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Abstract: Data-driven models have been successfully applied to flood prediction. However, the
nonlinearity and uncertainty of the prediction process and the possible noise or outliers in the data set
will lead to incorrect results. In addition, data-driven models are only trained from available datasets
and do not involve scientific principles or laws during the model training process, which may lead to
predictions that do not conform to physical laws. To this end, we propose a flood prediction method
based on data-driven and knowledge-guided heterogeneous graphs and temporal convolutional
networks (DK-HTAN). In the data preprocessing stage, a low-rank approximate decomposition
algorithm based on a time tensor was designed to interpolate the input data. Adding an attention
mechanism to the heterogeneous graph module is beneficial for introducing prior knowledge. A self-
attention mechanism with temporal convolutional network was introduced to dynamically calculate
spatiotemporal correlation characteristics of flood data. Finally, we propose physical mechanism
constraints for flood processes, adjusted and optimized data-driven models, corrected predictions
that did not conform to physical mechanisms, and quantified the uncertainty of predictions. The
experimental results on the Qijiang River Basin dataset show that the model has good predictive
performance in terms of interval prediction index (PI), RMSE, and MAPE.

Keywords: data-driven and knowledge-guided; tensor decomposition; heterogeneous graph;
temporal convolution

1. Introduction

Effective flood forecasting methods contribute to flood control and disaster emer-
gency management [1]. From the perspective of data analysis, flood forecasting based on
data-driven models is essentially time-series data prediction [2]. At present, flood time-
series data prediction research based on the data driven model mainly faces the following
challenges [3]. The inherent nonlinearity of the flood process and the uncertainty of the
predicted results bring risks to flood control decision-making. The DL model is only trained
from available datasets and cannot reasonably utilize scientific principles or laws during
the model training process, which may lead to unreasonable predictions. In the actual
measurement, the quality of the collected data cannot be guaranteed, and the data may
have noise or outliers. Due to the data-driven nature of the learning process, the robustness
and versatility of the learning results are poor, resulting in completely incorrect results [4].
Therefore, many researchers have proposed using data-driven and knowledge-guided
models to address the aforementioned challenges [5].

The effective implementation of the above data-driven and knowledge-guided pre-
diction theory relies on machine learning prediction models. Among these, depth neural
networks are one of the most representative machine learning methods. Flood prediction
methods of deep neural networks mainly include RNN-based prediction methods [6],
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LSTM-based prediction methods [7], and GRU-based prediction methods [8]. The above
intelligent methods mainly start from the perspective of Euclidean data regression, ignoring
the important physical structure of the basin itself and the spatiotemporal characteristics
of data features. Accurate flood prediction needs to be based on the physical structure of
the watershed itself and the spatiotemporal characteristics of the data [9]. The prediction
method based on the graph neural network model [10] extends the deep learning model
to non-Euclidean space, and can extract the spatiotemporal characteristics of the flood
physical field in parallel. It fully considers the physical structure within the watershed,
namely, various spatial topological connections. At present, research on flood forecasting
methods based on graph neural networks mainly focuses on isomorphic and heteroge-
neous graphs [11]. Among these, isomorphic graphs only have one type of node and edge,
which corresponds to the field of flood prediction, that is, only one type of station and its
runoff direction relationship are predicted, which clearly does not comply with the physical
mechanism of flood basins. Considering the spatiotemporal complexity of flood processes,
modeling them as heterogeneous maps containing multiple types of nodes and edges can
achieve more detailed and comprehensive flood processes. By combining the different
attribute features of different hydrological stations to extract a wide range of spatiotemporal
features, more accurate flood spatiotemporal prediction can be achieved [12].

Recurrent neural networks are used to solve the problem of training sample inputs
as continuous sequences with different sequence lengths. However, it has short-term
memory problems, cannot handle long input sequences, and is prone to gradient explosion
or gradient disappearance [13]. The gradient problem of Recurrent Neural Network (RNN)
has been solved for a certain gradient problem in Long Short-Term Memory (LSTM), but
the requirements for data must be time-dependent. In addition, LSTM is unable to perform
parallel operations and has very high hardware requirements during the training process.
Temporal Convolutional Network (TCN) can run in parallel. Their flexible receptive field
and stable gradient are more suitable for capturing the characteristics of long time-series
data [14]. In addition, the convolutional core of the TCN network is shared in one layer
and the memory usage during training is low [15].

Currently, research on data-driven and knowledge-guided floods mostly relies on
deterministic point prediction to output prediction results. This method may not eliminate
absolute prediction errors and lacks effective evaluation methods [16]. Interval predic-
tion can effectively quantify the uncertainty of flood forecasting, thereby more reasonably
estimating potential uncertainties and risks. At present, the representative interval predic-
tion method is upper- and lower-bound estimation (LUBE) [17]. Research on this mainly
focuses on the construction of interval prediction functions and the optimization of the
training process. However, the above methods may still require multiple iterations to use
the PI evaluation index as the objective function, resulting in high computational resource
consumption. In addition, the above method performs interval prediction without losing
the original input data. When the input data are partially missing, the output accuracy of
the above model may be affected to a certain extent. The phenomenon of missing original
input data is common in the field of flood forecasting [18].

With the lack of input data in flood forecasting, the current solutions mainly include
two types. One method is to directly delete the missing data in the entire section [19].
Another method is to use algorithms to convert incomplete data into complete data, which
is the data interpolation method [20]. At present, the more popular technology in the field
of flood time-series data preprocessing is tensor-based decomposition and interpolation
technology [21]. Chen et al. [22] completed data interpolation work based on the Tucker
decomposition three-process framework by discovering spatiotemporal patterns and un-
derlying structures from incomplete data. Zhou et al. [23] proposed a new incremental
algorithm, while Che et al. [24] introduced the idea of adaptive randomization to handle
it. Yuan et al. [25] completed tensor processing using the low-rank structure of the TR
potential space, which is robust to model selection. In addition, we note that in the face of
time-varying massive hydrological heterogeneous and complex data, the above incremental
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methods do not deeply consider the sparsity of data decomposition. This will affect the
accuracy of model predictions and the overall computational resource consumption of the
prediction model.

