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Abstract: In cattle breeding, regularly taking the animals to the scale and recording their weight is
important for both the performance of the enterprise and the health of the animals. This process,
which must be carried out in businesses, is a difficult task. For this reason, it is often not performed
regularly or not performed at all. In this study, we attempted to estimate the weights of cattle
by using stereo vision and semantic segmentation methods used in the field of computer vision
together. Images of 85 animals were taken from different angles with a stereo setup consisting of
two identical cameras. The distances of the animals to the camera plane were calculated by stereo
distance calculation, and the areas covered by the animals in the images were determined by semantic
segmentation methods. Then, using all these data, different artificial neural network models were
trained. As a result of the study, it was revealed that when stereo vision and semantic segmentation
methods are used together, live animal weights can be predicted successfully.

Keywords: animal weight estimation; deep learning; image processing; semantic segmentation;
stereo vision

1. Introduction

Livestock farming has become an important industrial sector as well as a side oc-
cupation for people engaged in agriculture in rural areas. Thanks to practices such as
cooperatives, producer unions, registered breeding, artificial insemination practices, and
livestock supports, the place of the livestock sector in the country’s economy has started
to gain more importance. It is necessary to determine the weight of the animals raised
in cattle breeding farms and to follow them regularly. Increasing the profitability of the
business depends on the regular follow-up of live weight [1].

The most common method of measuring the live weight of farm animals is traditional
measurement using a scale. Although this direct approach is very accurate, it comes with
various difficulties and limitations. Firstly, animals are required to be moved to the site
of measurement scale, which can be time-consuming and laborious, especially in farms
with a large number of animals. Secondly, this whole operation with the separation of
animals from their natural environment causes stress, and therefore negatively affects their
health and milk yield. Due to those drawbacks of direct measurement approaches, a variety
of indirect measurement approaches have been proposed in the literature [2]. In indirect
measurement, the true value of animal live weight is estimated by a regression model
trained on various features extracted from measurements obtained from several sensors
such as 2D [3] and 3D cameras [4], thermal cameras [5], and ultrasonic sensors [6].

In this study, we consider the determination of the live weight of farm animals as a
computer vision and a regression problem. First, we obtain the images of farm animals us-
ing a stereo setup. Then, applying deep learning-based semantic segmentation techniques,
we extract distance and size data from images to feed into a regression model. Finally, we
obtain the weight estimates from the regression model as a proxy for the actual weights
of the animals. The main motivation for our study was to apply state-of-the-art image
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processing techniques using modern deep learning approaches to propose an effective
solution to the problem considered. The main contributions and novelty of our study can
be summarized as follows:

1. We propose an effective indirect measurement method for determining the live weight
of farm animals based on stereo vision and state-of-the-art semantic segmentation
techniques using deep learning.

2. Our method is particularly important in that animals’ body measurements are taken
without the need for separating them from their natural environments and thus not
adversely affecting their health and milk yield.

3. We propose a very simple yet effective system and setup composed of relatively cheaper
hardware that is accessible and affordable for many farms of small to large scale.

4. We investigate and compare the performances of three different Artificial Neural
Network (ANN) architectures in estimating live animal weight.

The rest of this paper is organized as follows. The related work is reviewed in Section 2.
In Section 3, we present the materials and methods used in the study. We present our
experimental results and discussion in Sections 4 and 5, respectively. Finally, in Section 6,
we conclude the paper.

2. Related Work

In this section, we provide essential background on livestock weight estimation with a
review of significant past research. Our focus in this review is on the work with indirect
measurement approaches based on image processing techniques. We also summarize them
in Table 1.

Table 1. Summary of the previous studies.

Reference Animal Type Image Type Method Environment

[7] cattle 2D segmentation + convex hull, random forest
regression fence system

[8] cow 2D ANN Regression -
[9] pig 2D ANN Regression -
[10] cattle 2D gabor filter, fuzzy logic -
[11] cow 3D segmentation fence system
[12] pig 3D segmentation, linear regression -
[13] cattle 3D segmentation, linear and non-linear regression -
[14] cow 3D Lasso regression fence system
[15] heifer 3D ellipse fitting, linear regression narrow passage
[16] cow 3D linear regression -
[17] pig 3D linear and non-linear regression -
[18] cow 3D full-body scan linear regression special scanning station
[19] cow thermal linear regression -
[20] pig stereo vision least squares regression fence system
[21] calf stereo vision linear regression -
[22] calf stereo vision linear regression -

[23] heifer 2D deep learning-based image processing and
regression -

[24] pig 3D deep learning-based image processing and
regression -

[25] pig 2D deep learning-based image processing and
regression -

There are several studies in the literature that are based on image processing techniques
on 2D images. In a study by Weber et al., the live body weight of cattle was estimated using
dorsal area images taken from above using a kind of fence system [7]. Their system first
performs segmentation and then generates a convex hull around the segmented area to
obtain features to feed a Random Forest-based regression model. Tasdemir and Ozkan
performed a study where they predicted the live weight of cows using an ANN-based



