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Abstract: The electrophysiological basis of emotion regulation (ER) has gained increased attention
since efficient emotion recognition and ER allow humans to develop high emotional intelligence.
However, no methodological standardization has been established yet. Therefore, this paper aims
to provide a critical systematic review to identify experimental methodologies that evoke emotions
and record, analyze and link electrophysiological signals with emotional experience by statistics
and artificial intelligence, and lastly, define a clear application of assessing emotion processing. A
total of 42 articles were selected after a search based on six scientific browsers: Web of Science,
EBSCO, PubMed, Scopus, ProQuest and ScienceDirect during the first semester of 2020. Studies
were included if (1) electrophysiological signals recorded on human subjects were correlated with
emotional recognition and/or regulation; (2) statistical models, machine or deep learning methods
based on electrophysiological signals were used to analyze data. Studies were excluded if they
met one or more of the following criteria: (1) emotions were not described in terms of continuous
dimensions (valence and arousal) or by discrete variables, (2) a control group or neutral state was
not implemented, and (3) results were not obtained from a previous experimental paradigm that
aimed to elicit emotions. There was no distinction in the selection whether the participants presented
a pathological or non-pathological condition, but the condition of subjects must have been efficiently
detailed for the study to be included. The risk of bias was limited by extracting and organizing
information on spreadsheets and participating in discussions between the authors. However, the
data size selection, such as the sample size, was not considered, leading to bias in the validity of the
analysis. This systematic review is presented as a consulting source to accelerate the development of
neuroengineering-based systems to regulate the trajectory of emotional experiences early on.

Keywords: electrophysiological signals; emotional intelligence; emotion recognition; emotion
regulation; methodology

1. Introduction

Emotions have played a crucial evolutionary factor in the history of humanity since
they allow us to adapt to the environment for surviving [1]. Emotions are a complex neural
and hormonal set of interactions generated by different external and internal stimuli that
control the conduct of human beings [2]. This psychophysiological process influences
many aspects of our daily life, such as spontaneous decision-making, communication,
and learning [3]. The lack of emotional control can lead to bad decisions along with
serious consequences. Maladaptive emotional skills may lead to social conflicts, failures or
even losses [4]. Over time, an inefficient emotion regulation (ER) strategy constitutes an
important risk factor in developing post-traumatic stress disorder [5] or social anxiety [6].

Human beings can improve their ER process to increase their quality of life. Namely, if
human beings learn how to modify the type, intensity, time course and quality of emotional
responses, they will eventually be able to efficiently identify, understand, express, regulate
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and use their own emotions and those of others, what is well known as emotion intelligence
(EI) [7]. Individuals who have developed effective ER strategies have high EI and higher
quality of life. According to World Economic Forum, EI is the sixth desired skill in the
top ten list of the Fourth Industrial Revolution 2020 since employees with high EI possess
emotional self-awareness, emotional self-control, motivation, positive outlook, empathy,
and conflict management [8]. At present, 90% of top performers in the world have higher EI
than average employees. Furthermore, people with higher EI tend to have higher incomes,
and in general, EI is responsible for 58% of everyone’s job performance. In addition,
individuals with high EI are mentally and physically healthier. They have:

1. less mood deterioration;
2. less cortisol secretion in response to the stressor;
3. less prolonged arousal in response to negative situations;
4. are less likely to suffer from chronic arousal on physical health, including coronary

heart disease, gastrointestinal disorders, asthma, psoriasis, and migraine;
5. less at risk for substance-use-related health problems such as cirrhosis of the liver,

pancreatitis, polyneuropathy;
6. better quality and more refreshing sleep [9].

The term “EI” was popularized by the book titled “Emotional Intelligence” by Daniel
Goleman, published in 1995 [10], although the pioneers who stipulated the roots of this
kind of intelligence were Peter Salovey and John Mayer [11]. They defined it as the subset
of social skills that allow the monitoring of emotions in order to recognize them and be
able to adapt our own behavior to the social context. They considered that this ability
is conformed of four branches: (1) perceiving emotions, (2) using emotions to facilitate
thought, (3) understanding emotions, and (4) managing emotions in a way that enhances
personal growth and social relations.

EI is multidimensional, and each skill should be analyzed with different standards and
scales. Thus, the idea of creating an EI measure is a complicated task [12]. As emotional
cognition and behaviors are the results of entangled central and autonomous nervous
system activities, the analysis of electrophysiological correlates has been extensively used
to study emotional processing [13–17]. Electroencephalography (EEG), electrocardiography
(ECG), electrodermal activity (EDA) and electrooculography (EOG) are the most frequently
used electrophysiological signals to describe objective responses during emotional cogni-
tive processes.

Many reviews have focused on emotion recognition and classification based on elec-
trophysiological signals. For instance, Liberati et al. selected studies that aimed to identify
affective states from electrophysiological signals and emphasized their application on
brain–computer interfaces (BCIs) [18]. Usually, in clinical interventions, an optimal BCI
records and analyzes electrophysiological activity in real time to provide feedback to the
system user, including emotional processing. Nevertheless, a lack of such application
has been stressed due to low performances, and still needs to be investigated. Al-Nafjan
et al. [19] reviewed published articles about emotion detection, recognition, classification,
current and future trends of BCI technologies. They concluded that it is necessary to find
more reliable neuro-patterns to standardize the analysis of affective states in a BCI. Also,
they emphasized the use of different algorithms to test the validity of results [19]. Dry-
man et al. [20] conducted a systematic review about expressive suppression and cognitive
reappraisal in cases of social anxiety and depression, indicating the need of long-term
electrophysiological signal acquisition for a better understanding of these conditions.

As far as we are concerned, this study is the first to review the use of EI electrophysi-
ological correlates in artificial intelligence developments. As was previously mentioned,
EI has not been studied as one single concept. Therefore, this systematic review is the
first attempt to categorize studies that are orientated to the EI dimensions, considering the
following four key concepts: (1) emotional processing, (2) emotional identification based
on electrophysiological signals, (3) ER and (4) emotional responses. The present systematic
review aims to identify research gaps in the recent advances in electrophysiological pattern
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recognition during emotion processing to accelerate the development of neuroengineering-
based systems to develop ER strategies that allow modifying and regulating the trajectory
of emotional experiences early on.

2. Methods

The research was conducted in accordance with the PRISMA guidelines [21,22]. The
protocol began with electronic searches of studies published in English between 2014 and
2020 in the following databases: Web of Science, EBSCO, PubMed, Scopus, ProQuest and
ScienceDirect. The following keywords were used to search in all the databases: emotion,
affective, recognition, regulation, electroencephalography, electrocardiography, heart rate,
skin temperature, galvanic skin response, EOG and EEG. The Boolean operators AND and
OR were used. Parentheses were used in ProQuest to limit search results due to the large
number of studies found. The query design is detailed in Table 1.

Table 1. Query design.

Index Web of Science, EBSCO, PubMed and
ScienceDirect ProQuest

1
emotion OR affective AND recognition

OR regulation AND
electroencephalography

(emotion OR affective) AND
(recognition OR regulation) AND

electroencephalography

2
emotion OR affective AND recognition

OR regulation AND electrocardiography
OR heart rate

(emotion OR affective) AND
(recognition OR regulation) AND

(electrocardiography OR heart rate)

3
emotion OR affective AND recognition

OR regulation AND skin temperature OR
galvanic skin response

(emotion OR affective) AND
(recognition OR regulation) AND

(skin temperature) OR (galvanic skin
response)

4 emotion OR affective AND recognition
OR regulation AND electrooculography

(emotion OR affective) AND
(recognition OR regulation) AND

electrooculography

5 emotional intelligence AND
electroencephalography

emotional intelligence AND
electroencephalography

6 emotional intelligence AND
electrocardiography

emotional intelligence AND
electrocardiography

7 emotional intelligence AND skin
temperature

emotional intelligence AND skin
temperature

8 emotional intelligence AND galvanic
skin response

emotional intelligence AND galvanic
skin response

9 emotional intelligence AND
electrooculography

emotional intelligence AND
electrooculography

Pilot studies, reviews, meta-analyses, commentaries, book chapters, conference papers,
master and doctoral dissertations, workshop descriptions and unpublished data were not
included in this review. The eligibility criteria for paper selection are detailed hereunder,
and the selection process is illustrated in Figure 1. Search within databases was carried out
during the first two weeks of April 2020, and the selection process was carried out from
April 2020 to July 2020.
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Figure 1. Schematic representation of the selection process. Numbers represent the articles selected
in each phase. EI: Emotional Intelligence.

The main purpose of this review is to comprehend the state-of-the-art experimental
methodologies that analyze different dimensions of emotional intelligence. Using this infor-
mation, it is possible to propose an original methodology to assess emotional intelligence
as a core. For this reason, the outcomes that were sought were:

• Techniques for eliciting emotions: identify the strategies, materials, conditions, and
environments that have been applied to evoke emotions.

