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Abstract: The Gleason score (GS) is essential in categorizing prostate cancer risk using biopsy. The aim
of this study was to propose a two-class GS classification (< and ≥GS 7) methodology using a three-
dimensional convolutional neural network with semantic segmentation to predict GS non-invasively
using multiparametric magnetic resonance images (MRIs). Four training datasets of T2-weighted
images and apparent diffusion coefficient maps with and without semantic segmentation were used
as test images. All images and lesion information were selected from a training cohort of the Society
of Photographic Instrumentation Engineers, the American Association of Physicists in Medicine,
and the National Cancer Institute (SPIE–AAPM–NCI) PROSTATEx Challenge dataset. Precision,
recall, overall accuracy and area under the receiver operating characteristics curve (AUROC) were
calculated from this dataset, which comprises publicly available prostate MRIs. Our data revealed
that the GS ≥ 7 precision (0.73 ± 0.13) and GS < 7 recall (0.82 ± 0.06) were significantly higher
using semantic segmentation (p < 0.05). Moreover, the AUROC in segmentation volume was higher
than that in normal volume (ADCmap: 0.70 ± 0.05 and 0.69 ± 0.08, and T2WI: 0.71 ± 0.07 and
0.63 ± 0.08, respectively). However, there were no significant differences in overall accuracy between
the segmentation and normal volume. This study generated a diagnostic method for non-invasive
GS estimation from MRIs.

Keywords: gleason score; classification; prostate cancer; semantic segmentation; three-dimensional
convolutional neural network (3D-CNN)

1. Introduction

Prostate cancer is the most commonly diagnosed cancer in men worldwide, the most
frequently diagnosed cancer in 112 countries, and the second-ranked cause of mortality
following lung cancer [1]. Treatment options for prostate cancer vary according to the
tumor stage and grade, patient characteristics, and personal preferences. Previously, some
guidelines were published based on the current evidence in prostate cancer diagnostics,
such as the National Comprehensive Cancer Network (NCCN) guidelines and the European
Association of Urology–European Society for Radiotherapy and Oncology–International
Society of Geriatric Oncology guidelines [2,3]. According to the NCCN guidelines, prostate
cancer has been categorized into six risk groups, from very low to very high, based on
prostate-specific antigen (PSA), Gleason score (GS), and TNM classification [2]. PSA is
a continuous parameter of prostate cancer. In the prostate cancer grading system, the
biopsy GS consists of the Gleason grade of the most extensive pattern plus the highest
pattern. In the 2014 International Society of Urological Pathology, prostate cancer was
classified into five levels according to the GS, which highlighted the clinical differences
between GS 7 = 3 + 4 and GS 7 = 4 + 3 [4]. For the staging of prostate cancer, the use of the
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2017 TNM classification of the American Joint Committee on Cancer was recommended.
Initial therapies, such as active surveillance, radiation therapy, radical prostatectomy, and
androgen deprivation therapy, were selected based on the risk groups and expected patient
survival. Thus, the risk classification of prostate cancer is important.

