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Abstract: In order to establish a highly efficient P system for resolving clustering problems and
overcome the computation incompleteness and implementation difficulty of P systems, an attractive
clustering membrane system, integrated with enhanced particle swarm optimization (PSO) based
on environmental factors and crossover operators and a distributed parallel computing model of
monodirectional tissue-like P systems (MTP), is constructed and proposed, which is simply named
ECPSO-MTP. In the proposed ECPSO-MTP, two kinds of evolution rules for objects are defined and
introduced to rewrite and modify the velocity of objects in different elementary membranes. The
velocity updating model uses environmental factors based on partitioning information and randomly
replaces global best to improve the clustering performance of ECPSO-MTP. The crossover operator
for the position of objects is based on given objects and other objects with crossover probability
and is accomplished through the hybridization of the global best of elementary membranes to
reject randomness. The membrane structure of ECPSO-MTP is abstracted as a network structure,
and the information exchange and resource sharing between different elementary membranes are
accomplished by evolutional symport rules with promoters for objects of MTP, including forward
and backward communication rules. The evolution and communication mechanisms in ECPSO-MTP
are executed repeatedly through iteration. At last, comparison experiments, which are conducted
on eight benchmark clustering datasets from artificial datasets and the UCI Machine Learning
Repository and eight image segmentation datasets from BSDS500, demonstrate the effectiveness of
the proposed ECPSO-MTP.

Keywords: particle swarm optimization; monodirectional tissue-like P systems; environmental
factors; crossover operator; data clustering; image segmentation

1. Introduction

Membrane computing (MC) is a crucial area of nature-inspired computation that
draws inspiration from the biological mechanisms and phenomena of organisms and
was designed and developed by Pặun [1]. The MC of modeling is the abstraction of the
construction, activation, cooperation, and function of living cells in tissues or organs and
is also known as P systems or membrane systems. In general, the computational model
of MC consists of three essential elements, including the structure of membranes, objects,
and rules [2]. There are two main types of MC, including Cell-like P systems (CPs) with a
hierarchical structure and tissue-like P systems (TPs) or neural-like P systems (NPs) with
a net structure [3]. It has been proven that these classic systems and their corresponding
variations are Turing complete [4].
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TPs are inspired by the construction and communication methods of living cells in
tissues or organs. Information interchange between cells is accomplished through channel
states [5,6] or symport/antiport rules [7]. Therefore, the substructure of TPs is vividly
depicted by an undigraph. The study of TPs has been broadly divided into theoretical and
application studies [8]. In theoretical studies, many kinds of TPs based on various biological
motivations have been constructed and developed to expand the types of MC [9,10]. The
analysis of these extended systems on computing power and computational efficiency is
an essential point in theoretical works [11,12]. TPs with evolutional symport/antiport are
presented to rewrite and modify objects in the communication process [13,14]. Inspired by
the presence of biocatalysts in biological reactions, a variation of TPs with promoters has
been proposed to recruit promoters for solving image processing problems [15]. A novel
kind of TP, monodirectional tissue-like P systems [16] and simply called MTPs, which is
based on the biological fact that objects only move in one direction, has been constructed to
enhance computing power in solving NP-complete problems [17–19].

The combination of evolutionary computation (EC) and TPs is a prominent feature of
application studies and an important component of evolutionary membrane computing
(EMC). Membrane-inspired evolutionary algorithms (MIEAs), also known as membrane
algorithms (MAs), have become one of the mainstream approaches in EMC based on
TPs [20]. MAs based on TPs have been merged with various heuristic algorithms, such as
genetic algorithm (GA) [21], differential evolution (DE) [22] and its variations [23], particle
swarm optimization (PSO) [24] and its variations [25], ant colony optimization (ACO) [26],
and artificial bee colony algorithm (ABC) [27], to comprehensively utilize the strengths
of heuristic algorithms with stronger practicality and high robustness, as well as the low
complexity and effectiveness of TPs. MAs based on TPs have been successfully applied to
resolve various advanced problems in the world [28–31].

PSO is a type of stochastic optimization approach that was originally initiated and
designed by Kennedy and Eberhart [32]. The computing model is based on the collective
behavior of birds flocking, and the trajectory of particles is adaptively adjusted according
to individual and social experiences to balance exploration and exploitation of the algo-
rithm [33]. Compared to other swarm intelligence (SI) approaches, PSO has fewer adjusting
parameters and a simple implementation, which shows great potential for solving practical
problems [34–36]. However, under the basic framework of SI, PSO can also easily fall into
local optima and appear premature [37]. Therefore, several variants of PSO have been
designed and developed to improve its search performance [38,39].

A lot of research has been conducted on adjusting the parameters of PSO through vari-
ous optimization strategies, mainly consisting of adjusting the inertia weight [40,41] and
the acceleration coefficients based on self-cognition and social-cognition adjustment [42].
Several kinds of modified position and velocity updating models have been constructed
and presented to enhance the local and global optimization capacities of PSO, such as
the crossover operator [43,44], which includes the multi-crossover operator [45] and the
vertical crossover operator [46], and the mutation operator [47,48]. Furthermore, improved
PSO integrates with various learning strategies that have been designed and developed
to alter the exemplar particle in the population, including adaptive comprehensive learn-
ing strategies [49,50], adaptive learning strategies [51,52], and reinforcement learning
strategies [53,54]. Some studies on PSO have utilized the multi-population strategy to split
the whole population of particles into multiple smaller subpopulations to avoid prema-
turity [55,56]. Communication between different subpopulations is allowed to realize
information exchange and sharing [57,58]. In order to utilize the advantages of both
approaches, various variants of PSO have been proposed that combine PSO with other
heuristic algorithms or optimization strategies to enhance the performance of PSO in
solving engineering application problems [59–61].

Based on the above studies, MAs based on TPs provide a new way of enhancing
the performance of PSO, which distinguishes them from previous improvements to PSO.
Furthermore, the combination of PSO and TPs is also a new attempt to overcome limitations,
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such as incomplete basic operations and implementation complexities in the original model.
The properties of distributed and parallel processing in P systems are introduced to address
the issue of exponential complexity increase in PSOs with problem scale enlargement.
Under the computing framework of TPs, the particle population is divided into multiple
sub-populations with a network structure, and communication between different sub-
populations is achieved through the symport/antiport rules of TPs. Unlike previous
related works about MAs, this paper modifies the evolutionary mechanism of PSO to
better suit the computing framework of MTP. Each object in the elementary membrane
has two evolution rules for updating velocity, which can be selected randomly to avoid
premature convergence. Additionally, two evolution rules based on the classic PSO and
crossover operator are defined to update the position of objects in different elementary
membranes in order to balance the exploration and exploitation of the system. The exchange
of information based on global best practices in a single direction is achieved through the
specific communication mechanism of MTP, which distinguishes it from the related works
on MAs based on TPs.