Appl. Sci. 2023, 13, 6944 3 of 17

regression model [8]. They determined various body dimensions such as wither height,
hip height, body length, and hip width applying photogrammetric techniques on images
of cows captured from various angles. Wang et al. developed an image processing-based
system to estimate the body weight of pigs [9]. Their main approach was to process
images captured from above to extract features such as area, convex area, perimeter, and so
on. Then, using these features, they trained an ANN-based regression model for weight
prediction. A Fuzzy Rule-Based System was also utilized in cattle weight estimation by
Anifah and Haryanto [10]. They obtained 2D side images of cattle from a very close
distance of 1.5 m. After applying the Gabor filter to the images, they obtained body length
and circumference as features. Finally, they designed a fuzzy logic system to estimate
body weight.

Three-dimensional imaging techniques also found application in body weight esti-
mation systems. Hansen et al. used a 3D Kinect-like depth camera to obtain the views of
cows from above as they passed along a fence [11]. Applying thresholding, they obtained
the segmented area of cows to reach a body weight estimate. In another study where a
3D Kinect camera was used, Fernandes et al. processed images taken from above of pigs
by applying two segmentation steps [12]. Then, they extracted features from segmented
images such as body area, volume, width, and height to feed a linear regression model
to obtain the weight estimate. In a similar study, Cominotte et al. developed a system
to capture images of cattle using a 3D Kinect camera [13]. They trained and compared
a number of linear and non-linear regression models by feeding them with features ex-
tracted from segmented images. In a study by Martins et al., a 3D Kinect camera was used
to capture images of cows from lateral and dorsal perspectives [14]. They used several
measurements obtained from these images to run a Lasso regression model to estimate
body weight. Nir et al. used a 3D Kinect camera as well to take images of dairy heifers
to estimate height and body mass [15]. Their approach was to fit an ellipse to the body
image to calculate some features. Then, they used these features to train various linear
regression models. Song et al. created a system to estimate the body weight of cows using a
3D camera system [16]. Similar to previous studies, they extracted morphological features
from 3D images such as hip height, hip width, and rump length. Combining these features
with some other cow data such as days in milk, age, and parity, they trained multiple linear
regression models. Another study that employed a 3D Kinect camera is the one conducted
by Pezzuolo et al. [17]. They captured body images of pigs using two cameras from top
and side, and then extracted body dimensions from images such as heart girth, length, and
height using image processing techniques. They developed linear and non-linear regression
models based on these dimensions to predict weight.

Advanced scanning devices were also introduced in body weight estimation studies.
Le Cozler et al. used a 3D full-body scanning device to obtain very detailed body images
of cows [18]. Then, they computed body measures from these 3D images such as volume,
area, and other morphological traits. Using these measures, they trained and compared
several regression models. Stajnko et al. developed a system to make use of thermal camera
images of cows to extract body features and then used them in several linear regression
models to estimate body weight [19].

Stereo vision techniques are also used in the determination of live animal weight.
Shi et al. developed a regression model to analyze and estimate the body size and live
weight of farm pigs under indoor conditions in a farm [20]. Their system was based
on a binocular stereo vision system and a special fence system through which animals
passed for taking the measurements. They segmented the images obtained from the stereo
system using a depth threshold and predicted the body length and withers height, then
the body weight. Some other notable studies using stereo vision are by Nishide et al. and
Yamashita et al. [21,22].

Deep learning-based approaches are very popular today due to their success in image-
processing applications. Deep learning is a special form of neural network algorithm.
Although it has achieved the most advanced results in many fields, its use in determining
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the weight of livestock is limited [23]. There are studies that apply deep learning algorithms
and determine the weight of pigs [24,25].

When we examine the prior research on the estimation of live body weight of farm
animals such as pigs, cattle, cows, and heifers, there is a common approach to capturing
images of animals that the animals are forced to move into special types of boxes or fences,
or they are forced to pass through a special passage. This operation is very similar to
traditional weight measurement with scales, and therefore, it also requires the separation of
animals from their natural environment, and it causes stress-related problems in their health
and milk yield [3]. Our proposed approach is superior to this in that animals’ pictures are
taken in their natural environments without the need for a special measurement station.
Additionally, our approach is totally contactless and pictures do not need to be taken
from very close proximity, unlike previous studies. One other advantage of our proposed
approach provides a simpler structure and setup composed of relatively cheaper hardware
that can be accessible and affordable for many farms of small to large scale. Last but
not least, we employ modern and state-of-the-art deep learning-based image processing
techniques in our system, which is one of the few such studies.