• Quantitative and/or Qualitative Assessments: differentiate the tests based on objective
and subjective measurements and highlight the necessary parameters to study EI.

• Data analysis: analyze the relation between electrophysiological signals, psychometric
tests, and the evoked emotions.

• Applications: detect targets and reasons for evaluating some dimensions of emotional
intelligence. Data outcomes were extracted at the last stage of the selection process.
Data extraction was conducted to answer the following research questions (RQ):

n RQ1: Which electrophysiological signals may index emotional processing?
n RQ2: Which stimuli may be used to elicit emotions?
n RQ3: How should psychometrics assess emotional experience?
n RQ4: Under which conditions may emotion processing be assessed, and how

does the experimental paradigm cause biases in emotional perception?
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n RQ5: How may correlates of emotion processing be applied to models of statistical
analysis and artificial intelligence?

n RQ6: What are the applications and impacts of assessing emotion processing?

Therefore, the following eligibility criteria were applied to consider studies within the
review. Figure 2 details the elaboration process based on the PRISMA methodology.
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been identified in various categories for exclusion during the last step of screening.

2.1. Type of Studies

The literature was selected according to two inclusion criteria: (1) studies focused
on the assessment of electrophysiological signals that correlate to EI: emotional stimuli
processing and/or emotions recognition and/or regulation and/or empathy; (2) works
centered on the classification of emotions by using machine or deep learning methods
based on electrophysiological signals.

Concerning exclusion criteria, the following three key points were considered. First, st-
udies that did not elicit emotions were discarded. Second, we excluded studies that did not
mention the experimental paradigm that aimed to elicit emotions because we would not be
sure about how they conducted it. Finally, studies in which emotions were not described in
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terms of continuous dimensions (valence and arousal) or by discrete variables (e.g., anger,
fear) were excluded.

2.2. Exposures

Studies were selected if the peripheral and/or central nervous activity of participants
were monitored while participants were processing emotional stimuli. Authors must
have measured at least one of the following electrophysiological signals: EEG, ECG, EDA
and EOG.

2.3. Participants

The scope of this review was limited to human subjects. The inclusion criteria embrace
(1) studies which dealt with pathological or non-pathological participants; (2) studies in
which participants suffering from any pathological medical condition received a prior
adequate diagnosis following the Diagnostic and Statistical Manual of Mental Disorders
(DSM) [23] or the International Statistical Classification of Diseases and Related Health
Problems (ICD) [24] guidelines; and (3) studies focused on non-pathological samples were
included if it was specified that participants were healthy, namely, without psychiatric
illness antecedent that could impact emotion processing and electrophysiological signals.
The exclusion criteria regarding those studies were not rigorously controlled in terms of
demographic characteristics such as age and gender.

2.4. Comparators

Studies focused on pathological conditions were excluded if they did not consider
an appropriate control group (e.g., matched healthy participants). Works centered on
non-pathological samples were excluded if they did not consider an appropriate control
condition (e.g., neutral stimuli processing).

2.5. Study Records

The study records were managed using Google Sheets and Mendeley software. From
each selected study, the following information was obtained and compared: author, year,
objective, the studied emotions, electrophysiological signals, psychometric tests, emotion
induction (e.g., words, pictures, sounds), signal processing, statistical analysis, classification
methods, characteristics of participants and applications for medical and nonmedical areas.

The electrophysiological correlates of emotions processing were characterized into
central and peripheral neuronal activity according to emotional characteristics (e.g., pleas-
ant, unpleasant). Results and conclusions obtained by each electrophysiological method
were compiled and compared to depict a general overview of emotion processing and man-
agement by the human nervous system. In the case of data coming from publicly available
databases, brief research, and description were conducted to obtain information about data
recording conditions and emotions induced. Ways of eliciting and assessing emotions and
EI by psychometric tests or questionnaires were synthesized to draw a general overview of
the current methodology. Finally, a focus on experimental procedures was achieved (e.g.,
task for participants).

The main outcomes during the research were the electrophysiological signal recording
techniques and their application for EI measurement, ER, recognition and classification.
The secondary outcomes were experimental conditions; specific features of electrophysio-
logical signals related to emotions (e.g., Event Related Potentials (ERP)); stimuli used in
emotion induction studies (e.g., pictures from the International Affective Picture System
(IAPS), sounds from International Affective Digitized Sounds (IADS)); psychometric tests
implemented for emotion scaling and rating (e.g., Self-Assessment Manikin (SAM), Likert
scale); electrophysiological activity databases (e.g., Database for Emotion Analysis using
Physiological Signals (DEAP), SJTU Emotion EEG Dataset (SEED) used for emotion clas-
sification and artificial intelligence algorithms, such as machine learning and subsets for
emotion classification).
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3. Results

A total of 42 studies were selected for this review. A summary of the selection
process is presented in Figure 1. The methodological concerns on electrophysiological
and psychometric patterns of emotion processing are described below and have been
synthetized in Figure 3. Finally, Table 2 details the main characteristics of every study.
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Figure 3. Methodological materials and steps described in Section 3: from databases to applications.
IAPS: International Affective Picture System; IADS: International Affective Digitized Sounds; ANEW:
Affective Norms for English Words; DEAP: Emotion Analysis using Physiological Signals; SEED:
SJTU Emotion EEG Dataset; SAM: Self-Assessment Manikin; EEG: Electroencephalography; ECG:
Electrocardiography; EDA: Electrodermal Activity; EOG: Electrooculography; SVM: Support Vector
Machines; RF: Random Forest; RIPPER: Repeated Incremental Pruning to Produce Error Reduction;
MLP: Multilayer Perceptron; KNN: K-Nearest Neighbors; LR: Logistic Regression.
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Table 2. Main characteristics of the studies included in the review.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[25] 29 Picture Sadness SAM EDA, EEG

ANOVA and
bivariate

correlation
analyses

Compare the effects of three
emotion regulation

strategies: reappraisal,
acceptance, and suppression

[26] 32 (DEAP);
15 (SEED) Videos

Positive,
negative, and
calm (DEAP);

positive,
neutral, and

negative
(SEED)

EEG Decision Tree,
KNN and RF

Emotions classification
according to the time
variation of emotion

processing

[27] 26 Videos
Positive,

neutral, and
negative

Ad hoc: Valence
and/or arousal EDA, ECG SVM

Analyze autonomic control
mechanisms and functional

assessment of emotional
responses of human

[28] 27 28 Schizophrenia Pictures
Positive,

neutral, and
negative

EEG ANOVA Study motion processing in
schizophrenia

[29] 39 Videos

Amusement,
anger, fear,
tenderness,

and a neutral
state

Ad hoc: Theory of
mind ECG, GSR ANOVA and

Bonferroni

Understand the physiology
of socio-emotional processes

in the cinema

[30] 28 68

Borderline
personality

disorder
and post-
traumatic

stress
disorder

Pictures
Negative,

positive, and
neutral

SAM ECG
ANOVA and
Tukey’s HSD

test

Analyze HRV during a
cognitive reappraisal task in

female patients with
borderline personality

disorder

[31] 34 Pictures

Negative
(mild, and

high
intensity),
neutral,

Ad hoc: boredom
and engagement EDA

Linear
Mixed-Effect

Modelling

Understand the difference
between the emotional

response toward real and
fictional pictures
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Table 2. Cont.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[32] 44 Pictures and
videos

Positive,
negative, and

neutral
EDA, EEG LR, RIPPER, MLP

Validation of EEG activity as
a good indicator of

self-regulation

[33] 16 13 Moebius
syndrome Video

Disgust,
surprise,

anger,
happiness and

neutral

ECG ANOVA

Study the alterations in the
processing of facial

expression of emotions due
to congenital inability to

produce facial expressions

[34] 42

Low interde-
pendent Self

construal
(SC) and

high interde-
pendent

SC

Pictures Unpleasant
and neutral EEG Random

Effects Models
Asses the ability of emotion

suppression

[35] 26 Pictures

High-
arousing
positive
valence,

low-arousing
positive
valence,

high-arousing
negative

valence, and
low-arousing

negative
valence

EEG ANOVA

Explore changes in
cognitive-motor

performance in response to
emotional stimuli

[36] 139 123 Bipolar
disorder

Pictures and
sounds

Disgust,
erotica, fear,
happiness,

neutral and
sadness

Ad hoc: Valence
and/or arousal ECG, EOG ANOVA

Study modes of emotional
regulation according to type

of bipolar disorder
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Table 2. Cont.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[37] 38 28

