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Abstract: Action recognition involves capturing temporal information from video clips where the
duration varies with videos for the same action. Due to the diverse scale of temporal context, uniform
size kernels utilized in convolutional neural networks (CNNs) limit the capability of multiple-scale
temporal modeling. In this paper, we propose a novel dilated multi-temporal (DMT) module that
provides a solution for modeling multi-temporal information in action recognition. By using dilated
convolutions with different dilation rates in different feature map channels, the DMT module cap-
tures information at multiple scales without the need for costly multi-branch networks, input-level
frame pyramids, or feature map stacking that previous works have usually incurred. Therefore,
this approach enables the integration of temporal information from multiple scales. In addition,
the DMT module can be integrated into existing 2D CNNs, making it a straightforward and intuitive
solution for addressing the challenge of multi-temporal modeling. Our proposed method has demon-
strated promising results in performance and has achieved about 2% and 1% accuracy improvement
on FineGym99 and SthV1. We conducted an empirical analysis that demonstrates how DMT improves
the classification accuracy for action classes with varying durations.

Keywords: computer vision; action recognition; multiple temporal modeling; dilated convolution

1. Introduction

Action recognition is a crucial task in the field of computer vision, as it allows for
the automatic identification of actions and behaviors in video sequences. In this task,
temporal modeling is used to capture the motion information in a video, which is essen-
tial for accurately identifying the actions being performed. Several methods have been
proposed for temporal modeling, including two-stream networks [1], 3D CNNs [2,3], and
2D + 1D paradigms [4–6]. Such methods based on CNNs have gained widespread use
in action recognition due to their ability to effectively extract both spatial and temporal
features from videos. However, the use of uniform-size kernels in CNNs limits their ability
to capture temporal features, due to the inherent variability in the speed and duration of
actions, because uniform-size kernels are fixed in size and do not take into account the
varying duration of actions.

Such a phenomenon of inconsistency in duration and speed often observed in action
videos can be illustrated by considering a video of a person running. If a person is running
at fast pace, the duration of the video will be shorter compared to a video of the same
person running at slow pace. This is because the faster the person is running, the less
frames that are captured in the same distance, resulting in a shorter frame duration. This
inconsistency of duration and speed poses a challenge for action recognition algorithms.
Previous efforts have utilized different strategies to model diverse temporal information.
Certain approaches [7–9] use a sequence of frames captured at different intervals to model
diverse temporal information. SlowFast [7] also samples the frames at two different rates
and feeds them into a slow path and a fast path for capturing both the slow and fast tempo.
TPN [10] aggregates information from different visual temporal sources into a pyramid
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structure by stacking feature maps. These methods, building multi-branch networks,
constructing frame pyramids, and stacking feature maps, have employed costly strategies.

In this paper, we propose a dilated multi-temporal (DMT) module offering a novel
solution to modeling multi-temporal information without the need for multi-branch net-
works, input-level frame pyramids, or stacking feature maps, which can be integrated
into the existing backbone architecture. As demonstrated in [11], dilated convolution [12]
can effectively increase the receptive field size without adding additional parameters or
computations. Thus, we argue that time-dilated convolutions can also extend the receptive
field in the temporal dimension and the use of dilated CNNs can extract the long-range
temporal features. Furthermore, this characteristics of dilation motivates us to adopt
CNNs with different dilation rates to model different temporal information—small rates
for shorter times and bigger rates for longer times. As depicted in the rightmost part of
Figure 1, the DMT module utilizes dilated convolutions with different dilation rates in the
different channels of the feature maps in order to capture information at multiple scales.
Additionally, we employ a strategy with low computational overhead to efficiently merge
temporal information at different scales. This enables our model to integrate information
from multiple scales in a manner that preserves relevant details while minimizing com-
putational requirements. This is particularly useful for applications where computational
efficiency is a priority, such as real-time video action analysis or large-scale data processing.
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Figure 1. (a) The original feature maps without temporal modeling. (b) Performing convolution along
the temporal dimension using depthwise convolutions with kernels of stationary size. (c) Performing
convolution along the temporal dimension utilizing different dilation rates across different sections
of the feature map channels. This technique allows for an increased receptive field and for the ability
to capture multiple temporal information.