3. Materials and Methods
3.1. Overview of the Proposed Method

Our proposed system is composed of a number of steps performing various tasks
from raw data collection to model training. These steps are presented in Figure 1 as block
components and they are described in their respective subsections.

Data Collect�on Stereo V�s�on and Image Correct�on Semant�c Segmentat�on

Dataset Creat�onModel Tra�n�ng

Model 1 Tra�n�ng

Model 2 Tra�n�ng

Model 3 Tra�n�ng

Figure 1. General block diagram of the study.

3.2. Data Collection

In the study, a stereo setup was prepared to obtain animal images. The stereo mech-
anism is used to capture digital images with stereo vision techniques used in computer
vision and to obtain some inferences from these images. The setup used in the study is
shown in Figure 2.

During the data collection phase, 85 animals were photographed from the side and
the back with this setup. In total, 170 pairs and 340 stereo images were obtained. Using
stereo vision techniques on these images, the distance of each animal to the camera plane
was calculated.

Architectural components of the stereo setup are given in Figure 2 and their relation-
ships are presented in Figure 3. At the heart of the system is a Raspberry Pi 4 microcomputer
with 4 GB of RAM, where the Python code we developed runs to capture animal images.
It is powered by a mobile power supply. Two Microsoft Lifecam Studio Webcams are
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connected to it via two USB ports. A mobile phone with Android OS acts as a monitor and
it is connected to Raspberry Pi via Video Capture USB 2.0 to HDMI converter. Finally, a
wireless mini integrated keyboard and touchpad are used to control the device.

Figure 2. The stereo vision mechanism used in the study.

Rapberry P� 4

Stereo Camera

Power

Remote ControlMob�le Phone (Mon�tor) V�deo Capture Card

Figure 3. Architectural components of the stereo setup.

3.3. Stereo Vision and Image Correction

Stereo vision is a technique used to calculate the distance and position of a point to the
camera plane viewed by two cameras whose relative positions and projections are known.
A single camera is a mapping between a 3D world and a 2D image [26–28]. The geometry
of a stereo setup consisting of two identical cameras is shown in Figure 4.

Here, Ol and Or are the focal points of both cameras, f is the focal length of both
cameras, P is any point in space, Z is the distance of this point in space to the camera plane,
T is the translation value between the two cameras. xl and xr are reflections of the P point
on both viewing planes. This geometry creates similar triangles between the P− xl − xr

and P−Ol −Or points. The Z value can be easily calculated using Equation (1) and the
similarity theorem.

T − (xl − xr)

Z− f
=

T
Z
→ Z =

f T
xl − xr → Z =

f T
d

(1)

In Figure 4, the xl – xr value is expressed with the variable d. In stereo vision, the d
value is also expressed as disparity. In order to increase the accuracy of the stereo vision
calculation, stereo calibration is required. Stereo calibration is related to the rotation matrix
R, which defines the relative rotation between the coordinate systems of the two cameras,
and the transformation vector T, which defines the translation of the two camera centers.
After a correctly performed calibration, R and T matrices are obtained. By using the
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calibration matrices obtained as a result of stereo calibration, corrections or rectification
processes can be made on stereo images. Stereo rectification ensures that objects are
positioned correctly in pairs of images to match the stereo arrangement. Thus, the stereo
distance calculation is performed with less cost and higher accuracy. Stereo rectification
aligns the image pair for more reliable stereo distance results [28]. Example images obtained
with the help of stereo setup are shown in Figure 5.

P

ff

xl xr
Z

bOl Or

cxcx
xl xr

d=xl - xr

left right

Figure 4. Diagram of stereo camera system.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Rectified and unrectified stereo images: (a,e) Original image taken from left camera.
(b,f) Original image taken from right camera. (c,g) Rectified left camera view. (d,h) Rectified right
camera view.

3.4. Deep Learning and Semantic Segmentation

Deep learning, a sub-branch of machine learning, is used in many different fields. Deep
learning algorithms offer better results than traditional machine learning algorithms if more
data are provided. Therefore, object segmentation approaches such as Mask R-CNN [29]
based on deep learning can also be used to perform tasks such as weight estimation.
Semantic segmentation is used to determine object boundaries. In this study, deep learning
semantic segmentation methods were used on stereo images, and then the areas covered
by the animals in the images were determined. Semantic segmentation classifies each pixel
in the image as belonging to a class. Various models have been introduced in semantic
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segmentation over time: the Fully Convolutional Network [30], which is based on deep
learning; U-Net [31], which takes its name from its architecture and is used especially in
medical problems; and Deeplab v3+ [32], which showed the highest success in segmentation
tasks in the PASCAL VOC 2012 dataset in 2018. In this study, the PASCAL VOC 2012 dataset
and Deeplab v3+ segmentation model were used to perform segmentation tasks on the
rectified images. Deeplab v3+ architecture is shown in Figure 6.