A prostate cancer diagnosis is made in three steps. The latest prostate cancer screening
and clinical practice guidelines highly recommend PSA screening as the first step in the
algorithm classifying prostate cancer risk based on the European Randomized Study of
Screening for Prostate Cancer results [3,5–7]. The Japanese Urological Association guide-
lines provide a PSA cut-off value of 4.0 ng/mL for further urological examination, with an
age-standardized PSA cut-off value of 3.0, 3.5, and 4.0 ng/mL for men aged 50–64, 65–69,
and ≥70 years, respectively [6]. The second step in establishing a definitive diagnosis is
a prostate biopsy, with the option of two invasive approaches that have similar detection
rates. One is the transrectal or transperineal ultrasound-guided biopsy, and the other is
the transrectal biopsy. A transperineal approach requires anesthesia, while the transrectal
approach has a higher severe infection risk [8]. Current guidelines recommend performing
multiparametric magnetic resonance imaging (MRI) before biopsies to discriminate patients
with prostate cancer as indolent or clinically significant. The GS is the most commonly
used histopathological grading system, based on the classification of five histological
patterns underlying the presence of cancer cells in the specimen. The grade group was
determined according to the GS [9]. Staging was performed according to the TNM classifi-
cation system published by the Union for International Cancer Control. Multiparametric
MRIs, comprising T2-weighted imaging (T2WI), dynamic contrast-enhanced imaging, and
diffusion-weighted imaging (DWI), are highly reliable and were used for tumor (T) staging.
Current multiparametric MRI diagnostic methods follow the Prostate Imaging Reporting
and Data System (PI-RADS), which involves a semiquantitative radiologist assessment
of each suspicious lesion, assigning a corresponding clinically significant prostate cancer
likelihood score from one to five [10]. PI-RADS scores with other parameters, such as
clinical variables, family history, or PSA levels, help radiologists determine whether further
investigation is needed to make a final diagnosis. For N staging, abdominal computed
tomography (CT) and MRI indirectly assess nodal invasion by using lymph node diameter
and morphology. In addition to imaging findings, lymph node dissection remains the most
reliable method for lymph node staging. For metastasis (M) staging, multimodal imaging
techniques such as CT, MRI, positron emission tomography (PET), and 99mTc-bone scans
are used.

Presently, the interpretation of multiparametric MRI data is entirely performed by
radiologists. Although they are competent, it is difficult for them to deal with increasing
imaging demands within a limited timeframe. Also, there is significant variability between
observers since performance depends on their experience [11,12]. In a report by Kohestani
et al., the inter-observer variability of prostate MRI using PI-RADS was investigated outside
high-volume centers [13]. Several studies have been conducted on the automation of the
whole or a part of the diagnosis workflow to improve diagnostic accuracy and reduce the
costs and workload of healthcare personnel. In recent years, computer-aided diagnosis
(CAD) has been actively investigated based on advances in deep learning technologies, such
as convolutional neural networks (CNN), which have rapidly developed in the medical
imaging field with advances in artificial intelligence (AI). Because CNNs are adept at
discovering complex structures in high-dimensional data, they are powerful tools for
image classification and segmentation [14–16]. For example, Ozsari et al. proposed a
deep learning-based approach in order to automatically diagnose temporomandibular
disorder on magnetic resonance (MR) images with seven different fine-tuned, pre-trained
CNNs: Xception, ResNet-101, MobileNetV2, InceptionV3, DenseNet-121, ConvNeXt, and
Vision Transformer (ViT) [17]. However, CNN image classification assesses the entire
image and can rely on features other than the lesion area. Consequently, even if the
accuracy of the classifier is high, its reliability is reduced if the judgment is based on
areas other than the lesion. A three-dimensional CNN (3D-CNN), which extends the two-
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dimensional CNN (2D-CNN), which is widely used in image recognition, is used for image
classification and motion recognition of 3D data. Unlike 2D-CNN, 3D-CNN can extract 3D
features [18]. Semantic segmentation is a deep learning algorithm that enables pixel-level
image classification and can detect irregularly shaped objects.

A comprehensive assessment of multiparametric MRIs consists of eight or more differ-
ent volumetric image datasets. This is a burden for the radiologists. Even for experienced
radiologists, it is difficult to detect subtle cancerous lesions expressed within multipara-
metric MRIs. Moreover, it is important to correlate characterized cancerous lesions in
multiparametric MRIs and biopsy findings with GS for non-invasive GS prediction. Based
on the various quantitative image features, various deep-learning systems have been in-
vestigated for prostate cancer detection and diagnosis using multiparametric MRI with
detection and classification tasks. There were only a small number of CAD systems for
prostate cancer. In related work, Firjani et al. developed a DWI-based CAD system that
utilized three intensity features and a K-nearest neighbor classifier to distinguish between
benign and malignant cases [19]. Niaf et al. developed the multiparametric MRI-based
CAD system to detect prostate cancer in the peripheral zone using T2WI, dynamic contrast-
enhanced MRI and DWI [20]. Lotjens et al. developed the prostate-segmentation technique
using a combination of features such as the apparent diffusion coefficient map (ADCmap).
Kiraly et al. proposed the use of multichannel image-to-image convolutional encoder–
decoders to directly determine tumor malignancy without performing an invasive prostate
biopsy procedure [21]. Mercaldo et al. proposed an approach focused on the automatic
GS classification, which exploited a set of 18 radiomic features directly obtainable from
segmented MRI [22].

