatively for the
first time a total of 16 elements in feldspar rock samples collected from Gabel El Dubb,
Eastern Desert, Egypt, and to classify their rock samples [5]. In 2011, Thai scholar Won-in K.
and his team used Raman spectrophotometry for the first time to characterize fragments of
archaeological glass samples with the aim of obtaining information to identify glass samples
for classification by laser scattering [6]. In 2019, Nadine Schibille and her team established
a temporal model that serves as a tool for dating archaeological glass assemblages as well
as a geographical model that allows for a clear classification of Levantine and Egyptian
plant ash glasses [7]. However, it is worth noting that the application and extension of
machine learning algorithms in the direction of cultural heritage (CH) component analysis
and identification of categories are very limited [8].

In recent years, when studying the chemical composition of ancient glass objects, the
classification of glass has been mainly determined by the weight ratio of oxides or by
analyzing the mass fraction of compounds containing lead and potassium [9–13]. However,
the percentage of lead and potassium compounds present varies depending on the region
where the glass was produced and the degree of weathering, which would interfere with
the classification of the glass. Thereby, this study is based on the data related to ancient
glassware provided by the official website of the 2022 China Student Mathematical Model-
ing Competition [14]. The weathering of glass over thousands of years can cause significant
changes in its internal chemical composition. As a result, determining the type of glass
by the amount of content in a certain chemical composition is not reliable or scientific.
Therefore, based on the double adaptive elastic net improved logistic regression model
(Daen-LR), ARIMA-LSTM model, and multiple linear regression model (MLR) [15,16],
optimizing and combining these three algorithms, we propose a processing method and
process that is suitable for classifying complex data and can be used to predict the un-
known classification of glass. This process method is used to analyze and model the data
related to the chemical composition and classification information of a batch of ancient
Chinese glass products, to find out the correlation between their chemical composition
and the basis of their classification, and to use this relationship to predict the category of
unknown glass. The accuracy of the algorithm model was judged by testing the presence
of heteroskedasticity in the perturbation terms, testing for multicollinearity, and testing the
fit of the experimental values through the model to the actual values [17].

With the continuous development of machine learning technology, a variety of ma-
chine learning models have been proposed and widely used in classification research. These
include Logistic Regression (LR), Naive Bayes(NB), Decision Tree(DT), Support Vector Ma-
chine(SVM) and Random Forest(RF), Gradient Boosting Tree(GBT), and so on. However,
traditional machine learning methods have some drawbacks in solving real-world prob-
lems, such as interference from external factors, failure to meet scientific standards, random
results, and poor prediction accuracy. In order to solve these problems, it is necessary
to combine sophisticated machine learning methods with more advanced methods. This
paper presents a joint machine learning algorithm using Daen-LR, ARIMA-LSTM, and
the MLR model (JMLA). We first use an improved logistic regression model based on
double adaptive elastic networks (Daen-LR) to select variables that have both Oracle and
adaptive classification properties. Secondly, we use the ARIMA-LSTM model to balance
the linear and nonlinear trends in the time series data of the chemical content of glass
artifacts before and after weathering. Finally, a multiple linear regression model (MLR)
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was used to classify the experimental samples. By testing the data set of the 2022 Chinese
College Students Mathematical Contest in Modeling, this study proves the correctness of
the proposed method.

The main contributions of this study include:

1. Successfully established a classification model of ancient glass products with high accuracy.
2. This study combines three different algorithms reasonably and effectively and inte-

grates the advantages of different algorithms into the JMLA algorithm.
3. We made a comprehensive comparison of multiple test sets on multiple models, and

the test results show that the algorithm given in this study is superior to other algorithms.
4. In the future, this algorithm model will also be able to support component analysis in

many fields, such as water flow pollution, food safety, and environmental protection.

This paper consists of six parts: In the second part, the algorithm and principles of
this paper are described in detail. In the third part, the preprocessing of the data and the
preparation of the experiment are explained. In the fourth part, the experimental process
and results are discussed. In the fifth part, the advantages and limitations of the JMLA
model compared with other models are given. In the sixth part, the conclusion, influence,
and future research suggestions are drawn.

2. Theory and Method
2.1. An Improved Logistic Regression Model with Double Adaptive Elastic Net

In this analysis of ancient glass artifacts, the relationship between glass weathering and
its chemical composition was identified and statistically analyzed by using an improved
logistic regression model based on a double adaptive elastic net, i.e., the Daen-Logistic
regression (Daen-LR) model. Furthermore, we calculated the p-value of each correlation
factor and counted whether each regression coefficient was significant at the 90% confidence
level, extracted the strong correlation elements, and excluded the weak correlation elements.
The characteristics of the model are as follows:

Logistic regression is an effective method to solve classification problems in which
effective estimation of parameters and selection of variables are extremely important. The
regularization method [18], which considers adding a penalty term to the optimized loss
function to estimate parameters, can simultaneously solve the two key points of logistic
regression. Elastic net [19] is one of the representatives of this method.

However, considering the inadequacy of the traditional logistic regression model for
the estimation of parameters and the identification of important variables, it has two major
shortcomings: First, the selected variables may not be consistent, i.e., they lack oracle prop-
erties [20]. Second, the specific effects of strongly correlated variables on the independent
variables are not considered, i.e., adaptive categorical effects are missing [21,22].

To overcome the first deficiency of Elastic net, adaptive elastic net is established by
combining Adaptive lasso [23] and Ridge to achieve consistency in selected variables.
However, the Adaptive coefficient vector W1, which makes an adaptive elastic net with
oracle properties, is not easy to set correctly. It is generally determined by the initial
estimates of parameters and the constant δ.

To solve the second defect of Elastic net, Van et al. [24] proposed a Generalized ridge
in which parameters are first divided into groups and then given different Ridge penalties
for each group. The Generalized ridge has an adaptive grouping effect, and its Adaptive
ridge also enjoys that effect. However, Generalized ridge does not have the function to
select variables and is of limited application.

Based on existing solutions to the Elastic net deficiency, it follows that Adaptive lasso
and Adaptive ridge have oracle properties and adaptive grouping effects, respectively,
so they can be combined to avoid the two existing disadvantages. This combination of
penalties can be called the double adaptive elastic net.

It is assumed that in the composition analysis of glass artifacts, there are m chemical
composition influence factors, X = (x1, x2, · · ·, xm) is the characteristic variable of chemical
composition content (i.e., independent variable), m is the number of variables, and the
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weathering status of the corresponding glass artifacts is set as y (i.e., dependent variable),
where y represents the dichotomous variable of weathering or not (i.e., 0 means “unweath-
ered” and 1 means “weathered”). To assess the magnitude of the probability of whether
a particular glass artifact is weathered, it is necessary to calculate the predicted outcome
of the model as the probability of occurrence of y = 1, which can then be expressed as
P = f (y = 1 | x1, x2, · · ·, xm), i.e., the mathematical expression of the traditional logistic
regression model is:

Logit(P) = ln
P(y = 1)

1− P(y = 1)
= β0 + β1x1 + β2x2 + · · ·+ βmxm (1)

i.e.,

P(y = 1) =
exp(β0 + β1x1 + β2x2 + · · ·+ βmxm)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βmxm)

In the above equation, (β0, β1, β2, · · · , βm) are the regression coefficients to be deter-
mined. The great likelihood estimation method is used to find these coefficients:

P(y = 1 | X) = 1− 1
1 + exp(βn + β1x1 + β2x2 + · · ·+ βmxm)

= π (2)

P(y = 0 | X) = 1− π (3)

Combining the probability functions of y as:

P(yi) = πyi (1− π)yi , yi = 0, 1; i = 1, 2, · · · , n (4)

According to the Bernoulli distribution, the maximum likelihood function can be
expressed as:

l(β; X) =
n

∏
i=1

P(yi) =
n

∏
i=1

π
yi
i (1− πi)

1−yi (5)

The log-likelihood function is expressed as:

ln(l(β; X)) =
n

∑
i=1
{yi(β0 + β1xi1 + β2xi2 + · · ·+ βmxim) − ln[1 + exp(β0 + β1xi1 + β2xi2 + · · ·+ βmxim)]} (6)

Since the maximum likelihood function is a convex function, the point at which its first
derivative equals zero is the point of maximum value. By calculating the first derivative of
the undetermined coefficient (β0, β1, β2, · · ·, βm) in Equation (6) and setting it equal to zero,
all the parameters to be solved in the equation group can be solved.