The main limitations of flood time-series prediction based on data-driven models are
as follows. Intelligent data-driven flood prediction models are easily affected by data noise
in practical engineering. Then, the presence of missing data makes the model prone to
unreasonable or unrealistic predictions, and existing tensor preprocessing methods cannot
effectively solve the sparsity problem of flood data. In addition, data-driven models only
consider flood prediction from the perspective of data, lacking consideration and research
on the spatiotemporal characteristics of the flood process itself, and cannot avoid prediction
errors caused by a lack of physical knowledge. For this reason, we propose data-driven and
knowledge-guided heterogeneous graphs and temporal convolution networks for flood
forecasting. The main contributions of this article are summarized as follows.

(1) This article proposes a data-driven and knowledge-based dual-drive flood prediction
model, which optimizes the initial conditions of the model through heterogeneous
graph modules and introduces prior knowledge of the watershed. TCN with in-
tegrated attention is used to fit the model, significantly reducing data noise and
enhancing the robustness of the model.

(2) The proposed model effectively integrates the guiding framework technology of
flood physics theory into data-driven models, and introduces physical constraints
that comply with the physical laws of flood flow prediction principles, solving the
problem of errors in common data-driven model predictions that do not conform to
physical knowledge.

(3) This article first discusses the combination of tensor low-rank approximation data
preprocessing methods and flood prediction mechanisms to effectively compensate
for tensor sparsity.

(4) It is recommended to use interval prediction output architecture to quantify the
output error of the model, in order to improve the accuracy of flood time-series data
prediction. The experimental results show that compared to the baseline, the proposed
model improves the index of PI coverage probability (PICP) by 11.4%.

The rest of this article is organized as follows. Section 2.1 presents preliminaries for
the proposed model, Section 2.2 introduces the proposed DK-HTAN model, and Section 3
describes the performance evaluation and results. Section 4 discusses the model results,
and Section 5 provides summary opinions and future work.

2. Materials and Methods
2.1. Preliminaries
2.1.1. Tensor Decomposition

Tensor can be said to be a higher-order extension of matrix. In this paper, we use
Y ∈ Rn1×n2···×nd is the tensor, where d is the order. We use yi1i2···id to represent the
component of the third-order tensor Y, where im = 1, 2, · · · , nm, and m is called the module
of tensor (m = 1, 2, · · · , d). The more commonly used tensor decomposition method is
CPD, where the tensor Y can be further expressed as the sum of r ranks, for example, Y ≈
∑ r

j=1Q1
·j ◦Q2

·j ◦ · · · ◦Qd
·j. Each component can be expressed as yi1i2···id ≈ ∑ r

j=1q1
i1 jq

2
i2 j · · · qd

id j,

where Qm
j =

(
Qm

1j, · · · , Qm
nk j

)T
. For non-convex problems in tensor processing [26], we

mainly solve them by regularization method.

ξ
(

Q1, · · · , Qd
∣∣∣Y) = ∑

(i1,i2,··· ,id)∈Ω

(
yi1i2···id − Ŷi1i2···id

)2
+ θ

d

∑
k=1
‖ Qm ‖2

F (1)

where Ŷi1i2···id = ∑ r
j−1q1

i1 jq
2
i2 j · · · qd

id j is the estimated value of tensor component ‖ · ‖F

represents Frobenius parameterization. In our research, tensor decomposition technology
is mainly used to analyse the internal relationship of hydrological longitudinal data.
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2.1.2. Graph Convolution

A graph convolution network [27] is the application of a convolution operation on
graph neural network. The core information propagation formula of its network is as
follows:

HL+1 = σ
(

D−
1
2 ÂD−

1
2 H(L)W(L)

)
(2)

where H0 = X is the first-level input, H(L) is the L-level feature in GCN, and W(L) is the
L-level parameter in GCN. Through continuous training, it is determined that not only can
the characteristics of a node be given weight but also the nodes and their neighbors can be
given weight during information transmission. σ Is a nonlinear activation function, and
the adjacency matrix A ∈ RN×N is calculated as follows: A = D−

1
2 ÂD−

1
2 , where D is Â,

and the degree matrix of can be calculated by the formula:

D = diag

[
n

∑
j=1

A1j, . . . ,
n

∑
j=1

Anj

]
(3)

For a characteristic of a node in the graph at a certain time, x = xt
f ∈ RN and adjacency

matrix A ∈ RN×N , we can obtain the Laplace matrix L = D− A. In order to further stan-
dardize the calculation, we can use the normalized Laplace matrix L = IN − D−

1
2 AD−

1
2 .

2.1.3. Temporal Convolution

The convolution neural network is the foundation of TCN [28]. TCN, in contrast
to the general convolutional neural network (CNN), uses the structure of dilated causal
convolution and residual block, allowing it to extract features from large-sample time
series and realize prediction. It also successfully addresses the issue of a deep network’s
performance degrading during the network training process.

Assume the given input sequence is x0, · · · , xT . Expected predicted output is ŷ0, · · · ,
ŷT . The relationship between predicted output and input sequence is:

(ŷ0, · · · , ŷT) = f (x0, · · · , xT) (4)

where ŷT is only related to the input sequence x at time t and before time t related to
x0, · · · , xt. Any future input xt+1, · · · , xT is irrelevant. TCN modelling is to establish the
mapping relationship f between the input and output sequence. Its objective function is
to minimize the actual output (y0, · · · , yT) and predicted value (ŷ0, · · · , ŷT). The network
will increasingly compress all information over time because the hidden layer state is
often represented by a particular dimension of a tensor. However, this nondifferential
compression will somewhat diminish the time difference between input features and might
not draw attention to crucial details in rainfall history data. Therefore, the capacity to
distinguish TCN needs to be improved with the relevant changes.

2.2. Methods

Generally speaking, flood data have rich temporal and spatial characteristics. Based
on this, we propose data-driven and knowledge-guided based heterogeneous graphs and
temporal convolution networks (DK-HTAN). The specific structure is shown in Figure 1
below. Firstly, in the data preprocessing stage, we studied data with sparsity from the
perspective of tensor low-rank approximation to construct normal interpolation. Secondly,
in order to better introduce prior features of hydrological spatiotemporal data, an attention
mechanism was introduced in the heterogeneous graph module to learn spatial feature
representation, capturing hidden spatial relationships in flood data of each hydrological
station. Then, an improved self-attention mechanism was added to TCN, calculating
the impact factors of individual features, generating dynamic spatiotemporal correlation
weight tensors, and capturing the temporal characteristics of flood data of hydrological
stations. Finally, we introduced the physical constraints of watershed floods to regulate
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and optimize the model. We will provide a detailed introduction to the functions of
each module.