Figure 6. Deeplab v3+ Architecture.

The segmentation results on the images taken with the model used are shown in
Figures 7 and 8.

(a) (b) (c)

(d) (e) (f)

Figure 7. Segmentation results in stereo images taken from the side: (a) Left camera input image;
(b) Left camera segmentation map; (c) Left camera segmentation overlay; (d) Right camera input
image; (e) Right camera segmentation map; (f) Right camera segmentation overlay.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Segmentation results in stereo images taken from the rear: (a) Left camera input image;
(b) Left camera segmentation map; (c) Left camera segmentation overlay; (d) Right camera input
image; (e) Right camera segmentation map; (f) Right camera segmentation overlay.

3.5. Dataset Creation

After completing the segmentation processes in all images, the number of pixels
occupied by the animals was calculated in the segmentation maps of the images from
the left and right cameras for each animal. The distance of each animal to the camera
plane was calculated by stereo calculation technique using segmentation maps. In order to
calculate the distance of the animal to the camera plane from the segmentation maps, the
position of the left border of the animal in pixels on the X-axis was determined in each of
the image pairs. The disparity (d) value was calculated by subtracting the limit value in
the segmentation map from the left camera and the limit value in the segmentation map
coming from the right camera. Figure 9 shows the pixel numbers of the areas covered by a
sample animal in the stereo image pair and the X-axis value of the left border of the animal
in both images.

(a) (b)

Figure 9. Disparity value and pixels count of the animal in the image: (a) Left camera segmentation
map; (b) Right camera segmentation map.

The stereo distance calculation for a single animal is conducted as follows. As seen in
Figure 9, if the XL (Left camera view) and XR (Right camera view) values are subtracted
from each other, the disparity (d) value is found as 23 pixels. Along with this value, the
distance value can be easily calculated using the focal length ( f ) from the stereo calibration
matrices and the shift value (T) between the cameras from the translation matrix. As a result
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of the camera calibration processes, the focal length distance was obtained as 646.45 cm.
The translation T value for our setup is 9.92 cm. The stereo distance calculation for the
example animal in Figure 8 was obtained as in Equation (2).

Z =
f T
d
→ 646.45× 9.92

23
= 278.82 (2)

After calculating the distance values for each animal, the number of pixels occupied
by the animals in the images was also determined. Using all these values, a dataset
consisting of 85 rows was created for a total of 85 animals. The created dataset is shown in
Tables 2 and 3, and the distances are written in meters.

Table 2. Dataset created using semantic segmentation and stereo images.

ID
Left Side
Shooting

(Pixel)

Right Side
Side

Shooting
(Pixel)

Side Pixel
Difference

(Pixel)

Side
Distance

(m)

Left Back
Shooting

(Pixel)

Right
Back

Shooting
(Pixel)

Back Pixel
Difference

(Pixel)

Back
Distance

(m)

Real
Weight

(kg)

1 28,359 28,270 11 5.83 13,487 11,858 16 4.00 448
2 23,355 23,495 10 6.41 6915 7563 10 6.41 408
3 53,850 54,433 23 2.78 25,761 23,903 22 2.91 464
4 22,388 22,388 10 6.41 20,769 21,169 18 3.56 453
5 32,924 33,902 16 4.00 14,208 12,965 15 4.27 399
6 27,173 27,186 14 4.58 11,872 10,927 12 5.34 385
7 16,891 16,602 8 8.01 15,219 18,846 16 4.00 421
8 55,587 54,904 18 3.56 14,044 14,221 20 3.20 503
9 28,354 28,732 9 7.12 5688 5465 7 9.16 529