Today, the performance of AI-based CAD systems is comparable to that of experienced
radiologists, owing to continuous technical developments and increased dataset quantity
and quality [23,24]. Winkel et al. evaluated the agreement of the diagnostic accuracy of
five PI-RADS lesions as the ground truth between human readers and fully automated
AI-based software and demonstrated that the AI-based software was able to identify highly
suspicious lesions in image-guided prostate cancer screening [23]. Saha et al. presented
a CAD system for automated localization of clinically significant prostate cancer with
multiparametric MRI and achieved a 0.882 area under the receiver operating characteristics
curve (AUROC) in patient-based diagnosis [24]. For the GS classification, with the recent
advancement of deep learning techniques, various GS prediction models have been pro-
posed. Cao et al. proposed a novel multi-class CNN, FocalNet, that jointly detects prostate
cancer lesions and predicts their GS from multiparametric MRI and calculated an AUROC
of 0.81 and 0.79 for the classifications of clinically significant prostate cancer (GS = 3 + 4)
and prostate cancer (GS = 4 + 3), respectively [25].

We hypothesized that if the GS is estimated from MRI with high accuracy by 3D-
CNN using semantic segmentation to crop the image and restrict the evaluation range
to the prostate, the grade group can be determined without a highly invasive prostate
biopsy, and as a result, the physical burden on the patient can be reduced. Furthermore,
there is significant variability among observers depending on their experience in pro-
cessing and interpreting prostate cancer diagnostics [11,12,26]. By using the quantitative
features from MRI, an AI-based GS estimation system may not only automate and support
the radiologist’s workflow but also alleviate the workload of medical staff. Therefore,
this study aimed to construct a system to estimate GS non-invasively from diagnostic
MRI images.

The present study is organized as follows: in Section 2, we describe MRI data and the
technical framework for this study. Section 3 presents the results of precision, recall, overall
accuracy and AUROC. In Section 4, we discuss the potential implications and extensions of
this study, followed by concluding remarks.
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2. Materials and Methods
2.1. Subjects

As we used images from a public database, no ethical approval was required for the
implementation of the present study. A training cohort of 204 subjects was enrolled in this
study, with available prostate MRI data at the cancer image archive from the Society of
Photographic Instrumentation Engineers, American Association of Physicists in Medicine,
and National Cancer Institute (SPIE–AAPM–NCI) PROSTATEx Challenge occurring from
21 November 2016 to 16 February 2017 [27]. This dataset was included in the Prostate
Imaging-Cancer Artificial Intelligence (PI-CAI) Public Training and Development dataset
established in conjunction with an international multidisciplinary scientific advisory board.
The board consisted of 16 experts in prostate AI, radiology, and urology who curated
prostate MRI examinations to validate modern AI algorithms and estimated the radiologists’
performance in the detection and diagnosis of clinically significant prostate cancer [27–29].

This study included a public dataset of T2WI and ADCmap, which included the
defined lesion information. The lesions were annotated with a GS of ≥7 or <7. Of the
204 patients in the database, 134 and 70 had a GS of <7 and ≥7, respectively.

2.2. Prostate Segmentation

A segmentation model was created for prostate region extraction using deeplabv3+,
a CNN for semantic segmentation with T2WI, and published labeled images indicating
the prostate regions in the same database. Table 1 shows the division of the training
dataset into five subsets, labeled as subsets (a–e), for training purposes. The evaluation of
the segmentation model was conducted through five-fold cross-validation, wherein the
training dataset was further split into training and test data subsets (Figure 1).

