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Abstract: Over time, software has become increasingly important in various fields. If the current
software is more dependent than in the past and is broken owing to large and small issues, such as
coding and system errors, it is expected to cause significant damage to the entire industry. To address
this problem, the field of software reliability is crucial. In the past, efforts in software reliability were
made to develop models by assuming a nonhomogeneous Poisson-process model (NHPP); however,
as models became more complex, there were many special cases in which models fit well. Hence,
this study proposes a software reliability model using deep learning that relies on data rather than
mathematical and statistical assumptions. A software reliability model based on recurrent neural
networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), which are the
most basic deep and recurrent neural networks, was constructed. The dataset was divided into two,
Datasets 1 and 2, which both used 80% and 90% of the entire data, respectively. Using 11 criteria,
the estimated and learned results based on these datasets proved that the software reliability model
using deep learning has excellent capabilities. The software reliability model using GRU showed the
most satisfactory results.

Keywords: software reliability model; deep learning; recurrent neural network; long short-term
memory; gated recurrent unit

1. Introduction

Over time, software has become increasingly important in various fields. In the past,
software helped with simple tasks or small parts in each industry; however, it has now
been developed into a form that can perform basic roles in all-inclusive roles. If the current
software is more dependent than in the past and is broken owing to large and small issues,
such as certain coding and system errors, it is expected to cause significant damage to the
entire industry. To address this problem, studies on software reliability, which measure
how effectively the software works, are constantly being conducted. Software reliability
tests the ability of software to not fail for a specified period and indicates how long the
software can be used without failure.

Studies on software reliability have been conducted based on the software reliability
model, assuming the Markov model and the non-homogeneous Poisson process (NHPP) [1].
However, since software failures follow a Poisson distribution, most related studies have
been conducted based on the software reliability model, assuming NHPP. Previous studies on
software reliability began when a software reliability model based on NHPP was developed
by Goel and Okumoto [2]. It was assumed that software failures occur independently and
do not affect each other. Subsequently, a study was conducted on an S-shaped curve model
in which the number of cumulative software failures increased along the S curve [3–5]. In
addition, a software reliability model study, assuming incomplete debugging in which the
defects found in the test phase were not corrected or removed, was also conducted [6]. By
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expanding on this, a study on a generalized incomplete debugging defect detection rate model
was conducted [7–11]. The defect detection rate of each proposed model is in the form of
a function. In addition, since the operating environment is different for each software, it
is difficult to compare them equally. Thus, the software reliability model has been studied,
considering uncertain factors in the operating environment [12,13].

As software develops over time, it becomes composed of complex and intertwined
structures; therefore, studies on software reliability models are being conducted, assuming
that software failures occur independently [14]. A software reliability model that assumes
that previous errors will continuously affect software failures if they are not well fixed
has been proposed, and a dependent software reliability model that assumes an uncertain
operating environment has been studied [15,16].

As research progressed, several software reliability models studied under independent
and dependent assumptions developed numerous models suitable for special cases, and
generalizing them has been difficult. To address this, studies on software reliability models
using deep learning, which is a nonparametric method, have been performed. Among
the nonparametric software reliability models using deep learning, a study on software
reliability models using deep neural networks was conducted [17], and a software reliability
model using deep learning that applies failure data generated through open-source software
was also proposed [18]. In addition, since software failure is a sequential data characteristic,
the software reliability model using the recurrent neural network (RNN) and the long
short-term memory (LSTM) was studied using this characteristic [19–21].

The software reliability model developed by NHPP has the problem that it fits well
only in special cases because it adds special mathematical assumptions. Therefore, in this
study, to solve this problem, we aim at the software reliability model utilizing deep learning
among machine learning methods, which is a form that relies on given failure data. Since it
is a data-dependent model, it is possible to develop a generalized software reliability model
that considers all failures that occur in software without relying on special cases of software
failures. In addition, in the past, software reliability models utilizing deep learning have
been analyzed by applying methods, but in this study, we propose to add a deeper hidden
layer of deep neural networks to the recurrent neural network series. If we develop a model
that utilizes 100% of the data, it may cause an overfitting problem that only fits the trained
data well. As a result, we also present the results for 80% and 90% of the data sets and the
resulting predictions to prove superiority using 11 criteria comparisons. Section 2 presents
the theoretical background of software reliability and deep learning. Section 3 introduces
numerical examples, and finally, Section 4 presents the conclusions.

2. Software Reliability Model
2.1. Generalized Software Relability Model

Software reliability refers to the probability that the software does not cause system
failure for a certain period of time under specific conditions. The reliability function used
to evaluate this is

R(t) = P(T > t) =
∫ ∞

t
f (u)du. (1)

This indicates the probability of an operation over time t. The pdf f (t) assumes the
failure time or lifetime of the software to be a random variable T. We obtained the reliability
function by assuming a distribution for the calculation. It was assumed that it follows an
exponential distribution with parameter λ. Subsequently, we approach λ as an NHPP and
propose a model in which λ is not a single constant value but a mean value function m(t)
that changes over time [1]. N(t) is the number of failures up to time t and is a Poisson
probability density function with parameter m(t).

P{N(t) = n} =
{

m(t)}n

n!
e−m(t), n = 0, 1, 2, · · · , t ≥ 0 (2)



Appl. Sci. 2023, 13, 6730 3 of 22

m(t) is the integral of λ(t), which is a strength function representing the number of instanta-
neous failures at time t and the mean value function from 0 to time t.

m(t) =
∫ t

0
λ(s)ds (3)

The m(t) is calculated using the relationship between the number of failures a(t) at
each time point and the failure detection rate b(t).

dm(t)
dt

= b(t)[a(t)−m(t)] (4)

The software reliability model is developed using a differential equation, which is the
basic form of the above equation. The software reliability model obtained by multiplying η
in Equation (4) assumes an uncertain operating environment. Here, η is a parameter for the
uncertainty of the operating environment, and N is the expected number of faults that exist
in the software before testing [12].

dm(t)
dt

= ηb(t)[N −m(t)] (5)

In addition, if m(t) is multiplied again in Equation (4), a software reliability model can
be derived assuming dependent failures, in which software failures at the previous time
point affect failures at the next time point [14]. This is expressed in the following equation:

dm(t)
dt

= b(t)[a(t)−m(t)]m(t) (6)

If each differential equation is arranged in terms of m(t) according to the conditions in
Equations (4)–(6), a software reliability model that satisfies each condition can be derived. The
developed software model is presented in Table 1. Models 1 to 6 are software reliability models
obtained through the most basic form of differential equations; models 7 and 8 are those
assuming uncertain operating environments; model 9 assumes dependent failures; and model
10 assumes the occurrence of dependent failures in an uncertain operating environment.

Table 1. NHPP software reliability models.

No. Model Mean Value Function Note

1 Goel-Okumoto (GO) [2] m(t) = a
(

1− e−bt
)

Concave

2 Yamada et al. (DS) [3] m(t) = a
(

1− (1 + bt)e−bt
)

S-shape

3 Yamada et al. (YID) [6] m(t) = a
(

1− e−bt
)(

1− α
b
)
+ αat Concave

4 Pham-Zhang (PZ) [7] m(t) =
((c+a)[1−e−bt]−[ ab

b−α ](e−at−e−bt))
1+βe−bt

Both

5 Pham et al. (PNZ) [8] m(t) =
a(1−e−bt)(1− α

b )+αat
1+βe−bt

Both

6 Teng-Pham (TP) [9] m(t) = a
p−q

[
1−

(
β

β+(p−q)ln
(

c+ebt
c+1

)
)α]

S-shape

7 Chang et al. (TC) [12] m(t) = N
[

1−
(

β

β+(at)b

)α]
Both

8 Pham (Vtub) [13] m(t) = N
[
1−

(
β

β+abt−1

)α]
S-shape

9 Kim et al. (DPF) [15] m(t) = a
1+ a

h

(
1+c

c+ebt

)a
S-shape,

Dependent
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Table 1. Cont.

No. Model Mean Value Function Note

10 Lee et al. (UDPF) [16] m(t) = N
[
1−

(
β

α+bt−ln(bt+1)

)α] S-shape
Dependent

2.2. Software Reliablity Model Using Deep Learning
2.2.1. Deep Neural Network

An artificial neural network is based on the biological structure of the human brain
and consists of nonlinear neurons. Based on the information received by the five senses,
humans think and judge last, as information moves from one neuron to the next. The
neurons (nodes) present in each layer of an artificial neural network are the most basic
information-processing units. The network structure consists of three layers: input, output,
and hidden layers. The input layer plays the same role as the information obtained by
human beings through their five senses or thoughts, whereas the output layer refers to
thoughts or judgments based on this. Conversely, the hidden layer learns to think or judge
while receiving signals from the previous layer and passes them to the next layer through
an activation function. A deep neural network (DNN) refers to a form in which the number
of hidden layers is large in an artificial neural network [22,23]. When data is inputted
from the input layer, the next hidden layer moves to the next layer through an activation
function after combining the input value, weight, and bias and is transmitted to the output
layer. Equation (7) expresses the passing from each layer. It consists of the product of the
transformed z value (input value) in the previous layer, the weight, and the sum of the
biases.

uij = bi +
j

∑
k=1

Wi,kzi−1,k

zij = f
(
uij
) (7)

For each layer, the activation function when moving to the next layer mainly uses the
sigmoid, hyperbolic tangent, and ReLU functions. As the activation function used when
outputting the result passed to the last output layer is a continuous variable, an identity
function was used.