Complex
post-

traumatic
stress

disorder
and

complex
dissociative

disorders

Pictures Unpleasant
and neutral SAM EEG ANOVA and

t-test

Examine the effects of
trauma treatment in

symptoms and the neural
networks involved in

emotional control

[38] 69 61
Attention-

deficit/hyperactivity
disorder

Pictures
Happiness,

fear and
neutral

EEG ANOVA

Examine ADHD-related
differences in attention to

emotional and neutral
stimuli

[39] 30
Autism

spectrum
disorder

Pictures

Anger (mild
and extreme),
happiness and

sadness

EEG ANOVA
Research fathers of children

with autism in facial emotion
detection

[40] 40
Social

anxiety
disorder

Pictures Negative and
neutral

Ad hoc:
Discomfort EEG ANOVA and

t-test

Utilize manifold-learning to
understand EEG brain

dynamics associated with
emotion regulation processes

[41] 31 51
Social

anxiety
disorder

Pictures Negative and
neutral EEG ANOVA and

t-test

Study response to negative
images in individuals with

SAD and HC during emotion
reactivity and reappraisal

[42] 10 10 Asperger’s
syndrome Pictures Angry, happy,

and neutral
Ad hoc: Anger
and happiness EEG MANOVA

and F-test

Investigate EEG oscillatory
activity and

phase-synchronization
during visual recognition of

emotional faces in
Asperger’s syndrome

patients and healthy controls

[43] 30

Drug-
resistant
temporal

lobe
epilepsy

Videos

Fear, disgust,
sadness,

happiness,
and

peacefulness

SCR ANOVA, t-test
and χ2 test

Understand the impact of
biofeedback on seizure
control and emotional

regulation
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Table 2. Cont.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[44] 90 Alcohol use
disorder Pictures

Positive,
negative, and

neutral
valence

SAM ECG

ANOVA, post
hoc

Bonferroni
test.

Compare HF-HRV in
response to emotional and

neutral stimuli in two groups
of alcohol use disorder

abstinent patients, according
to their length of abstinence

[45] 49 Words Negative and
neutral

Ad hoc:
discomfort EEG ANOVA, t-test

Examine the neural
correlates of emotional

reactivity and regulation to
idiographic information

[46] 36 Videos Sadness Ad hoc: Specific
emotion GSR, ECG ANOVA

Study if women’s efforts and
success at using cognitive

reappraisal to regulate their
emotions would be affected
by the menstrual cycle and

neuroticism levels

[47] 44 Anorexia Pictures and
Words

Neutral,
happiness,

sadness, fear,
and angry

EEG ANOVA and
t-tests

Explore the
neurophysiological

correlates of emotional face
perception and recognition
in adolescent AN patient

using ERPs

[48] 117 Videos
Amusement,
sadness, and

anger

Brief Differential
Emotions Scale ECG

Pearson’s and
Spearman’s
correlations

Asses if expression of
different emotions predict

different indices of physical
health

[49] 50 Depression Pictures and
words

Neutral and
unpleasant EEG ANOVA

Understand changes in
emotion during controlled

processing of different
semantic representations

[50] 20 20

Anterior
cruciate
ligament

reconstruc-
tion

patients

Pictures Neutral and
fear SAM EEG and ECG ANOVA

Identify how negative
emotional stimuli affect
neural processing in the

brain and muscle
coordination in patients after

anterior cruciate ligament
reconstruction
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Table 2. Cont.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[51] 136 Videos Fear EEG ANOVA
Assess emotion-regulation

strategy during viewing of a
fear-inducing film clip

[52] 31 Pictures and
words

Neutral and
negative SAM EEG ANOVA

Study emotion regulation
with picture and word

stimuli

[53] 31 Pictures Neutral and
negative SAM EEG ANOVA

Investigate how stimulus
arousal affects reappraisal

success

[54] 24 Pictures
Neutral,

positive, and
negative

SAM EDA
Spearman’s

correlation χ2

test

Compare the thermal
reactivity to subjective and

electrodermal responses

[55] 26 26 Schizophrenia Pictures Neutral and
negative SAM EEG ANOVA

Assess regulation of negative
emotion in individuals with

high schizotypal traits

[56] 96 Pictures Neutral and
negative

Ad hoc:
discomfort EEG Pearson’s

bivariate

Evaluate spontaneous
emotion regulation by EEG

activity

[57] 18 Pictures Neutral and
negative SAM EEG ANOVA

Study the relation between
distraction as an emotion
regulation strategy and

emotion generation

[58] 42 Words
Positive,

neutral, and
negative

EEG ANOVA

Explore whether
extraversion and neuroticism
influence the processing of

positive, neutral, and
negative words.

[59] 10 Videos
Positive,

neutral, and
negative

Ad hoc: Valence
and/or arousal EEG SVM

Investigate environmental
psychological perception in

adolescents

[60] 9 18 Schizophrenia Pictures
Positive,

neutral, and
negative

SAM EEG ANOVA
Study emotion processing in

the brain before and after
emotional neurofeedback
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Table 2. Cont.

Study
Number of Subjects

Pathology Elicitation
Method Emotion Psychometric Test Electrophysiological

Signal
Statistical
Analysis

Classification
Method

Objective
Healthy Pathological

[61] 229 Pictures

Sadness,
anger,

happiness,
and neutral

Ad hoc: Valence
and/or arousal ECG and EDA Mixed-Effect

Modelling

Examine the relations of
ANS activity in the

parasympathetic nervous
system and sympathetic

nervous system with brain
activity during emotional

face processing in
adolescents

[62] 24 16 Anorexia
nervosa Videos Negative ECG Linear

regression

Explore changes in HRV
during and after negative

emotional induction in
patients suffering from
restrictive type anorexia

nervosa

[63] 72 Pictures Pain EEG
ANOVA and
Bonferroni
correction

Examine age-related changes
in response to the perception
of another’s distress or pain

from early to middle
childhood

[64] 17 16
Autism

spectrum
disorder

Pictures Pain Ad hoc:
discomfort EDA Bayesian

inference

Study the link between
autonomic, cortical, and

socio-emotional
abnormalities in autism
spectrum disorder ASD

[65] 40 20
Empathy

deficit
disorder

Pictures
Positive,

neutral, and
negative

Ad hoc: Valence
and/or arousal EEG ANOVA

Analyze the emotional
processing in Colombian

ex-combatants with different
empathy profiles

[66] 41 Healthy Healthy Videos
Positive,

neutral, and
negative

EEG ANOVA Identify potential behavioral
and neural correlates of EI

SAM: Self-Assessment Manikin; EDA: Electrodermal Activity; EEG: Electroencephalography; ANOVA: Analysis of Variance; DEAP: Database for Emotion Analysis using Physiological
Signals; SEED: SJTU Emotion EEG Dataset; KNN: K-Nearest Neighbors; RF: Random Forest; SVM: Support Vector Machines; GSR: Galvanic Skin Response; LR: Logistic Regression;
RIPPER: Repeated Incremental Pruning to Produce Error Reduction; MLP: Multilayer Perceptron; HRV: Heart Rate Variability; EOG: Electrooculography; SCR: Skin Conductance
Response; ERP: Event-Related Potentials; EI: Emotional Intelligence.
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3.1. RQ1: Which Electrophysiological Signals May Index Emotional Processing?

To monitor human body responses related to emotion processing, several electrophys-
iological recording techniques have been used. EEG was the preferred method, reported
in 27 studies [25,26,28,32,34,37–42,45,47,49–53,55–60,63,65,66]. ECG was used in 11 stud-
ies [27,29,30,33,36,44,46,48,50,61,62]. EDA was reported in 10 studies [25,27,29,31,32,43,46,54,61,64],
and only one study used EOG [36]. From these studies, four of them fused ECG with
EDA [27,29,46,61], two of them fused EEG with EDA [25,32], one of them fused EEG and
ECG [50], and the remaining one fused ECG with EOG [36].

Table 3 summarizes electrophysiological signals, methods and features analyzed for
correlation with emotional states.

Table 3. Electrophysiological signals, methods and features analyzed for correlation with emo-
tional states.

Electrophysiological
Technique Analysis Method Analyzed Feature Emotional Correlation

EEG

Spontaneous activity in
frequency domain

Delta High activity in schizophrenia patients

Alpha High band power and high recovery
from discomfort

Beta

High activity in fathers of autistic
children

Inhibitory control

Theta

High activity with fearful pictures

High activity in SAD participants

Higher activity in female than male

Evoked activity based on
ERPs

P1 Larger amplitude with positive stimuli
than neutral in children with ADHD

P2 N2
Higher amplitudes for high arousal and

negative valence stimuli in healthy
participants

N4
Absence in Asperger participants

Less N400 in Neurotic participants

EPN The less prominent the EPN, the better
the sad and afraid states were recognized

LPP

Amplitude reduction in reappraisal
conditions

Amplitude reduction in suppression
strategy (marker depression and

East-Asian descendants)

Increase with acceptance regulation

Increments marker for SAD and
schizophrenic participants, and low

empathy levels

ECG

Time Domain
HR

Decrease in fear (anterior cruciate
ligament reconstruction)

Decrease while watching tender scenes

RSA No effect

Time and Frequency
domain HRV

Lower high frequency component in
positive, negative, and neutral stimuli
(BPD+PTSD). Decrease after negative

stimuli (anorexia nervosa)



Appl. Sci. 2023, 13, 6896 15 of 33

Table 3. Cont.