We evaluate the performance of the proposed DMT on the task of video-based ac-
tion classification. The proposed approach leads to enhanced performance on several
benchmark datasets, such as FineGym99 [13], Something–Something V1(SthV1) [14],
and Kinetics400 [15]. In addition, we conduct ablation experiments on FineGym99 to fur-
ther validate the effectiveness of our approach. The dataset was chosen because it contains
fine-grained action classes with substantial variance in their durations, making it an ideal
candidate for evaluating the ability of models for multi-temporal modeling. The experi-
ments demonstrate the ability of the DMT module to perform accurate action recognition.
Overall, this work contributes to the field of action recognition by providing a practical
solution for modeling multi-temporal information in action recognition.

The main innovations of our work can be summarized as follows:

• The DMT module allows for modeling of multi-temporal information without the
need for multi-branch networks or input-level frame pyramids.

• In different channels, dilated convolutions with different rates enable modeling of
different temporal scales.

• Partial channel modeling of temporal information enables the integration of informa-
tion from multiple scales while minimizing extra computational requirements.
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2. Related Work
2.1. Action Recognition

Action recognition is a widely studied problem in the field of computer vision, and nu-
merous approaches have been proposed to tackle it. Traditional approaches [16,17] were
mainly based on hand-crafted features, but the recent success of deep learning has led to
a shift toward end-to-end learning methods [18,19]. Among them, convolutional neural
networks (CNNs) have been widely adopted due to their ability to effectively extract spatial
and temporal features from videos. To capture temporal information in videos, several
CNN-based architectures have been proposed, including two-stream networks [1,20,21],
3D CNNs [2,3,15], and 2D + 1D paradigms [5,22].

Two-stream networks involve using separate CNNs to process optical flow and
RGB frames. The results of these two CNNs are then combined through late fusion. This
method has been adopted in numerous action-recognition methods, such as in TSN [23].
TSN extracts short optical flow frames over a fixed number of segments and one random
RGB frame from each segment to aggregate spatiotemporal information. Furthermore,
3D-CNN models extend the 2D models used in image recognition by employing 3D con-
volutions to extract features. I3D [15] inflates 2D filters into 3D to take advantage of the
learned parameters of 2D ConvNets trained on the ImageNet [24] dataset. Other 3D-CNN
based approaches, such as P3D [4], S3D [6], and R(2 + 1)D [5], separate spatial and tem-
poral convolution to achieve a balance between efficiency and accuracy. For instance,
R(2 + 1)D explicitly factorizes 3D convolution into two separate and successive operations:
a 2D spatial convolution and a 1D temporal convolution. There are also several techniques
that have designed plug-in modules for 2D CNNs to achieve high efficiency, particularly
for temporal modeling. TSM [25], for example, performs temporal modeling with zero
computation and zero parameters by shifting part of the channels along the temporal
dimension to facilitate information exchange among neighboring frames.

2.2. Multi-Temporal Modeling

Accurately recognizing actions from videos can be challenging due to the diverse
duration of action instances. This challenge has led to a line of research focused on
multiple temporal modeling, which aims to capture different motion information in videos.
Temporal modeling techniques can help to overcome the negative impact of variable
action durations on recognition accuracy by capturing the temporal dependencies of
action instances. By improving the ability to capture different temporal information,
multiple temporal modeling has the potential to significantly improve the accuracy of
action-recognition systems. Some strategies have been proposed to model diverse temporal
information in videos for action recognition. Despite the recent advancements in action
recognition, multi-scale temporal modeling is still an underdeveloped area of research.
In recent years, there have been some efforts to address this challenge and to develop
multi-scale temporal modeling techniques that can capture the temporal relationships
across different scales of actions.

For example, the temporal pyramid network (TPN) [10] models the visual tempos of
different actions at the feature level, and it can be integrated with mainstream backbones
to capture a variety of temporal information of action instances. SlowFast [7] employs
two pathways—a slow pathway and a fast pathway—with different temporal speeds to
capture spatiotemporal features. These pathways operate at different frame rates and
are fused through lateral connections, allowing them to effectively model multi-temporal
information. The dynamic temporal pyramid network (DTPN) [9] utilizes a pyramidal
representation with varying frame sample rates to address the inherent temporal scale
variation in video understanding. While these strategies—such as stacking multiple stages
of features, sampling at different rates, and utilizing dual networks—can improve the
ability to model multi-scale temporal context, they also incur increased, costly, multi-branch
networks. Therefore, in our approach, we model a multi-scale temporal context without
relying on stacked pyramids or multi-frequency sampling within a single backbone.
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3. Methods
3.1. Overview

The DMT module is a type of modular component that can be seamlessly integrated
into 2D CNN for the purpose of modeling multiple temporal information. The initial step
of the module involves utilizing an attention block to regulate the importance of feature
maps. Then, the feature maps are separated along the channel dimension for modeling
different temporal scales. Within each part, depthwise convolutions with varying dilation
rates are applied. To fuse the temporal information across different parts, the resulting
feature maps are concatenated along the channel dimension. The structure of the network
is outlined and its internal formulation is detailed as follows.

