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Abstract: With the wide application of power cables in the field of transmission and distribution and
the increasing emphasis of power departments on the reliability, safety and stability of power cable
operation, how to more accurately and quickly analyze the temperature distribution of power cables
and how to evaluate the running state of power cables have become research hotspots. Through the
combination of finite element calculation and the artificial intelligence method, an innovative method
of digital twin cable temperature prediction based on RF-GPR is proposed in this paper. Firstly, the
finite element method is used to calculate the coupling of the electromagnetic field and temperature
field of a 10 kV AC cable laid in the cable trench, and a certain amount of basic data are provided
through the finite element calculation results. Then, using the basic principle of the random forest
(RF) variable importance score, the RF-GPR cable temperature prediction model is constructed using
the series hybrid model and Gaussian process regression (GPR), the model prediction results are
compared and analyzed, and the calculation time is improved by about 1500 times. Finally, a digital
twinning platform for cable temperature calculation based on RF-GPR is designed, which provides
technical support for the application of digital twinning.

Keywords: digital twin; power cable; machine learning; temperature prediction

1. Introduction

Under the goal of “reaching the peak of carbon and carbon neutrality”, the construc-
tion of new power systems with new energy as the main body is the future development
trend of power grids. Digital technology and intelligent application are the keys to support
the construction of new power systems and the key technologies to achieve the safe and
stable operation and intelligent maintenance of power equipment [1]. A digital twin is
one of the key technologies to promote intelligent and digital development in the field of
power equipment. Digital twin technology opens up the full-link process of the entity per-
ception model application [2], realizes the comprehensive perception of the state of power
equipment based on new sensor technology, and realizes sensor device evaluation and data
in-depth governance according to the operation characteristics of power equipment. The
digital twin power equipment model is built by big data analysis, data mining and other
technologies to carry out the state differentiation evaluation, accurate fault diagnosis and
accurate state prediction of power equipment and realize real-time interaction between the
physical entity of power equipment and the digital twin, as well as information sharing
between multiple digital twins of power equipment [3].

With the rise of the Internet of things and big data and the development of artificial
intelligence and virtual reality technology, digital twin technology has received more
and more technical support and engineering applications, mainly applied in intelligent
agricultural production [4,5], design and manufacturing in the automobile and aerospace
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fields [6], system development and operation [7], preliminary analysis and research in the
field of power equipment [8,9], etc.

Ref. [10] proposed a method of integrating the DS simulation model and Manufactur-
ing Execution System (MES) to create a digital twin model and proposed two frameworks of
integrating the digital twin based on MES. Ref. [11] summarized and reviewed the current
trends and limitations of digital twin applications in additive manufacturing and pro-
vides technical support and method reference for further research on digital twin systems.
Ref. [12] showed the reliability and effectiveness of the twin model through the real-time
simulation of the digital twin system of wind turbines and the twinning simulation of
unmeasurable field data. Ref. [13] deeply and comprehensively discussed the technical
route of the real-time online analysis system of the power grid and prospects the application
scenarios of the next-generation real-time control system with the second-level response.
Ref. [14] analyzed the similarities and differences between digital twinning technology and
big data from many aspects and proposed technologies and methods for how to promote
the realization of intelligent manufacturing.

With the acceleration of the construction of the new power system network, the
electrical connection between the transmission networks becomes closer and closer, and the
security and stability of power transmission become more and more important. Currently,
the electric energy transmission equipment in the power network framework of our country
are mainly aerial lines and cable lines, while power cable is usually laid in the soil, tube
galleries, tunnels and cable trenches, which have the advantages of being safe and stable,
not occupying space and having high power transmission efficiency. In recent years, the
proportion of power transmission efficiency has been increasing in the urban distribution
network. Therefore, how to ensure the safe and reliable operation of power cables, as
well as the accuracy of the monitoring and evaluation calculation results of key heating
conditions such as the cable core, are hot issues in current research [15].