The final predicted value was obtained using the above process. The difference
between the predicted value y and the actual value t is calculated as a loss function. To
minimize the difference between these values, the function is updated to have the minimum
value based on the differential value for each weight and bias.

Loss =
n

∑
i=1

(yi − ti)
2 (8)

The weight update implies that the loss function is updated by the learning rate
(α) based on the partial derivative value for a specific weight using the backpropagation
algorithm. The deep neural network learns through a series of processes and outputs a
predicted value that approximates the actual value.

Wt+1 = Wt − α
∂

∂W
Loss(W) (9)

2.2.2. Recurrent Neural Network

The recurrent neural network is a model specialized for sequential data structures. It
has cells that can remember the information of a previous point in the hidden layer of the
most basic deep neural network. Therefore, it is suitable for time-series data because it is



Appl. Sci. 2023, 13, 6730 5 of 22

designed to remember information from the past and influence future events. Figure 1a
shows an image of the RNN model, and the formula is shown in Equation (10) [24].

ht = tanh(Whht−1 + Wxht + b) (10)
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Figure 1. (a) Structure of RNN model; (b) Structure of LSTM model; (c) Structure of GRU model.

Its network structure reflects past time; however, it has a vanishing gradient problem
that prevents it from accurately reflecting the information about the time that existed a long
time ago as the time point becomes longer [25]. To address this problem, LSTM, which has
a structure that can learn long-term dependence, was built. It contains the same hidden
layer as the RNN structure; however, its internal structure differs. In LSTM, a memory
cell c exists. This cell has a forget gate that determines how much previous information is
reflected, an input gate that includes new information g, which indicates how much new
information is reflected, and an output gate that indicates how much previous information
is transferred to the next layer. The activation functions used at this time were the sigmoid
function and the hyperbolic tangent. Information about the past is delivered by passing
through three gates and memory cells. Through this, the gradient loss problem can be
solved. Each gate follows Equation (11). Figure 1b shows the LSTM model [26].

ft = σ(xtWx,f + ht−1Wh,f + bf)

gt = tanh
(

xtWx,g + ht−1Wh,g + bg

)
it = σ(xtWx,i + ht−1Wx,i + bi)

ot = σ(xtWx,o + ht−1Wx,o + bo)

ct = ft ◦ ct−1 + gt ◦ it

ht = ot ◦ tanh(ct)

(11)

LSTM can solve the gradient loss problem in RNN; however, when going to the next
step, LSTM goes through four operation processes if only one operation is performed.
Processing big data may be inefficient because the number of computations increases
fourfold. Complementing this, the gated recurrent unit (GRU) transmits a value to the next
layer through three calculation processes in one layer. The GRU integrates the forget and
input gates in the LSTM to create an update gate. In addition, it replaces the output gate
with a reset gate, which determines the amount of previous information to be forgotten.
The update gate determines how long the previous information should be kept. Through
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Equation (12), the network learns while transferring to the next layer. Figure 1c shows an
image of the GRU model [27].

rt = σ(xtWx,r + ht−1Wh,r + br)

zt = σ(xtWx,z + ht−1Wh,z + hz)

gt = tanh
(

xtWx,g + (rt ◦ ht−1)Wh,g + bg

)
ht = (1− zt) ◦ gt + zt ◦ ht−1

(12)

The software reliability model proposed in this study adds a deep neural network
layer to add training depth to the predicted model, which reflects the past viewpoint
through the hidden layer of the recurrent neural network. It proposes a learning model
that goes through a deeper hidden layer to reflect the results of the past rather than just
reflecting the past time of RNN series. This allows us to propose a software reliability
model that can be generalized by solving problems that are only well suited to special cases
of previously developed software reliability models. Among the software reliability models
using deep learning, DNNs have three hidden layers, and RNNs have two. The number of
nodes in the hidden layer was configured as the number of data points. Based on the given
data, the number of nodes in the model should be limited to the number of data points to
avoid estimating too many parameters compared to the data. The parameter optimization
method used in the software reliability model using deep learning is Adam. Adam is a
deep learning optimization method that combines the momentum method, which uses the
acceleration of previous training, and the RMSprop method, which has a structure where
the learning rate changes with each training instead of being constant. The formula is as
follows:

ut+1 = β1ut + (1− β1)

(
∂Loss(W)

∂W

)
, st+1 = β1st + (1− β2)

(
∂Loss(W)

∂W

)2

Wt+1 = Wt − α
ût√

ŝt + ε

Let β1 and β2 be an exponential moving average of momentum and RMSprop. After
obtaining the parameters u and s of momentum and RMSprop, update the weights by
the learning rate α. In this study, to optimize the hyper-parameters, we set a range of
hyper-parameters and iterated to find the optimal results. We want to find the optimal
value by increasing the learning rate α by 5-times units from 0.0000001 to 0.01, and utilizing
β1 and β2 of 0.9 and 0.99, respectively. Figure 2 shows the software reliability model
that combines recurrent neural network types and deep neural networks among software
reliability models using deep learning.
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3. Numerical Example
3.1. Data Information

The dataset used in this study is the software failure data from PLC4X (https://plc4x.
apache.org, accessed on 7 February 2022)) and Apache Camel (http://camel.apache.org,
accessed on 7 February 2022). Dataset 1 is from PLC4X, which is a set of libraries for
communicating with industrial programmable logic controllers (PLCs) using a variety
of protocols with a shared API. The data represent the cumulative number of failures
occurring between December 2017 and January 2022. Dataset 2 is from Apache Camel,

https://plc4x.apache.org
https://plc4x.apache.org
http://camel.apache.org
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which is an open-source integration framework that empowers you to quickly and easily
integrate various systems consuming or producing data. Dataset 2 presents the cumulative
number of failures between April 2011 and January 2022. Tables A1 and A2 show datasets 1
and 2. The software uses the Apache IoTDB (Database for the Internet of Things), which is a
native IoT database with high performance for data management and analysis, deployable
on the edge and in the cloud. Errors, such as bugs, code modifications, and database
management errors, were recorded. It records defects and failures caused by bugs, new
features, improvements, and tasks while operating the Apache IoTDB and is intended to
estimate and predict software reliability models. Both datasets 1 and 2 used 80% and 90%
of the entire data, which were utilized as training data necessary for training and parameter
estimation, respectively. The remaining 20% and 10% of the data were used to compare
predictions by substituting them for the training and estimated models.

3.2. Criteria

The software reliability models utilizing NHPP and deep learning were compared
using 11 criteria based on the difference between the actual and predicted values. The mean
squared error (MSE) and mean absolute error (MAE) were defined as the sum of the squared
distances and absolute values of the distances between the estimated and actual values,
divided by the difference between the number of observations and parameters [28,29].

MSE =
∑n

i=1(m̂(ti)− yi)
2

n−m
, MAE =

∑n
i=1|m̂(ti)− yi|

n−m
(13)

The predictive ratio risk (PRR) was defined by dividing the distance between the
actual and predicted values by the predicted value, and the predictive power (PP) was
defined by dividing the distance between the actual and predicted values by the actual
value [30].

PRR =
n

∑
i=1

(
m̂(ti)− yi

m̂(ti)

)2
, PP =

n

∑
i=1

(
m̂(ti)− yi

yi

)2
(14)

R2 is the coefficient of determination of the regression equation and determines the
explanatory power by considering the number of parameters [31].

R2 = 1− ∑n
i=1(m̂(ti)− yi)

2

∑n
i=1 (yi − yi)

2 (15)

The predicted relative variation (PRV) is the standard deviation of the prediction bias,
where the bias is ∑n

i=1

[
m̂(ti)−yi

n

]
and defined as [32]:

PRV =

√
∑n

i=1(yi − m̂(ti)− Bias)2

n− 1
. (16)

The root mean square prediction error (RMSPE) estimates the closeness with which
the model predicts the observations [32]:

RMSPE =
√

Variance2 + Bias2. (17)

The mean error of prediction (MEOP) sums the absolute value of the deviation between
the actual data and the estimated curve and is defined as [29]:

MEOP =
∑n

i=1|m̂(ti)− yi|
n−m + 1

. (18)
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The Theil statistic (TS) is the average percentage of deviation over all periods with
respect to the actual values. This is defined as follows [29]:

TS = 100 ∗

√
∑n

i=1(yi − m̂(ti))
2

∑n
i=1 yi

2 %. (19)

This criterion increases the penalty when a parameter is added to the model for a
small sample [33].