Figure 1. Model diagram of data-driven and knowledge-guided based heterogeneous graphs and
temporal convolution networks (DK-HTAN).

2.2.1. Knowledge-Guided Framework Based on Physical Constraints

When data-driven models are used for flood prediction, only from a data perspective,
the known physical constraints between observed and unobserved processes cannot be
utilized, and they lack discrimination against some common-sense errors. The added
physical constraint complies with the physical laws of the corresponding watershed derived
from the observation data. A penalty term in the neural network loss function can be used to
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describe the degree of deviation between the neural network prediction and the constraint
when this physical constraint is introduced into the model, particularly when the physical
mechanism has been simplified into straightforward control equations. In this study, the
theoretical guidance framework was better demonstrated by taking the flood discharge
problem in small and medium-sized watershed areas as an example. In sections with
tributaries, if the inflow of tributaries is large, the interference between the floods of the
main and tributaries cannot be ignored. Therefore, this article adds the physical equation of
the synthetic flow method for flood forecasting in river sections as a constraint mechanism.
The specific structure is shown in Figure 2. River section flood forecasting is based on the
operation and deformation laws of flood waves in the river section, using the measured
flow of the upper section of the river section to predict the future flow of the lower section
of the river section. This article mainly uses the synthetic flow method for river section
floods. The specific formula is shown in Equation (5) below.

Qt = f
(
∑ n

i=1Qi,t−τi

)
(5)

Qt represents the flow of downstream stations at time t; τi represents the time when
the flood from each i-th upstream station reaches the downstream station; n represents the
number of upstream main and tributary stations; and Qi represents the flow of the i-th
upstream station at time t.

Figure 2. Loss framework guided by physical constraints of knowledge-guided module.

Under different water conditions, the time for flow propagation from upstream stations
to downstream stations may vary, but the difference is within a certain time range, and
the span of that time range is limited. Therefore, this article estimates the τi as the center,
expand a time range forward to form a time window, and synthesize the linear combination
of flow rates of all upstream stations within the time window as a prediction of flow rates
of downstream stations. The specific relationship formula is:

Qt = f

(
n

∑
i=1

m

∑
j=−m

Qi,t−τi+j ϕi,t−τi+j

)
(6)

M represents the time span of opening the window forward, and the size of the time
window can be expressed as L = 2m + 1; ϕ is the weight coefficient of traffic at each time
within the window. Record the number of stations on the upstream main and tributaries
as n, and L is the time span for window opening. There are already N corresponding flow
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data for upstream and downstream stations in the historical data; Xi ∈ RN(2L+1) is the
matrix formed by the flow data of the i-th upstream station within N time windows.

ϕi =
[
ϕi,t−τi−L, ϕi,t−τi−L+1, . . . , ϕi,t−τi

]ᵀ represents the linear combination coefficient
of flow data within the time window of the i-th upstream station; y ∈ RN represents N flow
data of downstream stations. The matrix expression can be expressed as:

n

∑
i=1

Xi ϕi = Yo (7)

Set X̂ = [X1, X2, . . . , Xn], ϕ̂ =
[
ϕᵀ

1 , ϕᵀ
2 , . . . , ϕᵀ

n
]ᵀ, then the matrix representation can be

expressed as X̂ ϕ̂ = Yo, where X̂ ∈ RN(2L+1)n, Yo ∈ RN , ϕ̂ ∈ R(2L+1)n and ϕ̂ is a coefficient
to be determined. The objective function of the control equation can be determined as:

Lphy =
1
2

∣∣∣∣X̂ ϕ̂−Yo
∣∣∣∣2

2 (8)

According to the Frobenius norm’s partial derivative rule, for the objective function
LQ, the gradient of parameter ϕ̂ is:

∂LQ

∂ϕ̂
= −X̂ᵀYo + X̂ᵀX̂ ϕ̂ (9)

In addition, the penalty terms for the boundary condition (LBC) and initial condition
(LIC) are defined as:

LBC =
1

mBC

mBC

∑
i=1

(Ei −OBC,i)
2 (10)

LIC =
1

nIC

nIC

∑
i=1

(Ei −OIC,i)
2 (11)

mBC and nIC represent the number of boundary point and initial points, respectively;
OBC and OIC are the observation value of boundary conditions and initial conditions,
respectively; and Ei represents the i-th prediction of the neural network.

The objective function of the control equation Lphy is introduced into the loss function
of the network to avoid the violation of physical mechanics by the final prediction. By
using the equation, the model loss can be obtained as follows:

L = Ldata + λ1Lphy + λ2LBC + λ3LIC (12)

Among λ1, λ2, λ3 is a penalty parameter, which controls the weight of each item in
the loss function to the hyperparameter.

We suggest the discretization of equations, which is comparable to the finite element
analysis in computational fluid dynamics and can change the control equations into more
easily handled discrete forms, in order to better incorporate the physical constraints into
the neural network. The partial differential equation is changed into a differential structure
during the discretization process, which is based on the concept of finite difference. The
flood control equation (Equation (12)) is discretized based on the second-order central
difference scheme along the X and Y dimensions and the first-order backward Euler scheme
along the t dimension. Finally, the discrete equation of flood was obtained, as shown in
Equation (13):

0 = Yo
∆T ET−∆T +

(
− Yo

∆T +
−(Vx+∆x/2+Vx−∆x/2)

∆x2 +
−(Vy+∆y/2+Vy−∆y/2)

∆y2

)
ET

+
VXj−∆x/2

∆x2 ET
x−∆x +

VXj+∆x/2
∆x2 ET

x+∆x +
VYo−∆y/2

∆y2 ET
y−∆y +

VYo+∆y/2
∆y2 ET

Yo+∆y

FP = {(Xi, Yo, T− ∆t), (Xi, Yo, T), (Xi − ∆x, Yo, T), (Xi + ∆x, Yo, T), (Xi, Yo − ∆y, T), (Xi, Yo + ∆y, T)}

(13)
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Xi, Yo and T represent the coordinates of the constraint’s configuration points in space
and time; ∆x, ∆y, and ∆T represent the difference interval in the Xi, Yo and T direction; FP
represents the coordinates of the constraint patches around the configuration points Xi,
Yo and T; and V(x, y) represents the velocity of waves and currents. In Equation (8), the
configuration points are represented in bold.