The calculation methods of cable temperature mainly include the numerical method
and thermal method. Among them, the numerical method calculates the entire temperature
field under the given cable electromagnetic parameters and environmental parameters,
including the finite element method, the finite difference method, etc. The thermal path
method is mainly based on IEC standards, and the cable structure is equivalent to a one-
dimensional model using the equivalent model principle and then calculated according
to the law of heat conduction. The thermal path method can only calculate the average
temperature of each layer of the cable structure, and the error of the cable temperature
value calculated under a poor laying environment is large. In comparison, the finite
element coupling calculation method has the advantages of simulating complex models
and high calculation accuracy. However, under the same cable laying conditions, the
time used to calculate the cable temperature by the finite element method also increases.
When constructing cable, the multi-physical field coupling model is applied to the digital
twinning cable frame, and the model-driven theory represented by the finite element
method cannot meet the real-time requirement of digital twinning application.

The digital twinning of cable can be realized not only by model drive but also by the
artificial intelligence algorithm. The development of the artificial intelligence algorithm
has provided a new research method for the early state recognition of cable. Machine
learning and deep learning were applied in many power system fields [16,17]. In [18],
a prediction model was built by the machine learning algorithm to realize the accurate
identification of the partial discharge mode of electrical equipment. Ref. [19] constructed
the state prediction model of a power transformer by using the short-short memory network
algorithm and studied the corresponding relationship between the characteristic variables
and transformer operating state. Ref. [20] realized the predictive control of an NSI system
in dual-output mode and six-phase mode based on the model prediction method of the
finite control set. Ref. [21] established a prediction model based on the recursive neural
network principle to realize the load prediction of a power system. Under the framework of
digital twin technology, this paper innovatively proposes a digital twin cable temperature
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prediction method based on machine learning for digital twin application by combining
finite element calculation and artificial intelligence. A certain number of basic data are
provided through finite element calculation, and then the artificial intelligence method
is used to learn, establish a reliable model training process, generate a cable temperature
prediction model, and realize the rapid and accurate calculation of the cable temperature
distribution in the cable trench. The calculation results meet the real-time requirement of
cable temperature calculation in the application of the digital twin and provide technical
support for the application of the digital twin.

2. Finite Element Calculation Model of Cable Temperature

The cable laid in the cable trench is a cross-linked polyethylene three-core cable; the
specific model is YJV22-8.7/10-3 × 240 mm2. According to the internal structure of the
cable, the cable can be divided into the following parts: cable core, semiconductor layer,
insulation layer, metal shielding layer, filling layer, armor and sheath layer. Since the axial
length of the cable is much larger than the radial length of the cable, the two-dimensional
plane model is used in the analysis of the cable model. The finite element model is shown
in Figure 1, and the cable model inside the cable trench is shown in Figure 2. The finite
element software used in this paper was Comsol Multiphysics 5.6. Free triangle mesh was
used for the cable part, and boundary layer mesh was used for the inner wall and surface
of the cable channel. The total number of meshes in the finite element calculation model
was 92,856.
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Two-dimensional steady-state electromagnetic and temperature field coupling cal-
culation is carried out for 10 kV AC cables, in which the cable core loss, dielectric loss,
metal shield loss and armor loss generated by the cables themselves are used as the heat
source [22], and the partial differential equation of the temperature inside the cables can be
obtained as shown below:

−∇·(k∇T) = Qh (1)

where Qh is the total cable loss, and k is the thermal conductivity.
In the cable trench laying environment set up in this paper, because there is contact

between the cable and the air inside the cable trench, it is necessary to consider the influence
of the air flow in the cable trench on the heat dissipation. The conductor loss, insulation
loss and armor loss of the cable are the main sources of heat, which affect the flow of air
in the cable trench and then transfer the heat through conduction and convection. The
thermal conductivity differential equation is shown in Equation (2), and the convection
differential equation is shown in Equation (3).

λ

(
∂2Ts

∂x2 +
∂2Ts

∂y2

)
+ Q = 0 (2)

where λ is the thermal conductivity of the medium, Ts is the medium temperature, and Q
is the heating rate per unit volume of the medium.

Q = h∆t (3)

where h is the convective heat transfer coefficient, and ∆t is the temperature difference
between a solid and a fluid.

Heat transfer between the cable trench and soil is a solid heat transfer problem, so the
lower boundary of the finite element model of the cable trench belongs to the first type of
boundary condition, and the temperature is set as 20 ◦C for the deep soil. The formula is
shown as follows: {

T|Γ = Tw

T|Γ = f (x, y, z, t)
(4)

where Γ is the object boundary, Tw is the boundary temperature, and f (x, y, z, t) is the
boundary temperature function.