Considering the shortcomings and deficiencies of the traditional logistic regression
model, the oracle effect and adaptive classification effect are integrated into the traditional
logistic model to create a double adaptive elastic net model, which makes the identification
results of glass cultural relics more relevant and persuasive [25,26].

Theory 1. Oracle property
In the Logistic model, suppose the real parameters β0 = (β01, β02, · · ·, β0m)

T , A=
{

j | β0j 6= 0
}

= {1, 2, · · ·, m0}, m0 < m, Fisher information matrix I(β0) =

(
I11 I12
I21 I22

)
, where I11 is a square matrix of

order m0, φ
(

XT β
)
= ln

(
1 + eXT β

)
, then the double adaptive elastic net logistic has oracle property according

to the following conditions.

1. I(β0) Is a positive definite matrix.
2. There exists an open set containing β0, such that for any β ∈ Ω there exists a function

N(·) satisfying:

| φ′′′
(

XT β
)
|≤ N(X) < ∞, (7)
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and for any m-dimensional vector u, we have E
(

N(X)
(
XTu

)3
)
< ∞;

3. λ1 = o(
√

n), and there is a sequence {an}, such that:

an

(
β̂∗ − β0

)
= Op(1)and lim

n→∞

λ1aδ
n√

n
= ∞;

4. λ2 = o(n) and lim
n→∞

λ2√
n

√
m0

∑
j=1

β2
0j = 0.

When conditions 1–4 hold, double adaptive elastic net estimate β̂ has the following properties:

1.
√

n
(

β̂A − βA
)

D→ N
(

0, I−1
11

)
;

2. lim
n→∞

P
(

β̂Ac = 0
)
= 1.

Theory 2. Adaptive Classification Effect

Given the binary data {(Xi, yi)}n
i=1, where Xi = (xi1, xi2, · · ·, xim)

T and ∀j ∈ {1, 2, · · ·, m},
n
∑

i=1
xij = 0,

n
∑

i=1
x2

ij = 1, yi ∈ {0, 1}. Let β̂(λ1, λ2) be the estimate of the model and assume that β̂k(λ1, λ2)β̂l(λ1, λ2) > 0.

Define Dλ1,λ2 (k, l) = 1
n
∣∣w2k β̂k(λ1, λ2)− w2l β̂l(λ1, λ2)

∣∣, then:

Dλ1,λ2 (k, l) ≤
√

2(1− ρkl) +
λ1
n |w1k − w1l |

2λ2
(8)

where
ρkl = corr(xk, xl)

By combining the above two schemes to improve the logistic regression equation,
Xi = (1, xi1, xi2, · · ·, xim)

T , β = (β0, β1, β2, · · ·, βm)
T ,yi ∈ {0, 1}, i = 1, 2, · · ·, n, its estimated value of

β is:

β̂Daen = argmin
β

ln(l(β; X)) + λ1

m

∑
j=1

w1j

∣∣∣β j

∣∣∣+ λ2

m

∑
j=1

w2jβ
2
j

 (9)

where

w1j =
∣∣∣β̂∗j ∣∣∣−δ

, w2j > 0, λ1, λ2 > 0, δ > 0

β̂∗ = argmin
β

ln(l(β; X)) + λ2

m

∑
j=1

w2jβ
2
j

. (10)

Since incorporating the correlation of variables into the regression model helps to improve the
accuracy of parameter estimation and variable selection [27],

w2j =

m
∑

k=1,k 6=j

∣∣∣ρkj

∣∣∣
m− 1

+ ε j,

where ρkj = corr
(

xk, xj

)
is the correlation coefficient between variables xk and xj, (ε1, ε2, · · ·, εm)

T is

the vector that can make w21, w22, · · ·, w2m unequal to each other, and ∑m
j=1 ε j

m = 1, 0.95 ≤ ε j ≤ 1.25.
Equation(9) is equivalent to:

β̂Daen = argmin
β

{ln(l(β; X))},

s.t.α
m
∑

j=1
w1j

∣∣∣β j

∣∣∣+(1−α)
m
∑

j=1
w2jβ

2
j ≤ t,

(11)

where
α =

λ1
λ1 + λ2

, t > 0.
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Using the coordinate gradient method and the Newton method to solve β, Equation (9) can be
rewritten as:

β̂Daen = argmin
β

I(β) + λ1

m

∑
j=1

w1j

∣∣∣β j

∣∣∣


where

I(β) = ln(l(β; X))) + λ2

m

∑
j=1

w2jβ
2
j .

If β(t) is the solution of β at step t, then I(β) can be approximated as:

I(β) ≈ I(β(t)) + (β− β(t))Tg(t) +
1
2
(β− β(t))Th(t)(β− β(t)) (12)

where g(t) and h(t) are the gradients of I(β) at β = β(t), respectively, and the Hessian matrix, adding

λ1
m
∑

j=1
w1j

∣∣∣β j

∣∣∣ to the Equation (12) and making ∂I(β)
∂β = 0 yields:

β(t + 1) = K
(

β(t)− h−1(t)g(t),λ1h−1(t)W1

)
(13)

where
W1 = (0, w11, w12, · · ·, w1m)

T ,

K(Q, W) =


Q−W, 0 ≤W < Q
Q + W, 0 ≤W < −Q

0, |Q|≤W
(14)

Since λ1h−1(t)W1 may have some numbers less than 0, the parameters of some irrelevant
variables cannot become 0. Thus, it can be directly rewritten as λ1W1. By the above inference, the
solution process of β̂Daen can be derived: first generate an initial value of β, then repeat the calculation
of g(t), h(t), and β(t + 1), until convergence [26].

2.2. Time Series Forecasting Model Based on ARIMA-LSTM
2.2.1. ARIMA(p,d,q) Model

By using the ARIMA(p,d,q) model, it is possible to analyze observations at past time points,
depict the intrinsic link between them, and predict future values, which is achieved based on past time
values and linear error equations [28–32]. The ARIMA model is usually denoted as ARIMA(p,d,q),
where p is the number of autoregressive terms, q is the number of sliding average terms, and d is
the number of differences needed to make it a smooth series [33]. The correlogram, autocorrelation
function (ACF), and partial autocorrelation function (PACF) of the time series provide information
about the lags [34]. If the time series is found to be smooth, the model can be used for estimation
and forecasting. However, if it is not smooth, in order to apply ARIMA, it must be transformed to
be smooth by differencing. After identification, an ARIMA model is estimated for a specific smooth
time series. The simple ARIMA model is estimated based on the number of effective coefficients, the
Bayesian information criterion (BIC) and the Akaike information criterion (AIC), and the adjusted
R2 [35]. After estimation, the selected ARIMA model needs to be diagnosed to check if the residuals
are white noise. If the residuals are not white noise, the model must be re-estimated, and Q-tests and
normality tests can be used to diagnose the residuals [36]. Typically, the ARIMA model is as follows:

y′t = α0 +
p

∑
i=1

αiy′t−i + εt +
q

∑
i=1

βiεt−i (15)

y′t = ∆dyt = (1− L)dyt (16)

(
1−

p

∑
i=1

αi Li

)
(1− L)dyt = α0 +

(
1 +

q

∑
i=1

βi Li

)
εt (17)

For the study, the more the number of chemical content parameters, the better the model fit, but
this will be at the cost of increasing the model complexity, so the model selection should seek the best
balance between the model complexity and the ability of the model to explain the data. According to
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the Bayesian information criterion, when the BIC is smallest, the optimal solution between the fit
effect and complexity can be found [37]:

BIC = ln (T)(n)− 2 ln (M) (18)

T: number of samples;
n: number of unknown parameters, n = p + q + 1;
M: maximum likelihood number of the model.
The maximum likelihood estimation process for the ARIMA(p,d,q) model is [38]:

Yt = c + Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q (19)

Φ1, Φ2 · · ·Φp respectively represent the autolinear correlation coefficients between Yt−1 · · ·Yt−p
and Yt. By introducing the p− 1 term in the middle, the direct relationship between Yt−1 · · ·Yt−p and
Yt can be separated, and this relationship is linear. Φ1, Φ2 · · ·Φp is the value to measure the size of
this influence, which is the so-called PACF(θ1 · · · θq is the same meaning as Φ1, Φ2 · · ·Φp). εt is the
perturbed term. Where εt ∼ iidN

(
0, σ2), The vector of total parameters is

→
Θ =

(
c, Φ1, Φ2, . . . , Φp, θ1, θ2, . . . , θq, σ2

)
The estimation of the likelihood function for the autoregressive process is conditioned on the

initial value of y, and the estimation of the likelihood function for the moving average process is
conditioned on the initial value of ε. Then ARIMA(p,d,q) is conditioned on d as the difference order
and the initial values of y and ε.

Assume the initial values
→
y0 =

(
y0, y−1, . . . , y−p+1

)′ and
→
ε0 =

(
ε0, ε−1, . . . , ε−q+1

)′ is known,
then according to {y1, y2, · · · , yr}, it can be iterate to this equation:

εt = yt − c−Φ1yt−1 −Φ2yt−2 − · · · −Φpyt−p − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (20)

The sequence {ε1, ε2, · · · , εT} for t = 1, 2, · · · , T can be obtained, then the conditional likelihood
function is:

L(θ) = ln f
YT ,YT−1 ...,Y1|

→
Y0,
→
t 0

(
yT , yT−1, . . . , y1 |

→
Y0,

→
ε 0,
→
θ

)
= −T

2
ln(2π)− T

2
ln
(

σ2
)
−

T

∑
t=1

ε2
t

2σ2 (21)

2.2.2. LSTM Model
ARIMA(p,d,q) model can well deal with the linear part of the chemical composition content

in the time series, but it has certain limitations because the obtained residual series results have
nonlinear characteristics, and the process of the content of some chemical components changing with
the degree of weathering is a nonlinear process. This requires a deep learning model to solve the
nonlinear trend of chemical composition changes [39]. The LSTM (Long Short-Term Memory) model
is a deep learning model that is very good at solving nonlinear data. Its nonlinear gate unit can adjust
the information flowing into and out of memory tuples at each time point so as to better fit the trend
of nonlinear data changing over time.

LSTM is a special type of recurrent neural network (RNN) that performs very well with long
sequences of data, mainly solving gradient disappearance, gradient explosion, and overfitting
problems when training long sequences [40–43]. RNN is an artificial neural network that operates
on time-series data and can use back-propagation algorithms to learn and adapt to the relationship
between inputs and outputs. In contrast to standard RNN, LSTM has an input gate, a forgetting gate,
and an output gate that control the way information flows through the network. These gates of the
LSTM allow it to store past information and update the current state appropriately, thus providing
a significant advantage when dealing with long sequences of data. The basic structure is shown
in Figure 1 [44,45].
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The basic unit of the LSTM network contains an oblivion gate, an input gate, and an output
gate. The oblivion gate determines the oblivion part of the state storage unit by combining the input
xi with the state storage unit Ci−1 and the intermediate output hi−1, while the input gate transforms
xi by means of the Σ and tanh functions. The associated intermediate output hi is determined by the
updated Ci and the output Bi [32]. The calculation formulas are shown in (22) to (27):

fi = σ
(

W f ·[hi−1, xi] + b f

)
(22)

ei = σ(We·[hi−1, xi] + be) (23)

C̃i = tan h(Wc·[hi−1, xi] + bc) (24)

Ci = fi ∗ Ci−1 + ei ∗ Ci (25)

Bi = σ(WB·[hi−1, xi] + bB) (26)

hi = Bi ∗ tan h(Ci) (27)

fi, ei, C̃i, Ci, and B are the forgetting gate, input gate, new candidate vector, updated cell
state, and output gate, respectively, W f and b f are the corresponding weight coefficient matrix and
bias term, tanh, and σ represent the hyperbolic tangent activation function and S-shaped activation
function [45]:

tan h(x) =
1− exp(−2x)
1 + exp(−2x)

(28)

σ(x) =
1

1 + exp(−x)
(29)

2.2.3. ARIMA-LSTM Model
In order to deal with linear and nonlinear trends in the time series data of chemical composition

content before and after weathering of cultural relics, the unique advantages of the ARIMA model in
dealing with linear data and the excellent performance of LSTM in dealing with nonlinearity were
used [46,47]. First, the artifact chemical content data were processed, and linear prediction results and
residual series were obtained with the help of the ARIMA model. Then, the nonlinear factors of the
residual series were further analyzed by the LSTM model, and the nonlinear prediction results were
obtained. Finally, the linear and nonlinear prediction results were superimposed to obtain the final
prediction results for the chemical composition content. According to the decomposition principle
of the time series model, it is assumed that the time series Y = {yt, t = 1, 2 . . . , N} consists of linear
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and nonlinear components yt = xt + bxt. Therefore, the one-dimensional chemical component data
are first linearly predicted by the ARIMA model to obtain the linear component xtr and the residual
series δt = yt + ytr. Then, the residual series are processed by further nonlinear prediction to obtain
the nonlinear component bxtr. Finally, the linear and nonlinear components are combined to obtain
the final prediction ytr = xtr + bxtr. Root mean square error (RMSE) [48], mean absolute percentage
error (MAPE), and R2 are used to evaluate the performance of the model [49–52].

R2 is usually taken as [0,1]; the closer R2 is to 1, the better the fit is, and the equations are
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (30)

MAPE =
N

∑
i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣× 100
N

(31)

R2 =

N
∑

i=1
(yi − y)2 −

N
∑

i=1
(yi − ŷ)2

N
∑

i=1
(yi − y)2

(32)

In the above equation, xi is the observed value, yi is the predicted value, N is the sample size,
y is the mean of yi, and ŷi is the regression fit [32].

2.3. Multiple Linear Regression Model
Multiple linear regression (MLR) is a statistical method that predicts the distribution of the

dependent variable by using multiple independent factors [15]. The goal of the MLR model is to estab-
lish linear links between independent and dependent characteristics that influence a given event, and
it is an extension of classical least squares regression because it employs multiple explanatory factors.

y = α0 + α1x1 + · · · αixi + · · ·+ αnxn + µi (33)

where y is the dependent variable, x1 · · · xn are the independent variables, α0 is the y intercept, αi is
the regression coefficient of the ith independent variable, and µi is the model error, also known as the
residual. The magnitude of the coefficient of determination(R2)and the squared error(MSE)can be
used to assess the predictive performance of the MLR model [15]:

MSE =
Σn

j=1

(
yj − ŷj

)2

n
(34)

R2 = 1−

n
∑

j=1

(
yj − ŷj

)2

n
∑

j=1

(
yj − yj

)2 (35)

yj is the jth parameter after normalization,ŷj is the jth parameter predicted, yj is the mean of
the predicted parameters, and n is the number of samples.

We performed the BP test (Breucsh and Pagan test) and the White test on the perturbation term
µi to see if there was heteroskedasticity. If the perturbation term is correlated with the independent
variable, it may make the regression coefficients of the model inaccurate, thus leading to large errors
in the results.