This work focuses on the combination of extended TPs with PSO for solving clustering
problems. A novel variant of MIEAs or MAs with SNS, called ECPSO-MTP, is proposed and
designed by integrating MTP and an improved PSO based on environmental factors and
crossover operators. The proposed ECPSO-ECP comprises the evolutionary mechanism
of modified PSO and the computation framework of MTP to establish a highly efficient
P system for solving clustering problems. In ECPSO-MTP, two types of evolution rules
are defined and introduced to rewrite and modify objects in different elementary mem-
branes based on environmental factors and crossover operators. The environmental factors
utilize the partitioning information to randomly replace the global best of objects and
attend to the evolution process to improve the clustering performance of ECPSO-MTP. The
crossover operator is achieved by hybridizing the global best of elementary membranes
to reject randomness. The information exchange and resource sharing between different
elementary membranes in ECPSO-MTP are accomplished through the evolutional sym-
port with promoters for objects of MTP, including forward and backward communication
rules. Furthermore, eight test clustering and image datasets are employed in compari-
son experiments to verify the effectiveness of ECPSO-MTP compared with other existing
approaches. The results from comparison experiments demonstrate the efficiency of the
proposed ECPSO-MTP.

The structure of this paper is organized as follows: Section 2 provides a brief intro-
duction to the basic framework of TPs with evolutional symport/antiport and promoters
and MTPs with evolutional symport and promoters. Section 3 details the evolutionary
mechanism of PSO based on environmental factors and crossover operators. Section 4
presents a detailed depiction of the proposed ECPSO-MTP, including its general frame-
work, evolution rules, communication rules, and complexity analysis. Experimental results
and discussions of the proposed ECPSO-MTP, which were conducted on eight cluster-
ing datasets and compared with five existing methods, are discussed and analyzed in
Section 5. Section 6 illustrates the performance of the proposed ECPSO-MTP based on the
comparison results of three clustering approaches on eight segmentation images. Finally,
the summarization and conclusions for this paper and recommendations for future works
are outlined in Section 7.

2. Tissue-like P Systems
2.1. TPs with Evolutional Symport/Antiport and Promoters

As a variant of TPs, TPs with evolutional symport/antiport and promoters are based
on the fact of biological reactions [62]. In classic TPs, substances or objects are transmitted
through the execution of communication rules in different cells or regions, and commu-
nication between two given membranes is realized with the help of symport/antiport
rules. In the presence of certain chemical substances, rules with promoters are executed to
dynamically change the working manner of the computing model. The purpose of this ex-
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tended P system is to modify and rewrite objects during the communication process using
the framework of evolutionary mechanisms. Therefore, a recognizer TP with evolutional
symport/antiport and promoters is designed and defined as a tuple in the following [9]:

Π = (Γ, ε, µ, ω1, · · · , ωm, R, σin, σout)

where

(1) Γ is nonempty finite set of alphabets consisting of elements, and all elements in this
alphabet are called objects;

(2) ε is a finite alphabet set of Γ, which represents objects initially placed in the environ-
ment, such that ε ⊆ Γ;

(3) µ is the structure of the P system, which consists of m membranes;
(4) ω1, · · · , ωm are finite multisets of objects over Γ, initially placed in m membranes,

where ωi ⊆ Γ, for 1 ≤ i ≤ m;
(5) R is a finite set of communication rules for the system, which contains two kinds of

rules with promoters of the following restrictions.

1© Evolutional symport rules with promoters:
[
u
∣∣p ]i[]j → []i

[
u
′
]

j
, where

0 ≤ i 6= j ≤ m, u ∈ Γ+, u
′ ∈ Γ∗, p ∈ Γ, |u| > 0. It can only be applied to

a configuration if both the multiset of objects u and promoter objects p appear
in the same existing membrane i. When such an evolutional symport rule
with promoters associated with membrane i and membrane j is employed, the
multiset of objects u under the presence of promoter objects p in membrane i
is simultaneously sent to membrane j and evolved into new objects u

′
;

2© Evolutional antiport rules with promoters:
[
u
∣∣p ]i[v]j → [

v
′
]

i

[
u
′
]

j
, where

0 ≤ i 6= j ≤ m, u, v ∈ Γ+, u
′
, v
′ ∈ Γ∗,p ∈ Γ, |u|, |v| > 0. It can only be applied

to a configuration if both u and p appear in the same existing membrane i,
and another membrane j in the same configuration contains v. When such an
evolutional antiport rule with promoters associated with i and j is employed,
u under the presence of p in i is simultaneously sent to j and evolved into u

′
,

at the same time, v in j is also simultaneously sent to i and evolved into new
objects v

′
;

(6) σin represents an input membrane or region, where σin ∈ {σ0, σ1, · · · , σm};
(7) σout represents an output membrane or region, where σout ∈ {σ0, σ1, · · · , σm}.

In the TPs with evolutional symport/antiport and promoters, unlike other objects
involved in computation, the promoter objects do not directly take part in the execution
process of evolutional symport/antiport rules. They are not modified or changed during
computation. However, it only alters the order in which the evolutional symport/antiport
rules are executed. In the presence of promoter objects, a greater number of corresponding
evolutional symport/antiport rules are implemented within the fixation time. Once the
promoters are empty, the execution of evolutionary symport/antiport rules will cease to be
effective. Overall, the TPs with evolutional symport/antiport and promoters are applied in
a maximally parallel manner, and each membrane of the system also works in a maximally
parallel way.

Specifically, the evolution rules for objects are introduced in the computing model of
TPs, which are based on the biological facts that molecules or substances can be modified
and changed in membranes [63]. The evolution of objects is achieved through the execution
of rewriting rules, which are of the form: [u→ v]i, where u, v ∈ Γ+. It can only be applied
to a configuration if the multiset of objects u appears in the existing membrane i. When
such an evolution rule is applied, objects u in i evolve into objects v, noted that the position
of u remaining unchanged during the evolutionary computation.
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2.2. MTPs with Evolutional Symport and Promoters

MTPs are an attractive variant of TPs that are based on the biological phenomenon
of molecules or substances moving from high to low concentration in membranes or
regions [16]. The computational power of MTPs has been proven in a flat maximally
parallel model [18]. Furthermore, restrictive conditions of evolutional symport rules with
promoters are introduced in MTPs, which are referred to as MTPs. For any two given
membranes or regions, only evolutional symport rules with promoters are permitted to
realize the movement and modification of objects in one direction.

