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Abstract: In response to negative impacts such as personal and property safety hazards caused by
drivers being distracted while driving on the road, this article proposes a driver’s attention state-
detection method based on the improved You Only Look Once version five (YOLOv5). Both fatigue
and distracted behavior can cause a driver’s attention to be diverted during the driving process.
Firstly, key facial points of the driver are located, and the aspect ratio of the eyes and mouth is
calculated. Through the examination of relevant information and repeated experimental verification,
threshold values for the aspect ratio of the eyes and mouth under fatigue conditions, corresponding
to closed eyes and yawning, are established. By calculating the aspect ratio of the driver’s eyes and
mouth, it is possible to accurately detect whether the driver is in a state of fatigue. Secondly, distracted
abnormal behavior is detected using an improved YOLOv5 model. The backbone network feature
extraction element is modified by adding specific modules to obtain different receptive fields through
multiple convolution operations on the input feature map, thereby enhancing the feature extraction
ability of the network. The introduction of Swin Transformer modules in the feature fusion network
replaces the Bottleneck modules in the C3 module, reducing the computational complexity of the
model while increasing its receptive field. Additionally, the network connection in the feature fusion
element has been modified to enhance its ability to fuse information from feature maps of different
sizes. Three datasets were created of distracting behaviors commonly observed during driving:
smoking, drinking water, and using a mobile phone. These datasets were used to train and test the
model. After testing, the mAP (mean average precision) has improved by 2.4% compared to the
model before improvement. Finally, through comparison and ablation experiments, the feasibility of
this method has been verified, which can effectively detect fatigue and distracted abnormal behavior.

Keywords: deep learning; YOLOv5; attention detection; distracted behavior detection; multi-scale
feature extraction; Swin Transformer

1. Introduction

In recent years, with the continuous improvement of China’s industrial level and
degree of intelligence, its social and economic levels have developed rapidly, and at the
same time, the number of vehicles has also been increasing day by day. With the growth of
China’s transportation network, traffic accidents are becoming more and more frequent,
which brings great safety hazards to people’s daily travel and even affects people’s life and
property safety to a great extent. Among many traffic accidents, distracted driving is one of
the important issues in road traffic safety [1]. According to investigations conducted by
relevant departments, distracted driving is the main cause of traffic accidents, particularly
in major accidents, where this proportion is even higher. In heavy traffic accidents, it
accounts for about 43% of the causes, and in large trucks and on highways, it accounts for
37% [2]. If distracted behaviors such as smoking or using a mobile phone cause drivers to
take their eyes off the road during high-speed driving, there is a high probability that this
could lead to personal injury and property damage [3]. Distracted driving includes fatigued
driving behavior and distracted driving behavior, of which fatigued driving behavior is
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clearly described in Chinese road traffic safety law. A driver is considered fatigued if they
have been continuously and uninterruptedly driving the vehicle for more than 4 h [4].
Distracted driving behavior refers to those where drivers turn their attention to activities
unrelated to driving, including visual distraction and cognitive distraction, which are
dangerous behaviors that result in the loss of decision-making and operational ability of
drivers [5].

In addition, in current important industrial processes, it is also necessary to maintain
the attention of the monitoring personnel to avoid accidents in the production process,
resulting in unnecessary waste of materials and economic losses. Among them, the main
causes of inattention are distraction and fatigue. Common distracted behaviors mainly
include smoking, drinking water, using mobile phones, etc. The use of mobile phones in
particular causes distraction to a large extent. The driving process and industrial production
process carry safety risks. Fatigue makes it difficult for people to concentrate, which will
also have a great impact on the current work. Therefore, to avoid the occurrence of potential
accidents, it is important to further attention detection of personnel in daily production and
life, especially in road traffic safety. At present, unmanned driving and intelligent assisted
driving technology have been widely used. When detecting the driver’s distraction, timely
assisted driving can prevent many traffic accidents.