In the BP test, it is assumed that the regression model is yi = β1 + β2xi2 + · · ·+ βKxiK + εi, test
the following original hypothesis:

H0 : E
(

ε2
i

∣∣∣x2, · · ·, xk

)
= σ2

If H0 is not true, then the conditional variance E
(
ε2

i
∣∣x2, · · · , xk

)
is a function of (x2, · · · , xk) and

is called the conditional variance function. The BP test assumes that the conditional variance function
is linear:

ε2
i = δ1 + δ2xi2 + · · ·+ δKxiK + ui (36)
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The original hypothesis can be simplified to:

H0 : δ2 = · · · = δK = 0

If we assume that H0 is true, we can show that εi has no correlation with the independent
variable xiK ; that is, there is no autocorrelation, and the perturbation term has no heteroscedasticity.
Since the perturbation term εi is not observable, the residual squared e2

i is used for auxiliary regression
of the explanatory variable:

e2
i = δ1 + δ2xi2 + · · ·+ δKxiK + errori (37)

nR2 statistics were used:
nR2 d→ x2(K− 1)

R2 is the R2 of auxiliary regression. The difference between the White test and the BP test lies in
that when the White test carries out auxiliary regression, there are xiK square terms and cross terms
in Equation (37), so the BP test can be regarded as a special case of the White test.

In addition, we tested the model for multicollinearity, and the variance inflation factor VIF
was used to eliminate the influence factors with multicollinearity, which improved the accuracy of
the model:

Assuming that there are k independent variables, then the variance inflation factor
VIFn = 1

1−R2
1−k/n

, R2
1−k/n is the goodness of fit obtained by regressing the n-th independent variable

as the dependent variable on the remaining k − 1 independent variables; the larger the VIFn, the
greater the correlation between the n-th variable and the other variables [53]. If VIFn is greater than
10, there is strict multicollinearity between the variables.

3. Material and Experiment
3.1. Data Pre-Processing

This study is based on the data related to ancient glassware provided by the official website
of the 2022 China Student Mathematical Modeling Competition [14]. The glass sampling points are
discussed separately by two systems: lead-barium glass and high-potassium glass. The data gives
the proportion of the chemical composition of the sampling points of this batch of artifacts, which
is characterized by composition, that is, the data of the proportion of the content of each chemical
component of the cumulative sum should be found 100%, but may be due to detection means or
contain various types of impurities and other reasons, resulting in the proportion of its corresponding
components of the cumulative sum of the non-100% situation. Thus, in this study, the data with
the sum of components between 85% and 105% were stored as valid data, and the data with severe
weathering of the glass were excluded to eliminate the influence of outliers on the model results. The
results are shown in Table A1.

3.2. Experimental Procedure
This paper focuses on three improved joint model algorithms, Daen-LR, ARIMA-LSTM and

MLR. The experimental software environment Matlab 2021b, SPSS, Stata were used to analyze the
identification of ancient glasses.

First, in this paper, the obtained pre-processed data set is used to find the relationship between
the chemical composition content and weathering at its sampling points after glass classification by
building an improved logistic regression model based on a double adaptive elastic net. Then, by
using the ARIMA-LSTM model, we predict the content of chemical components contained in the two
glasses before weathering and obtain the correlation curves of chemical components before and after
weathering. Finally, based on the results obtained above, this paper uses a multiple linear regression
model to predict the type of unknown glass and judges the accuracy and efficiency of the model by
testing whether there is heteroskedasticity in the perturbation terms, multicollinearity, and the degree
of fit between the experimental and actual values of the model. The flow chart is shown in Figure 2.
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4. Process and Result
4.1. Relationship between Glass Weathering and Its Chemical Composition Based on an Improved
Logistic Regression Model with Double Adaptive Elastic Net

Based on the data in Table A1, we use Matlab and SPSS to conduct modeling and calculation
of the Daen-Logistic Regression model. The dependent variable here is a dichotomous variable
(i.e., weathered and unweathered states), and the content of various chemical components is set as
the independent variable. The double adaptive elastic net model can determine the classification
results of weathered or unweathered glass under different conditions for each independent variable,
which can avoid the variability of the results when the independent variables are selected differently,
make the classification more adaptive, and reduce the influence of strongly correlated variables on
other variables. The calculation gives the following in Table 1:

Table 1. Return coefficients of chemical components in high potassium and lead-barium glasses β
and significance p-value.

Regression Coefficient of
High Potassium Glass

Types β

Significance p-Value of High
Potassium Glass type

(P > |t|)

Regression Coefficient of
Lead-Barium Glass Types β

Significance p-Value of
Lead-Barium Glass Type

(P > |t|)

β0 15.301 P0 0.000 β0 31.077 P0 0.000

β1 2.718 P1 0.099 β1 7.788 P1 0.005

β2 12.318 P2 0.000 β2 1.016 P2 0.313

β3 5.410 P3 0.020 β3 8.320 P3 0.004

β4 7.199 P4 0.007 β4 0.039 P4 0.843

β5 7.051 P5 0.008 β5 2.678 P5 0.102

β6 4.751 P6 0.029 β6 0.222 P6 0.637

β7 1.072 P7 0.300 β7 1.293 P7 0.255

β8 2.629 P8 0.101 β8 25.165 P8 0.000

β9 1.792 P9 0.181 β9 0.831 P9 0.362

β10 2.629 P10 0.105 β10 13.764 P10 0.000

β11 3.142 P11 0.076 β11 3.702 P11 0.054

β12 0.451 P12 0.502 β12 0.161 P12 0.688

β13 1.490 P13 0.222 β13 0.942 P13 0.332
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From the table of high potassium glass type, it can be seen that the values of two chemical
components, SiO2 and K2O, are relatively large, and the values of the significance p-value are less
than p = 0.1, so these two chemical components have the greatest influence on whether the surface of
high potassium glass is weathered or not. From the table of lead-barium glass type, it can be seen that
the values of three chemical components, SiO2, PbO, and P2O5, are relatively large, and the values of
the significance p-value are less than p = 0.1, so these two chemical components have the greatest
influence on whether the surface of high potassium glass is weathered or not.

4.2. Prediction of the Chemical Content of Glass before Weathering Based on the
ARIMA-LSTM Model

By solving 4.1, we obtained the results of the relationship between glass weathering and its
chemical composition, and using this relationship, we screened 14 chemical elements in two respective
types, high potassium and lead-barium, respectively. For high potassium glasses, we have chosen to
retain both SiO2 and K2O chemical components. For lead-barium glasses, we chose to retain three
chemical components: SiO2, PbO, and P2O5; all of them have relatively complete data and have
strong correlations for modeling analysis.

In order to make the model better identify the patterns in the data, the outliers with large
deviations are first eliminated. SPSS 24 software was used to detect three abnormal data values with
an additive or transient state, and the existence of such outliers would lead to accidental results
in the model, leading to wrong conclusions. Taking the SiO2 content of high potassium glass and
lead-barium glass as examples, the outliers of both are shown in Table 2.

Table 2. Outlier of SiO2 component content.

Relic Number Outlier Type Estimates S.E. t Significance

High potassium 02 Additive 23.850 3.478 6.858 0.000

High potassium 13 Transient
Magnitude 16.260 3.478 4.675 0.001

Decay factor 0.829 0.266 3.114 0.011

Lead barium 05 Transient
Magnitude 31.926 4.569 6.988 0.000

Decay factor 0.964 0.013 76.495 0.000

Through the analysis and calculation in Matlab and SPSS, we tested and fitted the data values
of all the chemical composition contents changing with the time series and established the ARIMA-
LSTM prediction curve model. We found that the parameters of ARIMA(2,1,0)-LSTM can obtain the
maximum likelihood value of the model, and the normalized BIC [54] values of 3.160 and 4.160 for
the SiO2 component content in high potassium glass and lead-barium glass, for example, are the
smallest values among the parameters. In addition, the smooth R2 values of the model are 0.960 and
0.934, both close to 1, and both p-values are 0.000, both less than 0.05, so it can be considered that the
results of the model are significantly reasonable and can fit well with the prediction model (Table 3).

Table 3. Parameters of the ARIMA-LSTM model for SiO2 component content in two types of glass.