The physical mechanism that the model should adhere to is described by the dis-
cretization Equation (13) in detail. When the predictions of each point in the constrained
fulfil the relationship described in Equation (13), the constrained satisfies the limitations
of control Equation (12). It should be noted that the discretization equation might not be
satisfied by the direct prediction of the neural network in the constraints in Equation (13)
are essentially soft constraints because the theoretical guidance framework. We modify the
predictions in the constraints so that the results are consistent with the constraints related
to the control equation, and also most similar to the original predictions in Equation (12).

2.2.2. Pretreatment of Data Tensioning

Research has shown that algorithms based on tensor decomposition interpolation
can extract effective information from multiple dimensions of input hydrological, mete-
orological, and geographic information data, fully considering the correlation and com-
plementarity between different dimensions, and effectively improving the accuracy of
model predictions [29]. Due to the sparsity of data, the tensor decomposition interpolation
algorithm proposed in this paper mainly studies tensor rank. Usually, tensor column rank
(TT rank) is used to recover low-rank components. To make TT rank more effective, we use
TT factorization and parallel matrix factorization techniques to assign different importance
to different elements of the tensor. Specifically, based on tensor column decomposition
and matrix decomposition, the optimization objectives for tensor complete problems are
as follows:

min
Uk ,Vk ,X

N−1

∑
k=1

ϑ
min(mk, nk)

∑N−1
k=1 min(mk, nk)

‖ UkVT
k −X[k] ‖2

F s.t. XΩ = TΩ (14)

Here, the pattern matrix
{
X[k], k = 1, · · · , N − 1

}
is obtained by regularization. Let

mk = Πk
l=1 Il , nk = ΠN

l=k+1 Il represent the number of rows and columns for X[k] respectively.
X[k] = UkVk represents the parallel matrix factorization of matrix X[k] for the mode k, where
Uk ∈ Rmk×rk , ϑ is a constant coefficient.

In the field of flood forecasting, since the matrices to be processed are usually sparse
matrices and contain a large number of unobserved values, we usually set these unobserved
values to 0. We designed a matrix decomposition method based on a diagonal block matrix.
First, the original sparse matrix is iteratively transformed into a multi-layer two-sided
block diagonal matrix, and then arranged into a block diagonal matrix, and the matrix
decomposition algorithm is performed on the sub diagonal block matrix, and the original
matrix through the decomposition results approximated. This can increase the density
of the original matrix and alleviate the problems caused by data sparsity. The specific
implementation process of this algorithm is shown in Figure 3:
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Figure 3. Flowchart of matrix decomposition method based on diagonal block matrix.

Based on the above decomposition techniques, in the k-th mode, it is decomposed into
sub-problems on matrix pairs (Uk, Vk), with the following optimization objectives:

min
Uk ,Vk ,X<k>

‖ Mk �
(

UkVT
k −X[k]

)
‖2

F,

s.t.(XΩ)[k] = (TΩ)[k],
(15)

where X[k] =
[
xij
]
∈ Rmk×nk is a given incomplete matrix obtained from higher-order

incomplete tensors through TT decomposition; Mk =
[
mij
]
∈ Rmk×nk is the incomplete

binary matrix of X[k], if xij is known, mij = 1, if xij is missing, and mij = 0; and� represents
the Hadamard product, combining different pattern matrices together:

min
Uk ,Vk ,X

N−1

∑
k=1
‖ Mk �

(
UkVT

k −X[k]

)
‖2

F, s.t. XΩ = TΩ (16)

The EWLRTC-TT model formula is as follows, different from the fixed indicator matrix
Mk in pattern k. EWLRTC-TT adopts the automatic update weight Wk of the k-th mode
matrix, then the goal can be formulated as:

min
Uk ,Vk ,X,Wk

J =
N−1

∑
k=1
‖Wk �

(
UkVT

k −X[k]

)
‖2

F, s.t. XΩ = TΩ (17)

Wk no longer remains static at 0 and 1, instead using the estimation of missing positions
wij ∈ (0, 1) to fill it, if element xij is known, wij = 1.
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This article constructs a maximization objective function. Based on the research in [30],
the optimal convex approximation tensor kernel norm can replace tensor rank. Combining
the characteristics of tensor rank, the following optimization problem is obtained:

min
X[k] ,N

N−1

∑
k=1

αk ‖ X[k] ‖∗ +λ ‖ N ‖1 s.t. PΩ(Y) = PΩ(Z),Z = X+N, αT1 = 1, α ≥ 0 (18)

‖ · ‖∗ represents tensor kernel norms, αk represents the weight of X[k]; the matrix
flattens along the k-th mode. Ω is a partial observation set with unknown noise, Y is the
number of damaged objects with missing entries, Z is the recovery object, and l1 norms are
used to separate sparse components from observations. Generate adaptive weights based
on the change in matrix rank of Equation (18) above, and add the l2 norm term:

min
Uk ,Vk ,X

N−1

∑
k=1
‖ Mk �

(
UkVT

k −X[k]

)
‖2

F −y ‖ α ‖2
2, s.t. XΩ = TΩαT1 = 1, α ≥ 0 (19)

where γ, λ > 0, the first term of Equation (19) and comes from Equation (18), which is
summarized and weighted α relevant information. Flat matrix X[k]. The larger the kernel
norm, the greater the weight forced to maintain more basic tensor data information. The
new term in Equation (19) is the penalty term used to smoothen the weight distribution.