Electrophysiological
Technique Analysis Method Analyzed Feature Emotional Correlation

EDA
Phasic activity SCR

Increase in stimuli with high arousal,
anger, fear, pain, and stress

Decrease in pain stimuli (autism)

Tonic activity SCL Increase in anger

EOG Global velocity Eyeball movement

Increase in happiness and sadness
stimuli after disgust stimulus

Increase in disgust stimulus after neutral
stimulus

In general, the experimental setups of the studies were based on the technical configu-
rations summarized in Table 4.

Table 4. Technical information about the recording of electrophysiological signals: most frequent
parameters and devices. BW: Bandwidth, Fs: Sampling frequency.

Electrode Montage Sampling
Conditions [Hz] Recording Systems Computer Software Signal Conditioning

EE
G 10–132 channels according to 10/20

International System

Fs = 250–2048

Brain Vision EEGLAB Z < 5–60 kΩ
Quik-Cap128 NSL ERPLAB Notch filtering at 50 Hz

Emotiv EPOC Neuroscan 4.4 Lowpass filtering at 100
and 134 Hz

Neuron-Spectrum-1 BrainVision Analyzer
Lowpass fifth order sinc
filter with a half-power

cut-off at 204 Hz
BrainVision
PyCorder

Curry 7 and
Neuroscan 4.5

Analogue filters were at
0.05 and 100 Hz

V-AMP BrainVision Analyzer
2.0 software

g.Hlamp Net Station, Version
4.2 software

NuAmps Net StationDense
Array EEG

NeuroScan

BW = 0.05–100

BioSemi Active Two
system

Nu AmpsNeuroScan
NeurOne

Neuronic Medicid
SynAmps

actiCAP Brain
Products Inc.

Brain Products
GmbH

NeuroScan Synamp2
HydroCel Geodesic

Sensor Net
One Hydro-Cel

Geodesic Sensor Net

EC
G

1–3 Ag/AgCl electrodes, electrodes
in any or combinations of the
following areas: arms, legs,

Einthoven’s triangle, shoulders, hip,
chest, wrists, clavicle, rib, wrists,

sternum, abdomen

Fs = 4–2000

BIOPAC MP150
(ECG100C) AcqKnowledge Amplifier Gain: 2000

Powerlab and
OctalBioAmp8/30 Kubios HRV Mode: Normal

Biosemi Active Two
system LabView Notch: 50 Hz

BW= 0.05–100
Biopac fMRI

compatible wireless
signal logging

Mindware HRV Band-pass: 0.5–100 Hz
LabChart

CMetX



Appl. Sci. 2023, 13, 6896 16 of 33

Table 4. Cont.

Electrode Montage Sampling
Conditions [Hz] Recording Systems Computer Software Signal Conditioning

ED
A

Bipolar Ag/AgCl or dry-nickel
plated electrodes in any or
combinations of the following areas:
• index finger
• ring finger
• middle finger
• big toe
• second toe

Dominant or non-dominant hand

Fs = 500–2000
Empatica Acqknowledge Amplifier gain: 5

µOhms/V, 10 µSBIOPAC MP150
(GSR100C) SCRalyze

BIOPAC MP35
(EDA100C) Mindware EDA High-pass filter: DC

BW = 0.159–10 Biograph PsPM Low-pass filter: 10 Hz

PowerlabNeurOne
Brain Vision

Analyzer 2.1.2

Butterworth band-pass
filter: 0.159–5 Hz

Impedance level: <10 kW

EO
G Two Ag/AgC1 electrodes, placed

on the outer canthi of both eyes

Fs = 1000 BIOPAC MP150
(EOG100C)

AcqKnowledge

Amplifier Gain: 2000
Mode: Normal

BW = 0.05–100
Notch: 50 Hz

Band-pass: 0.05–100 Hz

3.1.1. EEG

Different methods were identified to analyze EEG activity. The first one focused
on five typical frequency bands: delta (0–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta
(13–20 Hz) and gamma (>20 Hz). Most studies concluded that lower frequencies were
effectively associated with emotional processing and regulation.

For instance, the lowest frequency range, delta, was observed to be prominent in
schizophrenic patients during ER tasks [60]. Theta frequency showed an increase in activity
in frontal and parietal regions with fearful pictures during the induction of emotional
responses [50]. Besides, this trend was also found in ER processes, and it was used as a
marker to characterize Social Anxiety Disorder patients [40]. Moreover, this increase in
activity was visible in reappraisal (ER strategy) conditions to differentiate between gender,
in which women tended to show higher activity than men [51]. However, this trend was
not only visualized in theta frequency. Beta and theta frequencies also showed higher
relative power spectra during ER tasks on fathers of autistic children [39]. Furthermore, it
was proposed that beta frequency range could be an indicator of emotional, attentional,
and cognitive involvement in the stimulus, and was associated with response inhibition
in ER therapies [37]. On the other hand, it was identified that a weaker low beta event-
related desynchronization occurred with lower psychosocial functioning in patients with
schizophrenia [28]. Finally, a great alpha band power determined a quick recovery from
discomfort status during ER [56].

The other type of analysis was the neural response time-locked to the event of interest,
also known as Event-Related Potentials (ERP) [38]. Uusberg et al. [57] determined that
there was no correlation between frequency dynamics (theta) and ERP components [57].
Many of the reviewed works only studied ERP components that are sensitive to emotions.
Figure 4 summarizes the ERP associated with emotion processing and regulation observed
in the reviewed studies.

Most of the studies that analyzed early potentials were associated with emotional
response or recognition. For instance, the P1 component showed a large amplitude in
response to positive stimuli compared to neutral stimuli in children with ADHD [38]. On
the other hand, P2 and N2 presented higher amplitudes for high arousal and negative
valence stimuli in healthy participants [47].

Usually, the Late Positive Potential (LPP) was employed to assess emotional pro-
cessing during ER. For instance, Grecucci et al. concluded that LPP can be modulated
by reappraisal strategy and observed a drastic reduction of LPP during the distancing
versus attend condition [52]. Furthermore, Speed et al. determined that the LPP amplitude
decreased after reappraisal training, indicating that cognitive reappraisal was an effective
strategy to reduce the neural response to negative stimuli [45]. This trend was also ob-
servable in participants with depression. However, there was an important difference: the
employed strategy. Those participants tended to suppress their emotions to avoid negative
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reactions after eliciting negative stimuli [49]. This strategy was also used as a marker to
differentiate ethnicities. Suppressing emotions was used more often in interdependent
self-construal East Asian descendants than European American descendants [34]. As it
was previously mentioned, this potential was a marker that assesses the effectiveness
of ER strategies. Boheme et al. observed a decrease in LPP amplitude for reappraisal,
whereas, for acceptance, the LPP amplitude increased [25]. Moreover, the increased LPP
amplitude determined electrophysiological markers of mental disorders, such as Social
Anxiety Disorder (SAD) [41] and schizophrenia [55], and was also a marker for empathy
(i.e., the higher the LPP, the lower the empathy level [63,65]).
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3.1.2. ECG

ECG is an electrophysiological measurement used to record the electrical activity of the
heart caused by the repolarization of ventricular walls and activation of the atriums. This
activity is recorded by placing electrodes on specific areas of the body [14]. The features that
were mostly extracted were the amplitude of Respiratory Sinus Arrythmia (RSA) [29,33]
and the inter-beat R-R wave interval [36,50,61]. In a study concerning R-R intervals, data in
the frequency domain was extracted using the fast Fourier and Wavelet transform [62]. The
ratio between EDA and integration of the spectrum of R-R intervals was reported in [27].
High-frequency variations in beat-to-beat intervals was also reported [30]. Only one study
reported computing the root mean square of successive differences of Heart Rate Variability
(HRV) [48].

A contingent trend between cardiac activity and emotions was observed. An increase
in HR after stimulus was associated with fear in control groups [50] and population with
conditions such as bipolar disorder type I [36] was observed. Patients with anterior cruciate
ligament reconstruction showed decreased HR [50]. Lower values of HR were also observed
in control subjects while watching scenes inducing tenderness [29]. The ability to enhance
sad emotion was associated with higher HRV [48]. One study reported no significant effect
of emotional stimuli on RSA [33]. Patients with borderline personality disorder and post-
traumatic stress disorder showed lower values of the high frequency component in HRV in
positive, negative, and neutral stimulations [30]. A decrease in the wavelet transformation
of high frequency component in HRV after negative stimuli was observed in patients with
anorexia nervosa, whereas an increase was observed in healthy control subjects [62].