10 60,146 59,403 34 1.88 9819 10,676 24 2.67 291
11 24,671 25,601 14 4.58 8627 9039 12 5.34 337
12 35,293 35,112 13 4.93 17,373 17,537 18 3.56 490
13 7756 8485 6 10.69 7732 7686 13 4.93 259
14 37,897 38,291 14 4.58 16,978 17,075 21 3.05 470
15 15,376 16,865 8 8.01 20,588 19,499 15 4.27 446
16 45,773 46,440 17 3.77 28,808 30,308 25 2.56 519
17 17,356 17,062 9 7.12 16,494 16,498 10 6.41 474
18 64,575 63,646 27 2.37 10,830 10,623 20 3.20 388
19 22,841 23,861 9 7.12 7100 6923 9 7.12 449
20 21,445 20,735 9 7.12 10,806 10,364 10 6.41 453
21 17,529 16,663 8 8.01 12,026 11,422 13 4.93 405
22 14,031 14,031 7 9.16 8818 9227 11 5.83 376
23 10,215 10,117 6 10.69 9339 8508 7 9.16 395
24 22,478 22,313 9 7.12 7753 9370 10 6.41 445
25 26,216 25,909 13 4.93 8568 9541 12 5.34 367
26 16,398 16,649 8 8.01 2442 2194 2 32.06 429
27 17,876 17,985 10 6.41 12,635 10,864 9 7.12 413
28 38,094 38,575 14 4.58 26,909 29,423 25 2.56 515
29 65,217 63,783 26 2.46 38,327 38,258 28 2.29 513
30 17,561 18,930 11 5.83 10,185 9289 12 5.34 329
31 42,775 42,389 18 3.56 5799 6216 10 6.41 395
32 22,861 22,793 8 8.01 8307 8269 8 8.01 518
33 21,796 21,849 8 8.01 8665 8652 9 7.12 491
34 17,212 16,648 8 8.01 9280 9070 9 7.12 418
35 39,769 39,128 18 3.56 22,879 21,255 24 2.67 414
36 26,027 26,613 13 4.93 18,094 17,368 16 4.00 417
37 72,247 71,788 30 2.13 45,864 45,521 59 1.08 423
38 53,922 53,663 20 3.20 12,417 13,487 20 3.20 444
39 23,689 23,606 15 4.27 12,118 12,222 14 4.58 326
40 16,112 16,544 9 7.12 5726 5370 5 12.82 389
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Table 2. Cont.

ID
Left Side
Shooting

(Pixel)

Right Side
Side

Shooting
(Pixel)

Side Pixel
Difference

(Pixel)

Side
Distance

(m)

Left Back
Shooting

(Pixel)

Right
Back

Shooting
(Pixel)

Back Pixel
Difference

(Pixel)

Back
Distance

(m)

Real
Weight

(kg)

41 52,820 51,293 25 2.56 18,313 18,414 23 2.78 384
42 47,105 47,196 20 3.20 25,168 25,835 22 2.91 468
43 22,610 22,732 11 5.83 3485 3543 6 10.69 352
44 85,009 84,174 50 1.28 15,174 14,346 25 2.56 304
45 44,624 44,198 20 3.20 10,000 10,126 11 5.83 418
46 47,577 47,492 18 3.56 7215 6680 10 6.41 444
47 27,168 27,367 10 6.41 5648 5795 7 9.16 472
48 43,968 44,156 20 3.20 28,421 29,072 25 2.56 447
49 27,869 29,934 18 3.56 7089 6826 4 16.03 446
50 17,976 19,213 9 7.12 11,372 10,612 7 9.16 484
51 28,860 29,024 11 5.83 7773 7242 8 8.01 475
52 44,589 44,200 18 3.56 6112 5523 10 6.41 406
53 35,882 36,441 14 4.58 5838 5705 9 7.12 429
54 15,853 16,071 7 9.16 7081 7606 7 9.16 443
55 26,192 25,951 11 5.83 8405 7094 10 6.41 419
56 85,252 84,638 36 1.78 26,276 28,467 37 1.73 413
57 39,223 38,667 17 3.77 9791 9380 14 4.58 396
58 33,084 32,123 10 6.41 4714 4567 9 7.12 503
59 37,999 37,285 15 4.27 15,396 15,864 18 3.56 450
60 34,845 34,814 14 4.58 5951 5853 12 5.34 397
61 73,264 72,385 25 2.56 4873 4534 10 6.41 451
62 67,691 68,701 40 1.60 6715 7211 30 2.13 258

Table 3. Dataset created using semantic segmentation and stereo images (cont.)

ID
Left Side
Shooting

(Pixel)

Right Side
Side

Shooting
(Pixel)

Side Pixel
Difference

(Pixel)

Side
Distance

(m)

Left Back
Shooting

(Pixel)

Right
Back

Shooting
(Pixel)

Back Pixel
Difference

(Pixel)

Back
Distance

(m)

Real
Weight

(kg)

63 12,482 12,607 7 9.16 3774 3962 3 21.37 410
64 24,641 24,474 12 5.34 21,629 21,273 19 3.37 423
65 20,079 19,978 8 8.01 5726 5492 6 10.69 458
66 17,766 17,845 8 8.01 13,943 13,465 11 5.83 462
67 16,253 16,783 7 9.16 6386 6398 7 9.16 436
68 18,592 18,507 8 8.01 6002 6056 8 8.01 409
69 19,406 19,573 25 2.56 5575 5958 26 2.46 133
70 45,515 44,650 18 3.56 17,590 17,739 16 4.00 481
71 13,850 13,713 22 2.91 6753 6239 18 3.56 131
72 26,396 27,250 18 3.56 13,920 12,953 18 3.56 298
73 37,666 37,200 14 4.58 8633 8590 14 4.58 438
74 24,942 24,704 10 6.41 11,840 12,272 14 4.58 445
75 28,717 28,191 12 5.34 6477 6478 6 10.69 460
76 20,346 19,837 12 5.34 4541 4541 10 6.41 283
77 35,896 36,164 16 4.00 9569 8195 12 5.34 398
78 30,093 30,029 12 5.34 11,402 9606 12 5.34 450
79 24,082 23,725 14 4.58 7662 7535 14 4.58 300
80 16,450 16,536 9 7.12 4717 4537 9 7.12 312
81 13,613 13,582 7 9.16 7379 7372 10 6.41 357
82 40,195 40,141 22 2.91 3831 3852 10 6.41 294
83 21,014 20,703 8 8.01 9017 8616 10 6.41 465
84 18,571 18,758 8 8.01 5314 5374 5 12.82 453
85 16,099 16,051 7 9.16 9067 9352 11 5.83 417
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3.6. Model Training