PC =

(
n−m

2

)
log

(
∑n

i=1(m̂(ti)− yi)
2

n

)
+ m

(
n− 1
n−m

)
(20)

The preSSE (predicted sum squared error) refers to the sum of the differences be-
tween the predicted result value and the actual value, and the degree of estimation can be
identified [34].

preSSE =
n

∑
i=k+1

(m̂(ti)− yi)
2 (21)

Based on the above criteria, we compared the software reliability model utilizing
NHPP with that using deep learning. For the same comparison, the number of criterion
parameters affected by the number of parameters was set to zero. The closer R2 is to 1, the
better the result, and the closer it is to 0 for the other 10 criteria, the better the result. The
goodness of the model fit was compared by calculating the criteria using R and MATLAB
R2018b.

3.3. Results
3.3.1. Results of Dataset 1

Using Dataset 1, Table 2 shows the results of the parameter estimation of the software
reliability model assuming NHPP and the structure of the software reliability model using
deep learning. In addition, Dataset 1 was divided into 80% and 90%, and parameter
estimation and model fitting were performed on the divided dataset. The structure of the
software reliability model using deep learning consisted of three hidden layers, and the
number of nodes in each layer was set according to the size of the training dataset. For the
software reliability model of the recurrent neural network type, two deep neural networks
were added, except for the recurrent neural network hidden layer. Here, Adam was used
as the optimization method. The learning rate was set to 0.005 for the DNN and 0.0001 for
the RNN, LSTM, and GRU.

Table 2. Parameter estimation and structure of model using Dataset 1.

No. Model 80% 90%

1 GO â = 1961.771, b̂ = 0.00065 â = 8717.730, b̂ = 0.00015

2 DS â = 193.233, b̂ = 0.02730 â = 160.532, b̂ = 0.03091

3 YID â = 97.401, b̂ = 0.00523, α̂ = 0.10686 â = 6.2301, b̂ = 0.05319, α̂ = 0.34770

4 PZ â = 431.141, b̂ = 0.04005, α̂ = 16.359,
β̂ = 27.421, ĉ = 57.233

â = 88.620, b̂ = 0.07843, α̂ = 9.0099,
β̂ = 12.248, ĉ = 2.0246

5 PNZ â = 69.646, b̂ = 0.01607,
α̂ = 0.07992, β̂ = 1.0343

â = 71.272, b̂ = 0.08070,
α̂ = 0.00541, β̂ = 10.183

6 TP
â = 72.610, b̂ = 0.06011,
α̂ = 1.8769, β̂ = 0.91909,

ĉ = 13.7277, p̂ = 0.46681, q̂ = 0.09829

â = 177.307, b̂ = 0.08976,
α̂ = 0.90527, β̂ = 3.2480,

ĉ = 7.5811, p̂ = 1.5258, q̂ = 0.62709
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Table 2. Cont.

No. Model 80% 90%

7 TC â = 0.01628, b̂ = 1.5465, α̂ = 1.1396,
β̂ = 16.708, N̂ = 1713.568

â = 0.02299, b̂ = 1.5946, α̂ = 4.9402,
β̂ = 15.240, N̂ = 233.487

8 Vtub â = 1.0018, b̂ = 1.4119, α̂ = 0.18384,
β̂ = 9.0775, N̂ = 7788.528

â = 1.1086, b̂ = 1.7068, α̂ = 0.00730,
β̂ = 0.36680, N̂ = 165.881

9 DPF â = 80.628, b̂ = 0.00182,
ĉ = 0.41977, ĥ = 3.1673

â = 76.498, b̂ = 0.00172,
ĉ = 0.23803, ĥ = 3.0477

10 UDPF b̂ = 1.3315, α̂ = 39.915,
β̂ = 5.4535, N̂ = 729.519

b̂ = 0.10265. α̂ = 2.7233,
β̂ = 2.2206, N̂ = 257.005

11 DNN α = 0.005, hidden layers = 3, optimizer = Adam, epoch = 200

12 RNN α = 0.0001, hidden layers = 2, optimizer = Adam, epoch = 200

13 LSTM α = 0.0001, hidden layers = 2, optimizer = Adam, epoch = 200

14 GRU α = 0.0001, hidden layers = 2, optimizer = Adam, epoch = 200

Table 3 lists the result values of the criteria using 80% of Dataset 1. The values for
MSE, PRV, RMSPE, TS, and PC in LSTM were the lowest at 2.0069, 0.1345, 1.4168, 4.9250,
and 14.5574, respectively. GRU showed the lowest values of 0.6706 and 1.1032 in PRR and
PP, and the lowest values of MAE and MEOP of 1.21164 and 1.186 were observed in UDPF,
respectively. The R2 value was the highest for LSTM and GRU at 0.9929. In LSTM, 6 out
of 10 criteria showed good results. For the predictions of 10% and 20%, the DPF model
with a preSSE value of 47.645 had the lowest result among the software reliability models
assuming NHPP. In contrast, most software reliability models using deep learning showed
values in the 20-point range, and the LSTM model showed the smallest value of 21.570.

Table 3. Comparison of all criteria using 80% of Dataset 1.

No. Model MSE MAE PRR PP R2 PRV RMSPE MEOP TS PC preSSE

1 GO 21.1902 4.0601 4.7030 11.9204 0.9254 4.2944 4.6544 3.9586 16.0037 60.5184 768.422
2 DS 3.9990 1.6435 1853.84 3.9028 0.9859 1.9503 2.0240 1.6024 6.9523 28.0021 64.894
3 YID 2.7404 1.2988 26.5655 2.4337 0.9904 1.6685 1.6768 1.2663 5.7552 20.6324 454.284
4 PZ 2.8043 1.2790 15.2300 2.6449 0.9901 1.6951 1.6965 1.2471 5.8219 21.0819 8306.771
5 PNZ 2.7172 1.2864 22.5012 2.4253 0.9904 1.6634 1.6698 1.2543 5.7308 20.4666 150,716.8
6 TP 2.7168 1.2888 18.3855 2.3926 0.9904 1.6648 1.6697 1.2566 5.7303 20.4634 7839.272
7 TC 3.1185 1.4057 221.7352 3.0482 0.9890 1.7648 1.7884 1.3705 6.1394 23.1529 224.970
8 Vtub 2.8788 1.3403 108.599 2.8416 0.9899 1.6990 1.7184 1.3068 5.8987 21.5931 455.315
9 DPF 3.1625 1.3642 0.9386 1.9608 0.9889 1.7976 1.8015 1.3301 6.1826 23.4260 47.645

10 UDPF 2.5427 1.2164 0.8600 1.2500 0.9911 1.6154 1.6154 1.1860 5.5437 19.1722 876.104
11 DNN 2.4373 1.4791 0.7005 1.1789 0.9914 0.5061 1.5633 1.4421 5.4275 18.3463 25.294
12 RNN 2.1147 1.4127 0.7380 1.2844 0.9926 0.3495 1.4553 1.3774 5.0557 15.5784 22.274
13 LSTM 2.0069 1.4104 0.8014 1.4432 0.9929 0.1345 1.4168 1.3751 4.9250 14.5574 21.570
14 GRU 2.0159 1.3983 0.6706 1.1032 0.9929 0.2493 1.4204 1.3634 4.9362 14.6454 23.872

Table 4 lists the result values of the criteria using 90% of Dataset 1. MSE, RMSPE, TS,
and PC were the lowest in GRU at 1.9961, 0.9948, 1.413, 4.1991, and 16.1831, respectively,
and PRV was the smallest in LSTM at 0.1251. In addition, PRR and PP in UDPF showed the
lowest values of 0.6386 and 0.9113, and MAE and MEOP were 1.3714 and 1.3409 in DPF,
respectively. The R2 value was the largest at 0.9948. In GRU, 5 out of 10 criteria showed
good results. In preSSE, the TC, DS, and Vtub models showed very small values of 6.367,
6.537, and 7.340, respectively. In the software reliability model using deep learning, RNN
showed the smallest value of 11.397, followed by LSTM at 11.755. The resulting values
showed good results for the software reliability model, assuming NHPP.
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Table 4. Comparison of all criteria using 90% of Dataset 1.