The evolutional symport rules with promoters in MTP are given in the form,[
u
∣∣p ]i[λ]j → [λ]i[v]j , or

[
λ
∣∣p ]i[u]j → [v]i[λ]j , where 0 ≤ i 6= j ≤ m, u, v ∈ Γ+, p ∈ Γ,

|u| > 0. The first kind of rule is applied to a configuration if both u and p appear in the
same existing membrane i. When such an evolutional symport rule with promoters associ-
ated with i and j is employed, under the presence of p, objects u in i are simultaneously sent
to j and revised to v. The second kind of rule is applied to a configuration if p and u appear
in i and j respectively. When such an evolutional symport rule with promoters associated
with i and j is employed, under the presence of p in i, objects u in j are simultaneously sent
to i and revised to v.

3. Improved Particle Swarm Optimization
3.1. Environmental Factors

From a biological perspective, the social behavior of birds is affected by their living
environment. Specifically, the flying space of birds is constrained by environmental factors
within a certain period. Additionally, the characteristics of birds can also affect their living
environment, resulting in differences between individuals. To enhance the diversity of
species, environmental factors are introduced to the classic model of PSO [59]. At each
iteration t + 1, the new velocity Vi(t + 1) of particle i is defined by (1) in the following:

Vi(t + 1) = ω ∗Vi(t) + c1 ∗ r1 ∗
(

Xlbest
i (t)− Xi(t)

)
+ c2 ∗ r2 ∗

(
Xgbest(t)− Xi(t)

)
,

+c3 ∗ r3 ∗
(

Xebest
i (t)− Xi(t)

) (1)

where t is the iteration counter. ω represents the inertia weight. c1 and c2 are acceleration
coefficients based on self-cognition and social cognition. r1 and r2 are two uniform random
numbers. Xlbest

i (t) is the local best of i at t. Xgbest(t) is the global best of i at t. Specifically,
c3 is the positive regulation constant with a uniform random number. Xebest

i (t) is the
environmental factor of i at t, which is defined by (2) in the following:

Xebest
i (t) =

∑nk
j=1 yk,j

nk
, (2)

where Xebest
i (t) consisting of a finite set of cluster centers for i at t, and the number of finite

set is K, Xebest
i (t) =

{
Xebest

i1 (t), Xebest
i2 (t), · · · , Xebest

iK (t)
}

, K is the number of clusters. yk,j is
the feature of data point j belonging to the corresponding cluster k, for 1 ≤ k ≤ K. And nk
is the totality of data points attaching to cluster k.

3.2. Crossover Operator

In the standard model of PSO, the trajectory adjustment of particles is based on their
local and global experiences. Local and global best are introduced to regulate motion,
resulting in rapid information propagation throughout the particle population. However,
this rapid propagation in population leads to the standard PSO becoming trapped in local
optima. Therefore, a novel variant of the updating method that integrates PSO and GA is
proposed to improve performance. An arithmetic crossover operator is introduced into the
generation process of the particle population to inject randomness by adding a weighted
position between a random particle and a given particle [43]. Specifically, the crossover
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operator only takes place in a given particle i and random particle r with a crossover
probability ϕ, at t + 1, the new position Xi(t + 1) of i is defined by (3) in the following:

Xi(t + 1) = Xi(t) + γ(t) ∗ Xr(t + 1), (3)

where γ(t) is the weight parameter γ at t. Xr(t) is the position corresponds to a randomly
selected particle r from particle’s population at t, noted that r 6= i. Additionally, at t + 1,
the crossover probability ϕ is determined by (4) in the following:

ϕ(t + 1) = θϕ ∗ ϕ(t), (4)

where θϕ is the damping parameter. At t + 1, the weight parameter γ is determined by (5)
in the following:

γ(t + 1) = θγ ∗ γ(t), (5)

where θγ is the damping factor. Specially, the initial values of the crossover probability ϕ
and weight parameter γ are typically set to 1.

4. The Proposed ECPSO-MTP

In this section, a novel clustering membrane system is designed and developed that
combines the computation framework of MTP and the evolutionism of PSO based on
environmental factors and a crossover operator and is simply named ECPSO-MTP. The
evolution mechanism of the system involves the evolution of objects in different membranes,
which is achieved through the velocity updating model based on environmental factors
and the position updating model based on the crossover operator. The communication
mechanism is accomplished through evolutional symport with promoters of MTP to realize
the transport and exchange of objects between membranes. Thus, the computing model of
ECPSO-MTP consists of two mechanisms for objects, i.e., the evolution mechanism and the
communication mechanism. More details about the proposed ECPSO-MTP are depicted
as follows.

4.1. The Common Framework of ECPSO-MTP

The membrane system of the proposed ECPSO-MTP is defined and described as a
tuple, which is completely depicted in the following:

Π =
(

Γ, ε, µ, ω1, · · · , ωm, R, R
′
, σin, σout

)
,

where

(1) Γ is a non-empty, finite alphabet for objects;
(2) ε ⊆ Γ is a finite alphabet set for objects that are initially placed in the input membrane;
(3) µ is the structure of the ECPSO-MTP, which contains m + 4 elementary membranes;
(4) ω1, · · · , ωm are finite multisets for objects that are initially placed in m elementary

membranes, where ωi ⊆ Γ, for 1 ≤ i ≤ m;
(5) R is the finite set of evolution rules for objects in the proposed ECPSO-MTP, where

R = {R1, R2, · · · , Rm, Rm+2}. Ri is a finite subset of R associated with membrane i,
for 1 ≤ i ≤ m or i = m + 2, and is of the form: Ri =

[
u→ u

′
]

i
, for u, u

′ ∈ Γ+. When

such an evolution rule Ri in i is applied, objects u in i evolve into u
′
;

(6) R
′

is the finite set of communication rules for objects in the proposed ECPSO-MTP,

where R
′
=
{

R
′
1, R

′
2, · · · , R

′
m+2

}
. R

′
i is a finite subset of R

′
associated with i us-

ing the evolutional symport with promoters of MTP. Specifically, R
′
ij ⊆ R

′
i and

is of the form: R
′
i,j :

[
u
∣∣p ]i[λ]j → [λ]i

[
u
′
]

j
, or R

′
i,j :

[
λ
∣∣p ]i[u]j → [

u
′
]

i
[λ]j , where

1 ≤ i 6= j ≤ m + 2, u ∈ Γ+, u
′ ∈ Γ∗, p ∈ Γ, |u| > 0;

(7) σin is the input membrane of the proposed ECPSO-MTP;
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(8) σout is the output membrane of the proposed ECPSO-MTP. When the computation
of this extended P system is completed, objects in the output membrane σout will be
sent to the environment σ0, which is regarded as the final computational result of the
system. The membrane structure of the proposed ECPSO-MTP is graphically depicted
in Figure 1.
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The membrane structure of ECPSO-MTP can be abstracted as the hierarchical structure
in mathematics, which is depicted in Figure 1. This extended P system contains m + 4
membranes, including an input membrane σin and an output membrane σout, while the
others are labeled from 1 to m + 2. Specifically, if there are no membranes contained within
a membrane, it is called an elementary membrane. In this case, membranes σ1 to σm+2 are
elementary membranes. Additionally, σm+2 is also called a comparison membrane, and the
best object selected from σ1 to σm+1 is stored as the best object of σm+2.