Type
Fitting

Statistics
Stationary

R2 R2 RMSE MAPE MaxAPE MAE MaxAE Normalized
BIC

High potassium glass 0.960 0.960 1.330 1.411 8.842 2.177 6.130 3.160
Lead-barium glass 0.934 0.934 1.523 2.105 10.624 4.001 11.250 4.160

After the initial completion of the estimated time series model based on the chemical composi-
tion content, a white noise test of the residuals is required. If the residuals are white noise, then it
can indicate that the selected model can identify the laws of the time series data, that is, the model is
acceptable; if the residuals are not white noise, then it means that there is still some information not
identified; at this time, the model parameters need to be revised to continue to identify this part of
the information. The study used Ljung and Box’s Q test to determine whether the residuals are white
noise [55,56]:
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Assuming that the residual {εt} is a white noise sequence, then ρs =

{
1, s = 0
0, s 6= 0

, the autocor-

relation coefficient of the sample, is:

r = ρ̂s =

T
∑

t=s+1
(xt − x)(xt−s − x)

T
∑

t=1
(xt − x)2

(38)

In H0 : ρ1 = ρ2 = · · · = ρS = 0, H1 : ρi(i = 1, 2, . . . , s) at least one is not 0. In the case that H0

holds, the statistic Q = T(T + 2)
s
∑

k+1

r2
k

T−k ∼ X2
s−n, from which the p-value can be calculated, and if

the p-value is less than 0.05, then the original hypothesis is rejected, indicating that the model is not
fully identified and the model parameters need to be modified.

Through the model statistics, the p-values of the Ljung and Box’s Q test for SiO2 content of high
potassium glass and lead-barium glass are 0.889 and 0.744, respectively, both of which are greater
than 0.05, i.e., we cannot reject the original hypothesis, and we can assume that the residuals are
white noise sequences and the model can be fully identified. Figure 3 shows that the autocorrelation
coefficients and partial autocorrelation coefficients of all lag orders are not significantly different
from 0 [57,58].
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Figure 3. (a) ACF and PACF patterns of SiO2 content in high potassium; (b) ACF and PACF patterns
of SiO2 content in lead-barium glasses.

By the same method, the fitting coefficients of all mathematical models of the measured chemical
composition contents were obtained. In the category of high potassium glass, the R2 values of SiO2
and K2O were 0.960 and 0.969, respectively. In the category of lead-barium glass, the R2 values of
SiO2, P2O5, and PbO are 0.934, 0.951, and 0.948, respectively. Finally, the corresponding prediction
model curve is drawn, from which the correlation of chemical composition content before and after
weathering can be clearly seen, as shown in Figure 4. The blue curve represents the actual value of
chemical content changing with time after weathering, while the yellow curve represents the fitting
value. The fitting degree of both represents the superiority of the model’s performance. The red curve
represents the predicted value of component content over time before weathering. It can be seen
that the ARIMA (2,1,0)-LSTM model shows the correlation of chemical composition contents before
and after weathering, reduces the interference of “weathering” factors on glass classification, and
improves the accuracy of subsequent glass classification.

4.3. Identifying Unknown Artifact Types Based on Multiple Linear Regression Model
Through the results of Sections 4.1 and 4.2, we conducted chemical content testing and analysis

on a batch of newly excavated glass artifacts, as shown in Table 4, and judged the categories to which
they belonged by the correlation of related elements and weathering effects. Firstly, the chemical
elements with significant correlation in each category were initially screened out by the statistical
law of chemical element content, and the multiple linear regression equation between elements and
categories was established to find out the experimental values of categories and make errors and fits
with the actual values of categories, and to verify the accuracy of the model.



Appl. Sci. 2023, 13, 6639 14 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Through the model statistics, the p-values of the Ljung and Box’s Q test for SiO2 con-
tent of high potassium glass and lead-barium glass are 0.889 and 0.744, respectively, both 
of which are greater than 0.05, i.e., we cannot reject the original hypothesis, and we can 
assume that the residuals are white noise sequences and the model can be fully identified. 
Figure 3 shows that the autocorrelation coefficients and partial autocorrelation coefficients 
of all lag orders are not significantly different from 0 [57,58]. 

  

(a) (b) 

Figure 3. (a) ACF and PACF patterns of SiO2 content in high potassium; (b) ACF and PACF patterns 
of SiO2 content in lead-barium glasses. 

By the same method, the fitting coefficients of all mathematical models of the meas-
ured chemical composition contents were obtained. In the category of high potassium 
glass, the R2 values of SiO2 and K2O were 0.960 and 0.969, respectively. In the category of 
lead-barium glass, the R2 values of SiO2, P2O5, and PbO are 0.934, 0.951, and 0.948, respec-
tively. Finally, the corresponding prediction model curve is drawn, from which the corre-
lation of chemical composition content before and after weathering can be clearly seen, as 
shown in Figure 4. The blue curve represents the actual value of chemical content chang-
ing with time after weathering, while the yellow curve represents the fitting value. The 
fitting degree of both represents the superiority of the model’s performance. The red curve 
represents the predicted value of component content over time before weathering. It can 
be seen that the ARIMA (2,1,0)-LSTM model shows the correlation of chemical composi-
tion contents before and after weathering, reduces the interference of “weathering” factors 
on glass classification, and improves the accuracy of subsequent glass classification. 

  

(a) (b) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 27 
 

  

(c) (d) 

 

(e)  

Figure 4. Correlation curve of chemical element content before and after weathering: (a) (High po-
tassium) SiO2; (b) (lead barium) SiO2; (c) (High potassium) K2O; (d) (lead barium) P2O5; (e) (lead 
barium) PbO. 

4.3. Identifying Unknown Artifact Types Based on Multiple Linear Regression Model 
Through the results of Sections 4.1 and 4.2, we conducted chemical content testing 

and analysis on a batch of newly excavated glass artifacts, as shown in Table 4, and judged 
the categories to which they belonged by the correlation of related elements and weather-
ing effects. Firstly, the chemical elements with significant correlation in each category 
were initially screened out by the statistical law of chemical element content, and the mul-
tiple linear regression equation between elements and categories was established to find 
out the experimental values of categories and make errors and fits with the actual values 
of categories, and to verify the accuracy of the model. 

Table 4. Chemical Composition of Unclassified Cultural Relics. 

Relic Number A1 A2 A3 A4 A5 A6 A7 A8 
Surface Weathering No Yes No No Yes Yes Yes No 

SiO2 78.45 37.75 31.95 35.47 64.29 93.17 90.83 51.12 
Na2O 0.00 0.00 0.00 0.00 1.2 0.00 0.00 0.00 
K2O 0.00 0.00 1.36 0.79 0.37 1.35 0.98 0.23 
CaO 6.08 7.63 7.19 2.89 1.64 0.64 1.12 0.89 
MgO 1.86 0.00 0.81 1.05 2.34 0.21 0.00 0.00 
Al2O3 7.23 2.33 2.93 7.07 12.75 1.52 5.06 2.12 
Fe2O3 2.15 0.00 7.06 6.45 0.81 0.27 0.24 0.00 

Figure 4. Correlation curve of chemical element content before and after weathering: (a) (High
potassium) SiO2; (b) (lead barium) SiO2; (c) (High potassium) K2O; (d) (lead barium) P2O5; (e) (lead
barium) PbO.

According to the classification rules of chemical content and surface weathering, it can be
initially concluded that K2O, CaO, MgO, Al2O3, FeO, PbO, BaO, and P2O5 have strong correlations
with surface weathering and categories, while the remaining elements have weak correlations, so the
remaining elements can be deleted. In addition, because the chemical element contents of the three
heavily weathered glass artifacts are very different from other contents, which will have a large impact
on the analysis of the model, they are treated as outliers. In the multiple linear regression equation,
the qualitative data should be set as dummy variables, so the qualitative variables (unweathered and
weathered) in the surface weathering independent variable Suw can be set as quantitative variables
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(0 and 1), and the qualitative variables (high-potassium and lead-barium) in the discriminatory
category dependent variable yi can be set as quantitative variables (A and B), and the following
multiple linear regression equation can be established as:

yi = α0 + α1xSii + α2xKi + α3xCai + α4xMgi + α5xAli
+α6xFei + α7xPbi + α8xBai + α9xPi + βSuwi + µi

(39)

Suwi = 1 denotes the i− th weathering sample
Suwi = 0 denotes the i− th unweathered sample

E(y | Suw = 1 and other independent variables) = β× 1 + m(Constants)
E(y | Suw = 0 and other independent variables) = β× 0 + m(Constants)

Table 4. Chemical Composition of Unclassified Cultural Relics.