3.2. Module Design

Motivated by SENet [26] and TAM [27], the DMT module first learns attention weights
for each temporal and channel of feature maps, effectively acting as an attention mechanism
that focuses on both the temporal and channel dimensions of the feature maps. This allows
the DMT module to attend to relevant features and enhances its ability to capture important
temporal and channel information.

We adopt the same strategy and configuration with TAM to generate the modulation
weights, as illustrated in Figure 2.
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Figure 2. The structure of DMTNet and the DMT module. The top of the figure showcases the
structure of the backbone network, including its inner components. Additionally, it displays a
comparison between DMTNet-block and ResNet-block. The workflow, as depicted in the bottom
of the figure, illustrates the sequence of operations implemented in the module. The element-wise
addition operation is denoted by ⊕, the element-wise multiplication operation is denoted by �,
and the convolution operation is denoted by ⊗. The variable K represents the size of the generated
kernel, which is set to 3 in the following implementation. It is worth emphasizing the significant role
played by convolution operations with varying dilation rates. In the figure, the dilation is represented
by the letter “D” and is highlighted in yellow, with dilation rates set to 1 and 2, respectively. The primary
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goal of this module is to partition the feature map into distinct sections along the channel dimension
and to subsequently use dilated convolution to model the multiple temporal information within
these partitions before finally concatenating them to fuse the captured information.

3.2.1. Multiple Dilations

It is intuitive to utilize different receptive filed blocks to capture the multi-scale
temporal context: small ones for short context and large ones for long context. However,
directly improving the size of the kernel to capture long context will induce the problem
of high computational cost and massive parameters. Based on [11] , dilated convolutions
effectively increase the receptive field size without added parameters or extra computation.
Thus, we argue that time-dilated convolutions can also extend the receptive field in the
temporal dimension and can use dilated CNNs to extract the long-range temporal features.
Furthermore, this characteristic of dilation motivates us to adopt CNNs with different
dilation rates to model different temporal information—small rates for short times and
bigger rates for long times.

As shown in Figure 3, two convolutional operations—depthwise convolutions—with
different dilation rates in the temporal dimension aggregate different temporal information.
Such operations can be describe as follows:

Y = Conv(X, K, D), (1)

where Conv denotes the convolutional operation, X is the input, and D means the dilation
rate of the convolution. K is a dynamic kernel for each input X generated by the global
branch module [27]:

K = G(X) = so f tmax( f (W2, ReLU( f (W1, Φ(X))))), (2)

where Φ denotes the function that aggregates the spatial information by pooling, f is the
fully connected layers, and G denotes the global module, which generates an adaptive
kernel based on the whole temporal information.

Thus, we can describe it as follows:

Y = Conv(X, G(X), D). (3)

We can set different dilation rates, namely D, to model the different temporal scale
information without increasing the size of the kernel. A small dilation rate 1 is used to
capture short-range temporal information, while a large dilation rate 2 is used to capture
long-range temporal information.

Multiple scale temporal information is extracted using dilated convolutions with
varied dilation. This allows the network to capture information at different scales, with each
scale focusing on a different rate of motion. For example, a large-scale receptive field will be
sensitive to slow movements, while a small one will be more responsive to rapid changes in
the scene. By combining the multi-temporal information from different scales, the network
can effectively capture the dynamic motion of the object over time.

⊗⊗
T

H×W

(a) (b)

T
H×W

Figure 3. Multiple dilations. The utilization of dilated convolutions allows for an increase in the
receptive field size without incurring additional cost. DMT employs different dilation rates for the
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dilated convolutions to capture various temporal information. Specifically, (a) a small dilation rate
of 1 is used to capture fine-grained temporal information, while (b) a larger dilation rate of 2 is
utilized to capture more coarse-grained temporal information.

3.2.2. Partial Channel Modeling

We employed an partial channel modeling approach to efficiently integrate temporal
information at varying scales. This enables our model to combine the information from
multiple scales in a way that retains the relevant details while minimizing the amount
of additional computation required. This is particularly useful for applications where
computational efficiency is a priority, such as real-time video action analysis or large-scale
data processing.