4.2. Evolution Rules

In ECPSO-MTP, two types of evolution rules are defined and described for objects
in different elementary membranes, including elementary membrane σo (1 ≤ o ≤ m)
and elementary membrane σm+1, respectively. The evolution rules are used to evolve
objects. And the evolutionary mechanism of modified PSO with environmental factors
and crossover operators is adopted to accomplish this evolution in different membranes.
Specifically, an object ui is composed of two essential components, including velocity Vi
and position Xi, where ui = {Vi, Xi}.

Two types of evolution rules are introduced to modify the velocity of objects in
elementary membranes, based on the velocity updating model of classic PSO and modified
PSO with environmental factors. Thus, Vi(t + 1) of ui in σo at t + 1 is defined by (6) in the
following:

Vi(t + 1) = ω ∗Vi(t) + c1 ∗ r1 ∗
(

Xlbest
i (t)− Xi(t)

)
+ c2 ∗ r2 ∗

(
Xgbest

o (t)− Xi(t)
)

, (6)

Another evolution rule is defined by (7) in the following:

Vi(t + 1) = ω ∗Vi(t) + c1 ∗ r1 ∗
(

Xlbest
i (t)− Xi(t)

)
+ c2 ∗ r2 ∗

(
Xebest

i (t)− Xi(t)
)

, (7)

And ω is determined by (8) in the following:

ω(t) = ωmin + (ωmax −ωmin) ∗ (t/tmax), (8)
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where ωmin and ωmax represent the minimum and maximum values of ω. The maximum
number of iterations is denoted by tmax. c1 and c2 are typically set to 2. Xlbest

i (t) represents

the local best of ui, and is also indicated as ulbest
i (t). Xgbest

o (t) represents the global best of

ui in σo, and is also denoted by ugbest
o (t). Xebest

i (t) is the environmental factor of ui and is
determined by Equation (2).

The position updating model of the classic PSO is employed to modify the position of
objects, and Xi(t + 1) of ui in σo is defined by (9) in the following:

Xi(t + 1) = Xi(t) + Vi(t + 1), (9)

Then, ulbest
i (t + 1) of ui at t + 1 is described by (10) in the following:

ulbest
i (t + 1) =

{
Xi(t + 1), if f (Xi(t + 1)) < f

(
Xlbest

i (t)
)

,

Xlbest
i (t), otherwise

(10)

where f () represents the fitness of the fitness function. And ugbest
o (t + 1) of σo at t + 1 is

described by (11) in the following:

ugbest
o (t + 1) =

{
Xlbest

i (t + 1), if f
(

Xlbest
i (t + 1)

)
< f

(
Xgbest

o (t)
)

Xgbest
o (t), otherwise

(11)

In addition, the position updating model based on the crossover operator is adopted
to modify the position of objects in σm+1 using the Equations (3)–(5). And the global best
ugbest

m+1 (t + 1) of σm+1 at t + 1 is the best position in σm+1.

4.3. Communication Rules

In ECPSO-MTP, evolutional symport with promoters of MTP is introduced to facilitate
communication between elementary membranes. Two kinds of communication rules for
objects through the conveyor direction of information, including forward and backward
communication rules, are defined and adopted to enable communication to take place
in different elementary membranes. More details about these communication rules are
depicted as follows.

4.3.1. Forward Communication Rules

Under the hierarchical structure of the proposed ECPSO-MTP, forward communication
rules are applied to establish transitive relationships between elementary membranes. There
are two types of communication rules in the onward direction, including σo (1 ≤ o ≤ m)
to σm+1 and σm+1 to σm+2. It is noted that there is no interaction between elementary
membranes at the same level of membrane structure.

The forward communication rules from σo to σm+1 are given in the form,
R
′
o,m+1 :

[
ugbest

o (t)
∣∣p ]

o
[λ]m+1 → [λ]o[uo(t)]m+1 , for 1 ≤ o ≤ m. It only can be applied

on a configuration if both ugbest
o (t) and p appear in σo at t. When this communication rule

associated with σo and σm+1 is applied, under the presence of p, ugbest
o (t) in σo is simultane-

ously sent to σm+1 and evolve into uo(t). Therefore, the totality of objects from σ1 to σm in
σm+1 is m.

The forward communication rules from σm+1 to σm+2 are given in the form,
R
′
m+1,m+2 :

[
ulbest

o (t)
∣∣p ]

m+1
[λ]m+2 → [λ]m+1[uo(t)]m+2 , for 1 ≤ o ≤ m. It only can be

applied on a configuration if both ulbest
o (t) and p appear in σm+1 at t. When this communi-

cation rule associated with σm+1 and σm+2 is applied, under the presence of p, ulbest
o (t) in

σm+1 is simultaneously sent to σm+2 and revised to uo(t). Thus, the best object from σm+1

is selected and stored as the global best ugbest
m+2 (t) of σm+2 at t.
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4.3.2. Backward Communication Rules

Under the hierarchical structure of proposed ECPSO-MTP, backward communication
rules based on the backward direction of information are applied from σo (1 ≤ o ≤ m)
to σm+2. The backward communication rules from σo to σm+2 are given in the form,
R
′
o,m+2 :

[
λ
∣∣q ]o

[
ugbest

m+2 (t)
]

m+2
→
[
ugbest

o (t)
]

o
[λ]m+2 , for 1 ≤ o ≤ m. It only can be applied

on a configuration if both q and ugbest
m+2 (t) are respectively present in σo and σm+2 at t, noted

that q 6= p. When this communication rule associated with σo and σm+2 is applied, under
the presence of q in σo, ugbest

m+2 (t) in σm+2 is simultaneously sent to σo and evolves into

ugbest
o (t).