Currently, there are two main methods of personnel attention detection: detection
methods based on wearable devices and detection methods based on machine vision.
Detection methods based on wearable devices collect physiological signals such as elec-
troencephalograms [6], electrocardiograms, and electromyograms [7] of the tested person
through medical detection equipment, which can directly reflect the physical state of the
tested personnel with high accuracy. However, due to the limited number of use scenarios,
this kind of wearable device has low applicability, complicated operation, and high cost,
which may seriously affect the accuracy of detection in practical work. Detection methods
based on machine vision are used to analyze the facial features of the tested personnel to
judge whether their attention is diverted. This non-contact detection method has higher
real-time performance than wearable detection and is more convenient and cost-effective
in the detection process [8]. With the increasing maturity of machine vision and deep
learning technologies, the use of machine vision-based methods for detecting targets is
currently a hot research topic. In the field of object detection, Liu et al. [9] proposed a
YOLOv3 model with four detection layers to automatically identify pavement gaps, which
adopted a multi-scale fusion structure to improve detection performance. Wang et al. [10]
proposed a YOLOv3 object detection method that integrates data augmentation and struc-
tural optimization. They optimized the model using residual networks and the CIoU loss
function, resulting in an overall improvement in mean average precision (mAP) on the test
dataset. Wu et al. [11] proposed an input-level fusion module driven by local adaptive
lighting for infrared and visible target detection, which combined with YOLOv5L could
achieve the best performance on the Drone Vehicle data set. Yang et al. [12] proposed the
KPE-YOLOv5 model, which improves the feature extraction capability for small objects by
incorporating the scSE attention module and adding a small-object detection layer. In face
detection of personnel, Ying et al. [13] proposed a fatigue detection algorithm based on
facial multifeature fusion. The video processing involved marking gray image frames and
performing histogram equalization using the Dlib toolkit. Facial features were extracted
in real time based on facial marker points, and the evaluation of facial features achieved
a detection accuracy of fatigued behavior of more than 94.4%. Jia et al. [14] designed a
method combining a facial feature detection system and fatigue judgment algorithm to
detect the real-time status of drivers, which has a higher detection speed and accuracy.
Chen et al. [15] improved the traditional BP neural network model, effectively eliminating
false alarms caused by facial expressions and improving the detection accuracy of the
model. Xiang et al. [16] proposed a fatigued driving detection system based on a 3D con-
volutional neural network combined with a channel attention mechanism. The attention
mechanism module was used to optimize feature weight, which significantly improved
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fatigue detection performance. Huang et al. [17] designed a deep 3D residual network
with an attention mechanism and introduced an encoder–decoder module to extract multi-
scale features. This method effectively detects driver distraction. Du et al. [18] created a
method which, by combining the driving data and the bio-signals of the driver, constructs
a one-dimensional convolutional neural network to detect fatigue, which is better than
traditional detection methods. Qin et al. [19] proposed an improved convolutional neural
network which uses HOG feature maps as inputs and has achieved good performance
on AUCD2 and SFD3 datasets for distracted driving detection. Ye et al. [20] developed a
driver fatigue detection system based on residual redundant channel attention networking
and head attitude estimation, which integrated 3D head attitude estimation and fatigue
detection based on deep learning and achieved good results in the evaluation of four
datasets. Zheng et al. [21] developed a MAX-MIN driver fatigue detection algorithm based
on deep learning to eliminate the impact of poor environmental adaptability on fatigue
detection and obtained values of EAR and MAR through image comparison. The above
research has had a positive effect on the process of static detection, and continuous dynamic
behavior is not included in the detection range.

To address the aforementioned situation, this paper proposes a driver attention detec-
tion method based on improved YOLOv5. The main work is as follows:

1. First, the key facial points of the tested personnel are located, and their aspect ratio is
calculated by locating the eye and mouth key points. Then a fatigue condition such as
yawning or blinking is judged by the aspect ratio value. After that, distracted behavior
is detected by selecting several behaviors which are more likely to divert attention in
daily work situations, such as drinking, smoking, and playing with cell phones.

2. Secondly, in terms of improvement, we modify the feature extraction element of the
YOLOv5 backbone network and add a designated module to enhance the model’s
feature extraction capability, achieving accurate detection of small-sized targets in the
feature map.

3. Finally, the feature fusion network in YOLOv5 was improved by introducing the Swin
Transformer module to replace the Bottleneck module from the C3 module, which
enhanced the global perception of the model. After that, the network connection
was improved, thereby enhancing the ability of the model to fuse different-sized
feature maps.