3.1.3. EDA

The EDA or Galvanic Skin Response (GSR) is the variation of the electrical properties
of the skin in response to sweat secretion [67]. Two studies simultaneously analyzed
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phasic and tonic components of GSR: the Skin Conductance Response (SCR) and the Skin
Conductance Level (SCL), respectively [32,46], whereas most studies only considered the
SCR amplitude and peak detection [25,27,31,43,54,61,64]. On the other hand, only one study
analyzed the SCL [29]. The main tendency was that with greater arousal, either pleasant or
unpleasant, an increased SCR was generally shown [31,43,54,64]. Flat responses or small
changes in GSR were observed in population with higher self-regulation skills [25,32,46].
Negative stimuli, such as those that induce anger, fear, pain, and stress, showed increased
SCR [31,43,61,64]. Increased SCL was reported while watching anger stimuli [29]. Only Gu
et al. showed an overall decreased SCR in autistic population processing stimuli inducing
pain [64].

3.1.4. EOG

EOG is a technique used to record the electrical activity of eyeball movement. This
method was reported in only one study. Extraction of the global velocity of eyeball move-
ment was performed by computing the absolute values of the EOG derivatives [36]. In
this study, increased eyeball movement was observed in patients with bipolar disorder
type I after perceiving stimuli inducing emotions, such as happiness, disgust, and sadness,
in comparison with bipolar disorder type II and control subjects. Stimuli associated with
happiness and sadness increased eyeball movements when presented after a stimulus
associated with disgust. Furthermore, disgust stimuli increased eyeball movements when
presented after a neutral stimulus.

3.1.5. Databases of Electrophysiological Data

To analyze the relation between emotions and electrophysiological signals, most re-
searchers collected data from an in-home sample. However, only one work [26] considered
the use of SEED [68] and DEAP [69] databases for its study.

For emotion pattern recognition based on electrophysiological activity, two databases
were found: SEED and DEAP. The former is a free EEG dataset developed by Shangai
Jiao Tong University in 2015 [68]. It contains the electrocortical activity of 62 channels
from 15 Chinese subjects (seven males, eight females) while they were watching film
clips. These stimuli were 15 Chinese film clips and were categorized in positive, neutral,
and negative emotions. The signals were recorded with an ESI NeuroScan System at
1000 Hz. On the other hand, DEAP includes electrophysiological data of 32 channels of
EEG activity and 13 channels of peripheral physiological signals [69]. They were recorded
from 32 participants (16 females) using a BioSemi ActiveTwo system at a sampling rate
of 512 Hz. A total of 40 music videos were presented in 40 trials. At the end of each trial,
participants rated each video in terms of arousal, valence, like/dislike, and dominance
using the SAM [70].

3.2. RQ2: Which Stimuli May Be Used to Elicit Emotions?
3.2.1. Format and Nature of Stimuli

Pictures and images were the preferred stimulus type to induce emotional states.
Besides, some studies used a combination of pictures with sounds [36], with words [52] or
with videos [32]. Other studies used film clips [26,27,29,33,43,46,48,51,59,62] and/or music
videos (DEAP dataset) [26,69]. Two studies conveyed emotions by presenting written
words to the participants [45,58].

Twenty-nine studies included colored stimuli, whereas other studies preferred a
greyscale [33,38,42,61] or black and white [44] presentation, and six studies did not mention
the color [27,29,46,48,51,62].

As regards stimuli contents, three studies presented social scenes to the partici-
pants [63–65], five showed faces [33,38,39,42,47,61,66], and two studies presented a combi-
nation of social, non-social scenes and faces [28,37]. Three studies showed a combination of
social and non-social scenes [31,50,53]. However, most studies did not specify any content.
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Thirteen studies preferred to use in-home made stimuli [27,29,40,43,45,46,48,51,59,61–64],
whereas all other studies included stimuli coming from publicly available databases.

3.2.2. Databases of Emotional Stimuli

To elicit emotions, twenty-eight studies used public and pre-validated data-
sets [25,28,30–39,41,42,44,45,47,49,50,52–58,60,66]. The IAPS was the main source of stim-
uli [25,28,30–32,34–37,41,44,49,50,52–57,60]. Some researchers complemented this dataset
with some others. Particularly, Ma et al. complemented IAPS with IADS, and Grecucci
et al. employed the Affective Norms for English Words (ANEW) [36,52]. Only two studies
preferred to use the NimStim face stimulus set [33,38]. No other dataset was found to be
repeated across reviewed studies.

3.3. RQ3: How Should Psychometrics Assess Emotional Experience?
3.3.1. Emotion Experience

From the revised literature, subjective assessments of emotion processing were
performed according to seven categories (ad hoc tests): (1) valence and/or arous-
al [27,28,30,32,35,44,47,49,52–55,58–60,65], (2) discomfort [25,26,40,41,45,50,51,56,57,63,64],
(3) specific emotion [46], (4) boredom and engagement [31], (5) continuum from angry
to happy [42], (6) empathy [64] and (7) Theory of Mind [29,37]. Point-scale was the pre-
ferred measurement to assess valence and arousal perception: 100-point [29], 10-point [30],
9-point [25,26,35,46,50,52–54,56], 8-point [36], 7-point [31], 5-point [40,44,45,59–61] and
3-point [65]. SAM was the most popular test [25,30,37,44,50,52–55,57,60], followed by Vi-
sual Analogue Scales (VAS) [27,29,36]. Only one study used a continuous line with one
mark in the middle [42].

3.3.2. Mental Health

The psychological health of participants was evaluated in half of the total reviewed
studies. Anxiety disorder was tested in [25,30,35,37,40,41,43,61,62], and most studies
used the State-Trait Anxiety Inventory (STAI) [25,30,43,62]. Depression was also tested
in [25,30,36,43,49,58], preferentially using the Beck Depression Inventory [25,30,43,58].

3.3.3. EI- and ER-Related Monitoring

Two studies used psychometric tests related to EI per se. On the one hand, Balconi
et al. employed the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) [60], and
on the other hand, Raz et al. worked with the Schutte self-report Emotional Intelligence
Scale [66]. Empathy was tested by Gu et al. with the Toronto Alexithymia Scale and
Empathy Quotient [64]. ER tests were used in two studies: one of them applied the
Emotion Regulation Questionnaire [30], and the other one opted for the Difficulties in
Emotion Regulation Scale [62].

3.4. RQ4: Under Which Conditions May Emotion Processing Be Assessed, and How Does the
Experimental Paradigm Cause Biases in Emotional Perception?
3.4.1. Experimental Paradigms

Although the general aim of all the reviewed studies was to characterize emotion
processing, conditions and procedures were highly variable. Therefore, it is essential to
depict an outline of differences in task administration. Most studies were conducted in a
laboratory setting, whereas only one study set up a real-life environment by conducting the
experiment in a cinema [29]. Furthermore, most studies complemented electrophysiological
objective measures with subjective assessments (as detailed in Section 3.3.1 although some
did not [28,32,35,38,41,43,47,49,51,58,62,63,66].

3.4.2. Emotion Processing Mode

In most studies, emotion processing was explicit (i.e., the participant was asked
to focus on the emotion conveyed). However, two studies included an implicit way of
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processing emotional information [56,58]. For instance, participants in one study had to
focus on the discomfort induced by the emotion conveyed but not on the emotion per
se [56]. Two studies included both ways of processing emotions [47,61].

3.4.3. Timing Protocol and Procedure

The time of stimulus presentation was highly variable across studies: 0.8 s, [28],
1 s [42,52,53,58], 1.5 s [47,65], 2 s [35], 2.5 s [63], 3 s [39,61,64], 4 s [25,30,33,34,37,54],
5 s [32,38,49,55,57,66], 6 s [30,31,36,41,45,50,56,60], 7 s [40], 8 s [36,50], 10 s [36,44], 15 s [32],
45 s [43], 1 min [26,48], 1.2 min [62], 1.5 to 2 min [27,29], 3 min [46], 3.5 min [51], 3 to
5 min [59] and 4 min [26]. Figure 5 details the presentation time according to stimulus types.
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3.5. RQ5: How May Correlates of Emotion Processing Be Applied to Models of Statistical Analysis
and Artificial Intelligence?

In biomedical areas, statistical modelling plays an important role throughout a study,
from the planning stages to data interpretation. The latter is a crucial step that dictates the
research outcomes. Therefore, an adequate selection of statistical tests clearly determines
valid inferences and conclusions. To choose the optimal test, it is necessary to look for
the data distribution, sample size, homogeneity of variances and/or covariances, and
dependency between variables [71,72].

3.5.1. Statistical Analysis: Parametric Methods

Even though most studies did not specify the execution of tests for ensuring parametric
conditions, most of them determined the use of parametric tests to analyze and correlate
electrophysiological signals with emotions. Table 5 summarizes the parametric tests used
in the revised literature.