Relic Number A1 A2 A3 A4 A5 A6 A7 A8

Surface Weathering No Yes No No Yes Yes Yes No

SiO2 78.45 37.75 31.95 35.47 64.29 93.17 90.83 51.12

Na2O 0.00 0.00 0.00 0.00 1.2 0.00 0.00 0.00

K2O 0.00 0.00 1.36 0.79 0.37 1.35 0.98 0.23

CaO 6.08 7.63 7.19 2.89 1.64 0.64 1.12 0.89

MgO 1.86 0.00 0.81 1.05 2.34 0.21 0.00 0.00

Al2O3 7.23 2.33 2.93 7.07 12.75 1.52 5.06 2.12

Fe2O3 2.15 0.00 7.06 6.45 0.81 0.27 0.24 0.00

CuO 2.11 0.00 0.21 0.96 0.94 1.73 1.17 9.01

PbO 0.00 34.3 39.58 24.28 12.23 0.00 0.00 21.24

BaO 0.00 0.00 4.69 8.31 2.16 0.00 0.00 11.34

P2O5 1.06 14.27 2.68 8.45 0.19 0.21 0.13 1.46

SrO 0.03 0.00 0.52 0.28 0.21 0.00 0.00 0.31

SnO2 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00

SO2 0.51 0.00 0.00 0.00 0.00 0.00 0.11 2.26

The joint significance test indicators for the F-statistic [59,60] for the above model results are
as follows:

F(10,55) represents the F joint statistic test value of 51.41, the confidence interval is 95%, and
the original hypothesis H0 is: a1 = a2 = a3 = · · · = a9 = β = 0. From Table 5, we can see that the
p-value is 0, p is less than 0.05, and at this time the original hypothesis is rejected. We have reason to
believe that the correlation coefficient is significantly different from 0, so we can consider this model
to be useful. The regression coefficients and corresponding p-values for the variables of interest can
be derived as in Table 6. Only when the p-value is less than 0.05, we consider it significant, and the
regression coefficient is credible at this point, so we can use the regression coefficients corresponding
to K2O, Al2O3, PbO, BaO, and Suw (the dummy variable “weathering”), and the larger the absolute
value of the regression coefficients, the greater the effect on the dependent variable.

Table 5. Indicators for joint significance testing of F-statistics.

F(10,55) 51.41
Prob > F 0.0000

R-squared 0.9633
Adj R-squared 0.9558
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Table 6. Regression coefficient β and significance p-value.

Type SiO2 K2O CaO MgO Al2O3 Fe2O3

Coef. −0.014 0.048 −0.001 0.004 −0.299 0.035
P > |t| 0.749 0.000 0.965 0.919 0.001 0.105

Type PbO BaO P2O5 SUW yi _cons

Coef. −0.166 −0.161 −0.018 0.352 0.000 0.746
P > |t| 0.001 0.021 0.078 0.000 0.000 0.082

We can derive the multiple linear regression equation for glass artifact class, chemical element
content, and weathering type as follows:

ŷi = 0.7458 + 0.0480xk − 0.0299xAl − 0.0165xPb − 0.0161xBa + 0.3517 Suw (40)

4.3.1. Testing for the Presence of Heteroskedasticity in the Perturbation Term
Perturbation term µi is unobservable and requires certain conditions to be met. Our model

defaults to a spherical perturbation term, which generally has to satisfy “no autocorrelation” and “ho-
moskedasticity” because if the perturbation term is “correlated with the independent variable”, i.e.,
endogenous, it will make the correlation regression coefficient inaccurate; if there is “heteroskedastic-
ity”, it will cause the hypothesis test statistic we constructed to be invalid, and the OLS estimator
cannot be treated as the optimal linear unbiased estimator [61]. Therefore, we performed the BP test
and White test on the perturbation term to verify the presence of heteroskedasticity, as shown in
Table 7 [62–64].

Table 7. Results of the BP test and White test.

BP test Prob > chi2 0.1725

White test Prob > chi2 0.4095

The above two hypotheses were tested for heteroskedasticity, and the original hypothesis H0
was that there is no heteroskedasticity in the perturbation term. However, the p-value is greater than
0.05, so H0 is accepted, and we can assume that there is no heteroskedasticity in the perturbation term.

4.3.2. Testing for Multicollinearity
If the data matrix X does not satisfy the column rank, i.e., a variable can be linearly expressed

by other explanatory variables, then there is “strict multicollinearity”, Stata software was used to
calculate the VIF of each variable, and the test results were as follows Table 8:

Table 8. Results of the variance inflation factor analysis.

Variable VIF

SiO2 27.28
PbO 21.06
BaO 6.36
K2O 5.11
P2O5 2.75
CaO 2.68
MgO 1.83
Al2O3 1.82
Fe2O3 1.63

Mean Value 7.84

It is generally believed that when VIF > 10, the regression equation has severe multicollinearity;
SiO2 and PbO both exceed 10, but the p-value of SiO2 is higher than 0.05, which is not significant, so
its coefficient is not considered in the equation model. PbO, although VIF exceeds 10, the p-value
is lower than 0.05 because the coefficient is still significant with variance inflation; if there is no
multicollinearity, the regression coefficients would be more significant.
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4.3.3. Testing the Fit of the Experimental and Actual Values of the Model and Identifying
the Unknown Artifact Types

Due to the fact that the dependent variable is the category of glass artifacts, there are only two
categories: high-potassium and lead-barium, so it can be treated as a 1-0 variable. If the experimental
value is close to 1, then it is considered the high potassium category; if the experimental value is close
to 0, then it is considered the lead-barium category. From Figure 5 and Table 9, it can be seen that the
66 samples fit very well, almost no chance data occur, and the identification results of 8 unknown
cultural relic types are completely consistent with reality, so it can be considered that the predicted
value of this multiple linear regression equation is quite accurate.
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Table 9. Identification results.

Relic Number A1 A2 A3 A4 A5 A6 A7 A8

Identification
type

High
potassium

Lead
barium

Lead
barium

Lead
barium

Lead
barium

High
potassium

High
potassium

Lead
barium

4.4. Comparision of Different Models
To demonstrate the superiority of the proposed method, we compare the proposed joint algo-

rithm with similar decision and classification algorithms like Decision Trees (DT), Random Forests
(RF) [65], Support Vector Machines (SVM), Random Forests based on calssification and regression
tree (CART-RF) [66–69]. We did not use any pre-trained models, but trained each model from scratch.
When we select the parameters of traditional machine learning algorithm, we take into account
the number of data features and avoid overfitting, as we can see in Table 10. Then we perform
experimental simulations of these models to be compared as well as the model proposed in this
paper using Matlab. The results are presented in the following Table 11. In the classification results,
this study uses common evaluation indicators to judge the superiority of the model: Train Acc, Test
Acc, Precision, Recall, and F1 Score. TP, TN, FP, FN are required to explain the above indicators,
so confusion matrix is introduced, as shown in Figure 6. The specific performance is described
as follows:

Table 10. Selected parameters of each algorithm.

Algorithms Parameters

DT

Node splitting evaluation criteria = gini
Feature division point selection criteria = random
Minimum samples for internal node splitting = 2

Minimum samples in leaf nodes = 1
Maximum leaf nodes = 2

Maximum depth of the tree = 15
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Table 10. Cont.