2. YOLOv5 Algorithm Introduction

YOLO [22] is a kind of object detection algorithm, which means that the neural network
only needs to see the picture once to output results. In June 2020, Ultralights’ team proposed
the YOLOv5 model of the YOLO series. The entire network can be divided into four parts:
input end, backbone network, neck network, and prediction end. In the input end, methods
such as Mosaic data augmentation, adaptive anchor box calculation, and adaptive image
scaling are used for preprocessing. The main network structure mainly includes C3,
Conv, and SPPF modules. The Neck network adopts the PANet structure improved from
FPN [23], and the Detect structure predicts three different-sized feature maps. Mosaic data
augmentation randomly scales, crops, arranges, and splices images, greatly enhancing
the diversity of the dataset and detection ability for small targets; adaptive anchor box
calculation adaptively calculates the best anchor box value for different datasets; adaptive
image scaling adaptively adds minimum black edges to the original image, reducing the
black edges at both ends of the image, reducing computation time, so that the speed of
target detection will improve. As shown in Figure 1, the C3 module consists of three
standard convolutional layers and several Bottleneck modules. Its structure is divided into
two branches, one of which passes through the standard convolutional layer and Bottleneck
module, while the other only passes through a standard convolutional layer. Finally, the
two branches are concatenated.
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Figure 1. YOLOv5s network model structure diagram.

The newly released YOLOv7 has been improved in terms of speed and accuracy
but, given its large model size and high hardware requirements, it is limited in practical
applications. Therefore, YOLOv5 was used for optimization. YOLOv5 has four versions,
which are controlled by two parameters: depth and width. To ensure real-time detection,
the network model with the minimum size and the fastest speed, YOLOv5s, was chosen
as the benchmark for model optimization. The network model structure of YOLOv5s is
shown in Figure 1.

3. Related Work
3.1. Fatigue Detection

Fatigue detection first requires key point localization for the person being tested, and
key facial point localization is also called face alignment. In order to ensure the accuracy of
the model, this element uses a high-resolution network (HRNet) [24] to detect the key facial
points, obtaining a high-precision localization model of 98 key facial points. The specific
location identification is shown in Figure 2.

Figure 2. 98-Point Face Position Identification.
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Eye aspect ratio (EAR) [25] is the ratio of eye width to eye length and can be used to
measure the opening and closing of the eyes. EAR value changes with the size of the eye;
when the eye is open, EAR value is larger, and when the eye is closed, EAR value tends
toward 0. Firstly, the eye contour is located, and then the EAR value is calculated by the eye
key point, and the eye state of the detected person is judged by the change in EAR value.
The positioning of the left eye key points are p60 − p67 The formula for EAR calculation is
as follows:

EAR =
||p61 − p67||+ ||p63 − p65||

2||p60 − p64||
(1)

After multiple tests and data checks, it was found that detection accuracy and stability
were higher when the EAR value was set to 0.15, so the threshold was set to 0.15. When
EAR is less than 0.15, it can be judged that the eye’s state is closed.

Similar to eye aspect ratio, mouth aspect ratio (MAR) [26] can be used to measure the
opening and closing of the mouth. When the mouth is closed, MAR value tends toward
0, and as the mouth opens, MAR value gradually increases. It is mainly used to detect
yawning and judge fatigue. First, the mouth contour is located, then the MAR value is
calculated using the key points of the mouth and the mouth state is judged by the change
in MAR value. The key points of the mouth are located at p88−p95. The MAR value of the
mouth relates to the calculation formula of the eye as follows:

MAR =
||p89 − p95||+ ||p91 − p93||

2||p88 − p92||
(2)

The test results of fatigue detection are shown in Figure 3, namely yawning, closing
eyes, and yawning and closing eyes at the same time. After literature review and multiple
experiments, it was found that the detection effect was better when MAR value was set to
0.5, so the threshold was set to 0.5. When MAR value is greater than 0.5, it can be judged
that the mouth is in a yawning state.

Figure 3. Fatigue detection.

3.2. Distraction Behavior Detection

When detecting common distracted behaviors in practical life and work, distracted
behavior detection is mainly divided into three categories: smoking, drinking, and phone
use. About 3000 related datasets were prepared first, and the three types of behaviors
were labeled with the image labeling tool LabelImg, and the dataset was labeled in YOLO
format for subsequent training operations. Finally, behavior detection was performed by
YOLOv5 after training, and the detection structure is shown in Figure 4. However, there
may be cases of missing detection and false detection for small targets in the detected
images at present.