Repeated measures ANOVA was the most used statistical test to analyze the relation be-
tween stimuli effect and electrophysiological signals for ER or recognition [25,39,41,45,50,52].
Moreover, this test was used to assess the effect of emotion recognition or regulation on
different measurement locations [47,51,53,58,65]. It was consistently used to inquire about
differences between emotional tasks in the selected sample. Furthermore, it was used
to correlate emotions with physical or mental conditions [46,58]. Two-way ANOVA was
used to analyze the relation between groups and emotional conditions [36] during ER [55].
Three-way ANOVA was used to analyze the relation between groups, electrodes, and emo-
tions with electrophysiological data [28,49]. Cheng et al. decided to add two more variables:
age and gender [63]. The mixed-design ANOVA was employed to notice the relation be-
tween groups and stimuli with electrophysiological signals. Finally, three different versions
of ANOVA were reported: (1) multivariate-ANOVA (MANOVA) to assess differences in
tasks [42], (2) mass univariate ANOVA for signal perturbations [57], and (3) analysis of
co-variance (ANCOVA) for regulation strategy [51]. t-test was frequently used as post
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hoc test after ANOVA analysis [41–43,45,47]. In one study, it was used to comprehend the
relation between ER and EEG frequency power density [37]. Tukey’s test was used as a
post hoc test to analyze valence and emotion recognition with electrophysiological data
and compare between groups [30]. It was also used to analyze ERP data [65]. The Pearson
test was another parametric test that was used to associate the regulation effect in valence
and arousal ratings for different stimuli [53] with EEG activity [56].

Table 5. Summary of parametric tests used in the revised literature. Variations of ANOVA were the
most common statistical tests.

Test Variation Variables

ANOVA

Repeated measures

Stimuli effect on electrophysiological signals

Hemisphere (Laterality or electrode position), regulation strategy or cognitive task

Difference on emotional tasks (emotion recognition or regulation) considering
electrophysiological signals between groups

Associations with mental or physical issues (extraversion, neuroticism, and
menstrual cycle phase)

Two-way
Emotions and groups versus electrophysiological data

Group and condition for ER

Three-way Group, electrode, and emotion stimuli vs electrophysiological data

Four-way Age, gender, stimuli, and electrode versus ERP

Mixed design Group differences and stimuli effect on electrophysiological signals

MANOVA Differences in tasks

Mass univariate Average occipital theta perturbations

ANCOVA Gender, regulation strategy and hemisphere

t-test -
Emotion regulation and EEG frequency. Post hoc test: stimuli, task and time,

groups, condition, and activity; electrophysiological data; groups; effectivity and
time

Pearson’s test - Emotion regulation and electrophysiological data

F-Test - Emotion recognition conditions, emotions, factor time window and physiological
data

Tukey’s HSD
Valence and emotion recognition vs electrophysiological data

Comparisons between emotional conditions and electrophysiological data

3.5.2. Statistical Analysis: Non-Parametric Methods

This type of test was mainly used as a post hoc test, as shown in Table 6. Bonferroni
correction and method were used to analyze emotional assessments: valence and arousal,
electrode position, and condition or task with the electrophysiological data [29,35]. The
Spearman test was used to correlate subjective emotional assessments with electrophysio-
logical data [54]. The studies that employed electrocardiographic and electrodermal signals
used Wilcoxon test [62] and bootstrapping methods [64], respectively. Finally, χ2 test was
used to compare pathological conditions and discrete emotions [43].

Table 6. Summary of non-parametric tests used in the revised literature.

Test Variables

Spearman’s test Subjective evaluation and electrophysiological
signals

Bonferroni adjusted pairwise comparison
(post hoc)

Condition, valence, arousal, electrode, and
electrophysiological data

Wilcoxon test Time period with the tonic and phasic HRV
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Table 6. Cont.

Test Variables

Bootstrapping Emotional behavior, SCR, and dynamic causal
modeling connectivity parameters

χ2 test Pathological conditions and discrete emotions

3.5.3. Other Statistical Methods

Two studies worked with linear mixed-effects modelling, a statistical model suited
to heterogenous stimuli [31,61]. Another one applied random effect models that allow
modeling of the effects of stimuli simultaneously with the effect of subjects [34]. Another
different tool was proposed by [37]: Network-based Statistic. It was used to identify brain
regions with different degrees of connectivity for patients compared to controls within and
between two measurements.

3.5.4. Classification Strategies

Classification methods have played a significant role in emotion characterization in
several studies. In this section, only the results from the methods that reached the highest
performances for emotion classification are presented.

The use of Support Vector Machines (SVM) reported a 73.35% accuracy classifying
emotions in terms of arousal and 68.54% in terms of valence when using Independent
Component Analysis (ICA) features of EEG [59]. An accuracy of 73.08% was achieved with
categories of features of EDA and ECG in valence recognition [27]. Other classification
methods documented in one study was auto-encoder neural network combining Decision
Tree, K-Nearest Neighbors (KNN) and Random Forest (RF) [26]. Sections of EEG data from
DEAP and SEED databases were used, and accuracies achieved were 62.63% (DEAP) and
74.85% (SEED). Logistic Regression (LR), Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) and Multilayer Perceptron (MLP) were reported in a study validating
EEG activity as a good indicator of self-regulation. Groups were categorized according to
EDA and reported the following best accuracies: 40.91% in non-self-regulated group using
LR, 42.70% in self-regulated group using MLP, and 42.46% with RIPPER as best overall
accuracy [32]. Table 7 details information on classifiers and features introduced in machine
learning algorithms.

Table 7. Technical information of four studies that used machine learning algorithms for emoti-
on classification.

Classes Electrophysiological
Features

Validation
Method Selection Method Classifier Performance

Positive, neutral,
and negative EDA, HRV Leave-one-subject

out
Recursive feature

elimination SVM 73.08%

Pleasant,
unpleasant and

neutral
EEG, EDA 10-fold

cross-validation

Data divided in
self-regulated and
non-self-regulated

groups

SVM, Logistic,
RF, LR, RIPPER,

MLP, KNN,
Naïve Bayes,

C4.5 and Radial
Basis Function

Best accuracy for the
non-self-regulated

group: LR, 40.9091%.
Best Accuracy

Self-regulated group:
MLP, 42.7035%. Best

overall accuracy:
RIPPER, 42.4606%

Valence and
Arousal EEG Confusion matrix ICA SVM

73.35% arousal and
68.54% on the

valence dimension
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Table 7. Cont.

Classes Electrophysiological
Features

Validation
Method Selection Method Classifier Performance

Positive,
negative, and

calm
EEG K-fold

cross-validation
Autoencoder

neural network
Decision Tree,
KNN and RF

Best accuracies:
62.63% (DEAP);
74.85% (SEED)

3.5.5. Sample

The sample size calculation was not discussed in the reviewed articles, nor any cor-
rection for a small sample size. This should be relevant, as a well-defined calculation
would give us further information on the robustness of the study. In the study with the
least number of participants [59], the authors used an artificial intelligence algorithm
and obtained similar results than the other studies when accuracy was used as a met-
ric [26,27,32]. On the other hand, the studies with the largest sample size [36,61] included
229 and 262 recordings, respectively.

3.6. RQ6: What Are the Applications and Impacts of Assessing the Emotion Processing?

Analyzing the electrophysiological correlates of emotional processing showed a wide
range of applications, emphasizing interests in both emotional perception and regulation.
Figure 6 outlines the areas of application of both real-time (online) and offline electrophysi-
ological data monitoring highlighted by the present review.
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Figure 6. Applications of monitoring electrophysiological correlates of emotion perception and
regulation. “Perception/regulation online” refers to studies centered on analyzing the biological
data related to emotion perception in real-time (in contrast to “Perception/regulation offline”). Note
that some studies may have been classified in various categories. Moreover, online monitoring was
outlined only to assess emotion regulation in two studies. Also, note that no study assessed emotion
perception online.
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4. Discussion

The ability to perceive, use, understand and control emotions is known as EI. As
this term is conformed of different dimensions in which some authors prefer to prioritize
the analysis of one with respect to others. However, the core of these studies pursues to
comprehend emotion processing and regulation, that human beings experience in their
daily life. Furthermore, electrophysiological recording techniques are used to measure this
cognitive task, as physiological responses are affordable signals that highlight the effect of
emotions on human processing. To date, there are no systematic review that focuses on
measuring EI based on electrophysiological analysis. For that reason, this work is the first
attempt to identify studies that characterize emotions by electrophysiological activity to
comprehend the ER process.