The left and right boundaries of the finite element calculation model of the cable trench
belong to the second type of boundary conditions. The heat flux value of the boundary
method phase is set as 0, so the boundary is regarded as an adiabatic surface. The formula
is shown as follows:  λ ∂T

∂n

∣∣∣
Γ
+ qw = 0

λ ∂T
∂n

∣∣∣
Γ
+ g(x, y, z, t) = 0

(5)

where qw is the known boundary heat flux value, and g(x, y, z, t) is the boundary heat flux
function.

The upper boundary of the finite element model of the cable trench belongs to the third
type of boundary conditions. The external air temperature is set as the fluid temperature,
and the heat transfer coefficient is the convective heat transfer coefficient in the air.

−λ
∂T
∂n

∣∣∣∣
Γ

= α
(

T − Tf

)∣∣∣
Γ

(6)

where α is the convective heat transfer coefficient of the object surface, and Tf is the
temperature of the surrounding fluid, K.
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3. RF-GPR Prediction Model of Cable Temperature
3.1. Selection of Characteristic Variables

Considering the influence of the cable trench environmental factors, cable geometric
structure and electromagnetic parameters on the temperature distribution inside the cable
trench, different parameter combinations were selected in the parameters’ setting range
for finite element calculation, and, after obtaining several groups of calculation results, the
data that can reflect the cable temperature change were extracted. Geometric parameters,
electromagnetic parameters and environmental factors were taken as the input characteristic
quantity, and the temperature distribution inside the cable trench was taken as the output
characteristic quantity. The input quantity and output quantity were combined to obtain a
data set that can reflect the change in temperature distribution in the cable trench, which
was used as the data set of the machine learning model prediction. In this paper, the
influence of various variables on the temperature distribution in the cable trench was
analyzed through the finite element calculation results, and a 10-dimensional vector was
constructed as a set of input characteristic quantities. The 10-dimensional data are shown
in Table 1.

Table 1. Characteristic variables of 10-dimensional input.

Variable Numbers Input Characteristic Variables Unit

1 X coordinate of the point m
2 Y coordinate of the point m
3 x-axis coordinates of the cable core center m
4 y-axis coordinates of the cable core center m
5 Excitation current A
6 Cable core conductivity S/m
7 Relative permeability 1
8 Thermal conductivity of insulation W/(m·K)
9 Convective heat transfer coefficient W/(m2·K)
10 Ambient temperature K

3.2. Characteristic Variable Importance Score Calculation
3.2.1. Random Forest Algorithm Variable Importance Score

The random forest algorithm can be used to evaluate the importance of a set of feature
data in the process of regression prediction, and its results can be used as the basis for the
selection of feature variables. The conventional random forest variable importance score
(VIM) calculation method can be obtained by calculating the Gini index [23]. Assuming that
there are characteristic variables X1, X2, · · · , XM, then the importance score of variable
Xj can be calculated, and the specific formula is shown as follows.

In a decision tree, the Gini index of node m is calculated, as shown in Equation (7).

Gm = ∑K
k=1 Pmk(1− Pmk) (7)

where Gm is the Gini index of node m, K is the number of sample categories in the total
sample, and Pmk is the probability estimate of the sample belonging to class k at node m.

The importance of variable Xj in node m, that is, the calculation formula of the Gini
index change before and after node m splitting, is shown in Equation (8).

VGini
jm = Gm − Gml − Gmr (8)

where VGini
jm is the importance of variable Xj in node m, and Gml and Gmr represent the Gini

index of the left and right nodes split by node m, respectively.
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If M nodes in the i tree contain variable Xj, then the importance calculation formula
of variable Xj in the i tree is shown in Equation (9).

VGini
ij = ∑M

m=1 VGini
jm (9)

where VGini
ij is the importance of variable Xj in the i tree, and M is the number of nodes in

the i tree containing the variable Xj.
If there are n trees in the random forest, the Gini importance of variable Xj in the

random forest is defined as the average importance of variable Xj in all trees in the random
forest, and its calculation formula is shown in Equation (10).

VGini
j =

1
n ∑n

i=1 VGini
ij (10)

where VGini
j is the Gini importance of variable Xj in the random forest, and n is the number

of decision trees in the random forest.