No. Model MSE MAE PRR PP R2 PRV RMSPE MEOP TS PC preSSE

1 GO 22.6581 4.3155 4.7797 13.4021 0.9407 4.4490 4.8071 4.2196 14.1477 69.6287 321.655
2 DS 3.9569 1.6600 1636.27 3.7881 0.9896 1.9677 2.0112 1.6231 5.9122 31.2376 6.537
3 YID 3.5588 1.5488 58.9754 2.7164 0.9907 1.9001 1.9081 1.5144 5.6069 28.9044 11.837
4 PZ 3.1010 1.4570 31.2349 2.4008 0.9919 1.7750 1.7812 1.4246 5.2339 25.8753 2395.537
5 PNZ 3.1296 1.4638 27.1085 2.3403 0.9918 1.7798 1.7893 1.4313 5.2580 26.0772 40.741
6 TP 3.2108 1.4898 26.6591 2.3619 0.9916 1.8069 1.8125 1.4567 5.3257 26.6407 4948.058
7 TC 3.6277 1.5687 262.6646 3.1326 0.9905 1.9117 1.9263 1.5338 5.6609 29.3263 6.367
8 Vtub 3.4308 1.5331 82.7369 2.6383 0.9910 1.8662 1.8735 1.4990 5.5051 28.0984 7.340
9 DPF 3.0682 1.3714 0.8756 1.7908 0.9920 1.7676 1.7718 1.3409 5.2061 25.6412 65.275

10 UDPF 2.9984 1.3889 0.6386 0.9113 0.9922 1.7515 1.7516 1.3581 5.1465 25.1349 1709.197
11 DNN 2.5868 1.5030 0.7327 1.3150 0.9932 0.5792 1.6107 1.4696 4.7803 21.8866 13.471
12 RNN 2.0731 1.4332 0.8317 1.5417 0.9946 0.1402 1.4400 1.4013 4.2794 17.0167 11.397
13 LSTM 2.0257 1.4179 0.7584 1.3192 0.9947 0.1251 1.4234 1.3864 4.2302 16.5077 11.755
14 GRU 1.9961 1.4061 0.7593 1.331 0.9948 0.1392 1.413 1.3749 4.1991 16.1831 12.103

3.3.2. Results of Dataset 2

Using Dataset 2, Table 5 shows the results of the parameter estimation of the software
reliability model assuming NHPP and the structure of the software reliability model using
deep learning. Similar to Dataset 1, Dataset 2 was divided into 80% and 90%, and parameter
estimation and model fitting were performed on the divided dataset. The structure of the
software reliability model using deep learning consists of three hidden layers, as in Dataset 1,
and the number of nodes in each layer was set according to the size of the training dataset.
The learning rates were set to 0.000001 for DNN and 0.00001 for RNN, LSTM, and GRU.

Table 5. Parameter estimation and structure of model using Dataset 2.

No. Model 80% 90%

1 GO â = 15383.72, b̂ = 0.00010 â = 37605.84, b̂ = 0.00005

2 DS â = 13332.14, b̂ = 0.00182 â = 53880.83, b̂ = 0.00091

3 YID â = 49.407, b̂ = 0.00121, α̂ = 0.66627 â = 10.855, b̂ = 0.00145, α̂ = 2.7890

4 PZ â = 564.590, b̂ = 0.2938, α̂ = 0.35523,
β̂ = 31.536, ĉ = 0.04628

â = 3566157.77, b̂ = 0.02095, α̂ = 0.14865,
β̂ = 119107.58, ĉ = 3567.64

5 PNZ â = 166.155, b̂ = 0.01033,
α̂ = 0.06270, β̂ = 4.2225

â = 284.863, b̂ = 0.01104,
α̂ = 0.07397, β̂ = 11.590

6 TP
â = 4.1953, b̂ = 0.08837,
α̂ = 7.3884, β̂ = 2.8696,

ĉ = 1.6579, p̂ = 0.04236, q̂ = 0.10460

â = 49.417, b̂ = 0.06702,
α̂ = 0.01198, β̂ = 0.02904,

ĉ = 2.4430, p̂ = 0.20147, q̂ = 0.20537

7 TC â = 0.01344,b̂ = 1.9930, α̂ = 0.00754,
β̂ = 0.39594, N̂ = 2857.101

â = 0.00307, b̂ = 2.22599,
α̂ = 4.7647, β̂ = 118.747, N̂ = 73382.23

8 Vtub â = 1.0005, b̂ = 2.2792, α̂ = 0.00754,
β̂ = 0.39594, N̂ = 1562.143

â = 1.0128, b̂ = 1.1078, α̂ = 16.018,
β̂ = 1060.760, N̂ = 2049.573

9 DPF â = 322.915, b̂ = 0.00018,
ĉ = 0.33127, ĥ = 6.4475

â = 994.419, b̂ = 0.00005,
ĉ = 0.57131, ĥ = 10.012

10 UDPF b̂ = 652.600, α̂ = 21497.41,
β̂ = 8.9936, N̂ = 1804.06

b̂ = 13.526, α̂ = 2439.458,
β̂ = 10.564, N̂ = 192350.3

11 DNN α =0.000001, hidden layers = 3, optimizer = Adam, epoch = 200

12 RNN α = 0.00001, hidden layers = 2, optimizer = Adam, epoch = 200

13 LSTM α = 0.00001, hidden layers = 2, optimizer = Adam, epoch = 200

14 GRU α = 0.00001, hidden layers = 2, optimizer = Adam, epoch = 200
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Table 6 shows the result values of the criteria using 80% of Dataset 2. The values of
MSE, MAE, PRV, RMSPE, MEOP, TS, and PC in GRU were the lowest at 4.5494, 2.0688,
0.5218, 2.1336, 2.0489, 2.2311, and 79.0128, respectively, and R2 of 0.9988 in GRU and LSTM
appeared the highest. PRR showed the lowest value of 1.5342 in DNN, and PP showed the
smallest value of 1.7716 in TP. In GRU, 8 out of 10 criteria showed good results. Among the
software reliability models assuming NHPP, the model with the lowest result was the Vtub
model, with a preSSE value of 159,551.23. In contrast, most software reliability models
using deep learning showed smaller values than the existing software reliability models;
among them, the RNN model showed the smallest value of 71.06.

Table 6. Comparison of all criteria using 80% of Dataset 2.

No. Model MSE MAE PRR PP R2 PRV RMSPE MEOP TS PC preSSE

1 GO 514.6996 20.0326 17.3582 100.887 0.8664 21.0794 22.7819 19.8400 23.7311 322.5348 735,386.2
2 DS 13.7076 3.0740 2256.700 8.8015 0.9964 3.6874 3.7202 3.0445 3.8728 135.8146 202,541.7
3 YID 12.1406 2.8671 215.3384 7.1101 0.9968 3.4643 3.5010 2.8395 3.6447 129.5631 184,160.8
4 PZ 10.0437 2.5378 3299.707 9.6331 0.9974 3.1828 3.1847 2.5134 3.3150 119.7981 174,920.2
5 PNZ 9.6155 2.4483 7.2913 1.9345 0.9975 3.1155 3.1160 2.4248 3.2436 117.5539 1,643,848
6 TP 11.0679 2.6448 5.4184 1.7716 0.9971 3.3366 3.3430 2.6194 3.4800 124.7987 2,037,721
7 TC 13.4688 3.0404 2453.543 9.2252 0.9965 3.6077 3.6872 3.0112 3.8389 134.9098 189,842.4
8 Vtub 10.7640 2.7480 5303.130 7.7007 0.9972 3.2707 3.2966 2.7216 3.4318 123.3649 159,551.2
9 DPF 16.6392 3.3789 5.4085 88.826 0.9957 4.0398 4.0985 3.3464 4.2668 145.7959 305,246.7

10 UDPF 22.5801 3.8694 99.4808 9.7126 0.9941 4.6880 4.7742 3.8322 4.9705 161.5192 274,796.2
11 DNN 5.8181 2.1792 1.5342 4.0310 0.9985 1.0391 2.4143 2.1583 2.5231 91.6808 355.63
12 RNN 4.8223 2.0739 2.1101 9.9452 0.9987 0.7255 2.1971 2.0539 2.2970 82.0123 71.06
13 LSTM 4.6712 2.0805 2.3802 16.1958 0.9988 0.5882 2.1621 2.0605 2.2608 80.3730 290.41
14 GRU 4.5494 2.0688 2.1001 9.9841 0.9988 0.5218 2.1336 2.0489 2.2311 79.0128 347.92

Table 7 shows the result values for the criteria using 90% of Dataset 2. MSE, PRV,
RMSPE, TS, and PC showed the smallest values of 8.8655, 0.9189, 2.9787, 2.3336, and
1237.5573, respectively, in GRU, and R2 showed the largest value of 0.9988 in the same
model. MAE and MEOP had the smallest values of 2.8168 and 2.7928, respectively, in RNN.
PRR was 1.6236 in DNN, and PP was the smallest at 1.4301 in Vtub. In GRU, 6 out of
10 criteria showed good results. Regarding the preSSE value, the GRU model showed the
smallest value of 468.03 among the software reliability models using deep learning.

Table 7. Comparison of all criteria using 90% of Dataset 2.