4.1. RQ1: Which Electrophysiological Signals May Index Emotional Processing?
4.1.1. Electrophysiological Measurements and Analysis

Twenty-eight studies analyzed EEG signals. Each of them executed different conditions
for data acquisition. Nonetheless, the most frequent electrode montage was 32 electrodes
with a sampling frequency of 500–1000 Hz and a bandwidth of 0.1–30 Hz. Some authors
analyzed EEG signals by frequencies to notice increases or decreases between specific
conditions, such as [51], where different ER techniques were assessed by comparing power
within five frequency bands. Nevertheless, many others considered that low-frequency
bands were related to motivational systems and emotional processes [60]. Specifically, theta
and beta bands were associated with emotion recognition [39] and ER [56].

To study emotion recognition and regulation independently, some authors have used
ERP. The former was generally examined with early ERP components, around 100–300 ms,
and the latter with LPP. This latter one was the most standardized feature to study ER. A
decrease in the amplitude of the LPP was a reliable indicator of the regulation of emotional
arousal and was sensitive to different ER strategies [34].

The second most used technique was ECG. Features extracted from ECG for the study
of emotions that reported significant results according to statistical analyses were RSA
amplitude, R-R interval characteristics such as the mean and inter-beat R-wave interval, and
features of high-rate variability in high-frequency range [29,33,36,44,50,61,62]. An increase
in the high-frequency component of HRV, which can be derived from the R-R interval, was
determined as a characteristic feature of good ER. RSA reflects the parasympathetic activity,
which is part of the high-frequency component and is a reliable index of ER. Nevertheless,
a trend in electrophysiological responses was not observed in the revised studies. Further
research is needed to determine a correlation between extracted features of cardiac activity
and emotions if existent.

Changes in EDA reflect sympathetic activity in the autonomous nervous system.
Although EDA is not the primary electrophysiological recording technique for studying the
relationship between cognitive emotional behavior and physiological responses, it provides
a clue about changes in sympathetic arousal. The SCR was the most analyzed feature in the
characterization of emotions. SCR reflects changes in arousal perception [32,54].

On the other hand, EOG is still being explored for studying emotions. In particular,
the global velocity of eyeball movement was reported in only one study. Quicker eyeball
movement in different targets of happiness, disgust, and sadness for participants with
bipolar disorder type I was observed, relating this feature as a marker for emotional to
monitor therapies. An increase of this feature was linked to the need for motor activity as a
strategy to manage aversive conditions [36].

4.1.2. Open Access Databases

The quality and profile of the data analyzed are important to achieve valid results and
conclusions. All but one study collected their own data, which led to a wide diversity of
induction methods, psychometric testing, electrophysiological measurements and analysis,
experimental paradigms, pattern recognition techniques and applications. On the other
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hand, one study decided to use the SEED and DEAP databases [26]. The use of previously
recorded databases can limit the scope of the study, as the research goals should be adjusted
to the experimental conditions and technical recording settings. However, their use reduces
the efforts in collecting information, fosters the inter-agreement between scientists, and
helps to fade cofounding factors due to methodological concerns.

4.2. RQ2: Which Stimuli May Be Used to Elicit Emotions?

Various methods for emotion elicitation were identified. Most studies used shared
databases (e.g., IADS, IAPS) as the source of stimuli to elicit emotions. Those databases
have the advantage of representing standardized and internationally known methods,
and normative ratings have been extensively provided. On the other hand, a large panel
of stimulus types has been outlined, with pictures and films being the most frequent.
Contrary to pictures, films are dynamic, and thus more ecological as they approximate real-
life environments. Therefore, films are expected to elicit higher emotional experiences than
pictures. Very few of the reviewed studies considered the type of stimulus to discuss the
observed behavioral and physiological responses to emotional elicitations. Besides, none of
them was interested in exploring the effectiveness of different stimulus types regarding
emotional and cognitive processes. The mentioned proposal might be very promising, as
far as films imply more complex and multimodal emotional processing. However, as films
use narrative and dramaturgic structures to tell emotional meanings, the time of exposure
may need to be longer to reach conveying of the target emotion. Besides, longer exposure
might cause time variations of emotional intensity from the start to the end of the video
clip [73]. If such is the case, then temporal dynamics must be included in the analysis of
behavioral and physiological correlates. Hence, the time of exposure must be considered
rigorously according to the nature of the stimuli.

4.3. RQ3: How Should Psychometrics Assess Emotional Experience?

The complexity of emotional processes is the main difficulty in developing an accurate
and precise emotion measurement system [74]. Nonetheless, many methods have been
developed and validated. Throughout the review, two major tendencies were found: a
small group used the discrete dimension of emotions (happiness, sadness), while the
main method was the evaluation of valence and arousal. The SAM scale was the most
common evaluation observed for emotion measurement. It consists of visual cues to
identify perceived levels of valence, arousal, and/or dominance. This visual representation
may reduce introspection and cognitive processing compared to other measuring systems
(e.g., VAS scale) [75]. In the conducted research, no study compared different psychometric
tests for the evaluation of emotions. Nevertheless, SAM has been validated in diverse
ethnic groups [76], generally making it the best option for a diversity of subjects.

Sample characterizations include psychological health assessments. Mainly anxiety
and depression levels were evaluated as an exclusion or inclusion criterion in several
studies. These disorders reflect irregularities in the perception of positive and negative
emotional stimuli [77]. Hence, in any study regarding emotional responses, the evaluation
of anxiety and depression traits should be applied, as the neural correlates directly depend
on the mental state of participants.

4.4. RQ4: Under Which Conditions May Emotion Processing Be Assessed, and How Does the
Experimental Paradigm Cause Biases in Emotional Perception?

A trend of heterogeneity regarding the procedures for inducing emotions has been
highlighted, thus complicating the inter-studies analysis. Previous studies emphasized the
modulation of electrophysiological and behavioral mechanisms associated with emotional
stimuli presentation and processing modalities [78,79].

As a case in point, [79] observed better accuracies in face emotion recognition when
stimuli were presented for 50 to 100 ms rather than 16.67 ms, and [80] showed that longer
duration of emotional auditory stimuli predicted higher and later peak pupil dilation.
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Most studies designed experimental paradigms so that a fixed time window was used to
analyze physiological responses to emotional elicitation. However, [26] outlined better
classification of emotions when considering specific short EEG segments (e.g., the 34 last
seconds of 1-min emotional music videos). Furthermore, emotional activation processes
varied with the valence (i.e., positive, or negative) and intensity of emotions. The dynamic
structure of the emotional experience emphasizes two key components: an onset phase
correlated with explosiveness and an offset phase associated with accumulation [81]. The
explosiveness phase refers to reactivity and is an index of whether the intensity of the
emotional perception has a steep versus gentle start. On the other hand, accumulation
refers to whether the emotion intensity increases over time or returns to baseline [81].
Explosiveness and accumulation phases showed distinct neural correlates. The former was
associated with regions that take part of the default mode network (such as the medial
prefrontal cortex), whereas accumulation showed activity in regions involved in visceral
sustained arousal (such as the insula) [82]. Distinct neuronal activities emphasize the
essential need to consider temporal dynamics when exploring the electrophysiological
basis of emotional processing. Consequently, in the future, experimental paradigms should
be designed so that temporal phases of emotional processing can be analyzed appropriately.

Additionally, the conscious/unconscious nature of the emotional stimulus, which can
be correlated to the explicit/implicit way of processing emotion, is another relevant factor
that has previously shown to predict electrophysiological correlates [83,84]. Contrary to
explicit processing, implicit processing is defined by the automatic and out-of-conscious
focus on emotional information. The duality between implicit and explicit processing
involves separate neuronal circuitry, although the early unconscious process covers a
lower cognitive evaluation that leads to further conscious evaluation of emotion states that
implies higher-order cognitive processing [84]. Nevertheless, only two studies reviewed
here focused on the implicit processing of emotions [56,58].

Consequently, two important remarks must be highlighted here: (1) as variation in
stimuli presentation may alter electrophysiological measures correlated to emotional pro-
cessing, it would be interesting for further studies to include those parameters as covariates
in within- and inter-studies signal analysis, and (2) implicit emotional processing still needs
further explorations. It could be interesting for future works to correlate autonomous
and central neural responses associated with implicit processing to the further explicit
processing of emotional stimuli.