3.2.2. Characteristic Variable Importance Calculation Results

In order to calculate the importance of each characteristic variable, the random
forest model should be built first. The optimal parameters are set by the grid search
method in the random forest model. The parameters include Max_features, Max_depth,
Min_samples_split, Min_samples_leaf, Min_weight_fraction_leaf and Max_leaf_nodes [24].
The specific parameter settings of the random forest model are shown in Table 2.

Table 2. Parameter settings of random forest model.

Parameter Name Numerical Value

Max_features 10
Max_depth 10

Min_samples_split 2
Min_samples_leaf 1

Min_weight_fraction_leaf 0
Max_leaf_nodes 5

After setting the specific parameters of the random forest, the random forest algorithm
is used for model training, and the importance score of the 10-dimensional input feature
variables is obtained through the generated prediction model. The importance degree of
each feature variable in the model training is shown in Table 3.

Table 3. The importance of each feature variable in model training.

Variable Numbers Input Characteristic Variables Importance (%)

1 X coordinate of the point 14.68
2 Y coordinate of the point 37.10
3 x-axis coordinates of the cable core center 0.85
4 y-axis coordinates of the cable core center 1.23
5 Excitation current 28.52
6 Cable core conductivity 5.10
7 Relative permeability 0.65
8 Thermal conductivity of insulation 5.95
9 Convective heat transfer coefficient 4.45
10 Ambient temperature 1.48

3.3. Model Evaluation Index

The data set calculated by the finite element method for the cable temperature is
preprocessed and randomly divided into a training set and a test set in proportion, of which
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the training set accounts for 80%, and the test set accounts for 20%. The training set is used
to train the prediction model, and the test set is used to validate the model and evaluate
the performance. The criterion to judge the accuracy of the model is expressed by accuracy
and heel mean square deviation [25–27].

The calculation formula of accuracy r2 is as follows:

r2 = 1− u/v (11)

where u is the sum of squares of the difference between the true value and the predicted

value, u = ∑
(

Ttrue − Tpredict

)2
; Ttrue is the real value; Tpredict is the predicted value; and v

is the sum of squares of the difference between the true value and the true average.
The calculation formula of the root-mean-square error (rmse) is as follows:

rmse =

√
1
n ∑n

i=1 (T
(i)
true − T(i)

predict)
2

(12)

where n is the number of samples, Ttrue is the true value, and Tpredict is the predicted value.
In order to eliminate the difference between the magnitude and dimension of the

feature quantities and improve the accuracy of the training results, the training data are
normalized [28]. The normalized formula is as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(13)

where X is the data set; Xmax and Xmin are the maximum and minimum values in the data,
respectively; and Xnorm is the normalized data value.

3.4. Construction of RF-GPR Cable Temperature Prediction Model

In the calculation of the importance score of the characteristic variables, it can be
seen that among the 10-dimensional input characteristic variables, 6 input characteristic
variables were more than 4% important in model training, and 4 input characteristic
variables were less than 2% important in model training. Six characteristic variables with
an important degree of more than 4% were selected as new input characteristic variables.
The temperature prediction model of RF-GPR cable was constructed by using the Gaussian
process regression algorithm in the form of the series mixing model. Gaussian process
regression is a machine learning regression method developed in recent years. Its principle
is based on statistical learning theory. It is a non-parametric model that takes the Gaussian
process as a priori. The basic idea of Gaussian process regression is to map low-dimensional
characteristic variables to high-dimensional characteristic variables and then carry out
regression analysis on the processed high-dimensional characteristic variables. Gaussian
process regression has good characteristics for dealing with nonlinear models and small
sample data and is widely used in parameter control, model prediction and time series
analysis [29].

During the construction of the cable temperature prediction model based on Gaus-
sian process regression, the data set was first processed according to the normalization
requirements, and the result after processing is shown in Formula (10).

D = {(xi, Ti)}, i = 1, 2 · · · n (14)

where xi is a group of six-dimensional input characteristic variables, and Ti is the output
temperature value of the corresponding group.