The partial channel modeling strategy involves separating the feature map along the
channel dimension into different parts for the purpose of modeling different-scale temporal
information. Partial channels are utilized to extract multiple-scale temporal information
using dilated convolutions with varied dilation rates. The utilization of partial channels in
the extraction of multiple-scale temporal information, as opposed to utilizing multi-blocks,
is an efficient strategy that does not bring additional computations.

We separate the feature map into three parts in the channel axis:

X1, X2, X3 = Separate(X, γ), (4)

where Separate denotes the operation that divides the input by the channel dimension,
and γ is a hyperparameter that divides the feature map into three parts: X1 = X[0:γC),
X2 = X[γC:2γC), X3 = X[2γC:C).

The first and second parts focus on capturing short and long temporal semantic
information, respectively. The third part is used to balance the trade-offs between the other
parts and to maintain a good overall representation of the original input. This separation
is performed through depth-wise convolutional operations on the first and second parts
with different dilation rates as described above, without any operation on the third part,
followed by concatenation. These operations can be described as follow:

Y1 = Conv(X1, G1(X1), D1),

Y2 = Conv(X2, G2(X2), D2),
(5)

where G1 and G2 are two branches with the same structure to generate dynamic kernels for
the following convolution; D1 and D2 are the dilation rates 1 and 2 for the convolution.

It is simply concatenated with the first, second and third parts in the channel axis to
keep the original shape of the feature map:

Y = Concatenate(Y1, Y2, X3). (6)

The resulting feature maps are then fed into subsequent modules of the network for
further processing.

In summary, the use of different dilated convolutions allows the network to capture
information at multiple scales, each one of them focusing on a different rate of motion, while
retaining relevant details and minimizing computational cost compared with using multi-
block modeling. This strategy is useful for applications where computational efficiency is a
priority, such as real-time video analysis or large-scale data processing.

4. Results

We evaluated the proposed method for action recognition on three datasets:
FineGym99 [13], Something–Something V1 (SthV1) [14], and Kinetics400 [15]. To fur-
ther verify the ability of the method to model multi-temporal information, we conducted
an ablation study and empirical analysis on FineGym99. The results of our study indicate
an improvement in accuracy, demonstrating the efficacy of the DMT module in capturing
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multi-temporal information for action recognition tasks. This highlights the potential of this
approach to effectively integrate information at varying temporal scales. All experiments
were conducted using the MMaction2 [28] framework to ensure a fair comparison.

4.1. Datasets

FineGym99 consists of approximately 20 K training and 8 K validation annotated video
clips of various lengths, covering 99 action classes drawn from gymnastic videos. SthV1 is
a video dataset annotated with 1 of 174 action classes, which is split into 86,000 training
videos and 11,000 validation videos, and the durations of the videos vary from 2 to 6 s.
Kinetics400, a large-scale video-action recognition dataset, contains around 240 K training
and 19 K validation videos that last for about 10 s, which includes 400 action categories in
total. These datasets are valuable in evaluating the generalization and robustness of action-
recognition algorithms, providing a comprehensive testbed for performance analysis.

4.2. Training and Inference
4.2.1. Training

In our experiments, we utilized pre-trained weights from ImageNet as the initial
weights for our models. This approach is commonly used in deep learning as a means
of transferring knowledge from a pre-trained model to a new task. To ensure that the
models were well suited for action recognition, we trained them using both 8 and 16 frames
as inputs, allowing us to evaluate the impact of input length on performance. For the
FineGym99 and SthV1 datasets, we sampled frames at equal intervals from all the video
clips. For the Kinetics400 dataset, following the practice in [29], the frames were sampled
from 64 consecutive frames in the video. To augment the data, we applied techniques
such as resizing the shorter side of the frames to 256, applying multi-scale cropping,
and randomly flipping the frames horizontally. The resulting cropped frames were then
resized to 224 for network training. For FineGym99, we trained the models for 50 epochs
with an initial learning rate of 0.002, which was decreased by a factor of 10 at the 40th epoch.
For SthV1, we trained the models for 50 epochs with an initial learning rate of 0.01, which
was decreased by a factor of 10 at the 20th and 40th epochs. For Kinetic400, we trained the
models for 100 epochs with an initial learning rate of 0.01, which was decreased by a factor
of 10 at the 50th, 75th, and 90th epochs. To prevent overfitting, we used SGD [30] with a
momentum of 0.9 and a weight decay of 1× 10−3 for SthV1 (weight decay of 1 × 10−4 for
FineGym99 and Kinetics400) during training.