To ensure the identifiability of the solution, the l2 norm penalty of Uk and Vk is
introduced into the above formula.

min
Uk ,Vk

‖Wk �
(
X<k> −UkV′k

)
‖p −y ‖ α ‖2

2 +
λu

2
‖ Uk ‖2

2 +
λv

2
‖ Vk ‖2

2 (20)

Due to the use of l2 norm penalty, we update the weight Wk of the k-th mode through
convex function. This function follows the equation used in:

Wk = c
√

exp
(
−Ξ
∣∣∣X〈k〉 −UkV′k

∣∣∣). (21)

where hyperparameter c and Ξ is a normal number. Therefore, by iteratively calculating
Uk, Vk and Wk, we can guarantee the (local) optimal solution.

In order to deal with the identifiability of the permutation of the decomposition technique
proposed in this paper, the r column vector is rearranged

(
pk
·1 +qk

·1, pk
·2 +qk

·2, . . . , pk
·r +qk

·r

)
,

and we can get the following equation:

d

∑
k=1
‖ pk
·1 + pk

·1 ‖2
2≥

d

∑
k=1
‖ pk
·2 + pk

·2 ‖2
2≥ · · · ≥

d

∑
k=1

pk
·r + qk

·r ‖2
2 (22)

This is similar to applying a descending order of eigenvalues in matrix decomposition.
The rearrangement of the column vector can be realized during or after the proposed
algorithm, because it does not affect the estimation process.

2.2.3. Heterography Module

As shown in Figure 4, based on the definition of heterogeneous graph, it is necessary
to divide the objects in the study basin into multiple tensor is proton graphs, and define
multiple interaction relationships based on prior knowledge, as shown in Formula (23):

ytensor = basin
(
r, f , V′

)
(23)

where r represents the connection relationship of objects in the heterogeneous graph
module; f represents the characteristics of the object; y represents the estimated quantity;
V′ represents the set of objects selected to estimate y. The node attention introduced in this
module is used to measure the impact of different nodes on this node at a certain time. By
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comparing the similarity of the characteristics of the source node and the target node in the
target space, the function weight of the adjacent nodes of the source node on the source
node is given.

Figure 4. Schematic diagram of attention-heterography module.

1. Node attention module

As shown in Figure 5, the current status of the target node at a certain time is marked
as hdst

j , for its multiple adjacent nodes, its status is marked as hsrc
i , where i = 1, 2, . . . , Nsrc

represents one of all adjacent nodes of node j, and the state of the target node at the next
time is affected by the state of all adjacent nodes at the current time.

αij = Anode
(

Wsrchsrc
i ‖Wdsthdst

j

)
(24)

Figure 5. Schematic diagram of node attention module.

The node focus module maps the source node state and the target node state to the
same space through the linear layer weights Wsrc and Wdst, respectively. After the splicing
operation, the initial node weight oij is calculated through the full connection layer weight
Wnatt, and then after the normalization and activation operation.

oij = LeakyReLU
(

Wnatt
(

Wsrchsrc
i ‖Wdsthdst

j

))
(25)

αij = softmax
(
oij
)
=

eoij

∑Nsrc
i=1 eoij

(26)
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Obtain the final node weight αij. As shown in Equation (27), the single relationship
state variable hrel

r temporarily records the impact of all adjacent nodes on the state transition
of the target node in the relationship r:

hrel
r =

i=1
Nsrc

⊕
(

αij � hsrc′
i

)
(27)

where⊕ represents corresponding element addition operation, and� a represents Hadamard
product operation.

2. Relational attention module

In the heterogeneous graph iteration module, there are usually multiple relationships
between nodes, and the relationship attention weight is an important basis on which to
measure the impact of different relationships on node status. As shown in Figure 6 below,
in a single relationship, the impact of multiple nodes on the state of the target node is
weighted by the node attention module and recorded as hrel

r . The relational attention
module processes the information incentives from all relationships at the current moment
through the splicing operation and the linear layer, so as to obtain the weight of different
relational signals β j.

β j = Arel
(
‖Nrel

r=1 hrel
r

)
(28)

Figure 6. Schematic diagram of Relational attention module.

As shown in Formula (29), the initial relationship weight oj is obtained after initial
linear change (Wrel), activation processing (tan h), and linear weighting operation (Wratt).

oj =
(

Wratt
(

tanh
(

Wrel
(
‖Nrel

r=1 hrel
r

))))
(29)

As shown in Formula (30), the final relational attention weight is obtained after softmax
normalization β j =

(
β1j, β2j, . . . , βNrel j

)
.

βrj = softmax
(
orj
)
=

eorj

∑Nrel
r=1 eorj

(30)

3. Among these, βrj represents the weight of the r-th relationship to node j.

In order to further improve the stability of the node attention module, this paper
adopts the multi-dimension attention mechanism (MHAM):

Htensor = [h1, h2, · · · , hK] (31)

that is, through multiple attention modules to carry out weighting operations, splice the
features from multiple weighted processing to obtain the output results, and help the
prediction model achieve better prediction results in the test set:

S1 = S1_node ⊕ S1_relationship (32)
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2.2.4. Temporal Feature Extraction

From the perspective of time, the data measured by the hydrological station at the
current time and the data measured at different times in the past are time-dependent and
will change with time. An attention mechanism can find more influential and relevant
spatiotemporal features of the target object, so as to better mine temporal features. This
section establishes an attention layer to process the output of the above spatiotemporal
feature mining model, as shown in Figure 7 below.

Figure 7. Schematic of temporal attention module.

First, the spatiotemporal tensor xt′
tensor1

=
[
µt

1rt
1, µt

2rt
2, · · · , µt

mrt
m
]

m×1 = {x1, x2, · · · xm},
E(1)

tensorm
= Encoder

(
xt′

tensor1

)
is input, where m represents the sequence length and 1 repre-

sents the hidden layer of the first layer input, dilated convolutions with different kernel
sizes as hidden layers across L layers. By stacking L layers of advanced causal dilated
blocks across depth and time, a complete TCN-AM network is built and is called dilated
convolution. Furthermore, dilated convolutions are used to give the network a sufficient
receptive field, thus maintaining the computational efficiency of the network. The size of
the dilation grows exponentially with the depth of the network (d = 2l for the l-th layer in
the network).