Then, the basis function, kernel function, kernel size and Sigma parameters of the
Gaussian process regression model were optimized. The basis function has decisive factors
on the specific form of the prior mean function of the Gaussian process regression model.
Generally, zero value function, constant function and linear function can be selected. Choos-
ing different kernel functions affects the accuracy of the Gaussian process prediction model.
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The mean function m(x) and covariance function k(x, x′) together constitute the kernel
functions in the Gaussian process regression, and the kernel functions affect all the statisti-
cal characteristics of Gaussian process regression. Among them, the covariance function can
be divided into four types: the Mattern covariance function, square exponential covariance
function, periodic covariance function and rational quadratic covariance function. Sigma
is used to set the initial value of the standard deviation of observed noise [30]. For the
characteristic variable type of the cable temperature output calculated by the finite element
method in this paper, the optimizer type in Gaussian process regression model was set as
Bayesian optimization, the basis function type as linear function, the mean function as zero
mean function and the kernel function type as square exponential covariance function. The
specific expression is shown as follows:

k
(
xi, xj

)
= σ2

f exp

[
−

n

∑
m=1

(
xim − xjm

)2

2σ2
m

]
(15)

where xim and xjm are the variable in vectors xi and xj, respectively; σf is the variance;
σm is the variance scale; and σf and σm constitute the hyperparameters in the covariance
function.

After setting the specific parameters of the Gaussian process regression prediction
model, the regression expression of the prediction model is obtained, as shown in
Equation (16).

y ∼ GP
(
0, k
(

x, x′
))

(16)

Finally, the input data set of the Gaussian process regression prediction model is
trained and tested. According to Bayes’ principle, prior functions are established in data
set D during model training, and n∗ data sets are set to test the prediction model, as shown
in Formula (17).

D∗ = {(xi, Ti)}, i = n + 1, n + 2 · · · n + n∗ (17)

If the test results meet the set model error conditions, the cable temperature prediction
model can be output; otherwise, if the test results do not meet the set model error conditions,
it is necessary to readjust the hyperparameters and conduct model training again until the
model error conditions are met. In the test data set, the input variable is x∗, and the output
variable is y∗. The joint Gaussian distribution between the output value y of the training
set and the output value y∗ of the test set is obtained as follows:[

y
y∗

]
∼ N

(
0,
[

K(X, X) + δ2
n In K(X, x∗)

K(x∗, X) k(x∗, x∗)

])
(18)

where K(X, X) is the symmetric positive definite covariance matrix of order n× n, δ2
n is the

variance of white Gaussian noise, In is the unit matrix of order n, and K(x∗, X) = K(X, x∗)
T

is the covariance matrix of order n× 1 between the prediction input variable x∗ and the
training input variable X. k(x∗, x∗) is the covariance of the input variable x∗.

The regression equation of Gaussian process can be written as follows:

y∗|X, y, x∗ ∼ N(y∗, cov(y∗)) (19)

where y∗ and cov(y∗) are the mean and variance of test variable x∗ to test result y∗, respec-
tively.