Appl. Sci. 2023, 13, 6645 6 of 14

Figure 4. Three kinds of distracted behavior detection.

4. Related Improvement Work
4.1. Backbone Network Improvement

During the object detection process, the YOLOv5 backbone network utilizes a convolu-
tional neural network called CSPDarknet structure. In the detection process, there may be
many small-sized objects, and to achieve precise detection of them, the feature extraction
capability was enhanced by adding a set of modules after the SPPF structure of the YOLOv5
backbone network. These modules perform multiple different convolutional operations on
the input feature map to enhance the network’s ability to extract features. The specific steps
are as follows: first, after the SPPF structure of the trunk network feature extraction stage
is put in place, a module and three convolution operations are added, in which the input
is divided into two branches, one of which passes through a convolution operation and a
set module, while the other passes only through a convolution operation, and finally, after
the splicing operation, it passes through a convolution operation. The specified module
contains 6 different convolution operations. After the input feature map is processed
through these 6 different convolution operations, different receptive fields are obtained.
By stacking convolution layers, the receptive field is enlarged, and then different receptive
fields are used for feature extraction. The output of the feature maps obtained in each
type of receptive field is concatenated and finally output after concatenation. Perceiving
different feature information through multiscale receptive fields can enhance the network’s
ability to extract features, especially for detecting small-sized objects. The specific structure
is shown in Figure 5.

Figure 5. (a) Backbone network improvement; (b) modular structure.
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When given input feature information X, the module outputs information Y as shown
in Equation (3):

Y = X1 + X2 + X3 + X4 + X5 + X6 (3)

The variables X1 to X6 are defined as shown in Equation (4):

X1 = cv1(X)
X2 = cv2(X)
X3 = cv3(X2)
X4 = cv4(X3)
X5 = cv5(X4)
X6 = cv6(X5)

(4)

The abbreviation cva represents different convolutional operations, and the symbol
“+” represents the Concat operation.

4.2. Swin Transformer Module

Swin Transformer [27], a paper which was released by Microsoft on 25 March 2021
and which uses a Transformer framework to deal with computer vision tasks, can serve as a
general backbone for computer vision and has yielded good results in image segmentation
and object detection. Swin Transformer proposes an approach including sliding operations
and hierarchical design to address the problem of increased computational cost caused by
the increasing scale of visual entities and high resolutions. Swin Transformer consists of
three modules as its basic structure, namely Patch Embedding, Swin Transformer Block,
and Patch Merging. The Swin Transformer module is the main module, as shown in
Figure 6.

Figure 6. Swin Transformer Block architecture.

In the first Block1 stage, the input feature map Xi is operated by LayerNorm to obtain
LN
(
Xi), then the standardized feature map is calculated to obtain the intermediate result

of the layer ẑi by window attention operation and addition with the residual structure; the
calculation process is shown in Formula (5). Then the standardization LN(ẑi) is conducted
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again. Finally, the full connection layer is used and added to the residual structure to obtain
Zi; the calculation process is shown in Formula (6).

ẑi = W−MSA
(

LN
(

Xi
))

+ Xi (5)

Zi = MLP
(

LN
(

Xi
))

+ ẑi (6)

In Block1, Window Multi-head Self-Attention (W-MSA) is adopted, in Block2, Shifted
Window Multi-head Self-Attention (SW-MSA) is adopted, and the two mechanisms are
used alternately. In Swin Transformer Block, Transformer Block appears in pairs.

The C3 module used in YOLOv5s in this article consists of three convolutional modules
and a Bottleneck module. Compared to traditional Transformer modules, the introduction
of Swin Transformer modules first reduces computation and improves network operation
speed. Secondly, by using a sliding-window attention mechanism to increase receptive
field, it enhances the feature expression ability of small targets, enabling the model to have
a larger receptive field to perceive global information from the entire feature map during
feature fusion or feature extraction. Therefore, the Swin Transformer idea was borrowed for
the feature fusion section, and it was introduced into the C3 module of the feature fusion
network to replace the Bottleneck module, as shown in Figure 7a,b, where Swin represents
the Swin Transformer module.

Figure 7. (a) C3 module structure diagram; (b) Swin module structure diagram.