In the images obtained, the number of pixels in the area occupied by the animal, that
is, the segmentation data, does not make any sense on its own. Even if an animal is light in
weight, it will take up a lot of space in the image if it is viewed close to the plane of the
camera. The opposite is also possible. Pixel numbers are directly proportional to weight,
and disparity value is inversely proportional to weight. An increase in the disparity value
means that the animal is viewed from a point close to the camera plane. In the study,
distance-related errors are eliminated, since the stereo camera setup is calibrated. In the
images obtained, the values were made meaningful by considering the stereo distance
variable. When the prepared dataset is examined, it is seen that there are data at very
different scales from each other. While the pixel numbers in the image are expressed in
thousands, the stereo distances are expressed in a few meters, and the disparity values are
expressed in the range of 5 and 30 pixels. Training a neural network with such inputs may
take a lot of time and the network may not be successful enough. Data at such different
scales should be expressed as values close to each other by normalization techniques. The
main reason for this is that these features are multiplied by the model weights. Data
normalization also accelerates the training time by transforming the raw data into a specific
range. Data normalization is extremely useful for modeling applications where the inputs
are often at very different scales [33]. In this study, the Z-score normalization technique
was used. Here, the Z-score value is calculated by Equation (3), where µ represents the
arithmetic mean of the data, σ standard deviation, and Zk the data to be normalized.

Z
′
k =

Zk − µ

σ
(3)

In the study, three different artificial neural networks were trained after the data
obtained from the images taken from different directions were normalized. The first
network (ANN-1) is trained with image data taken from the side, the second network
(ANN-2) from the back, and the third network (ANN-3) from both directions. A total of
90% of the dataset is reserved for training artificial neural networks and 10% for testing. The
architecture of artificial neural networks used in the proposed system is shown in Table 4.

Table 4. Properties of artificial neural networks used in the proposed system.

Architecture Num. of Elements
in Input Layer

Num. of Nodes in
the First Hidden

Layer

Num. of Nodes in
the Second

Hidden Layer

Num. of Elements
in Output Layer

Total Num. of
Parameters in the

Network

ANN-1 3 64 64 1 4488
ANN-2 3 64 64 1 4488
ANN-3 8 64 64 1 4818

ANN-1 and ANN-2 artificial neural networks used for training are fully connected
networks with a three-element input layer, two hidden layers consisting of 64 nodes, and
an output layer consisting of one element. Each network has 4488 parameters. The ReLU
function is used as the activation function, the mean absolute error function is used as the
loss function, the Adam optimizer is used as the optimizer, and a constant value of 10−3

is used as the learning rate value. A total of 1000 training steps were seen as sufficient.
The ANN-3 network has the same features as other networks. It covers the entire dataset.
Therefore, the number of inputs is 8 and the total number of parameters is 4818.

3.7. Recommended Method for Weight Prediction

The performed study is a hybrid system that makes weight estimation using semantic
segmentation and stereo distance data together. The basic operation steps of this system
for weight predictions are shown in Figure 10.
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Figure 10. Basic Operation Steps for Weight Prediction.

4. Results

In this section, we present the prediction performances of the neural networks trained
in a comparative manner. The performance levels of the networks are shown in Figure 11.

(a) (b) (c)

Figure 11. Loss graphs of artificial neural networks: (a) Loss graph of ANN-1 network; (b) Loss
graph of ANN-2 network; (c) Loss graph of ANN-3 network.

The success rate of the ANN-1 network is higher than the ANN-2 network. The
reason for this is the inability of the images taken from the back to reveal the general
body dimensions of the animal. On the other hand, the performance rate of the ANN-3
network is higher than the other two networks. This is because the network was trained
with data from images taken from both angles of animals. Randomly, 10% of the taken
images were not used in the training but in the testing of the estimated animal weights.
Weight estimation was made separately for the three proposed networks and the results
are shown in Tables 5–7.
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Table 5. Prediction values on the test dataset of ANN-1 network.