Algorithms Parameters

RF

Node split evaluation criterion = gini
Number of decision trees = 5

Minimum samples in leaf nodes = 1
Maximum depth of the tree = 15

Maximum leaf nodes = 2

CART-RF

Node split evaluation criterion = gini
Number of decision trees = 6

Minimum samples in leaf nodes = 3
Maximum depth of the tree = 15

Maximum leaf nodes = 2

SVM
kernel = ‘rbf’

C = 20
γ = 2.00

JMLA

Qualitative variable—weathered: 1
Qualitative variable—unweathered: 0
The number of autoregressive terms: 2
The number of sliding average terms: 0

The number of differences needed to make it a smooth series: 1

Table 11. Results of model experiments.

Algorithms Train Acc Test Acc Precision Recall F1 Score

DT 0.862 0.873 0.806 0.791 0.798
RF 0.958 0.924 0.872 0.866 0.869

CART-RF 0.962 0.951 0.929 0.941 0.935
SVM 0.850 0.909 0.869 0.830 0.849
JMLA 0.979 0.976 0.975 0.976 0.975
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TP (True Positive): The true value of the data is high potassium, and the predicted value is also
high potassium.
TN (True Negative): The true value of the data is lead barium, and the predicted value is also
lead barium.
FP (False Positive): The true value of the data is high potassium, but it is incorrectly predicted as
lead barium.
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FN (False Negative): The true value of the data is lead barium, but it is incorrectly predicted as
high potassium.

Accuracy is the simplest and most clear index for evaluating classification models, but it is a
good measurement standard only when the proportion of samples in each category of the data set is
fairly balanced, as shown in Equation (41):

Accuracy =
TP + TN

TP + FP + TN + FN
(41)

Precision represents the proportion of samples that are actually positive in the predicted positive
example. As shown in Equation (42):

Precision =
TP

TP + FP
(42)

Recall represents the proportion of the actual number of positive samples in the total positive
samples among the predicted positive samples. As shown in Equation (43):

Recall =
TP

TP + FN
(43)

F1 Score is a weighted average of accuracy rate and recall rate, which is a synthesis of both. The
value of the F1 Score determines the robustness of the model. It can be considered that the higher F1
is, the more stable the model is. As shown in Equation (44):

F1 = 2× Precision× Recall
Precision + Recall

(44)

5. Discussion
From the results of the comparison experiments, it is not difficult to see that the joint algorithm

proposed in this paper shows notable advantages in all performance parameters. As shown in
Table 11, in the indicators of Train Acc, Test Acc, Precision, Recall, and F1 Score, we can find that the
difference values of JMLA’s performance over the past optimal algorithm model are +0.017, +0.025,
+0.046, +0.035, and +0.040, respectively. We improve common machine learning algorithms and
combine them with deep learning models to make the classification results more accurate, which
provides a new idea for the study of the classification of ancient cultural relics.

Considering the accuracy of the JMLA algorithm in classification results and excellent evaluation
indexes, this study believes that the model proposed in this paper is suitable for providing more
in-depth research ideas for the classification of ancient cultural relics. The algorithm ideas in this
paper can also be applied to other related fields, such as the data analysis of nutrient elements in
food, the influence of air oxidation degree on nutrient elements, the classification of water pollution
degree, etc. However, there is still room for improvement in the joint algorithm to address its high
computational complexity and formula complexity. Compared with the existing algorithm, the
calculation cost of JMLA is higher, and the formula is more complex. Further reducing algorithm
complexity and better unifying the above three algorithms will be the focus of future research.

6. Conclusions
In this paper, we propose a joint Daen-LR, ARIMA-LSTM, and MLR machine learning algorithm

(JMLA). Firstly, we combine a double adaptive elastic network with a traditional logistic model to
select variables that have both Oracle and adaptive classification characteristics. These two char-
acteristics eliminate the influence of different categories on the inconsistent selection of important
independent variables and the influence of strong-correlation independent variables on the interfer-
ence of weak independent variables. Secondly, we combine the deep learning model (LSTM) with the
ARIMA time series model so that it can handle both linear and nonlinear trends. By calculating the
ARIMA-LSTM model, we establish the correlation curve of chemical composition before and after
weathering and predict the change in chemical composition with weathering. Thirdly, we combine
the data processed by the above two improved methods with the multiple linear regression model to
classify the unknown glass relics.

The experimental results show that the accuracy of the JMLA model on the train set is 97.9%,
and the accuracy of the JMLA model on the test set is 97.6%. In addition, we compared JMLA
with similar classifiers, and the results were shown in Train Acc, Test Acc, Precision, Recall, and F1
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Score indexes. The difference values of JMLA’s performance over the past optimal algorithm model
are +0.017, +0.025, +0.046, +0.035, and +0.040, respectively. These data show that the JMLA model
has better performance than other classification models without changing the structure of similar
classification models and under the same experimental conditions. The classification accuracy of
the JMLA model is higher than other models, especially for large glass relics with more chemical
elements and a harsh environment.

This processing method is practical and reliable in the direction related to the composition
analysis and identification of cultural heritage. The application of this method is expected to improve
the accuracy of the classification of cultural relics by archaeologists and can effectively reduce the
impact of identification difficulties caused by factors such as harsh burial environments. It helps us
to have a deeper understanding of the exchange, penetration, and development of ancient Eastern
and Western cultures.

In addition, the future research directions of this study can be summarized as follows:

1. Algorithm optimization. The processing method uses a variety of machine learning algorithms
that effectively combine the advantages of each algorithm with high practicality and feasibility
and a good fitting effect. However, this model is only combined with an LSTM deep learning
neural network, which can be combined with more advanced deep learning models in the
future so as to improve the accuracy and efficiency of classification.

2. Reduce model calculation costs and formula complexity. Although the classification accuracy
of the JMLA model is very high, the calculation time is relatively long compared with other
models, and the formula is relatively complex, which is also a pain point for the JMLA model.
Therefore, reducing the calculation amount and better integrating the three models will be the
focus of future research.

3. Application prospects of this data processing method. In spite of its application in the direction
of heritage composition analysis and identification, it is expected to be applied in the areas
of health, food safety, and environmental protection, for example: analysis and classification
of chemical constituents of tobacco; composition analysis of nutritional composition in food;
classification and monitoring of pollutant composition in air, etc.
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Appendix A

Table A1. The result graph after glass pre-processing.

Glass Sampling
Points SiO2 Na2O K2O CaO MgO Al2O3 Fe2O3 CuO PbO BaO P2O5 SrO SnO2 SO2

HPNP01 69.33 0 9.99 6.32 0.87 3.93 1.74 3.87 0 0 1.17 0 0 0.39

HPNP03(1) 87.05 0 5.19 2.01 0 4.06 0 0.78 0.25 0 0.66 0 0 0

HPNP03(2) 61.71 0 12.37 5.87 1.11 5.5 2.16 5.09 1.41 2.86 0.7 0.1 0 0

HPNP04 65.88 0 9.67 7.12 1.56 6.44 2.06 2.18 0 0 0.79 0 0 0.36

HPNP05 61.58 0 10.95 7.35 1.77 7.5 2.62 3.27 0 0 0.94 0.06 0 0.47
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Table A1. Cont.