4.2.2. Inference

In order to fairly compare our model with other methods, we used different inference
schemes for the FineGym99, SthV1, and Kinetics400 datasets. For the FineGym and SthV1
datasets, we adopted a strategy that balances efficiency and accuracy in the inference
process. Specifically, we utilized a center crop of 224 × 224 in the spatial dimension and
performed single sampling in the time dimension to enable efficient inference. Additionally,
we employed three crops of 256 × 256 in the spatial dimension and carried out double
sampling in the time dimension to achieve accurate inference. This approach allows us to
effectively balance the trade-off between computational efficiency and recognition accuracy.
For the Kinetics400 dataset, we uniformly sampled 10 temporal clips, each with three
spatial crops of 256 × 256. We evaluated our model’s performance on the validation set
of Kinetics400.

4.3. Main Results
4.3.1. Result on FineGym99

In our experiments on FineGym99, as shown in Table 1, DMTNet achieved state-of-
the-art performance, outperforming the other methods. Despite only using RGB frames
as input, DMTNet outperformed TSM that uses RGB and optical flow frames. To ensure
efficiency and fair comparisons with the other models, we used a one-clip and one-crop
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evaluation strategy for DMTNet. However, to further demonstrate the high accuracy of
our method, we also adopted a two-sample strategy that used two clips and three crops for
evaluation. These strategies allowed us to effectively evaluate the performance of DMTNet
on FineGym99 and to compare it with other state-of-the-art approaches. The results of
our experiments clearly demonstrate the effectiveness and efficiency of MDTNet for action
recognition on FineGym99. Our method achieved superior performance without relying
on additional optical flow frames, making it a highly competitive and effective approach
for action-recognition tasks.

Table 1. FineGym99 result with other methods. These results that were not reported in the original
articles have surfaced in a subsequent study FineGym99 [13], and the results of TPN [10] and TAM [27]
are reproduced by us in MMactions2 [28], with the same evaluation metrics in eight frames.

Methods Backbone Pretrained Modality Mean Top-1

ActionVLAD [31] VGG-16 ImageNet RGB 50.1 69.5
TSN [23] BNInception ImageNet RGB 61.4 74.8
TRN [32] BNInception ImageNet RGB 68.7 79.9
TRNms [32] BNInception ImageNet RGB 68.8 79.5
TSM [25] ResNet-50 ImageNet RGB 70.6 80.4
I3D [15] ResNet-50 ImageNet RGB 63.2 74.8
I3D * [15] ResNet-50 Kinetics-400 RGB 64.4 75.6
NL I3D [29] ResNet-50 ImageNet RGB 62.1 73.0
NL I3D * [29] ResNet-50 Kinetics-400 RGB 64.3 75.3
TPN [10] ResNet-50 ImageNet RGB 53.3 75.0
TANet [27] ResNet-50 ImageNet RGB 80.6 85.8
STPG-Net (TSN) [33] ResNet-50 ImageNet RGB 83.4 88.6
STPG-Net (I3D) [33] ResNet-50 ImageNet RGB 82.6 87.9

TSN [23] BNInception ImageNet Flow 75.6 84.7
TRN [32] BNInception ImageNet Flow 77.2 85.0
TRNms [32] BNInception ImageNet Flow 77.6 85.5
TSM [25] ResNet-50 ImageNet Flow 80.3 87.1

TSN [23] BNInception ImageNet 2Stream 76.4 86.0
TRN [32] BNInception ImageNet 2Stream 79.8 87.4
TRNms [32] BNInception ImageNet 2Stream 80.2 87.8
TSM [25] ResNet-50 ImageNet 2Stream 81.2 88.4

DMTNet ResNet-50 ImageNet RGB 83.0 87.5
DMTNet 1 ResNet-50 ImageNet RGB 84.0 89.3

* I3D model without the incorporation of temporal downsampling. 1 The double sampling which use two clips
and three crops, each with a resolution of 256 × 256, can improve accuracy.