No. Model MSE MAE PRR PP R2 PRV RMSPE MEOP TS PC preSSE

1 GO 1278.733 30.0077 23.6240 173.2001 0.8256 33.3020 35.8928 29.7512 28.0264 415.9016 426,981.8
2 DS 98.7794 7.0277 2204.006 8.9742 0.9865 9.8441 9.9807 6.9676 7.7895 267.3789 114,300.6
3 YID 97.1781 6.9453 840.7242 8.4733 0.9867 9.7596 9.8995 6.8859 7.7261 266.4310 113,140.1
4 PZ 27.9916 4.2381 677.6398 67.5837 0.9962 5.3037 5.3136 4.2019 4.1466 194.2418 26,776.2
5 PNZ 39.4936 4.7960 18.9956 3.8443 0.9946 6.2657 6.3113 4.7550 4.9254 214.2075 1,165,855
6 TP 13.6426 2.9286 4.0108 1.6448 0.9981 3.6944 3.7095 2.9035 2.8948 152.5569 1,390,597
7 TC 64.3763 6.6342 19,228.33 14.4663 0.9912 7.8678 8.0567 6.5775 6.2884 242.5466 65,012.80
8 Vtub 26.1124 3.8598 3.7169 1.4301 0.9964 5.1293 5.1322 3.8268 4.0050 190.2112 23,868.05
9 DPF 50.3622 6.2521 9.2044 251.4521 0.9931 7.0064 7.1264 6.1987 5.5620 228.3074 28,590.91

10 UDPF 36.7890 4.7296 4.2437 47.5652 0.9950 6.0896 6.0917 4.6891 4.7537 210.0929 33,114.75
11 DNN 11.4930 2.8455 1.6236 4.2855 0.9984 1.8509 3.3945 2.8211 2.6570 142.612 680.76
12 RNN 10.3925 2.8168 2.9032 22.1128 0.9986 1.5746 3.2271 2.7928 2.5266 136.7744 1122.65
13 LSTM 11.7785 2.8708 2.9508 40.5778 0.9984 1.8888 3.4365 2.8463 2.6898 144.0352 1251.45
14 GRU 8.8655 2.8335 2.8749 19.0924 0.9988 0.9189 2.9787 2.8092 2.3336 127.5573 468.03

Figures 3 and 4 are graphs that combine the estimated and trained values for 80% and
90% of the data above with the predicted values for the remaining 20% and 10%. The points
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before the black line are estimated values, and the points after the black line are predicted
values.
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3.4. Confidence Interval

In this study, GRU, the software reliability model that showed the best results among
the proposed models, was used to obtain the confidence interval. In addition, the difference
in the distribution between the predicted and actual data values of the other models
was compared. The confidence interval follows Equation (22). Since software failures
follow a Poisson distribution, we take the mean and variance as m̂(t). zα is defined as the
100(1− α)/2 percentile of the standard normal distribution [35]. A 95% confidence interval
was used.

m̂(t) + zα

√
m̂(t) (22)
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Tables A3 and A4 show the predicted values and corresponding confidence intervals
for the remaining 20% and 10% of the data based on the estimated and trained models
for 80% and 90% of Dataset 1. The bolded values indicate that the actual data values do
not fall within the prediction intervals. For 80% of Dataset 1, the other NHPP software
reliability models, except for PNZ, PZ, and Vtub, and the software reliability models using
deep learning, predicted well within the 95% confidence interval. For 90% of Dataset 1, the
other NHPP software reliability models (except PNZ, PZ, TP, and UDPF) and the software
reliability models using deep learning performed well within the 95% confidence interval.

Tables A5 and A6 show the predicted values and corresponding confidence intervals
for the remaining 20% and 10% of the data based on the estimated and trained models for
80% and 90% of Dataset 2. For 80% of Dataset 2, the GO, PNZ, and TP models showed
results where the actual data was not within the prediction confidence interval at all,
while the DS model showed results where the actual data was within the 95% prediction
confidence interval up to the 108th time, the YID, TC, DPF, and UDPF models up to the
109th time, and the PZ, Vtub model up to the 110th time. For 90% of Dataset 2, the NHPP
software reliability models showed that the PZ, Vtub, DPF, and UDPF models resulted in
the actual data falling within the 95% prediction confidence interval up to the 118th time.
Except for the PZ, Vtub, DPF, and UDPF models, none of the NHPP software reliability
models had the actual data fall within the predicted confidence interval. The software
reliability models using deep learning performed well, with predictions within the 95%
confidence interval. Except for the models that do not fall within the 95% confidence
intervals shown in Tables A3–A6, the remaining models showed good results in following
the data trend, and the software reliability models using deep learning showed good
estimation and prediction results in following the data trend.

4. Conclusions

In this study, the software reliability models using NHPP and deep learning were
compared. Regarding the software reliability model using deep learning, a model composed
of deep neural networks and recurrent neural networks (RNN, LSTM, and GRU) that have
been applied to time-series data characteristics was used. It was constructed by including
the hidden layer of the neural network. Using Datasets 1 and 2, it was confirmed that this
model showed better estimation and predictive power than existing software reliability
models. Among them, the software reliability of the recurrent neural network series showed
better results, and as a result of fitting with 80% and 90% datasets, the software reliability
model with the deep neural network added to the GRU showed the best results. In addition,
the software reliability model of the recurrent neural network showed good results when
the predicted values were compared with the remaining datasets. The NHPP software
reliability model showed results that relatively fit the data well with a small number of time
points; however, it showed a significant increase as the number of time points increased.
On the other hand, the software neural network using deep learning showed results that fit
the data trend well, even when the time point was large.

However, software reliability models using deep learning always face the problem of
overfitting. Therefore, to address this, we plan to conduct research on software reliability
models based on mathematical and statistical assumptions by grafting them together
with the NHPP software reliability models. Through this, we aim to create a stable, data-
dependent, and complementary model with a more mathematical basis.
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Appendix A

Table A1. Cumulative number of software failures in Dataset 1.

Index Failures Cumulative
Failures Index Failures Cumulative

Failures Index Failures Cumulative
Failures

1 3 3 18 4 19 35 0 49
2 0 3 19 1 20 36 1 50
3 1 4 20 4 24 37 2 52
4 0 4 21 0 24 38 3 55
5 0 4 22 0 24 39 1 56
6 0 4 23 0 24 40 2 58
7 0 4 24 2 26 41 0 58
8 0 4 25 0 26 42 0 58
9 0 4 26 1 27 43 1 59

10 2 6 27 1 28 44 4 63
11 2 8 28 5 33 45 2 65
12 3 11 29 2 35 46 1 66
13 0 11 30 2 37 47 2 68
14 2 13 31 2 39 48 3 71
15 0 13 32 2 41 49 3 74
16 2 15 33 4 45 50 2 76
17 0 15 34 4 49

Table A2. Cumulative number of software failures in Dataset 2.

Index Failures Cumulative
Failures Index Failures Cumulative

Failures Index Failures Cumulative
Failures Index Failures Cumulative

Failures

1 1 1 34 0 25 67 0 85 100 3 197
2 0 1 35 1 26 68 1 86 101 6 203
3 1 2 36 0 26 69 2 88 102 3 206
4 0 2 37 0 26 70 3 91 103 6 212
5 2 4 38 1 27 71 1 92 104 9 221
6 0 4 39 0 27 72 3 95 105 6 227
7 0 4 40 3 30 73 6 101 106 3 230
8 1 5 41 3 33 74 9 110 107 12 242
9 0 5 42 1 34 75 2 112 108 6 248
10 0 5 43 2 36 76 6 118 109 13 261
11 1 6 44 3 39 77 3 121 110 8 269
12 0 6 45 0 39 78 4 125 111 10 279
13 0 6 46 6 45 79 4 129 112 5 284
14 2 8 47 5 50 80 4 133 113 3 287
15 0 8 48 4 54 81 0 133 114 11 298
16 1 9 49 2 56 82 3 136 115 15 313
17 0 9 50 1 57 83 1 137 116 12 325
18 2 11 51 0 57 84 4 141 117 10 335
19 1 12 52 3 60 85 1 142 118 15 350
20 0 12 53 1 61 86 0 142 119 16 366
21 1 13 54 1 62 87 3 145 120 12 378
22 2 15 55 3 65 88 4 149 121 8 386
23 2 17 56 1 66 89 3 152 122 12 398
24 0 17 57 1 67 90 6 158 123 8 406
25 0 17 58 2 69 91 7 165 124 6 412
26 0 17 59 3 72 92 6 171 125 10 422
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Table A2. Cont.

Index Failures Cumulative
Failures Index Failures Cumulative

Failures Index Failures Cumulative
Failures Index Failures Cumulative

Failures

27 0 17 60 3 75 93 2 173 126 10 432
28 1 18 61 1 76 94 4 177 127 17 449
29 1 19 62 2 78 95 5 182 128 6 455
30 1 20 63 0 78 96 1 183 129 21 476
31 3 23 64 3 81 97 3 186 130 26 502
32 2 25 65 1 82 98 6 192
33 0 25 66 3 85 99 2 194

Table A3. 95% Prediction confidence interval of software reliability models from 80% of Dataset 1.