ID Left Side
Shooting (Pixel)

Right Side
Shooting (Pixel)

Side Pixel
Difference (Pixel) Real Weight (kg) Estimated

Weight (kg) Difference (kg)

9 60,146 59,403 34 291 275.08 15.17
21 14,031 14,031 7 376 418.70 −42.70
36 72,247 71,788 30 423 421.77 1.22
44 44,624 44,198 20 418 396.78 21.21
47 43,968 44,156 20 447 394.97 52.02
64 20,079 19,978 8 458 446.57 11.42
67 18,592 18,507 8 409 434.73 −25.73
70 13,850 13,713 22 131 139.36 −8.36
81 40,195 40,141 22 294 324.35 −30.35

Table 6. Prediction values on the test dataset of ANN-2 network.

ID Left Back
Shooting (Pixel)

Right Back
Shooting (Pixel)

Back Pixel
Difference (Pixel) Real Weight (kg) Estimated

Weight (kg) Difference (kg)

9 9819 10,676 24 291 302.66 −11.66
21 8818 9227 11 376 415.95 −39.95
36 45,864 45,521 59 423 632.53 −209.53
44 10,000 10,126 11 418 422.55 −4.55
47 28,421 29,072 25 447 492.18 −45.18
64 5726 5492 6 458 441.39 16.60
67 6002 6056 8 409 425.11 −16.11
70 6753 6239 18 131 332.30 −201.30
81 3831 3852 10 294 391.84 −97.84

Table 7. Prediction values on the test dataset of ANN-3 network.

ID
Left Side
Shooting

(Pixel)

Right Side
Shooting

(Pixel)

Side Pixel
Difference

(Pixel)

Side
Distance

(m)

Left Back
Shotting
(Pixel)

Right
Back

Shotting
(Pixel)

Back Pixel
Difference

(Pixel)

Back
Distance

(m)

Real
Weight

(kg)

Estimated
Weight

(kg)

Difference
(kg)

9 60,146 59,403 34 1.88 9819 10,676 24 2.67 291 281.71 9.29
21 14,031 14,031 7 9.16 8818 9227 11 5.83 376 389.12 −13.12
36 72,247 71,788 30 2.13 45,864 45,521 59 1.08 423 566.15 −143.15
44 44,624 44,198 20 3.20 10,000 10,126 11 5.83 418 389.92 28.08
47 43,968 44,156 20 3.20 28,421 29,072 25 2.56 447 438.57 8.43
64 20,079 19,978 8 8.01 5726 5492 6 10.68 458 456.09 1.91
67 18,592 18,507 8 8.01 6002 6056 8 8.01 409 430.47 −21.47
70 13,850 13,713 22 2.91 6753 6239 18 3.56 131 130.8 0.2
81 40,195 40,141 22 2.91 3831 3852 10 6.41 294 272.02 21.98

As seen in Table 5, the estimations for the test data made by the ANN-1 network vary
between approximately ±50 kg. Note that ANN-1 is only trained with data obtained from
the side. In Table 6, the error amounts in the estimations made by the ANN-2 network,
which was trained only with photographs taken from the back, vary between approximately
±50 kg. However, the error rates increased dramatically in animals with id numbers 36,
70, and 81. This significantly reduces the accuracy of the network trained with images
taken from behind. The reason for this is the inability of the images taken from the back
to reveal the general body dimensions of the animal. Table 7 shows the results obtained
from the ANN-3 network trained with the entire dataset. In most cases, the predictions
were made with a margin of error of approximately ±20 kg, and much more successful
results were obtained than the first two networks. The animal image taken in prediction
number 36 with a high amount of error is very close to the camera plane. The image of the
animal taken very close to the camera plane causes serious errors as it cannot be adequately
represented in the dataset. For this reason, it would be more appropriate to take the images
to be obtained at reasonable distances not very close to the camera plane.
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In this study, the K-fold cross-validation technique was used to test the validity of the
proposed method and the accuracy of the results obtained. K-fold cross-validation is one of
the methods of splitting the dataset for evaluation of classification models and training of
the model [34,35]. This method is used to generate random layers. Each layer represents a
combination of training data subset and test data subset sections for training and validating
machine learning models. For each layer, a certain accuracy value is obtained for the model.
For example, in the case of 10-fold cross-validation, the overall accuracy is estimated by
averaging the accuracy values produced by all 10 folds. For any dataset with a given
number of samples, there are many possible combinations of training and test datasets that
can be generated. Some of these datasets are used to train the model and some are used to
test the success of the model. Therefore, it allows each divided part to be used separately
for both training and testing. The representation of the K-fold cross-validation method for
K = 10 is given in Figure 12.

Figure 12. General structure of the k-fold cross-validation method.