4.3.2. Results on Something–Something V1

As Shown in Table 2, our method achieves competitive accuracy compared with the
other models on SthV1. For fair comparison, we show the results by taking a single clip
with a center crop as input. In order to gain further insight into the capabilities of DMTNet,
we conducted additional evaluations by sampling two temporal clips with three spatial
crops. These two strategies adopted in the evaluation can both demonstrate the efficiency
and accuracy of DMTNet. DMTNet achieved a 1% improvement in performance with
8 frames and a 1.8% improvement with 16 frames compared to TANet, which is our baseline
that also uses the same attention strategy and adoptive kernel generating for depth-wise
convolution. TEFE [34] showed competitiveness at the 16-frame sampling, but DMTNet
exhibited significant results for real-time applications such as for 8-frame rapid inference.
The results were obtained by testing the validation set.
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Table 2. Something–Something V1 results with other methods. In the evaluation, we instantiated our
DMT with a ResNet50 backbone. To ensure a fair comparison, we employed an evaluation strategy
using 8 and 16 frames, and we compared our method to others that use similar-scale backbone
networks. The GFLOPs calculation is based on spatial resolutions of 224 × 224 and 256 × 256.

Methods Backbones Frames FLOPs Top-1 Top-5

TSN-RGB [23] BNInception 8 f 16 G 19.5 -
TRN-Multiscale [32] BNInception 8 f 33 G 34.4 -
S3D-G [6] Inception 64 f 71 G 48.2 78.7
ECO [35] BNIncep + Res18 16 f 64 G 41.6 -
ECOEnLite [35] BNIncep + Res18 92 f 267 G 46.4 -

TSN [23] ResNet50 8 f 33 G 19.7 46.6
I3D [15] ResNet50 32 f × 2 306 G 41.6 72.2
NL I3D [29] ResNet50 32 f × 2 334 G 44.4 76.0
NL I3D+GCN [29] ResNet50+GCN 32 f × 2 606 G 46.1 76.8
TSM [25] ResNet50 8 f 33 G 45.6 74.2
TSM [25] ResNet50 16 f 65 G 47.2 77.1
TSMEn [25] ResNet50 8 f + 16 f 98 G 49.7 78.5
bLvNet-TAM [36] bLResNet-50 16 f × 2 48 G 48.4 78.8
GST [37] ResNet50 8 f 30 G 47.0 76.1
GST [37] ResNet50 16 f 59 G 48.6 77.9
TEINet [38] ResNet50 8 f 33 G 47.4 -
TEINet [38] ResNet50 16 f 66 G 49.9 -
TPN [10] ResNet50 8 f - 49.0 -
TANet [27] ResNet50 8 f 33 G 47.3 75.8
TANet [27] ResNet50 16 f 66 G 47.6 77.7
STPG-Net (TSM) [33] ResNet-50 8 f × 2 35.9 G 49.3 77.8
STPG-Net (TSM) [33] ResNet-50 16 f × 2 69.4 G 50.7 78.8
TEFE [34] ResNet-50 8 f 90 G 46.7 75.3
TEFE [34] ResNet-50 16 f 181 G 50.4 78.9

DMTNet ResNet50 8 f 33 G 48.3 77.6
DMTNet ResNet50 16 f 66 G 49.4 78.4
DMTNet 1 ResNet50 16 f × 2 86 G × 2 51.0 79.0
DMTNet 2 ResNet50 8 f × 2 × 3 43 G × 6 49.9 78.4
DMTNet 2 ResNet50 16 f × 2 × 3 86 G × 6 51.2 79.0

1 Double sampling that uses two clips and one crop, each with a resolution of 256 × 256, can improve accuracy.
2 Double sampling that uses two clips and three crops, each with a resolution of 256 × 256, can improve accuracy.

4.3.3. Results8960/432 on Kinetics400

Table 3 shows the comparison with the state-of-the-art results for our DMTNet using
ResNet-50 as a backbone with 8- and 16-frame input samplings and testing on the validation
set. In comparison to the baseline TANet [27], we argue that we obtain a competitive
accuracy without higher improvement because the activities in Kinetics400 are more easily
inferred from a single frame, unlike the FingGym99 and SthV1 datasets that have a stronger
dependency on temporal modeling. Additionally, we used ResNet-50 as the backbone
for our DMTNet, which may have limited the performance compared to deeper network
architectures such as ResNet-101 and ResNet-152. However, on the FineGym99 and SthV1
datasets, which have a stronger dependency on temporal modeling, ResNet-50 as the
backbone for our DMTNet is able to achieve significant performance improvements as well.
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Table 3. Kinetics400 results with other methods. In the evaluation, we instantiated our DMT with
a ResNet50 backbone. To ensure a fair comparison, we employed an evaluation strategy using
8 and 16 frames, and we compared our method to others that use similar-scale backbone networks
and the same evaluation metrics.