The calculation steps of the temporal attention modules are defined as follows.
Step 1: Calculate the time self-attention importance of E(l)

tensorm
: EAl

tensorm
=

Spatial

(
El

tensorm

)
, where EAl

tensorm
is an intermediate variable containing information before

time step t. The temporal self-attention module utilizes the information of all-time steps,
including past and future information of time step t. However, for time-series data, only
past information can be processed; thus, the processing of weight matrix is refined to meet
their sequence characteristics.

Step 2: In the first step, three linear transformations Q′tensorm
, K′tensorm

, and V′tensorm
are

used to map E(l)
tensorm

to three different vectors of dimension dk, namely, kl
n = K′tensorm

(
E(l)

tensorm

)
,

ql
n = Q′tensorm

(
E(l)

tensorm

)
, and vl

n = V′tensorm

(
E(l)

tensorm

)
. The dot product of ql

n and kl
n is

calculated and divided by
√

dk to obtain the weight matrix W l
a = kl

e ·ql
s√

dk
, where e, s =

1, 2, · · · , m. The lower triangular part of W l
a is extracted: W l

a,e (e ≥ s), and the remaining
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part of the weight matrix is set to 0, which can mask the weight of future time steps, such
that future information is not used. Finally, normalization is performed with softmax.

EAl
tensorj

is calculated as follows: EAl
tensorj

= f Al
n

∑j f Al
n

, where f Al
n = ∑t

i=0 W l
ae · E

(l)
tensorm

, and

t is the time step (t = 1,2, · · · , m).
Step 3: A causal dilation convolution operation is performed on EAl

tensorm
to obtain

ECl
tensorn

= conv1d
(

EAl
tensorm

)
, where ECl

tensorn
represents the output of causal convolution,

and causal dilation blocks can be stacked into many layers. To ensure each layer is of the
same length, zero padding is added to the left so that the input information on the left
gradually accumulates to the right.

2.2.5. Model Train

To optimize the penalty objective function of the physical constraints we introduce, we
adopt the maximum block improvement (MBI) algorithm [31], which has two advantages
over the traditional cyclic block coordinate descent (BCD) algorithm. Firstly, it has good
algorithm characteristics that can ensure convergence to a stable point. Secondly, under the
tensor optimization model with spherical constraints, this method has strong convergence.
When choosing spatiotemporal features as tensor patterns, the eigenvalues of flood data
and influencing factors are different at different times, and the eigenvalues of influencing
factors can be regarded as additional tensor patterns of higher-order tensors. However,
higher-order tensors require more complex and intensive calculations, and in general
practice, we assume that the order of the tensor and the number of influencing factors can
be determined based on prior knowledge. In the tensor pre-processing stage, appropriate
correlations are given γ and λ, a group of partially observed damaged entries Ω, with
a structure similar to Y = X + N, where X is low-rank and N is sparse, and can be
optimized through two steps. The optimized external framework is BCD, which is used to
update parameters α and X, N. The internal framework is alternating direction method of
multipliers (ADMM), used to optimize due to the internal framework problem caused by

the inherent correlation between
{

X[k]

}N−1

k=1
and can be solved for specific algorithms.

3. Results

The purpose of this section is to show the execution details and experimental results.
The data set describes the data set of Qijiang Basin used. The baseline and implementation
settings display baseline, model structure, and parameter information. The evaluation
indicators list two commonly used evaluation indicators and two interval prediction
indicators.

3.1. Datasets

In order to better compare the performance of the proposed method and baseline
model, the Qijiang Basin in Chongqing, China was selected as the experimental target
basin, and relevant measurement data from the Qijiang Basin in Chongqing were used for
the experiment. The flow data used in the experimental watershed come from hydrological
stations within the watershed, including six rainfall stations (Wucha, Caijia, Shijiao, Xinlu,
Dongxi, and Yangshi) and one flow station (Wucha). Figure 7 shows the distribution of
stations in the experimental watershed. From the graph, it can be seen that there is a certain
spatial correlation between the upstream and downstream stations in the watershed. The
meteorological data used in the experiment were from mobile phones and the National
Meteorological Information Center of China. Specific types of meteorological data include
evaporation data, rainfall data, temperature data, and wind speed data. The input for the
experiment includes previous data from 1 to 12 days (including the current). The output is
runoff data for the next 1–6 days. The time span of the Qijiang River Basin dataset is from 1
January 1979 to 31 December 2020. The data granularity is one item per day. Due to the
fact that the above data usually follow a relatively clear data distribution, in order to better
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partition the dataset while maintaining the data distribution, this study used a random
shuffling method to shuffle the original dataset to approximate the random distribution.
Then, through linear partitioning, the original dataset is divided into training, validation,
and testing sets in different proportions.

3.2. Baseline and Parameter Settings

We compare the DK-HTAN with one machine learning method, two non-attention
based neural network methods, and two attention-based methods:

SVR [32]: Support vector regression. A simple and robust machine learning network,
the basic idea is to find a regression plane so that all points are closest to the plane.

RNN: Convolution neural network. The RNN model is mainly composed of three
type of layer: input layer, output layer, and hidden layer.

LSTM: Long short-term memory network, a variant of RNN, adopts gating mechanism
and optimizes the network of RNN.

STALSTM [33]: The STALSTM model adds attention modular to the original LSTM
model. Similarly to LSTM, the primary architecture and parameters are used.

AGCLSTM [34]: A novel graph convolution-based spatiotemporal attention LSTM
(AGCLSTM) network to tackle the time-series prediction problem of flood forecasting.

DK-HTAN: The DK-HTAN model adds spatiotemporal attention module and an
output interval prediction constructed by error factors on the basis of the original HCN
model and TCN. The main architecture and parameters are the same as HCN and TCN.

Parameter settings: Experiments using Linux service platform (CPU: Intel (R) Xeon
(R) CPU E5-2630) v4 @ 2.20 GHz, graphics processor NVIDIA GeForce TITAN Xp, 12GB,
operating system Ubuntu 16.04, deep learning library Python, programming language
Python 3.6) completed. For all datasets, 80% are used for training and 20% for testing. We
trained the model to adjust the super parameters, such as the learning rate LR = 0.001, and
the training batch size was set to 256.