Glass Sampling
Points SiO2 Na2O K2O CaO MgO Al2O3 Fe2O3 CuO PbO BaO P2O5 SrO SnO2 SO2

HPNP06(1) 67.65 0 7.37 0 1.98 11.15 2.39 2.51 0.2 1.38 4.18 0.11 0 0

HPNP06(2) 59.81 0 7.68 5.41 1.73 10.05 6.04 2.18 0.35 0.97 4.5 0.12 0 0

HPWP07 92.63 0 0 1.07 0 1.98 0.17 3.24 0 0 0.61 0 0 0

HPWP09 95.02 0 0.59 0.62 0 1.32 0.32 1.55 0 0 0.35 0 0 0

HPWP10 96.77 0 0.92 0.21 0 0.81 0.26 0.84 0 0 0 0 0 0

HPWP12 94.29 0 1.01 0.72 0 1.46 0.29 1.65 0 0 0.15 0 0 0

HPNP13 59.01 2.86 12.53 8.7 0 6.16 2.88 4.73 0 0 1.27 0 0 0

HPNP14 62.47 3.38 12.28 8.23 0.66 9.23 0.5 0.47 1.62 0 0.16 0 0 0

HPNP15 61.87 3.21 7.44 0 1.02 3.15 1.04 1.29 0.19 0 0.26 0 0 0

HPNP16 65.18 2.1 14.52 8.27 0.52 6.18 0.42 1.07 0.11 0 0 0.04 0 0

HPNP17 60.71 2.12 5.71 0 0.85 0 1.04 1.09 0.19 0 0.18 0 0 0

HPNP18 79.46 0 9.42 0 1.53 3.05 0 0 0 0 1.36 0.07 2.36 0

HPNP21 76.68 0 0 4.71 1.22 6.19 2.37 3.28 1 1.97 1.1 0 0 0

HPWP27 92.72 0 0 0.94 0.54 2.51 0.2 1.54 0 0 0.36 0 0 0

HPWP22 92.35 0 0.74 1.66 0.64 3.5 0.35 0.55 0 0 0.21 0 0 0

LBNP20 37.36 0 0.71 0 0 5.45 1.51 4.78 9.3 23.55 5.75 0 0 0

LBNP23 53.79 7.92 0 0.5 0.71 1.42 0 2.99 16.98 11.86 0 0.33 0 0

LBNP24 31.94 0 0 0.47 0 1.59 0 8.46 29.14 26.23 0.14 0.91 0 0

LBNP25 50.61 2.31 0 0.63 0 1.9 1.55 1.12 31.9 6.65 0.19 0.2 0 0

LBWP26 19.79 0 0 1.44 0 0.7 0 10.57 29.53 32.25 3.13 0.45 0 1.96

LBWP08 20.14 0 0 1.48 0 1.34 0 10.41 28.68 31.23 3.59 0.37 0 2.58

LBWP19 29.64 0 0 2.93 0.59 3.57 1.33 3.51 42.82 5.35 8.83 0.19 0 0

LBWP11 33.59 0 0.21 3.51 0.71 2.69 0 4.93 25.39 14.61 9.38 0.37 0 0

LBWP02 36.28 0 1.05 2.34 1.18 5.73 1.86 0.26 47.43 0 3.57 0.19 0 0

LBNP28 68.08 0 0.26 1.34 1 4.7 0.41 0.33 17.14 4.04 1.04 0.12 0.23 0

LBNP29 63.3 0.92 0.3 2.98 1.49 14.34 0.81 0.74 12.31 2.03 0.41 0.25 0 0

LBNP30(1) 34.34 0 1.41 4.49 0.98 4.35 2.12 0 39.22 10.29 0 0.35 0.4 0

LBNP30(2) 36.93 0 0 4.24 0.51 3.86 2.74 0 37.74 10.35 1.41 0.48 0.44 0

LBNP31 65.91 0 0 1.6 0.89 3.11 4.59 0.44 16.55 3.42 1.62 0.3 0 0

LBNP32 69.71 0 0.21 0.46 0 2.36 1 0.11 19.76 4.88 0.17 0 0 0

LBNP33 75.51 0 0.15 0.64 1 2.35 0 0.47 16.16 3.55 0.13 0 0 0

LBWP34 35.78 0 0.25 0.78 0 1.62 0.47 1.51 46.55 10 0.34 0.22 0 0

LBNP35 65.91 0 0 0.38 0 1.44 0.17 0.16 22.05 5.68 0.42 0 0 0

LBWP36 39.57 2.22 0.14 0.37 0 1.6 0.32 0.68 41.61 10.83 0.07 0.22 0 0

LBNP37 60.12 0 0.23 0.89 0 2.72 0 3.01 17.24 10.34 1.46 0.31 0 3.66

LBWP38 32.93 1.38 0 0.68 0 2.57 0.29 0.73 49.31 9.79 0.48 0.41 0 0

LBWP39 26.25 0 0 1.11 0 0.5 0 0.88 61.03 7.22 1.16 0.61 0 0

LBWP40 16.71 0 0 1.87 0 0.45 0.19 0 70.21 6.69 1.77 0.68 0 0

LBWP41 18.46 0 0.44 4.96 2.73 3.33 1.79 0.19 44.12 9.76 7.46 0.47 0 0

LBNP42(1) 51.26 5.74 0.15 0.79 1.09 3.53 0 2.67 21.88 10.47 0.08 0.35 0 0

LBNP42(2) 51.33 5.68 0.35 0 1.16 5.66 0 2.72 20.12 10.88 0 0 0 0

LBWP43(1) 12.41 0 0 5.24 0.89 2.25 0.76 5.35 59.85 7.29 0 0.64 0 0

LBWP43(2) 21.7 0 0 6.4 0.95 3.41 1.39 1.51 44.75 3.26 12.83 0.47 0 0
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Table A1. Cont.

Glass Sampling
Points SiO2 Na2O K2O CaO MgO Al2O3 Fe2O3 CuO PbO BaO P2O5 SrO SnO2 SO2

LBNP44 60.74 3.06 0.2 2.14 0 12.69 0.77 0.43 13.61 5.22 0 0.26 0 0

LBNP45 61.28 2.66 0.11 0.84 0.74 5 0 0.53 15.99 10.96 0 0.23 0 0

LBNP46 55.21 0 0.25 0 1.67 4.79 0 0.77 25.25 10.06 0.2 0.43 0 0

LBNP47 51.54 4.66 0.29 0.87 0.61 3.06 0 0.65 25.4 9.23 0.1 0.85 0 0

LBWP48 53.33 0.8 0.32 2.82 1.54 13.65 1.03 0 15.71 7.31 1.1 0.25 1.31 0

LBNP49 28.79 0 0 4.58 1.47 5.38 2.74 0.7 34.18 6.1 11.1 0.46 0 0

LBWP49 54.61 0 0.3 2.08 1.2 6.5 1.27 0.45 23.02 4.19 4.32 0.3 0 0

LBWP50 17.98 0 0 3.19 0.47 1.87 0.33 1.13 44 14.2 6.34 0.66 0 0

LBNP50 45.02 0 0 3.12 0.54 4.16 0 0.7 30.61 6.22 6.34 0.23 0 0

LBWP51(1) 24.61 0 0 3.58 1.19 5.25 1.19 1.37 40.24 8.94 8.1 0.39 0.47 0

LBWP51(2) 21.35 0 0 5.13 1.45 2.51 0.42 0.75 51.34 0 8.75 0 0 0

LBWP52 25.74 1.22 0 2.27 0.55 1.16 0.23 0.7 47.42 8.64 5.71 0.44 0 0

LBNP53 63.66 3.04 0.11 0.78 1.14 6.06 0 0.54 13.66 8.99 0 0.27 0 0

LBWP54 22.28 0 0.32 3.19 1.28 4.15 0 0.83 55.46 7.04 4.24 0.88 0 0

LBNP55 49.01 2.71 0 1.13 0 1.45 0 0.86 32.92 7.95 0.35 0 0 0

LBWP56 29.15 0 0 1.21 0 1.85 0 0.79 41.25 15.45 2.54 0 0 0

LBWP57 25.42 0 0 1.31 0 2.18 0 1.16 45.1 17.3 0 0 0 0

LBWP58 30.39 0 0.34 3.49 0.79 3.52 0.86 3.13 39.35 7.66 8.99 0.24 0 0

Note: HPWP01(1) means that the part 1 of weathering point 01 of high potassium, HPNP01-(1) means that the
part 1 of non-weathering point 01 of high potassium, LBWP01(1) means that the part 1 of weathering point 01 of
lead barium, LBNP01(1) means that the part 1 of non-weathering point 01 of lead barium, and LBSWP01(1) means
that the part 1 of severe weathering point 01 of high potassium.
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