Methods Backbones Training Input GFLOPs 1 Top-1 Top-5

TSN [23] InceptionV3 3 × 224 × 224 3 × 250 72.5 90.2
ARTNet [39] ResNet18 16 × 112 × 112 24 × 250 70.7 89.3
I3D [15] InceptionV3 64 × 224 × 224 108 × N/A 72.1 90.3
R(2+1)D [5] ResNet34 32 × 112 × 112 142 × 10 74.3 91.4

NL I3D [29] ResNet50 128 × 224 × 224 282 × 30 76.5 92.6
ip-CSN [40] ResNet50 8 × 224 × 224 1.2 × 10 70.8 -
TSM [25] ResNet50 16 × 224 × 224 65 × 30 74.7 91.4
TEINet [38] ResNet50 16 × 224 × 224 86 × 30 76.2 92.5
bLVNet-TAM [36] bLResNet50 48 × 224 × 224 93 × 9 73.5 91.2
SlowOnly [7] ResNet50 8 × 224 × 224 42 × 30 74.8 91.6
SlowFast4×16 [7] ResNet50 (4+32) × 224 × 224 36 × 30 75.6 92.1
SlowFast8×8 [7] ResNet50 (8+32) × 224 × 224 66 × 30 77.0 92.6
I3D * [15] ResNet50 32 × 224 × 224 335 × 30 76.6 -
TPN [10] ResNet50 8 × 224 × 224 - 75.5 92.1
TANet-50 [27] ResNet50 8 × 224 × 224 43 × 30 76.3 92.6
TANet-50 [27] ResNet50 16 × 224 × 224 86 × 12 76.9 92.9
STM [41] ResNet50 8 × 224 × 224 33 × 30 75.5 92.0
STM [41] ResNet50 16 × 224 × 224 67 × 30 76.9 92.7

DMTNet ResNet50 8 × 224 × 224 43 × 30 75.9 92.6
DMTNet ResNet50 16 × 224 × 224 86 × 30 77.1 93.0

* I3D model without the incorporation of temporal downsampling. 1 The complexity is expressed as GFLOPs per
view × number of views with spatial crops with 256 × 256 resolution.

4.4. Ablation Studies
4.4.1. Parameter Choices

We performed experiments to optimize the hyperparameters of our model by testing
different values of γ and varying numbers of dilated convolutions with different dilation
rates. Starting with a dilation rate of 1 for the first convolution, we increased the dilation
rate by 1 for each subsequent convolution. For example, when the number of dilated
convolutions was 3, the dilation rates were 1, 2, and 3, respectively. Our model and
instances are illustrated in Figure 2, and Table 4 displays the results of our hyperparameter
selection experiments. We found that using two dilated convolutions with a γ value of
1/8 yielded optimal results for FineGym99.

Table 4. Ablation study on hyperparameters.

Kernels 1 Proportion 2 Frames Top-1 Top-5 Mean

2 1/2 8 85.2 98.7 80.0
2 1/4 8 86.9 98.8 82.1
2 1/8 8 87.5 98.9 83.0
2 1/16 8 86.7 98.8 82.2

1 1/8 8 86.9 98.7 82.0
2 1/8 8 87.5 98.9 83.0
3 1/8 8 86.5 98.6 81.9
4 1/8 8 86.4 98.8 81.7

1 The number of dilated convolutions and kernels generated. 2 The proportion of channels allocated for each
dilated convolution.

4.4.2. Different Components

The DMT module incorporates two components to model temporal information: an
attention mechanism and the multiple-dilation (MD) operation. The attention mechanism
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learns weights that focus on the importance of both temporal and channel dimensions of the
feature map, while the MD operation models multiscale temporal information. The effective-
ness of the MD operation was evaluated and reported in Table 5. The results demonstrate
that the model that utilizes both an attention mechanism and MD operation performed the
best. Furthermore, the results indicate that the contribution of the MD operation to the
improvement in accuracy is significant. This suggests that while the attention mechanism
only weights the feature map, MD operation engages in both temporal interactions and
multi-timescale modeling.

Table 5. Ablation study on components.

Attention MD 1 Frames Top-1 Top-5 Mean

X 8 85.0 98.6 79.5
X 8 87.1 98.8 82.7

X X 8 87.5 98.9 83.0
1 Multiple-dilation operation modeling multi-temporal information.