4.3. Neck Network Improvement

The YOLOv5 feature fusion network adopts PANet architecture, which references FPN
structure and introduces bottom-up path augmentation structure. The FPN + PAN structure
maximizes the role of both low-level and high-level feature information, enhancing object
detection ability. After upsampling high-level feature information, FPN fuses it with the
low-level feature information to achieve complementary fusion of high-level semantic
features and low-level detail features, enhancing semantic expression across multiple scales.
PAN then performs bottom-up feature fusion, combining low-level and high-level feature
information and sending three outputs to the detection layer as the final feature map output.
The main improvement of this paper on the feature fusion network is its modification of the
network connection method. In the Neck section of the original YOLOv5 network model,
only feature maps of three sizes, 80 × 80, 40 × 40, and 20 × 20, were combined in the
feature fusion stage. To enable the network model to more fully integrate information, a
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larger feature map, sized 160 × 160, was added for feature fusion. Additionally, the ability
to fuse feature maps of different sizes was enhanced based on the original feature fusion
network. This improved the ability to detect small objects such as cigarette butts and cell
phones. The modified network structure diagram is shown in Figure 8.

Figure 8. Improved network structure diagram.

4.4. Loss Function

In the process of model training, it is necessary to grasp the actual input values of the
model and the output values of the model and calculate the difference between the two,
that is, calculate the loss function. In this paper, the loss function of the YOLOv5 model
mainly consists of three parts: classification loss, confidence loss, and localization loss.
Among them, confidence loss and classification loss are calculated by the BCE Loss method,
and rectangular box loss is calculated by the CIoU Loss method. The calculation formulas
of CIoU and LCIOU are shown in Formulas (7) and (8). Compared with the previous IoU
Loss, GIoU Loss, and DIOU Loss methods, CIoU Loss adds the calculation of overlap area,
center point distance, and aspect ratio at the same time on the basis of the previous ones.

CIoU = IoU − ρ2

c2 − αν (7)

LCIoU = 1− IoU +
ρ2

c2 + αν (8)

wherein ρ represents the distance between the centers of the prediction box and the ground
truth box, c represents the length of the diagonal of the minimum rectangle covering both
boxes, ν represents the similarity of the aspect ratio of two boxes, α is the weight coefficient
of ν and its formula is shown in Formulas (9) and (10).

ν =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
)

2

(9)

α =
ν

1− IoU + ν
(10)
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5. Experimental Results
5.1. Introduction to Experimental Dataset

In order to evaluate whether the accuracy of the model for detecting human attention
has improved after the improvements, the VOC open source dataset was used in this
experiment. About 3500 images of smoking, drinking, and mobile phone use were selected
and labeled, and there were four categories of labels: face, smoke, drink, and phone. The
dataset was divided into training and validation sets in a 9:1 ratio. During the preprocessing
stage, Mosaic data augmentation was used to scale and stitch together any four images,
which enriched the dataset to some extent and strengthened the robustness of the network.

The experimental environment configuration and evaluation metrics are introduced
below, followed by a comparison with the model before improvement through ablation
experiments and presentation of the experimental results.

5.2. Experimental Environment Configuration

The operating system of this experiment is Win10 Chinese version. The main hardware
components of the experiment are an Intel (R) Core (TM) i7-10875H CPU; 16G memory;
and a NVIDIA GeForce RTX2060 GPU. The deep learning framework adopted is PyTorch.
When training, epoch was set to 150, the batch size was set to 16, and the optimizer selected
was SGD.

5.3. Evaluation Index

This experiment uses Average Precision (AP), Mean Average Precision (mAP), Detec-
tion Rate (Frame Per Second, FPS) and Model Size as evaluation indicators as follows:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

AP =
∫ 1

0
PdR (13)

mAP =
∑n

i=1 APi

n
(14)

where P represents the accuracy rate and the proportion of the number of correctly pre-
dicted samples in the positive samples; R represents the recall rate and the proportion of
predicted positive samples in the positive samples. TP represents the number of actual
positive samples predicted as positive, FP represents the number of actual negative samples
predicted as positive, and FN represents the number of actual positive samples predicted
as negative. AP represents the average precision value, and mAP is the mean value of the
average precision of all categories. Detection rate is the time taken by the model to detect
an image. Model size refers to the size of the weight file obtained after training.