Training and testing the model up to K can take a long time and can be costly in terms
of computation and time for large datasets. On the other hand, it provides a reliable result.
In this study, the K value was accepted as 10, and validity tests were carried out. Here, the
test and training images at each step are meaningfully segmented. A similar situation was
repeated at each K step and validity tests were performed on different images. In this study,
the validity of the ANN-3 architecture, which was trained using both side and rear images,
was tested with K-fold. The results obtained are given in Figure 12. When the predicted
values obtained in each K step are compared with the actual values in Table 8, it can be
concluded that the proposed model is quite successful. It is thought that 85 animals are
not enough to successfully train a neural network. In addition, the weight distribution of
the animals, whose images were taken with the stereo device, is generally around 400 kg.
Therefore, the estimates made by nets are generally more successful for animals weighing
400 kg. Another weakness of the dataset we created is that animal images are generally
taken from 6 to 8 m away. During the image acquisition phase, it was mostly not possible to
take images from closer distances, such as 2–3 m, due to frightening the animals. At these
distances, stereo vision works more successfully than at distances of 6–8 m. Utilizing all
this information, more successful results can be obtained from a trained network with more
animal images whose weights are normally distributed. In order to train a neural network
successfully, the dataset on which the neural network is trained must be large enough, that
is, it must consist of a sufficient number of observations [36]. All known possible variations
of the problem area should be added to the dataset. Adequate data delivery to a system
is necessary to obtain a robust and reliable network [37,38]. For example, the generated
third neural network is trained with data created with images taken from both the side
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and the back. The amount of error in the weight estimations made by this neural network
decreased to the range of ±20 kg.

Table 8. Example of a table showing that its caption is as wide as the table itself and justified.

K Real Weight Estimated Weight

1 399.8889 403.3733
2 403.8889 395.3233
3 390.6667 407.6100
4 378.5556 381.4744
5 451.0000 447.5600
6 436.0000 431.0100
7 434.5000 436.4238
8 384.8750 382.3738
9 380.2500 410.3075
10 459.8750 468.5738

Average 411.9500 416.4030

5. Discussion

In this study, an attempt was made to estimate live animal weight by using stereo
vision and semantic segmentation methods in the literature. Within the scope of the study,
a stereo vision device was prepared, and stereo images of 85 cattle whose weights were
known beforehand were obtained with this setup. Segmentation maps of the animals in
these images were created with the Deeplab v3+ deep learning model, which is one of the
semantic segmentation models.

Using the segmentation maps, the number of pixels covered by each animal in the
image and their distance to the camera plane were calculated using the stereo distance
calculation technique. A dataset was created by combining these obtained data. The dataset
was created from the data obtained from photographs of animals taken from two different
angles, from the side, and from the back.

Using this dataset, three different artificial neural networks, which are architecturally
similar to each other, are trained. When the trained neural networks were compared, it
was seen that the third neural network trained with the whole dataset was significantly
more successful than the first two neural networks. At this point, it is clear that neural
networks to be trained with datasets created with images taken from more angles will be
more successful. For example, top images of cattle contain important information about the
animal’s body structure. It can be said that networks trained with a dataset that includes
top-shot data, if possible, will be more successful.

In addition, it is possible to say that neural networks will make more successful pre-
dictions if the quality and quantity of the dataset are increased. In the resulting estimations,
although rare, dramatically incorrect estimations were observed. Weight estimations of
animals that were limited in number in the dataset, that were light in weight, and whose
stereo distance was very different from the rest of the dataset were found to be relatively
unsuccessful. Therefore, it is clear that creating a more comprehensive and homogeneously
distributed dataset will significantly increase the performance of the models.

Moreover, characteristics such as race and gender of animals directly affect their
weight. For example, if the body sizes of two animals of different breeds are assumed to be
exactly the same, it will be seen that the weights of these two animals are different from
each other. At this point, in the study, a deep learning method that recognizes the breed
and gender of the animal can be developed and the performance in weight estimation can
be increased with a separate training model for each breed.

6. Conclusions

In this study, we considered the problem of live weight prediction of farm animals from
a computer vision perspective. We applied state-of-the-art stereo vision and deep learning-
based semantic segmentation using the setup we created that consists of a Raspberry Pi 4



Appl. Sci. 2023, 13, 6944 16 of 17

microcomputer and two identical cameras. We used this setup to capture images of 85 farm
animals taken from different angles. Applying stereo distance computation and semantic
segmentation, we created a dataset to train various ANN models. Our test results of the
trained ANNs suggest that our proposed system achieves good performance in terms of
weight prediction. The most significant feature of the system is that it does not require
the separation of animals from their natural environment to measure their weight, unlike
traditional systems. This is particularly important because the separation is known to
cause stress and negatively affect health and milk yield. Therefore, our system provides a
convenient and contact-free weight measurement with minimal measurement error. The
main limitation of our study is the number of images captured from real farm environments.
It would be possible to achieve more accurate measurement predictions if more data were
available and ANNs were trained with more data.
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