4.4.3. Accuracy and Loss

As shown in Figure 4, we examined the validation accuracy and training loss during
the training process. DMT without MD (marked with w/o MD) and TAM have sim-
ilar attention and adaptive convolution strategies. Therefore, the performance curves
of TANet and DMTNet without the MD operation tend to converge during the training
process. Meanwhile, it can be observed that the validation accuracy of DMTNet contain-
ing the MD operation experiences a more rapid increase during the training process and
reaches a superior accuracy at the 50th epoch in comparison to both DMTNet without
the MD operation and TANet. Additionally, it is evident that the loss curve of DMTNet
with the MD operation exhibits a faster decline and reaches a more favorable minimum
value compared to DMTNet without the MD operation during the training process. These
results indicate the effectiveness of the MD operation in improving the performance of
the DMT module, as demonstrated by its faster increase in validation accuracy and ability
to reach a higher accuracy compared to models without this operation.
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Figure 4. Validation accuracy and training loss during the training process.
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4.4.4. Why FineGym99?

The selection of FineGym99 as the dataset for our experiments was based on several
key factors. First and foremost, the dataset demonstrates significant temporal variance in
the same category of actions across different videos, providing an ideal platform for evalu-
ating the competence of models in addressing temporal differences. With 99 fine-grained
action classes, FineGym99 is characterized by subtle differences in spatial appearance but
distinct movements [13]. In other words, the dataset presents a challenge in distinguishing
actions based on a few frames alone, emphasizing the need for a better understanding of
the action processes within the videos. This characteristic poses a challenge to accurately
classify actions based solely on their spatial appearance, highlighting the need for models
to effectively model the temporal information present in video data. As such, FineGym99
serves as an ideal platform to assess the capability of models in this regard. Our ablation
studies on FineGym99 provide valuable insights into the effectiveness of the DMT module
in capturing the diverse temporal information present in videos.

4.5. Empirical Analysis

To evaluate the performance of our DMT module, we conducted experiments on the
FineGym99 dataset, focusing on analyzing its accuracy on different variances of action
duration. We introduced the concept of class variance to describe the variation between
the durations of videos in the class. We then conducted an empirical analysis to study
the accuracy improvement achieved by our module on selected actions. Our analysis
showed that the DMT module effectively improves accuracy across various action classes.
These results demonstrate the potential of our module for enhancing the performance of
action recognition.

4.5.1. Class Variance

In the FineGym99 dataset, we conducted an investigation into the variance of the video
duration within each class and class variance. The duration of the videos varied among
the classes; for example, one class may have two videos containing 100 and 200 frames,
while another class may have two videos containing 50 and 100 frames. Despite that the
first difference in frame count of such two videos (200 − 100 = 100) is double compared
with the second one (100 − 50 = 50), the ratios are the same (200/100 = 100/50). To align
the ratios of videos within a class, normalization was applied by dividing the median
of the videos and then multiplying by 25 (the amount of frames per second) in order to
establish a uniform standard of speed rate across all classes. We counted the variance of
the resulting normalized duration as the variance of the class, providing an understanding
of the variability of video duration within each class. Class variance is defined as follows:

variance =
1
n

n

∑
i=1

(
fi − f̄

f̃
× 25

)2

, (7)

where n represents the number of videos in a class, f̄ represents the mean number of
frames per video, and f̃ represents the median number of frames per video, which is used
for normalization.

4.5.2. Performance Gain

As illustrated in Figure 5, an analysis was conducted to investigate the correlation be-
tween the improved accuracy and class variance. The improved accuracy refers to the differ-
ence between the prediction accuracy of using the MD strategy (described in Section 4.4.2)
and the prediction accuracy without using it for that class. Because of the variability be-
tween classes, the performance gain was not consistently linear across all classes. To further
investigate this trend, the classes demonstrated were grouped into four bins and sorted
by the absolute gain in each bin. The results revealed that the classes in the leftmost bin
demonstrated a significant improvement in accuracy, whereas the classes in the rightmost



Appl. Sci. 2023, 13, 6934 13 of 15

bin exhibited a relatively small improvement. Furthermore, it was observed that there is a
positive correlation between the absolute gains and class variance in each bin.
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Figure 5. Class variance and performance gain. Each yellow bar represents the variance of the class,
while the corresponding cyan bar demonstrates the performance improvement achieved in that class.

5. Conclusions

In this paper, we presented a novel approach to action recognition in videos by
introducing a dilated multi-temporal module. The proposed module is compatible with
existing backbones and has been shown to improve performance through a comprehensive
set of experiments and ablation studies. Additionally, the empirical analysis demonstrates
the effectiveness of the module for multiple temporal modeling, with a positive correlation
between the absolute gains and class variance. The proposed method can be a valuable
addition to the current methods in action recognition, and further research can be conducted
to explore its potential in other video-related tasks.
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