4. Results and Discussion
4.1. Analysis of Prediction Results of Air Temperature in Cable Trench

After training and learning the data set of the cable trench finite element calculation
model with RF-GPR, the corresponding machine learning prediction model of the air
temperature distribution in the cable trench and the cable temperature distribution was
obtained. Then, by setting new input characteristic quantity values different from the
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training set and test set, the RF-GPR cable temperature prediction model was used to
predict the input characteristic quantity values. The finite element method was used to
calculate the air temperature distribution in the cable trench and the cable temperature
distribution under the same conditions. The resulting data were extracted and compared
to verify the accuracy of the RF-GPR cable temperature prediction model. A comparison
between the predicted value of the air temperature in the cable trench based on the RF-GPR
cable temperature model and the calculated value of the finite element is shown in Figure 3.
This paper also analyzed the prediction results of the cable temperature model based on
the random forest and convolutional neural network (RF-CNN) and obtained a comparison
between the predicted value of the air temperature in the cable trench based on the RF-CNN
cable temperature model and the calculated value of the finite element, as shown in Figure 4.
As can be seen from Figure 4, the prediction accuracy of the cable temperature model based
on RF-GPR is higher. The prediction accuracy of the temperature model in the cable trench
(R2) is 0.9911, and the root-mean-square error (RMSE) is 0.7629. The overall temperature
distribution of the air in the cable trench is between 20 ◦C and 60 ◦C. Compared with the
temperature predicted by machine learning and calculated by the finite element, it can be
concluded that the overall prediction effect of the air temperature in the cable trench is the
best. The points of the predicted value and the calculated value fall on the diagonal line
in Figure 3, that is, the predicted value is close to the calculated value. Under the same
conditions, the prediction time of the cable temperature based on the Gaussian process
regression algorithm is nearly 1500 times shorter than that of the finite element calculation,
which effectively improves the real-time performance of cable temperature prediction and
provides technical support for the application of the digital twinning evaluation of the
cable running state.
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A comparison between the air temperature distribution in the cable trench based on
the RF-GPR cable temperature prediction model and the air temperature distribution in the
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cable trench obtained by the finite element calculation method is shown in Figure 5. It can
be seen from Figure 5 that the distribution trend of the model prediction results trained by
the machine learning method is basically the same as that of the finite element calculation
results. Through the error analysis of the temperature calculated by the finite element and
predicted by machine learning, the relative error percentage of the machine learning model
to predict the air temperature in the cable trench is obtained, as shown in Figure 6. It can
be seen from the relative error distribution diagram that most of the regional error is below
4%, and the relative error of the lower part of the cable trench is smaller than that of the
middle and upper parts. It can also be seen from the relative error distribution diagram
that the relative error near the outer skin of the cable is larger than that far away from the
cable. The interior of the cable belongs to solid heat transfer, and the air in the cable trench
belongs to convective heat dissipation, which lead to a large temperature gradient near the
cable skin, resulting in the poor prediction accuracy of the machine learning model; thus,
the relative error near the cable skin is large.
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The relative errors of the machine learning predicted temperature values are further
numerically analyzed below, and the relative error distribution of all data is shown in
Table 4. According to the data analysis, the relative error of the temperature value predicted
by machine learning is mostly between 1% and 2%, accounting for 41.22%, while the
relative error of data above 5% accounts for only 0.08%. The relative error of most data is
below 3%, which accounts for 91.93% of the whole data. The maximum relative error of the
overall data is 6.18%, and the average relative error is 0.72%.

Table 4. Proportion of relative error distribution.

Error Distribution 0–1% 1–2% 2–3% 3–4% 4–5% >5%

Proportion 22.38% 41.22% 28.33% 7.02% 0.97% 0.08%
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4.2. Analysis of Prediction Results of Cable Temperature in Cable Trench

A comparison between the predicted cable temperature based on the RF-GPR cable
temperature prediction model and the cable temperature calculated by the finite element
is shown in Figure 7. It can be seen from Figure 7 that the distribution trend of the model
prediction results trained by the machine learning method is basically the same as that
of the finite element calculation results. Through the error analysis of the finite element
calculation temperature value and the machine learning prediction temperature value,
the relative error percentage distribution of the cable temperature distribution predicted
by the RF-GPR cable temperature prediction model in the cable trench is obtained, as
shown in Figure 8. The relative error of the cable temperature predicted by the machine
learning model is minimum in the cable core part, and the relative error distribution is
basically within 0.1%. The relative error distribution outside the cable shows an increasing
trend, and the average relative error of the temperature prediction value is 0.17%. Near
the cable sheath, the machine learning prediction results are not as accurate as the finite
element calculation results. This is due to the fact that the cable jacket is located on the
outer layer of the cable, and the temperature gradient drops considerably compared to the
cable core temperature. The decrease in temperature gradient near the cable bottom skin is
particularly obvious; thus, the machine learning model near the cable bottom skin has poor
temperature prediction accuracy, and the relative error reaches the maximum of 1.54%. At
the same time, the training feature data near the cable sheath are less than the data set near
the cable core, which causes the prediction results to not be as accurate as those near the
cable core. In the research on cable temperature calculation, the most noteworthy value is
the temperature of the cable core. The influence of the temperature distribution at the cable
sheath on cable operation is much smaller than that at the cable core temperature, so the
prediction accuracy of a few points at the cable sheath is negligible.
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5. Digital Twin Platform for Cable Temperature Calculation Based on RF-GPR

Based on the research of the cable temperature calculation method and artificial
intelligence technology, the digital twin frame of cable temperature calculation is further
designed, as shown in Figure 9. Referring to the five-dimensional model of digital twin
technology in the industrial field, a digital twin cable model (DTCTM) is proposed, which
includes five parts: physical entity, digital twin, twin data, virtual–real connection and
intelligent application, as shown in Equation (20).