4.4. Computation of Proposed ECPSO-MTP

(1) Initialization

<1> Parameters initialized
In the proposed ECPSO-MTP, the values of adjusting parameters are preset by adding

the following values to the existing ones, including N and no, where N is the totality of
objects in the system, no is the totality of objects in σo (1 ≤ o ≤ m). The static membrane
structure of the proposed ECPSO-MTP is shown in Figure 1 in more details. All objects in-
volved in the computational procedure of the system are located in σin during initialization;

<2> Velocity and position initialized
To initialize the velocity and position for all objects in σin, a random generation strategy

in search space is employed. Then these objects are sent to the elementary membrane σ1 to
σm respectively, where no = N/m;

<3> Local and global best updated
The local best ulbest

i (1 ≤ i ≤ no) and global best ugbest
o in σo are generated by the

Equations (10) and (11);

(2) Evolution mechanism for σ1 to σm

<1> Velocity and position updated
The evolution rules for the velocity updating of all objects in σo, based on classic

PSO and modified PSO with environmental factors, are randomly employed according to
Equations (6)–(8), and the position updating is determined by Equation (9);

<2> Local and global best updated
The local best ulbest

i (1 ≤ i ≤ no) and global best ugbest
o in σo are generated by the

Equations (10) and (11);

(3) Forward communication mechanism from σo to σm+1

Under the presence of both p and ugbest
o in σo, the first type of forward communication

rules are employed to transmit ugbest
o from σo to σm+1 and evolve it into uo in σm+1. Specifi-

cally, the promoter objects p can be described as logical judgements, where p = {t < tmax};
(4) Evolution mechanism for σm+1

<1> Position updated
The evolution rules in σm+1 based on the crossover operator are employed to update

objects in σm+1 according to Equations (3)–(5);
<2> Local best updated
Update ulbest

o for all objects in σm+1 according to Equation (10);

(5) Forward commutation mechanism from σm+1 to σm+2

Under the presence of both p and ulbest
o in σm+1, the second type of forward communi-

cation rules is employed to transmit ulbest
o from σm+1 to σm+2 and evolve it into uo in σm+2.

The best object from σm+1 is regarded as the global best ugbest
m+2 of σm+2. Then ugbest

m+2 is sent to
σout as the computed result of the system at the moment;
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(6) Backward communication mechanism from σo to σm+2

Under the presence of q in σo and ugbest
m+2 in σm+2, the backward communication

rules from σo to σm+2 are utilized to transmit ugbest
m+2 from σm+2 to σo and evolve it into

ugbest
o in σo. Specifically, the promoter objects q can be described as logical judgements,

where q =
{

f
(

ugbest
m+2

)
< f

(
ugbest

o

)}
. The communication relationships within the sys-

tem are graphically depicted in Figure 2, with black arrows indicating the direction
of communication;
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(7) Termination and output

The evolution-communication mechanism in ECPSO-MTP is executed repeatedly
through iteration until the maximum number of iterations is attained. When the system
stops, the last object of ugbest

m+2 in σout is transmit to the environment σ0, which can be
represented by the final computed result of the proposed ECPSO-MTP. The pseudocode for
the computation of the proposed ECPSO-MTP is depicted in the Algorithm 1 as follows.

Algorithm 1 ECPSO-MTP

Input: N, tmax, c1, c2, r1, r2, ωmin, ωmax, θϕ, θγm;
(1) Initialization

<1> Velocity and position initialized
for i = 1 to N

Velocity of object ui: Vi = rand
(

sl , su
)

;

Position of object ui: Xi = rand
(

sl , su
)

;

end
<2> Local and global best updated

for o = 1 to m
for i = 1 to n

Update local best ulbest
i of objects ui according to Equation (10);

Update global best ugbest
o of object ui according to Equation (11);

end
end
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Algorithm 1 ECPSO-MTP

(2) Evolution mechanism for σ1 to σm
<1> Velocity and position updated

for o = 1 to m
for i = 1 to n

Update velocity Vi of object ui based on a randomly selection strategy according to
Equations (6)–(8);
Update position Xi of object ui according to Equation (9);

end
end

<2> Local and global best updated
(3) Forward communication mechanism from σo to σm+1

if p = {t < tmax}
for o = 1 to m

R
′
o,m+1 :

[
ugbest

o (t)
∣∣p ]

o
[λ]m+1 → [λ]o[uo(t)]m+1 ;

end
end

(4) Evolution mechanism for σm+1
<1> Position updated

Update position Xi of object ui in σm+1 according to Equations (3)–(5);
<2> Local best updated

(5) Forward commutation mechanism from σm+1 to σm+2
if p = {t < tmax}

R
′
m+1,m+2 :

[
ulbest

o (t)
∣∣p ]

m+1
[λ]m+2 → [λ]m+1[uo(t)]m+2 ;

end
(6) Backward communication mechanism from σo to σm+2

if q =
{

f
(

ugbest
m+2

)
< f

(
ugbest

o

)}
for o = 1 to m

R
′
o,m+2 :

[
λ
∣∣q ]o[ugbest

m+2 (t)
]

m+2
→
[
ugbest

o (t)
]

o
[λ]m+2 ;

end
end

(7) Termination and output
if t > tmax

Best position of P system: ugbest
m+2 ;

Best Fitness of P system: f
(

ugbest
m+2

)
;

end
Output: Best position of P system; best fitness of P system;

4.5. Complexity Analysis

The complexity of ECPSO-MTP for solving clustering problems is discussed and
analyzed in this subsection. Firstly, some clarifications are given as follows: M represents
the totality of data points in the dataset and D represents the dimension of data points.
K represents the totality of clusters in the dataset, usually D � M, and K � M.

The computation of the proposed ECPSO-MTP consists of three main steps, including
initialization, evolution, and communication phases. In the initialization phase, the compu-
tation time is mostly determined by the calculation cost of the fitness function, and the time
needed for distance computation for one object is KMD, which can be simplified to M. The
computation time for all objects in the system is nM, and the complexity for the initialized
state of ECPSO-MTP is O(nM). In the evolution phase, the time of evolution rules needed
by executing once in σo is nM. The computation time of the evolution phase for σ1 to σm
under the distributed and parallel processing of P systems is nM. And the computation
time of the evolution phase for σm+1 is mM. Then the complexity of the evolution state of
ECPSO-MTP is O((n + m)M). In the communication phase, the number of communication
rules needed to be executed once in ECPSO-MTP is set to 1. The communication time from
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σo to σm+1, σm+1 to σm+2, σo to σm+2, is equal to 3, and the complexity of the communication
state of ECPSO-MTP is O(3). Therefore, the time of the whole system by executing one iter-
ation is (n + m)M + 3, and the cumulative time of the system is nM + ((n + m)M + 3)tmax.
Then the complexity of the proposed ECPSO-MTP is O(nMtmax).