Time Real
GO DS YID

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

40 58 49.98 63.84 36.13 57.58 72.46 42.71 59.04 74.10 43.98
41 58 51.22 65.24 37.19 59.51 74.63 44.39 61.44 76.80 46.07
42 58 52.45 66.64 38.26 61.44 76.80 46.08 63.88 79.54 48.21
43 59 53.68 68.04 39.32 63.36 78.96 47.76 66.36 82.33 50.39
44 63 54.91 69.44 40.39 65.27 81.10 49.43 68.88 85.15 52.62
45 65 56.14 70.83 41.46 67.17 83.23 51.11 71.45 88.01 54.88
46 66 57.37 72.22 42.53 69.06 85.35 52.77 74.05 90.92 57.19
47 68 58.60 73.60 43.60 70.94 87.45 54.43 76.70 93.86 59.53
48 71 59.83 74.99 44.67 72.81 89.54 56.09 79.38 96.85 61.92
49 74 61.05 76.37 45.74 74.67 91.61 57.73 82.11 99.87 64.35

Time Real
PNZ PZ TP

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

40 58 163.96 189.05 138.86 28.51 38.97 18.04 58.28 73.24 43.31
41 58 168.86 194.33 143.39 29.87 40.58 19.16 60.47 75.71 45.23
42 58 173.80 199.64 147.96 31.28 42.24 20.31 62.69 78.21 47.17
43 59 178.77 204.97 152.56 32.73 43.94 21.52 64.93 80.72 49.13
44 63 183.77 210.34 157.20 34.24 45.70 22.77 67.19 83.26 51.13
45 65 188.81 215.74 161.88 35.79 47.52 24.06 69.48 85.81 53.14
46 66 193.88 221.17 166.59 37.40 49.38 25.41 71.78 88.39 55.18
47 68 198.98 226.63 171.33 39.05 51.30 26.80 74.11 90.99 57.24
48 71 204.12 232.12 176.11 40.76 53.28 28.25 76.46 93.60 59.32
49 74 209.28 237.64 180.93 42.53 55.31 29.75 78.83 96.24 61.43

Time Real
TC Vtub DPF

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

40 58 57.84 72.75 42.94 29.64 40.31 18.97 58.94 73.98 43.89
41 58 59.53 74.65 44.40 31.00 41.91 20.08 61.33 76.68 45.98
42 58 61.13 76.45 45.80 32.38 43.54 21.23 63.78 79.43 48.13
43 59 62.64 78.15 47.13 33.80 45.19 22.40 66.28 82.23 50.32
44 63 64.07 79.76 48.38 35.23 46.87 23.60 68.82 85.08 52.56
45 65 65.42 81.27 49.57 36.69 48.57 24.82 71.41 87.97 54.85
46 66 66.68 82.68 50.67 38.18 50.29 26.07 74.05 90.92 57.19
47 68 67.86 84.00 51.71 39.68 52.02 27.33 76.75 93.92 59.57
48 71 68.95 85.23 52.68 41.20 53.78 28.62 79.49 96.96 62.01
49 74 69.97 86.36 53.57 42.74 55.55 29.92 82.28 100.06 64.50

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

40 58 62.68 78.19 47.16 60.01 75.20 44.83 59.46 74.57 44.34
41 58 64.97 80.77 49.18 59.02 74.07 43.96 59.24 74.32 44.15
42 58 67.29 83.37 51.21 59.02 74.07 43.96 59.19 74.27 44.11
43 59 69.62 85.97 53.26 61.01 76.32 45.70 60.24 75.45 45.03
44 63 71.96 88.58 55.33 64.39 80.12 48.66 64.71 80.48 48.95
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Table A3. Cont.

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

45 65 74.31 91.20 57.41 67.01 83.06 50.97 66.64 82.64 50.64
46 66 76.67 93.83 59.50 68.01 84.18 51.85 67.41 83.50 51.32
47 68 79.03 96.46 61.61 70.01 86.41 53.61 69.44 85.77 53.11
48 71 81.41 99.10 63.73 71.70 88.30 55.11 72.65 89.35 55.94
49 74 83.79 101.73 65.85 74.70 91.65 57.76 75.82 92.88 58.75

Time Real
LSTM GRU

Prediction Upper Lower Prediction Upper Lower

40 58 59.51 74.63 44.39 59.72 74.86 44.57
41 58 59.42 74.53 44.31 59.27 74.36 44.18
42 58 59.36 74.46 44.26 59.13 74.20 44.06
43 59 60.33 75.55 45.10 60.26 75.47 45.04
44 63 64.53 80.27 48.78 64.78 80.56 49.00
45 65 66.53 82.52 50.55 66.78 82.80 50.77
46 66 67.46 83.55 51.36 67.54 83.65 51.43
47 68 69.45 85.78 53.11 69.70 86.06 53.34
48 71 72.54 89.24 55.85 72.61 89.31 55.91
49 74 75.55 92.58 58.51 75.50 92.53 58.47

Table A4. 95% Prediction confidence interval of software reliability models from 90% of Dataset 1.

Time Real
GO DS YID

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

45 65 58.35 73.32 43.38 65.02 80.82 49.21 66.13 82.07 50.19
46 66 59.64 74.78 44.50 66.73 82.74 50.72 68.13 84.31 51.96
47 68 60.93 76.23 45.63 68.42 84.63 52.21 70.15 86.56 53.73
48 71 62.22 77.68 46.76 70.10 86.51 53.69 72.17 88.82 55.52
49 74 63.51 79.14 47.89 71.76 88.36 55.16 74.19 91.08 57.31

Time Real
PNZ PZ TP

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

45 65 68.29 84.49 52.10 89.44 107.98 70.90 35.16 46.78 23.54
46 66 69.86 86.25 53.48 90.03 108.62 71.43 36.28 48.09 24.48
47 68 71.38 87.94 54.82 90.57 109.23 71.92 37.40 49.39 25.41
48 71 72.85 89.58 56.12 91.08 109.79 72.38 38.51 50.67 26.35
49 74 74.27 91.16 57.38 91.55 110.31 72.80 39.61 51.95 27.28

Time Real
TC Vtub DPF

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

45 65 65.76 81.65 49.86 65.89 81.80 49.98 63.71 79.35 48.06
46 66 67.66 83.78 51.53 67.78 83.91 51.64 64.82 80.60 49.04
47 68 69.56 85.90 53.21 69.66 86.02 53.30 65.85 81.75 49.94
48 71 71.45 88.02 54.89 71.53 88.11 54.95 66.80 82.82 50.78
49 74 73.35 90.13 56.56 73.39 90.19 56.60 67.68 83.81 51.56

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

45 65 83.99 101.95 66.03 66.72 82.73 50.71 66.52 82.50 50.53
46 66 85.64 103.78 67.51 68.57 84.80 52.34 67.43 83.52 51.33
47 68 87.28 105.59 68.97 69.72 86.08 53.35 69.45 85.78 53.11
48 71 88.89 107.36 70.41 71.70 88.30 55.11 72.54 89.23 55.85
49 74 90.47 109.11 71.83 74.70 91.64 57.76 75.61 92.65 58.57
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Table A5. 95% Prediction confidence interval of software reliability models from 80% of Dataset 2.

Time Real
LSTM GRU

Prediction Upper Lower Prediction Upper Lower

45 65 66.55 82.54 50.56 66.52 82.51 50.54
46 66 67.46 83.56 51.37 67.45 83.55 51.36
47 68 69.50 85.84 53.16 69.50 85.84 53.16
48 71 72.57 89.27 55.87 72.61 89.31 55.91
49 74 75.58 92.62 58.54 75.69 92.74 58.64
104 221 162.41 187.39 137.43 210.86 239.32 182.40 212.33 240.89 183.77
105 227 163.96 189.06 138.87 214.68 243.40 185.96 216.29 245.12 187.47
106 230 165.52 190.73 140.30 218.53 247.50 189.55 220.29 249.38 191.20
107 242 167.07 192.40 141.74 222.40 251.63 193.17 224.32 253.67 194.96
108 248 168.62 194.07 143.17 226.31 255.79 196.82 228.38 258.00 198.76
109 261 170.18 195.74 144.61 230.24 259.98 200.50 232.48 262.36 202.60
110 269 171.73 197.41 146.04 234.21 264.20 204.21 236.61 266.76 206.47
111 279 173.28 199.08 147.48 238.20 268.45 207.95 240.78 271.20 210.37
112 284 174.83 200.75 148.92 242.22 272.73 211.72 244.99 275.67 214.31
113 287 176.38 202.41 150.35 246.27 277.03 215.52 249.23 280.17 218.28
114 298 177.94 204.08 151.79 250.35 281.37 219.34 253.50 284.71 222.29
115 313 179.49 205.75 153.23 254.46 285.73 223.20 257.81 289.28 226.34
116 325 181.04 207.41 154.67 258.60 290.12 227.08 262.15 293.88 230.41
117 335 182.59 209.08 156.11 262.76 294.53 230.99 266.53 298.52 234.53
118 350 184.14 210.74 157.54 266.96 298.98 234.93 270.94 303.20 238.68
119 366 185.69 212.40 158.98 271.18 303.45 238.90 275.38 307.91 242.86
120 378 187.24 214.06 160.42 275.42 307.95 242.90 279.86 312.65 247.07
121 386 188.79 215.73 161.86 279.70 312.48 246.92 284.38 317.43 251.33
122 398 190.35 217.39 163.30 284.00 317.03 250.97 288.93 322.24 255.61
123 406 191.90 219.05 164.74 288.34 321.62 255.05 293.51 327.09 259.93
124 412 193.45 220.71 166.19 292.69 326.23 259.16 298.13 331.97 264.28
125 422 195.00 222.37 167.63 297.08 330.86 263.30 302.78 336.88 268.67
126 432 196.55 224.02 169.07 301.49 335.53 267.46 307.46 341.83 273.10
127 449 198.10 225.68 170.51 305.93 340.22 271.65 312.18 346.81 277.55
128 455 199.65 227.34 171.95 310.40 344.93 275.87 316.94 351.83 282.04
129 476 201.19 229.00 173.39 314.90 349.68 280.11 321.73 356.88 286.57