DTCM = {PCT , VCT , DTData, VRC, DT&A} (20)

where PCT indicates the physical entity of the cable, VCT represents a digital twin; DTData
indicates the twin data, and VRC represents the connection between the virtual and real
systems. DT&A represents the application provided by the twin system.
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The digital twin of the cable temperature calculation is the development form of the 
coexistence of the physical space entity and the digital cable. By accepting the physical 
parameters and distributed sensing data from the physical cable entity, the digital space 
establishes a virtual space matching the physical cable entity, synchronously evolves with 
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ment in the form of dynamic monitoring, real-time diagnosis and accurate prediction. In 
this way, the real-time visualization of the full state of the cable model and the intelligent 
operation and maintenance are promoted to realize the comprehensive and accurate mon-
itoring of the physical cable entity, and the analysis results such as the diagnostic data and 
predictive data are fed back into the cable�s physical entity for the next step of scheduling 
control. Through the combination of the cable monitoring system and digital twin tech-
nology, the formation of the continuous learning and evolution of the intelligent cable 
situation management system, the reasonable control of the cable load transport and op-
eration safety monitoring occurs, thus promoting the durable and safe operation of the 
cable system as a whole, opening up a new model of digital smart grid operation and 
maintenance [31,32]. 
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The digital twin of the cable temperature calculation is the development form of the
coexistence of the physical space entity and the digital cable. By accepting the physical
parameters and distributed sensing data from the physical cable entity, the digital space es-
tablishes a virtual space matching the physical cable entity, synchronously evolves with the
physical cable entity, and then reflects the state of the cable model in the real environment
in the form of dynamic monitoring, real-time diagnosis and accurate prediction. In this way,
the real-time visualization of the full state of the cable model and the intelligent operation
and maintenance are promoted to realize the comprehensive and accurate monitoring of
the physical cable entity, and the analysis results such as the diagnostic data and predictive
data are fed back into the cable’s physical entity for the next step of scheduling control.
Through the combination of the cable monitoring system and digital twin technology,
the formation of the continuous learning and evolution of the intelligent cable situation
management system, the reasonable control of the cable load transport and operation safety
monitoring occurs, thus promoting the durable and safe operation of the cable system as a
whole, opening up a new model of digital smart grid operation and maintenance [31,32].

Constructing the digital twin platform for cable temperature calculation is an impor-
tant step in the design of the digital twin frame for cable temperature calculation, which
should consider the connection between virtual space and the cable entity. This paper
builds a data platform based on the RF-GPR cable temperature prediction model and uses
digital technologies such as smart sensors and the Internet of things to digitally describe the
characteristics, parameters and operating conditions of the cable trench’s physical entity,
forming a variable database including geometric parameters, electromagnetic parameters
and material parameters. In addition, during the operation of the cable system, intelli-
gent perception technology and model analysis technology should also be used to import
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sensing and simulation related models and operation data into the digital twin space to
improve the data platform of the digital twin model for cable temperature calculation.

In the optimization of the operation process of the cable entity, the digital twin space
carries out virtual–real interaction and information sharing with the cable entity through
the connection technology of real-time transmission, uses machine learning prediction
technology in the virtual space to conduct simulation analysis and accurate prediction,
and then uses the optimization control technology to feedback the analysis results into the
cable entity. It supports the safe and stable operation of cable entities, while providing twin
system applications such as safety warning, temperature monitoring and fault analysis,
and presents the analysis results to users of the digital twin platform. The interface of the
digital twin platform for cable temperature calculation is shown in Figure 10.
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6. Conclusions

To solve the problem that the finite element method takes a long time to calculate the
multi-physical field coupling model, a cable temperature prediction model construction
method based on machine learning is proposed. The random forest algorithm is used to
calculate the importance score of the characteristic variables, and six-dimensional input
characteristic variables with an importance that is greater than 4% in model training are
selected. The cable temperature prediction model based on RF-GPR is constructed by
the series mixing model. The model accuracy (R2), root-mean-square error (RMSE) and
average relative error were 0.9879 and 0.8564, respectively. The average relative error of
the cable temperature prediction in the cable trench is 0.17%, which can replace the finite
element method to predict the temperature distribution in the cable trench. Under the
same conditions, the prediction time of the cable trench temperature based on the Gaussian
process regression algorithm is nearly 1500 times shorter than that of the finite element
calculation, which effectively improves the real-time performance of cable temperature
prediction. A digital twinning platform for cable temperature calculation based on RF-GPR
is designed to provide technical support for the application of digital twinning for cable
running state evaluation.
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