3.3. Evaluation Metrics

The LUBE interval prediction method is used to make up for the inaccuracy of point
prediction. It considers the prediction error caused by uncertain factors and obtains the
upper and lower bounds under a given confidence level, providing effective information
for decision makers. Therefore, this paper explores the effect of combining LUBE with a
neural network in precipitation interval prediction. The influence of interval prediction can
frequently be estimated from two facets, named the PI coverage probability (PICP) and PI
normalized root-mean-square bandwidth (PINRW).

In addition to the index of interval prediction, we also use root-mean-square error
(RMSE) and mean absolute percentage error (MAPE) as evaluation indicators. The evalua-
tion indicators of RMSE and MAPE are defined as follows:

MSE =

√
1
n

n

∑
i=1

(yi − qi)
2 (33)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − qi
qi

∣∣∣∣× 100% (34)

where qi is the predicted value, and yi represents the value of real runoff observation data.

3.4. Experimental Results
3.4.1. Comparison

To further corroborate the advantages of the model proposed in this research, the
graphical representation in Figure 8 is used to show the PI quality of the six models
contrasted. The contrast of PICP, PINRW and TIME of all models is as follows. The SVR
model is the basic machine learning prediction model. By confronting the proposed model
with baseline models, we discovered that both the PICP and PINRW indices are exceeded
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by the suggested model. Since PINRW and PICP are two opposing objects, the optimal
solution chosen must have a PICP that is hardly more than 90% in order to ensure that its
PINRW index is low. Due to the seasonality of flood data, we divided the data into flood
season and non-flood season for experiments.

Figure 8. Station distribution map of Qijiang River Basin.

ANN models of fusion tensor decomposition are instrumented to further verify the
high PI quality of the proposed model. Table 1 shows that RNN, LSTM, STALSTM, AG-
CLSTM and the proposed model are at the same extent in terms of PICP, while the proposed
model has a scarcely higher PICP index. Compared to the STALSTM and AGCLSTM mod-
els with spatiotemporal characteristics, it is improved 7.49% and 11.33% on the PICP index,
respectively. The tensor decomposition method is used for the interpolation of the model
preprocessing and the error factor adjustment part of the final output result to solve the
nonlinear and nonstationary characteristics of the data, and the PI of DK-HTAN model is
significantly smaller than RNN, LSTM, STALSTM, AGCLSTM. Therefore, it can be con-
cluded that DK-HTAN is more suitable for solving the interval stacking problem caused
by tensor decomposition. In the index of PINRW, DK-HTAN is improved by 4.08% and
11.26% over the AGCLSTM and STALSTM models.

Table 1. Performance display data of the model under various interval prediction indicators.

Region Model PICP, Flood
Season

PICP,
Non-Flood

Season

PINRW,
Flood

Season

PINRW,
Non-Flood

Season

Qijiang

SVR 0.689 (0.361) 0.651 (0.233) 0.237 (0.119) 0.241 (0.012)
RNN 0.724 (0.412) 0.706 (0.246) 0.205 (0.145) 0.198 (0.023)
LSTM 0.799 (0.698) 0.758 (0.259) 0.189 (0.189) 0.194 (0.012)

STALSTM 0.812 (0.634) 0.791 (0.312) 0.177 (0.259) 0.179 (0.031)
AGCLSTM 0.841 (0.287) 0.820 (0.189) 0.164 (0.012) 0.172 (0.022)
DKHTAN 0.904 (0.264) 0.896 (0.174) 0.157 (0.014) 0.163 (0.027)

Compared to the STALSTM and AGCLSTM models with spatiotemporal characteris-
tics, DK-HTAN is improved by 5.88% and 13.18% on the MAPE index, respectively. Please
refer to the data in Table 2 below. Furthermore, the method of using MBI to train the
point prediction model and forming prediction intervals according to forecast error is faster
than the method of using a meta-heuristic algorithm to train an interval prediction model.
Generally speaking, the steady enhancement of PI quality is at the consumption of time. In
the index of RMSE, DK-HTAN is improved by 17.84% and 21.90% over AGCLSTM and
STALSTM models.
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Table 2. Performance display data of the model under MAPE and RMSE indicators.

Region Model
MAPE,
Flood

Season

MAPE,
Non-Flood

Season

RMSE,
Flood

Season

RMSE,
Non-Flood

Season

Qijiang

SVR 0.158 (0.361) 0.163 (0.233) 0.337 (0.119) 0.341 (0.012)
RNN 0.149 (0.412) 0.154 (0.246) 0.335 (0.145) 0.338 (0.023)
LSTM 0.135 (0.698) 0.141 (0.259) 0.306 (0.189) 0.304 (0.012)

STALSTM 0.129 (0.634) 0.133 (0.312) 0.283 (0.259) 0.297 (0.031)
AGCLSTM 0.119 (0.287) 0.120 (0.189) 0.269 (0.012) 0.282 (0.022)
DK-HTAN 0.112 (0.264) 0.116 (0.174) 0.221 (0.014) 0.203 (0.027)

3.4.2. Robustness Analysis

The model based on a data-driven and knowledge-guided framework effectively uti-
lizes prior information and domain knowledge. In theory, it has stronger feature extraction
ability and lower training data requirements for flood time-series data compared to pure
data-driven flood prediction models. In this section, we analyzed the performance of
data-driven and knowledge-guided flood prediction models and flood prediction ANN
models under different boundary conditions and observations through comparative ex-
periments. Specifically, we evaluated the performance and robustness of different models
under different noise levels and outlier ratios.

Table 3 shows the impact of different noise levels on observation results compared
to model predictions under different scales of noise. The noise gradually increased from
5% to 20%. Firstly, we can see that under different noise levels, DK has better PICP values
compared to other models. This explains the performance advantages of the proposed
model in interval prediction. Taking the Qijiang River Basin as an example, the PICP value
of DK is about 15% higher than the dominant STALSTM. This may be because the model
proposed in this article is based on data-driven and knowledge-guided design, and has
strong robustness in the field of hydrological prediction. Of course, as the noise level
increases, the interval performance of DK also shows a gradual convergence trend, which is
also where we need further research and improvement. On the other hand, even if the noise
level increases to 20%, the PICP performance of DK will not decrease much, which reflects
the noise robustness of the model proposed in this paper with the help of data-driven
and knowledge-guided techniques. Generally speaking, flood time-series data in practical
engineering usually contain noise-interference data. It is difficult to distinguish useful data
from interference values based on a single data-driven model. However, the dual driving
mechanism proposed in this paper can effectively filter interference values using flood
physical constraints, thereby improving the noise robustness of the DK model.