Time Real
PNZ PZ TP

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

104 221 487.7756 531.063 444.488 215.524 244.299 186.750 54.79 69.30 40.28
105 227 495.2823 538.902 451.663 219.663 248.712 190.614 55.61 70.23 40.99
106 230 502.8471 546.799 458.896 223.824 253.147 194.501 56.43 71.16 41.71
107 242 510.4698 554.753 466.186 228.005 257.600 198.409 57.26 72.10 42.43
108 248 518.1506 562.766 473.535 232.205 262.072 202.338 58.10 73.04 43.16
109 261 525.8893 570.837 480.942 236.421 266.558 206.284 58.94 73.99 43.90
110 269 533.6859 578.965 488.407 240.654 271.059 210.248 59.79 74.95 44.64
111 279 541.5405 587.152 495.929 244.900 275.572 214.227 60.65 75.91 45.38
112 284 549.4528 595.396 503.510 249.157 280.095 218.219 61.51 76.88 46.14
113 287 557.423 603.698 511.148 253.425 284.627 222.223 62.38 77.86 46.90
114 298 565.4509 612.058 518.844 257.701 289.165 226.237 63.25 78.84 47.67
115 313 573.5364 620.476 526.597 261.983 293.708 230.259 64.14 79.83 48.44
116 325 581.6795 628.951 534.408 266.270 298.253 234.288 65.03 80.83 49.22
117 335 589.88 637.483 542.277 270.560 302.800 238.321 65.92 81.84 50.01
118 350 598.138 646.073 550.203 274.851 307.345 242.356 66.82 82.85 50.80
119 366 606.4533 654.721 558.186 279.140 311.887 246.393 67.73 83.87 51.60
120 378 614.8259 663.425 566.226 283.427 316.424 250.430 68.65 84.89 52.41
121 386 623.2555 672.187 574.324 287.709 320.954 254.463 69.57 85.92 53.23
122 398 631.7421 681.006 582.479 291.984 325.476 258.493 70.51 86.96 54.05
123 406 640.2856 689.881 590.690 296.251 329.987 262.516 71.44 88.01 54.88
124 412 648.8858 698.813 598.958 300.508 334.485 266.531 72.39 89.06 55.71
125 422 657.5427 707.802 607.283 304.753 338.969 270.537 73.34 90.13 56.56
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Table A5. Cont.

Time Real
PNZ PZ TP

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

126 432 666.256 716.847 615.665 308.985 343.437 274.532 74.30 91.20 57.41
127 449 675.0257 725.949 624.102 313.200 347.888 278.513 75.27 92.27 58.26
128 455 683.8516 735.107 632.596 317.399 352.318 282.480 76.24 93.36 59.13
129 476 692.7334 744.320 641.147 321.579 356.727 286.431 77.23 94.45 60.00

Time Real
TC Vtub DPF

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

104 221 212.53 241.10 183.96 215.13 243.88 186.38 210.95 239.42 182.48
105 227 216.44 245.27 187.60 219.32 248.34 190.29 214.13 242.82 185.45
106 230 220.38 249.48 191.28 223.54 252.85 194.24 217.27 246.16 188.38
107 242 224.35 253.71 194.99 227.80 257.39 198.22 220.36 249.46 191.27
108 248 228.35 257.97 198.73 232.10 261.97 202.24 223.41 252.70 194.11
109 261 232.38 262.26 202.50 236.44 266.58 206.30 226.40 255.89 196.91
110 269 236.44 266.58 206.30 240.82 271.23 210.40 229.34 259.02 199.66
111 279 240.53 270.93 210.13 245.23 275.92 214.53 232.23 262.09 202.36
112 284 244.65 275.31 213.99 249.67 280.64 218.70 235.06 265.11 205.01
113 287 248.80 279.71 217.88 254.16 285.40 222.91 237.83 268.06 207.61
114 298 252.97 284.15 221.80 258.67 290.20 227.15 240.55 270.95 210.15
115 313 257.18 288.61 225.75 263.23 295.03 231.43 243.21 273.78 212.65
116 325 261.41 293.10 229.72 267.81 299.89 235.74 245.81 276.54 215.09
117 335 265.68 297.62 233.73 272.44 304.79 240.09 248.36 279.25 217.47
118 350 269.97 302.17 237.76 277.09 309.72 244.47 250.84 281.89 219.80
119 366 274.29 306.75 241.82 281.78 314.68 248.88 253.27 284.46 222.08
120 378 278.63 311.35 245.91 286.51 319.68 253.33 255.63 286.97 224.30
121 386 283.01 315.98 250.03 291.26 324.71 257.81 257.94 289.42 226.46
122 398 287.41 320.64 254.18 296.05 329.78 262.33 260.19 291.80 228.57
123 406 291.84 325.32 258.35 300.87 334.87 266.87 262.37 294.12 230.63
124 412 296.29 330.03 262.55 305.72 340.00 271.45 264.50 296.38 232.63
125 422 300.77 334.77 266.78 310.61 345.15 276.07 266.57 298.57 234.57
126 432 305.28 339.53 271.04 315.52 350.34 280.71 268.58 300.70 236.46
127 449 309.82 344.32 275.32 320.47 355.56 285.38 270.54 302.77 238.30
128 455 314.38 349.13 279.63 325.44 360.80 290.09 272.43 304.78 240.08
129 476 318.97 353.97 283.96 330.45 366.08 294.82 274.27 306.73 241.81

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

104 221 207.30 235.52 179.08 224.90 254.29 195.51 223.38 252.67 194.09
105 227 210.58 239.02 182.13 231.12 260.92 201.32 229.02 258.68 199.36
106 230 213.86 242.52 185.20 232.86 262.76 202.95 233.04 262.96 203.12
107 242 217.14 246.02 188.26 245.66 276.38 214.94 243.36 273.94 212.78
108 248 220.43 249.53 191.33 252.12 283.24 221.00 249.67 280.64 218.70
109 261 223.72 253.03 194.40 264.58 296.46 232.70 262.29 294.03 230.54
110 269 227.01 256.54 197.48 272.98 305.36 240.59 270.43 302.66 238.20
111 279 230.30 260.05 200.56 282.82 315.78 249.86 280.34 313.16 247.52
112 284 233.60 263.55 203.64 288.04 321.30 254.77 285.86 319.00 252.72
113 287 236.89 267.06 206.73 289.86 323.22 256.49 289.90 323.27 256.53
114 298 240.19 270.56 209.81 301.74 335.79 267.69 299.40 333.31 265.48
115 313 243.48 274.07 212.90 316.42 351.28 281.55 314.27 349.02 279.52
116 325 246.78 277.57 215.99 328.66 364.19 293.13 326.29 361.70 290.89
117 335 250.08 281.07 219.08 338.82 374.90 302.74 336.33 372.28 300.39
118 350 253.37 284.57 222.17 353.42 390.27 316.57 351.27 388.01 314.54
119 366 256.67 288.07 225.27 369.34 407.00 331.67 367.27 404.83 329.71
120 378 259.96 291.56 228.36 381.66 419.95 343.37 379.29 417.46 341.12
121 386 263.25 295.06 231.45 389.98 428.68 351.27 387.43 426.01 348.85
122 398 266.54 298.54 234.55 401.66 440.94 362.38 399.30 438.46 360.13
123 406 269.83 302.03 237.64 409.98 449.66 370.29 407.43 446.99 367.87
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Table A5. Cont.