5. The Proposed ECPSO-MTP for Data Clustering

In this section, computational experiments with accuracy and convergence speed are
introduced in order to verify the effectiveness of the proposed ECPSO-MTP, and a suite of
commonly used datasets, including Artificial and UCI datasets, are adopted. To further
demonstrate the validity of the proposed ECPSO-MTP, five previous clustering approaches
are employed as comparison approaches. All clustering approaches are executed on a Dell
desktop computer equipped with an Intel 8.00 GHz i7-8550U processor and 16 GB of RAM,
operating under the Windows 11 environment.

5.1. Test Datasets

Test datasets, including artificial and UCI datasets, are commonly used to testify to
the effectiveness of clustering approaches. In this comparison experiment, eight datasets,
consisting of two artificial and six UCI datasets, have been previously reported and adopted
as benchmarks in research. Two artificial datasets, i.e., Data_9_2 and Square4, are generated
manually by existing literature [64]. Six UCI datasets, i.e., Iris, Newthyroid, Seeds, Yeast,
Glass, and Wine, are from the UCI Machine Learning Repository [65]. Additional details of
these test datasets are briefly described in Table 1.

Table 1. Description of eight test datasets in the comparison experiment.

Datasets Data Instances Features Clusters

Data_9_2 900 2 9
Square4 1000 2 4

Iris 150 4 3
Newthyroid 215 5 3

Seeds 210 7 3
Yeast 1484 8 10
Glass 214 9 6
Wine 178 13 3

5.2. Comparison with Other Exisitng Approaches

Five existing clustering approaches, including classic PSO, genetic algorithm (GA),
differential evolution (DE), PSO with environmental factors (EPSO) [59], and PSO with
an enhanced learning strategy and crossover operator (PSO-LC) [43], are compared in
this computational experiment. And EPSO and PSO-LC employ different strategies to
improve performance. EPSO integrates environmental factors based on a partitioning of
the dataset into the generation process of particles. Three strategies, such as altering the
exemplar particles, modifying adjusting parameters, including inertia weight and learning
factors, and integrating PSO with GA, are applied in PSO-LC. The values of the employed
parameters used in these comparative approaches are presented in Table 2.

Specifically, mean squared error (MSE) [67], as the fitness function of comparative
clustering approaches, is introduced in the comparison experiments, which is determined
by (12) in the following:

min
c1,c2,··· ,cK

f = min f (c1, c2, · · · , cK) = min
1
M

K

∑
i=1

M

∑
j=1

ρij‖xj − ci‖2, (12)

where ρ is the partition matrix of the dataset, if ρij = 1, where indicates that data point xj
belongs to cluster i, otherwise, ρij = 0. xj represents the j-th data point in the dataset, for
1 ≤ j ≤ M. ci is the clustering center of cluster i, for 1 ≤ i ≤ K. The convergence results of
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the six tested comparative approaches on eight datasets for typical runs are depicted in
Figure 3.

Table 2. Preferences in the comparison experiments.

Parameters
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

N 200 200 200 200 200 200
tmax 200 200 200 200 200 200

c1, c2 2,2 N N 0.6,3 (0,1) 2,2
c3 N N N (0,1) N N

r1, r2 (0,1) N N (0,1) N (0,1)
r3 N N N (0,1) N N

ωmin, ωmax 0.4,1.2 N N 0.4,0.6 N 0.4,1.2
θω N N N N 0.99 N
Pc N 0.6 0.6 N N N
Pm N 0.02 N N N N
θϕ N N N N 0.994 0.994
θγ N N N N 0.995 0.995
F N N (0.5,1) N N N
m N N N N N 10 [66]

It can be clearly observed in Figure 3 that the proposed ECPSO-MTP achieves mostly
the best MSE values on eight test datasets. To eliminate randomness, each test clustering
method was independently implemented 50 times. Simple statistical results, including the
worst values (Worst), best values (Best), mean values (Mean), and standard deviations (SD)
of MSE, for these optimization approaches on the test datasets are presented in Table 3.

Table 3. Performance of six clustering approaches on test datasets (MSE).

Datasets Statistics
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

Data_9_2

Worst 0.7260 0.5597 0.6505 0.5240 0.6223 0.5248
Best 0.6476 0.5240 0.5230 0.5215 0.5218 0.5212

Mean 0.6854 0.5407 0.5361 0.5222 0.5343 0.5214
S.D. 0.0184 0.0079 0.0275 0.0006 0.0252 0.0007

Square4

Worst 7.3164 7.0736 6.9807 6.9520 6.9525 6.9520
Best 6.9780 6.9733 6.9520 6.9519 6.9519 6.9519

Mean 7.1100 7.0195 6.9569 6.9519 6.9520 6.9519
S.D. 0.0862 0.0274 0.0051 6.81 × 10−6 8.59 × 10−5 5.49 × 10−6

Iris

Worst 1.0158 0.5873 0.9578 0.6619 0.5729 0.5263
Best 0.5268 0.5450 0.5266 0.5263 0.5287 0.5263

Mean 0.5663 0.5621 0.5433 0.5357 0.5418 0.5263
S.D. 0.1178 0.0099 0.0614 0.0236 0.0103 1.09 × 10−5

Newthyroid

Worst 152.0870 157.1877 175.1488 136.4225 138.1924 132.9317
Best 135.9901 133.9973 133.1129 132.8665 135.0995 132.8379

Mean 143.5047 139.2553 137.6728 133.9052 136.5018 132.8426
S.D. 4.3043 4.6420 7.2724 1.2267 0.7346 0.0187

Seeds

Worst 4.8188 3.0923 3.0838 3.0387 3.2346 2.7968
Best 2.8261 2.9253 2.8306 2.8119 2.7975 2.7968

Mean 3.2956 3.0059 2.9215 2.8862 2.9042 2.7968
S.D. 0.7528 0.0382 0.0467 0.0530 0.1070 2.03 × 10−6

Yeast

Worst 0.0822 0.0797 0.0661 0.0465 0.0668 0.0341
Best 0.0521 0.0578 0.0586 0.0388 0.0494 0.0306

Mean 0.0721 0.0674 0.0623 0.0427 0.0585 0.0315
S.D. 0.0082 0.0076 0.0016 0.0019 0.0043 0.0008
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Table 3. Cont.