5.4. Analysis of Experimental Results

The comparison experiments of various models on the same VOC dataset are shown
in Table 1. Compared with other mainstream one-stage detection algorithms YOLOv4
and YOLOv7, the improved YOLOv5 model has an average precision higher by 1.1% and
0.8%, respectively, and also has certain improvements in detection speed. Although the
improved FPS has decreased to 55 f/s, it still maintains high recognition rate and real-time
detection compared to the newer YOLOv7 algorithm. In addition, in terms of model size,
the improved YOLOv5 is only 17.5 MB compared to YOLOv4 and YOLOv7 algorithms,
which is much smaller than the other two algorithms, reducing deployment costs and
facilitating rapid deployment of the model in car systems and other application scenarios.
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Table 1. Performance comparison of different network models.

Network Model mAP/% FPS/(f/s) Size (MB)

YOLOv4 85.2 24 244
YOLOv5s 83.9 63.3 13.7
YOLOv7 85.5 49 71.3

Improved YOLOv5 86.3 55 17.5

The various improvement strategies were trained and tested on the VOC dataset, and
the impact of different improvement strategies on the original model is shown in Table 2.
After introducing the Swin Transformer module, the model had a larger receptive field
to perceive global information, and the detection accuracy was improved. Improving the
backbone network and connection method resulted in a decrease in detection speed but
improved detection accuracy for small objects. Additionally, the detection accuracy of the
three types of distracted behavior was also improved to some extent, as shown in Table 3.

Table 2. Ablation experiment.

Swin Transformer Backbone Improvement Neck Improvement mAP/% FPS/(f/s) Size (MB)

- - - 83.9 63.3 13.7√
- - 84.2 58.1 13.8

-
√ √

84.6 59 17.4√ √ √
86.3 55 17.5

Table 3. The precision comparison of distraction behavior before and after improvement.

Distracted Behavior Before AP/% Improved AP/%

face 93.2 95
smoke 61.8 65.8
drink 95.8 96.7
phone 84.7 87.7

As shown in Table 3, compared with the unimproved model, the detection accuracy of
three types of distracted behavior and facial recognition improved. The detection accuracy
of smoking increased by approximately 4%, the detection accuracy of mobile phone usage
increased by approximately 3%, the detection accuracy of drinking water increased by
approximately 0.9%, and the facial recognition accuracy increased by approximately 1.8%.
In addition, to intuitively understand the detection performance of the improved model,
three types of distracted behavior that appear in the actual driving dataset were detected
in both the YOLOv5 model and the improved model, and the original images and the
detection results before and after improvement were visualized as shown in Figure 9.
From the experimental results, it can be concluded that the improved model has higher
accuracy in detecting small targets such as cigarettes and mobile phones and has higher
applicability in detecting distracted behavior that leads to attention diversion during actual
driving processes.
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Figure 9. (a) Comparison of smoking before and after improvement; (b) comparison of drinking
before and after improvement; (c) comparison of mobile phone use before and after improvement.

6. Conclusions

This article proposes a method of determining whether drivers have diverted attention
while driving, which is mainly divided into fatigue detection and distracted abnormal
behavior detection. Among them, many distracted behaviors during driving are summa-
rized into three common types: smoking, drinking water, and playing with phones. For
fatigue detection, this method uses the calculation of the ratio values of the width and
height of the eyes and mouth. For the detection of distracted behavior, this article improves
upon the YOLOv5 model by adding multiple convolution operations in the backbone
network to obtain different receptive fields and enhance the network’s feature extraction
capability. The Swin Transformer module was introduced to replace a Bottleneck module
in the C3 module of the feature fusion network, which enhances the model’s awareness
of global information and improves the network connection modes in the feature fusion
network to enhance the model’s feature fusion ability. The ability of the model to detect
small objects such as cigarettes and drinking water was improved.

The proposed method in this paper was experimentally validated as having improved
mAP compared to the original YOLOv5 model. Additionally, when compared to the newer
YOLOv7 model, it had a smaller model size and higher detection accuracy but a slower
detection speed than the original model. Further improvements will be made in future
research to address the detection speed issue and improve the real-time performance of the
network model. Moreover, distracted behavior impacting traffic safety is not limited to the
three types studied in this paper, and other behaviors will also be studied in future research.
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