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

124 412 273.12 305.51 240.73 416.12 456.10 376.14 413.69 453.55 373.82
125 422 276.41 308.99 243.82 425.82 466.27 385.37 423.36 463.68 383.03
126 432 279.69 312.47 246.91 435.82 476.74 394.90 433.34 474.14 392.54
127 449 282.97 315.94 250.00 452.26 493.94 410.57 450.27 491.86 408.68
128 455 286.24 319.40 253.08 459.12 501.12 417.12 456.64 498.53 414.76
129 476 289.52 322.86 256.17 478.93 521.83 436.04 477.26 520.08 434.44

Time Real
LSTM GRU

Prediction Upper Lower Prediction Upper Lower

104 221 224.52 253.89 195.15 224.46 253.82 195.09
105 227 230.52 260.27 200.76 230.47 260.23 200.72
106 230 233.63 263.59 203.67 233.09 263.02 203.17
107 242 245.44 276.14 214.73 245.49 276.20 214.78
108 248 251.49 282.58 220.41 251.49 282.58 220.41
109 261 264.28 296.14 232.42 264.73 296.62 232.84
110 269 272.32 304.67 239.98 272.77 305.14 240.40
111 279 282.19 315.11 249.26 282.79 315.75 249.83
112 284 287.44 320.67 254.21 287.72 320.96 254.47
113 287 290.57 323.98 257.16 290.25 323.64 256.86
114 298 301.38 335.41 267.36 301.60 335.64 267.56
115 313 316.31 351.17 281.46 316.73 351.62 281.85
116 325 328.25 363.76 292.74 328.79 364.33 293.25
117 335 338.21 374.25 302.16 338.78 374.85 302.70
118 350 353.18 390.02 316.35 353.75 390.62 316.89
119 366 369.30 406.97 331.64 369.74 407.43 332.05
120 378 381.25 419.52 342.98 381.69 419.98 343.40
121 386 389.30 427.97 350.63 389.72 428.41 351.02
122 398 401.13 440.39 361.88 401.67 440.96 362.39
123 406 409.25 448.90 369.60 409.70 449.38 370.03
124 412 415.37 455.31 375.42 415.78 455.75 375.82
125 422 425.18 465.59 384.76 425.76 466.20 385.32
126 432 435.14 476.03 394.26 435.72 476.64 394.81
127 449 452.25 493.93 410.56 452.72 494.43 411.02
128 455 458.45 500.42 416.49 458.79 500.77 416.81
129 476 479.47 522.38 436.55 479.79 522.72 436.86

Table A6. 95% Prediction confidence interval of software reliability models from 90% of Dataset 2.

Time Real
GO DS YID

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

117 335 215.85 244.65 187.06 284.80 317.88 251.73 285.07 318.16 251.98
118 350 217.69 246.61 188.77 289.52 322.87 256.17 289.81 323.18 256.45
119 366 219.53 248.57 190.49 294.27 327.89 260.65 294.59 328.24 260.95
120 378 221.37 250.53 192.21 299.06 332.95 265.16 299.41 333.33 265.50
121 386 223.21 252.49 193.93 303.88 338.05 269.71 304.26 338.45 270.08
122 398 225.05 254.45 195.65 308.74 343.18 274.30 309.16 343.62 274.69
123 406 226.89 256.41 197.37 313.63 348.34 278.92 314.08 348.82 279.35
124 412 228.73 258.37 199.08 318.56 353.54 283.58 319.05 354.05 284.04
125 422 230.57 260.33 200.80 323.52 358.78 288.27 324.05 359.33 288.76
126 432 232.40 262.28 202.53 328.52 364.05 293.00 329.08 364.64 293.53
127 449 234.24 264.24 204.25 333.56 369.35 297.76 334.16 369.98 298.33
128 455 236.08 266.20 205.97 338.63 374.69 302.56 339.27 375.37 303.16
129 476 237.92 268.15 207.69 343.73 380.07 307.39 344.41 380.79 308.04
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Table A6. Cont.

Time Real
PNZ PZ TP

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

117 335 637.8859 687.388 588.383 312.9409 347.614 178.36 74.02 90.88 57.15
118 350 648.5408 698.455 598.627 320.3052 355.383 179.16 74.99 91.96 58.01
119 366 659.313 709.640 608.986 327.825 363.313 179.95 75.97 93.05 58.88
120 378 670.2031 720.944 619.462 335.505 371.406 180.74 76.95 94.14 59.76
121 386 681.2118 732.368 630.056 343.347 379.665 181.51 77.94 95.24 60.64
122 398 692.3398 743.912 640.768 351.355 388.094 182.28 78.94 96.35 61.52
123 406 703.5877 755.577 651.598 359.532 396.697 183.04 79.94 97.47 62.42
124 412 714.956 767.364 662.548 367.883 405.476 183.79 80.95 98.59 63.32
125 422 726.4455 779.273 673.618 376.411 414.437 184.54 81.97 99.72 64.23
126 432 738.0568 791.305 684.809 385.119 423.582 185.27 83.00 100.85 65.14
127 449 749.7904 803.460 696.121 394.011 432.916 186.00 84.03 101.99 66.06
128 455 761.647 815.739 707.555 403.091 442.443 186.72 85.07 103.14 66.99
129 476 773.6271 828.143 719.111 412.364 452.165 187.43 86.11 104.30 67.92

Time Real
TC Vtub DPF

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

117 335 300.84 334.83 266.84 315.55 350.37 280.74 314.95 349.74 280.17
118 350 306.57 340.89 272.26 322.66 357.87 287.45 322.44 357.63 287.24
119 366 312.37 347.01 277.73 329.85 365.45 294.25 330.07 365.68 294.46
120 378 318.23 353.20 283.27 337.12 373.10 301.13 337.86 373.89 301.83
121 386 324.15 359.44 288.86 344.46 380.84 308.09 345.80 382.25 309.35
122 398 330.13 365.74 294.51 351.88 388.65 315.12 353.90 390.77 317.03
123 406 336.16 372.10 300.23 359.37 396.53 322.22 362.16 399.46 324.86
124 412 342.26 378.52 306.00 366.93 404.48 329.39 370.58 408.31 332.85
125 422 348.42 385.00 311.83 374.56 412.49 336.63 379.17 417.33 341.00
126 432 354.63 391.54 317.72 382.25 420.57 343.93 387.92 426.52 349.31
127 449 360.91 398.14 323.67 389.99 428.70 351.29 396.83 435.88 357.79
128 455 367.25 404.81 329.69 397.79 436.89 358.70 405.92 445.41 366.43
129 476 373.64 411.53 335.76 405.65 445.12 366.17 415.18 455.12 375.25

Time Real
UDPF DNN RNN

Prediction Upper Lower Prediction Upper Lower Prediction Upper Lower

117 335 313.06 347.74 278.38 342.30 378.56 306.04 344.31 380.68 307.94
118 350 319.88 354.94 284.83 357.85 394.93 320.77 359.54 396.70 322.38
119 366 326.81 362.24 291.37 373.93 411.83 336.03 375.59 413.58 337.61
120 378 333.83 369.64 298.02 385.60 424.09 347.11 387.48 426.06 348.90
121 386 340.96 377.15 304.77 392.86 431.70 354.01 395.19 434.15 356.22
122 398 348.19 384.77 311.62 405.60 445.08 366.13 407.38 446.94 367.82
123 406 355.53 392.49 318.57 412.86 452.68 373.03 415.14 455.07 375.20
124 412 362.97 400.31 325.63 417.20 457.23 377.16 420.72 460.92 380.52
125 422 370.52 408.25 332.79 429.30 469.91 388.69 431.01 471.71 390.32
126 432 378.17 416.29 340.06 439.30 480.38 398.22 441.16 482.33 400.00
127 449 385.93 424.44 347.43 457.00 498.90 415.10 458.57 500.55 416.60
128 455 393.80 432.70 354.91 460.20 502.24 418.15 464.02 506.24 421.80
129 476 401.78 441.06 362.49 484.30 527.43 441.17 485.63 528.82 442.44

Time Real
LSTM GRU

Prediction Upper Lower Prediction Upper Lower

117 335 344.69 381.08 308.30 341.00 377.20 304.81
118 350 359.89 397.08 322.71 356.47 393.48 319.47
119 366 376.04 414.05 338.04 372.84 410.68 334.99
120 378 388.18 426.80 349.56 384.75 423.19 346.30
121 386 396.10 435.10 357.09 392.09 430.91 353.28
122 398 408.02 447.61 368.43 404.27 443.68 364.86
123 406 415.90 455.87 375.93 411.73 451.50 371.95
124 412 421.43 461.67 381.20 416.92 456.94 376.90
125 422 431.44 472.15 390.73 427.32 467.83 386.80
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Table A6. Cont.

Time Real
LSTM GRU

Prediction Upper Lower Prediction Upper Lower

126 432 441.49 482.67 400.31 437.55 478.54 396.55
127 449 458.83 500.81 416.85 455.32 497.14 413.50
128 455 464.67 506.92 422.42 460.27 502.32 418.22
129 476 485.82 529.02 442.62 482.13 525.17 439.09
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