Table 3. PICP performance of various models under different proportions of noisy data.

Region Model 5% 10% 15% 20%

Qijiang

SVR 0.611 (0.361) 0.599 (0.233) 0.437 (0.119) 0.441 (0.012)
RNN 0.709 (0.412) 0.656 (0.246) 0.525 (0.145) 0.538 (0.023)
LSTM 0.712 (0.698) 0.684 (0.259) 0.570 (0.189) 0.564 (0.012)

STALSTM 0.807 (0.634) 0.791 (0.312) 0.634 (0.259) 0.608 (0.031)
AGCLSTM 0.813 (0.287) 0.792 (0.189) 0.673 (0.012) 0.632 (0.022)
DK-HTAN 0.824 (0.264) 0.735 (0.174) 0.711 (0.014) 0.683 (0.027)

For the comparison of different models in flood time series data prediction, Outlier
usually have a greater impact on the prediction results than noise. Therefore, here we
compare the PICP performance of different models under different outliers. As shown
in Table 4, the performance comparison of DK under different outlier ratios guided by
flood prediction and physical constraint theory is shown in Table 5. The PICP value of
DK proposed in this paper is higher than that of other baseline models under various
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outliers. Taking the Qijiang River Basin as an example, the PICP value of DK is 14%–
28% higher than that of STALSTM. This may be because the data preprocessing method
of tensor factor decomposition is adopted in this paper, which reduces the impact of
outliers on the prediction accuracy of the model. The robustness of the model to outliers is
improved. However, it should be noted that when the proportion of outliers is high, the
PICP performance of DK also shows a trend of weakening. This may be because the input
matrix of the model deviates from the normal range with the increase in outliers, leading to
the decline of the prediction performance of the model.

Table 4. PICP performance of each model under different proportions of outlier data.

Region Model 5% 10% 15% 20%

Qijiang

SVR 0.601 (0.361) 0.589 (0.233) 0.530 (0.119) 0.511 (0.012)
RNN 0.719 (0.412) 0.646 (0.246) 0.623 (0.145) 0.607 (0.023)
LSTM 0.732 (0.698) 0.674 (0.259) 0.660 (0.189) 0.644 (0.012)

STALSTM 0.789 (0.634) 0.721 (0.312) 0.704 (0.259) 0.698 (0.031)
AGCLSTM 0.816 (0.287) 0.842 (0.189) 0.760 (0.012) 0.733 (0.022)
DK-HTAN 0.833 (0.264) 0.815 (0.174) 0.791 (0.014) 0.763 (0.027)

Table 5. Corresponding DK-HTAN model type table.

Model Node Attention Relational Attention

DK-HTAN weighted weighted
DK-HTAN-a weighted mean
DK-HTAN-b mean weighted
DK-HTAN-c mean mean

3.4.3. Attention Module Analysis of DK-HTAN

In the structure of the DK-HTAN model, the types of node attention modules and
relational attention modules play an important role in the performance of the model.
This part of the experiment discusses the performance of node attention types and rela-
tionship attention types on DK-HTAN model data in the Qijiang River Basin, in which
node attention module types and types of relational attention modules include mean and
weighted attention.

Figures 9 and 10 show the performance impact of different attention-type combina-
tions on the DK-HTAN model. On the Qijiang Basin dataset, the overall performance of
different models is similar. However, the type of attention model has a certain impact.
The performance of the weighted model is in the middle, although intuitively, the model
using DK-HTAN with weighted attention should perform better than the model using
only average attention modules. However, in this experiment, the experimental results
are different from the expected assumptions: the mean-type relational attention module
can enhance the performance of the model more, and the weighted-type node attention
module can enhance the outcomes of the model more. In general, weighted attention has a
positive effect on model performance, while average attention has a stabilizing effect on
model performance. However, due to the error characteristics of neural network model
training, the training quality has a certain impact on the performance of the weighted
attention module. If the training quality of the weighted focus module is not enough, the
performance of the model may not be improved. At the same time, considering that the
most important prior relationship has been put into the model when modeling, its mean
relational attention module can better reflect the performance of the model. Although
in this part of the experiment, the weighted focus method did not always maintain its
advantages, it still showed good performance. At the same time, the overall performance
of the DK-HTAN model surpassed other baseline models and other defined models.
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Figure 9. RMSE performance of different attention combinations.

Figure 10. MAPE performance of different attention combinations.

4. Discussion

Through experiments, it was found that the proposed model outperforms the baseline
model in all indicators, indicating that our model has superior performance. This may be
the result of the internal structural characteristics of tensors, which make data input better
into the model for processing. In addition, the model adds a heterogeneous graph attention
module, which increases the prior knowledge of the model and better optimizes the initial
conditions. The time-series prediction module uses TCN, greatly reducing training costs.
Finally, optimize and adjust the model using physical constraints to make the predicted
results more in line with physical mechanisms. Although dual driving enhances the
learning ability of the model and effectively utilizes prior knowledge and domain-specific
information in this case, it only embeds a control equation and the neural network output
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only contains one variable, which may affect prediction accuracy. Future research can
include multi-constraint, high-dimensional flood forecasting scenarios.

5. Conclusions

In order to process massive flood data with rich spatiotemporal characteristics, we
propose a flood interval prediction method based on data-driven and knowledge-guided
heterogeneous graphs and time convolutional networks (DK-HTAN). Experiments on the
Qijiang dataset show that the prediction accuracy of the proposed model is significantly
better than the bassline models—11.4% on the PICP index. The combination of physical
constraint guidance and deep learning methods in this article is a preliminary attempt
to apply a knowledge- and data-driven approach to flood prediction. In addition, more
external factors, including watershed vegetation and human settlements, need to be used
in future work. Inspired by the generative adversarial network (GAN) model, our next
paper will consider further enhancing flood prediction through reverse generation and
distribution of watershed data.
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