4.5. RQ5: How May Correlates of Emotion Processing Be Applied to Models of Statistical Analysis
and Artificial Intelligence?
4.5.1. Electrophysiological Correlates in Artificial Intelligence

Classification of emotions is a field that has been extensively researched in recent
years. It has gained relevance since artificial intelligence algorithms such as machine
learning [85,86] and deep learning [87,88] could widen the understanding of human behav-
ior and be implemented for ER. From the selected literature, only four studies implemented
artificial intelligence algorithms for emotion classification. Two of them only implemented
EEG for the acquisition of electrophysiological signals [26,59]. The others used EDA com-
bined with other techniques, such as ECG [27] and EEG [32]. From these studies, the best
classification accuracy was the algorithm that received differential entropy of EEG in the
five neural bands as input [26]. The second-best result was observed in a study using
ICA for spatial filtering in EEG signals [59]. From this analysis, it could be observed that
filtering in time/space domains gave the best results when trying to correlate EEG signals
to emotions. EEG reported better results compared to other studies combining different
techniques. In fact, reliable accuracies above 80% have been previously reported in studies
using EEG for emotion classification and with a sample size of at least 10 participants [89].
Contrary to the evidence aforementioned, [32] reported that EEG alone was not a good
physiological indicator for emotion classification.
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Accuracy, the most common classification metric, was reported in all studies. Only
in [27] and [32], confusion matrices on the performance of classifiers reported recognition
rates. Other classification metrics, such as recall, precision and F1 score that extend the
analysis of true positives, true negatives, false positives, and false negatives, were not
reported [90]. Comparisons of recognition rates based on these metrics could give a better
representation of the performance of classification algorithms with the given electrophysio-
logical data.

From the revised literature, classes in terms of valence [26] and arousal [59] showed a
better identification performance. Another finding was that in these studies, classes were
set in continuous emotions (e.g., from pleasant to unpleasant), including a neutral case,
rather than in discrete emotions (anger, disgust, fear, happiness, neutral, sadness).

4.5.2. Signal Fusion

In a study where ECG and EDA were fused, the classification of extracted features
reported accuracy lower than EEG data as unique input [27], indicating that the fusion of
electrophysiological signals must be further explored to precisely classify emotions. The
fusion of electrophysiological signals could increase pattern recognition in neurotechnology
development by feeding classification algorithms with extracted features related to emotion
conditions. This task must be performed with caution by feature selection methods. Some
of the reported methods were Recursive Feature Elimination which, in essence, ranks the
features by their importance, discarding the least important ones [27], and ICA, which
decomposes signals into independent sources [59].

4.5.3. Experimental Sample

The sample size can be highly dependent on the study needs and considerations. It
plays an important role for the performance and the validation of the study. Analyzing the
research of [59], which had the least subjects (10 participants), the accuracy reported by the
classifier algorithms was similar or higher than studies with a similar objective but with a
sample size of at least 30 subjects (300% larger) [26,27]. No study performed a calculation
for the size of the sample needed. This issue was previously addressed in [91], where
the importance of a high power to reduce the probability of biased results is highlighted.
Nevertheless, it is discussed that the authors alone are not to blame but that the journals
should take into consideration the validity of the study groups before selection. Better
metrics should be given to peer reviewers to exclude papers that do not present a valid
criterion for sample size selection, as not doing so allows the publication of studies that
are less probable to be replicated and more probable to be subjected to personal interests.
More effort should be stressed in the research community to validate the sample size, an
important aspect to increase the rigor of the study. Financially and ethically speaking, it
is necessary (1) to know the number of participants needed to reach a previously fixed
statistical power (generally 80%), or (2) to evaluate the estimated statistical power when, for
logistic or financial reasons, the maximum sample size is known in advance. R software (R
Foundation for Statistical Computing, Vienna, Austria) and G*Power [92] are valuable tools
for a priori power and sample size estimation. The latter proposes a Graphical User Interface
where the researcher can adjust the analysis to the statistical test needed, entering the
specific test and its family (e.g., F-tests, t-tests). Sample size a priori estimation is calculated
based on required power level, significance level and Cohen’s f effect size index. Besides,
several packages of R software (e.g., ‘stats’ or ‘pwr’) include functions (i.e., ‘power.t.test()’
of ‘stats’ package) for a priori power and sample size estimations. Also, the “superpower”
R package is a useful tool for simulation-based power analysis [93]. For instance, in the
case of means comparisons with ANOVA, ‘power.anova.test()’ computes sample size (n) or
statistical power according to the following input parameters: estimated standard deviation
(sd) of each group, estimated mean difference (∆) and required significance level.
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4.6. RQ6: What Are the Applications and Impacts of Assessing the Emotion Processing?

Analyzing the electrophysiological basis of emotional processing and regulation may
be a promising tool that finds applications in a wide variety of areas. For instance, ad-
vances in emotion recognition and classification by machine learning and neural networks
algorithms can nowadays find utility in video gaming by personalization of the game envi-
ronment to the user [94], customer satisfaction, high-quality services [95], and aggression
predictions in video surveillance tapes [96].

Although a universal way of expressing emotions has been previously emphasized [97],
cross-culture [98] and gender [34] variations make artificial intelligence engineering and
emotion-related electrophysiological studies a relevant source of information for sociology
and anthropology investigations. As regards neurocognitive applications, the literature
reviewed here highlighted direct correlations between non-pathological traits of personality
(e.g., neuroticism [58], motor performances [35] and executive functions skills) [31] and
emotions perception or regulation, which can be useful information in areas such as job
positioning or medical assessment of pathological predispositions.

Upon medical applications, emotion recognition by artificial intelligence algorithms
allows the rapid acquisition of information that could orient toward diagnosis indications.
As a matter of fact, various of the reviewed studies highlighted specific profiles of elec-
trophysiological indicators of emotional processing, allowing the significant distinction
between pathological and non-pathological populations [28,38,47]. Nevertheless, none
of the studies mentioned in this systematic review searched for in-between pathologies
distinctions (e.g., the distinction between schizophrenia and autism spectrum disorder
that are often confused [99]). Therefore, diagnosis methods based on electrophysiological
correlates of emotion processing still lack investigations.

Finally, as emotion processing disabilities are part of the symptomatology of mul-
tiple pathologies (e.g., autism spectrum disorder, schizophrenia, social anxiety disorder,
attention deficit/hyperactivity disorder, anorexia nervosa, depression), the assessment
of their electrophysiological correlates while attending or regulating emotional stimuli
may be an effective way to evaluate the pathological evolution or the effectiveness of
medical interventions. For instance, [37] observed a normalization (i.e., differences were
not significant between control and experimental groups anymore) of the connectivity
in the beta frequency range within cingulate/prefrontal, mesio/lateral temporal, poste-
rior parietal, and insular regions during an ER task after eight weeks of inpatient trauma
treatment, which consisted of individual and group-based cognitive stabilization, and
art interventions in patients experiencing complex trauma disorders. Another promising
application of emotional electrophysiological correlates is the implementation of real-time
biofeedback during training [100]. Only two studies included in the present review focused
on the effect of neurofeedback on emotion processing or regulation abilities [43,60], high-
lighting promising results of such a method. Particularly, although [43] did not observe a
significant change in the SCR to emotional processing and regulation, they emphasized a
reduction of seizure frequency and improvement of anxiety and depression traits after a
3-month skin-conductance-based biofeedback intervention in drug-resistant patients suffer-
ing from temporal lobe epilepsy. On the other hand, [60] were interested in the subjective
and electrophysiological basis of emotional perception before and after a 5-week EEG-
based neurofeedback intervention. They observed the improvement of negative ER and the
restoration of delta wave lateralization after neurofeedback training. In sum, neurofeedback
training has the potential to be considered as a valid clinical intervention for emotional and
cognitive management. However, future investigation is still needed to further understand
the benefits of neurofeedback training on pathological and non-pathological populations.

5. Conclusions

In this work, an extensive literature review on methodological concerns about emotion
perception and regulation assessments from 2014–2020 has been conducted. The use of
electrophysiological databases was not recurrent in research studies. In fact, all but one
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study recorded electrophysiological signals during the experimental procedure. Further-
more, the lack of disclosure in the methodology of sample size selection is an aspect that
should be discussed further, as the validity of the findings could be biased, regardless of
the results in posterior statistical tests. A wide variety of emotion elicitation methods have
been emphasized, each of them yielding specific electrophysiological processing. Therefore,
it would be relevant to adapt data analyses to the dynamic structure of the emotional
experience dependent on stimulus nature. Besides, the evaluation of mental health and
personality traits is essential for a better understanding of neural correlates variations.
Subjective evaluation of emotional stimuli by means of validated scales may complement
the interpretation of objective electrophysiological signals. On the other hand, the most
used electrophysiological technique in the literature was EEG. Research in emotions ana-
lyzed by neural activity in the cortex has been stressed, and time/frequency analyses have
shown promising results for the characterization of emotions perception and regulation.
Other signals, such as ECG, EDA and EOG, must be further explored to correlate with
emotional conditions, and more investigation is still needed to assess the optimal signal
fusion to reach a detailed vision of the emotional experience. Lastly, artificial intelligence
algorithms presented the highest performance only with extracted features from EEG as
input, indicating the need for innovative feature extraction and signal fusion methods for
emotion classification. In conclusion, the complexity of emotional processing still needs
a deeper characterization that can be achieved by the improvement of methodologies
involving psychology, neurophysiology, and artificial intelligence.
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