Datasets Statistics
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

Glass

Worst 5.0427 3.3902 2.7652 2.2345 3.8383 1.6684
Best 2.7025 2.1930 2.4661 1.7229 2.3312 1.5705

Mean 3.5114 2.6536 2.6326 2.0258 2.6359 1.5795
S.D. 0.5915 0.3020 0.0713 0.1198 0.2870 0.0241

Wine

Worst 13,616.9408 13,415.0092 14,752.6728 13,362.1693 13,396.0147 13,318.5101
Best 13,318.6675 13,327.0278 13,320.7178 13,325.9217 13,327.5156 13,318.4817

Mean 13,407.7736 13,361.6433 13,355.5274 13,340.4952 13,353.1583 13,318.4858
S.D. 61.9835 18.9552 201.6508 8.3583 18.6450 0.0057

Compared to other clustering approaches, the proposed ECPSO-MTP mostly achieves
the best performance, as shown in Table 3. The external index, i.e., Purity [68], is introduced
as an evaluation criterion for the clustering results obtained by these approaches, which is
defined by (13) in the following [69]:

Purity =
1
M

K

∑
i=1

max
j

∣∣Di ∩ Cj
∣∣, (13)

where Di is the i-th cluster obtained by a clustering approach. Cj is the j-th label of the real
cluster.

∣∣Di ∩ Cj
∣∣ is the totality of data points that belong to both Di and Cj. The clustering

results of Purity obtained by these clustering approaches from eight datasets are given
in Table 4, and overall, ECPSO-MTP has the best performance among the six clustering
approaches. Therefore, all these comparison results validate the clustering efficiency of the
proposed ECPSO-MTP.
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Figure 3. Comparison of convergence results from six test clustering approaches on eight datasets.
(a) Data_9_2; (b) Square4; (c) Iris; (d) Newthyroid; (e) Seeds; (f) Yeast; (g) Glass; (h) Wine.
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Table 4. Performance of six clustering approaches on eight datasets (Purity).

Datasets Statistics
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

Data_9_2
Mean 0.8413 0.9128 0.9179 0.9212 0.9144 0.9214
S.D. 0.0382 0.0078 0.0304 0.0022 0.0201 0.0015

Square4 Mean 0.9313 0.9333 0.9346 0.9350 0.9350 0.9350
S.D. 0.0033 0.0027 0.0018 3.36 × 10−16 0.0001 3.36 × 10−16

Iris
Mean 0.8771 0.8923 0.8857 0.8907 0.8932 0.8933
S.D. 0.0551 0.0106 0.0319 0.0056 0.0107 0.0026

Newthyroid Mean 0.8007 0.8361 0.8536 0.8541 0.8502 0.8605
S.D. 0.0448 0.0144 0.0273 0.0392 0.0298 7.85 × 10−16

Seeds
Mean 0.8510 0.8879 0.8929 0.8952 0.8947 0.8976
S.D. 0.0906 0.0077 0.0065 0.0119 0.0084 7.85 × 10−16

Yeast
Mean 0.3494 0.3559 0.3925 0.4385 0.3785 0.5044
S.D. 0.0260 0.0266 0.0287 0.0235 0.0179 0.0215

Glass
Mean 0.4911 0.4967 0.5185 0.5355 0.4965 0.5877
S.D. 0.0450 0.0199 0.0154 0.0222 0.0152 0.0062

Wine
Mean 0.7013 0.7016 0.7018 0.7022 0.7022 0.7022
S.D. 0.0058 0.0022 0.0041 2.24 × 10−16 2.24 × 10−16 2.24 × 10−16

5.3. Friedman Test Statistics

To investigate the statistical significance of the proposed ECPSO-MTP, the Friedman
test is employed in this analysis, and the average of MSE obtained by test clustering
approaches in comparison experiments is also introduced as the reference object [70]. In
this case, the null hypothesis assumes that all test comparative approaches have equal
values of MSE in the experiment. More details about the Friedman test in mathematical
description are given as follows [71]:

The average MSE obtained by comparative approaches on eight datasets is ranked
from smallest to largest. Let rij is the rank associated with approach j on dataset i, for
1 ≤ i ≤ 8, 1 ≤ j ≤ 6. Noted that if rij = 1, which represents the lowest value of MSE among
these approaches. 1

2 (p + 1) represents the average of these ranks, and its value is equal to 3
in this case, where p is the totality of test clustering approaches, and, p = 6. The Friedman
test statistic is defined by (14) in the following:

χ2
r =

12
np(p + 1)

p

∑
j=1

(
n

∑
i=1

rij

)2

− 3n(p + 1), (14)

where n is the totality of datasets, and, n = 8. The ranks of the average obtained by the test
clustering approaches are presented in Table 5. The value of the Friedman test statistic χ2

r
is 38.393, as shown in Table 5. At the significance level of α = 5%, the null hypothesis is
rejected with p− 1 degrees of freedom, and the critical value of χ2 is 11.070. Therefore, the
proposed ECPSO-MTP is statistically superior to other clustering approaches in terms of
the MSE measure.

Table 5. Computation results obtained by Friedman test statistics (Mean).

Datasets
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

Data_9_2 6 5 4 2 3 1
Square4 6 5 4 1 3 1

Iris 6 5 4 2 3 1
Newthyroid 6 5 4 2 3 1

Seeds 6 5 4 2 3 1



Appl. Sci. 2023, 13, 7755 17 of 25

Table 5. Cont.

Datasets
Comparative Approaches

PSO GA DE EPSO PSO-LC ECPSO-MTP

Yeast 6 5 4 2 3 1
Glass 6 5 3 2 4 1
Wine 6 5 4 2 3 1

Total Rank 48 40 31 15 25 8
Average Rank 6 5 3.875 1.875 3.125 1

Deviation 2.5 1.5 0.375 −1.625 −0.375 −2.5

6. The Proposed ECPSO-MTP for Image Segmentation

In this section, comparison experiments with accuracy that were conducted on some
test images are introduced to further investigate the clustering performance of the pro-
posed ECPSO-MTP. Eight images from the public image segmentation dataset of BSDS500
are employed as test images for clustering approaches, and three compared approaches,
including classic PSO, K-means, and spectral clustering (SC), are adopted to demonstrate
the effectiveness of the proposed ECPSO-MTP.

6.1. Test Images

In the clustering experiment, eight test images, including Lawn, Agaric, Church,
Castle, Elephants, Lane, Starfish, and Pyramid, which have been reported and provided
from the Berkeley Segmentation Dataset and Benchmark, are utilized as we have mentioned
above [72]. The size of all test images is set to 481 × 321. And these test images are clearly
depicted in Figure 4. It is noted that the number of clusters in the Lawn and Agaric images
is set to 2, where K = 2, the number of clusters of Church, Castle, Elephants, and Lane
images is set to 3, where K = 3, and the number of clusters in the Starfish and Pyramid
images is set to 4, where K = 4 [25]. More details about the label information on these
images are graphically depicted in Figure 5.
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6.2. Comparison with Other Clustering Approaches

In particular, the simple linear iterative clustering (SLIC) technique is first introduced
to segment the test images [73] before conducting the clustering experiment. The total
number of superpixels is set to 200 for each test image. The segmented images obtained by
applying SLIC to the eight test images are given in Figure 6. Then clustering approaches,
including the proposed ECPSO-MTP and compared approaches such as K-means, SC, and
classic PSO, are employed to cluster the superpixels. The achievable segmentation results
of these clustering approaches on the test images are shown in Figures 7–14.
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The proposed ECPSO-MTP exhibits the best segmentation quality on mostly test
images, as shown in Figures 7–14. Furthermore, each test clustering approach was indepen-
dently implemented 50 times to reduce the influence of random factors. Simple statistical
results of Purity from these clustering approaches are presented in Table 6, which validate
the effectiveness of the proposed ECPSO-MTP.

Table 6. Performance of four clustering approaches on eight test images (Purity).

Image Statistics
Comparative Approaches

K-Means SC PSO ECPSO-MTP

Lawn

Worst 0.9933 0.9937 0.9934 0.9943
Best 0.9933 0.9937 0.9934 0.9943

Mean 0.9933 0.9937 0.9934 0.9943
S.D. 2.28 × 10−16 2.34 × 10−16 5.61 × 10−16 3.42 × 10−16

Agaric

Worst 0.9477 0.9517 0.9485 0.9567
Best 0.9477 0.9517 0.9485 0.9567

Mean 0.9477 0.9517 0.9485 0.9567
S.D. 1.24 × 10−16 2.65 × 10−16 4.49 × 10−16 3.16 × 10−16

Church

Worst 0.7892 0.8902 0.7876 0.7967
Best 0.8646 0.8902 0.8903 0.8962

Mean 0.8593 0.8902 0.8641 0.8903
S.D. 0.0147 1.12 × 10−16 0.0445 0.0239
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Table 6. Cont.

Image Statistics
Comparative Approaches

K-Means SC PSO ECPSO-MTP

Castle

Worst 0.9302 0.9411 0.9327 0.9413
Best 0.9377 0.9411 0.9377 0.9413

Mean 0.9346 0.9411 0.9368 0.9413
S.D. 0.0033 3.36 × 10−16 0.0019 4.49 × 10−16

Elephants

Worst 0.6930 0.8881 0.7669 0.7624
Best 0.9248 0.8940 0.7820 0.9248

Mean 0.7802 0.8882 0.7807 0.8978
S.D. 0.0862 0.0008 0.0029 0.0558

Lane

Worst 0.8205 0.9668 0.8318 0.8241
Best 0.9730 0.9730 0.9730 0.9795

Mean 0.9124 0.9676 0.9537 0.9696
S.D. 0.0668 0.0027 0.0482 0.0671

Starfish

Worst 0.4805 0.5232 0.4910 0.5911
Best 0.5860 0.7259 0.6287 0.8435

Mean 0.5597 0.6233 0.5829 0.6344
S.D. 0.0406 0.0620 0.0183 0.0639

Pyramid

Worst 0.7200 0.7366 0.7497 0.7914
Best 0.7661 0.8394 0.7594 0.8410

Mean 0.7533 0.7648 0.7551 0.8354
S.D. 0.0157 0.0421 0.0038 0.0073

6.3. Friedman Test Statistics

In the Friedman statistical test, the average of Purity obtained by these comparative
approaches in the segmentation experiment is used as the preference object. The null
hypothesis assumes that all clustering approaches have equal Purity [71]. The ranks of the
average of comparative approaches are presented in Table 7. The Friedman test statistic χ2

r ,
computed using Table 7 according to Equation (14), is 24.000. Therefore, at a significance
level of 5%, the null hypothesis is rejected with 3 degrees of freedom due to the critical
value of χ2 is equal to 7.815. Thus, the proposed ECPSO-MTP is statistically superior to the
other clustering approaches in terms of Purity.

Table 7. Computation results of the Friedman test statistics (Mean).

Images
Comparative Approaches

K-Means SC PSO ECPSO-MTP

Lawn 4 2 3 1
Agaric 4 2 3 1
Church 4 2 3 1
Castle 4 2 3 1

Elephants 4 2 3 1
Lane 4 2 3 1

Starfish 4 2 3 1
Pyramid 4 2 3 1

Total Rank 32 16 24 8
Average Rank 4 2 3 1

Deviation 1.5 −0.5 0.5 −1.5

7. Conclusions

In this paper, an attractive extended TP combining with MTP and an improved PSO
based on environmental factors and a crossover operator is constructed and proposed,
referred to as ECPSO-MTP. The proposed ECPSO-MTP aims to establish a highly efficient P
system for solving clustering problems that is integrated with the computing framework of
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MTP and the evolutionism of PSO. Two types of evolution rules are defined and described
in ECPSO-MTP, which are applied to different elementary membranes to evolve objects,
including evolution rules with environmental factors and evolution rules with crossover
operators. The environmental factor, which uses partitioning information, is randomly
allocated to objects to replace global best and participate in the evolution process. The
crossover operator is accomplished through the hybridization of the global best of elemen-
tary membranes to reject randomness. Information exchange and resource sharing between
elementary membranes are accomplished by evolutional symport with promoters of MTP,
including forward and backward communication rules. At last, comparison experiments
are conducted on benchmark clustering and image segmentation datasets to validate the
clustering efficiency of the proposed ECPSO-MTP.

The distributed and parallel processing of P systems provides an efficient way for
solving complex problems with polynomial or linear complexity. However, the application
of P systems is limited by computational incompleteness and implementation difficulty. To
address these limitations, many variations of P systems have been designed and developed,
particularly extended P systems integrated with EC. The proposed ECPSO-MTP is an in-
stance of such an extended P system. The monodirectional connection between elementary
membranes in ECPSO-MTP is straightforward and simple to implement. Future studies
will explore the combination of this novel variant of P systems with other SI approaches.
In addition, reducing the complexity of this extended P system may become an important
area of research in the future. Finally, it should be noted that only low-dimensional or
small datasets were used for clustering experiments, and the clustering performance of
ECPSO-MTP may be limited by high-dimensional or large datasets. Much additional
research is necessary to effectively utilize this extended P system for resolving complex
clustering problems.
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