Table 1. Subset data of segmentation for the five-fold cross-validation.

Number of Subjects (Images) per Subset

a b c d e Total

12 12 12 12 12 60
(1505) (1393) (1417) (1243) (1413) (1876)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 14 
 

2. Materials and Methods 
2.1. Subjects 

As we used images from a public database, no ethical approval was required for the 
implementation of the present study. A training cohort of 204 subjects was enrolled in this 
study, with available prostate MRI data at the cancer image archive from the Society of 
Photographic Instrumentation Engineers, American Association of Physicists in Medicine, 
and National Cancer Institute (SPIE–AAPM–NCI) PROSTATEx Challenge occurring from 
21 November 2016 to 16 February 2017 [27]. This dataset was included in the Prostate 
Imaging-Cancer Artificial Intelligence (PI-CAI) Public Training and Development dataset 
established in conjunction with an international multidisciplinary scientific advisory 
board. The board consisted of 16 experts in prostate AI, radiology, and urology who cu-
rated prostate MRI examinations to validate modern AI algorithms and estimated the ra-
diologists’ performance in the detection and diagnosis of clinically significant prostate 
cancer [27–29]. 

This study included a public dataset of T2WI and ADCmap, which included the de-
fined lesion information. The lesions were annotated with a GS of ≥7 or <7. Of the 204 
patients in the database, 134 and 70 had a GS of <7 and ≥7, respectively. 

2.2. Prostate Segmentation 
A segmentation model was created for prostate region extraction using deeplabv3+, 

a CNN for semantic segmentation with T2WI, and published labeled images indicating 
the prostate regions in the same database. Table 1 shows the division of the training da-
taset into five subsets, labeled as subsets (a–e), for training purposes. The evaluation of 
the segmentation model was conducted through five-fold cross-validation, wherein the 
training dataset was further split into training and test data subsets (Figure 1). 

Table 1. Subset data of segmentation for the five-fold cross-validation. 

Number of Subjects (Images) per Subset  

a b c d e Total 
12 12 12 12 12 60 

(1505) (1393) (1417) (1243) (1413) (1876) 

 
Figure 1. Dataset for training and testing. 

To enhance the training process, data augmentation was applied to the training im-
ages. This involved rotating the images by ±10 degrees with increments of 5 degrees, re-
sulting in an expanded dataset containing five times the original number of images. 

The software for the deep learning technique was developed in-house using the 
MATLAB software version 2022b (The MathWorks, Inc., Natick, MA, USA) and a desktop 
computer with two NVIDIA RTX A6000 graphics cards (Nvidia Corporation, Santa Clara, 
CA, USA), with 38.7 TFlops of single-precision performance, 768 GB of memory band-
width, and 48 GB of memory per board. A deeplabv3+ was used as a CNN for prostate 
segmentation. The input was 384 × 384, and the parameters were trained by loading the 

Figure 1. Dataset for training and testing.

To enhance the training process, data augmentation was applied to the training images.
This involved rotating the images by ±10 degrees with increments of 5 degrees, resulting
in an expanded dataset containing five times the original number of images.

The software for the deep learning technique was developed in-house using the MAT-
LAB software version 2022b (The MathWorks, Inc., Natick, MA, USA) and a desktop
computer with two NVIDIA RTX A6000 graphics cards (Nvidia Corporation, Santa Clara,
CA, USA), with 38.7 TFlops of single-precision performance, 768 GB of memory band-
width, and 48 GB of memory per board. A deeplabv3+ was used as a CNN for prostate
segmentation. The input was 384 × 384, and the parameters were trained by loading
the Neuroimaging Informatics Technology Initiative files. The optimizer was stochastic
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gradient descent and momentum optimization. Regarding the training parameters, the
batch size for the number of training samples was 128, the number of epochs was 10, and
the initial learning rate was 0.001. The learning rate drop factor was 0.3, the learning rate
drop period was 1, the L2 regularization was 0.005, and the momentum was 0.9.

The calculation of the Dice Similarity Coefficient (DSC) was performed using the
following formula when the supervised images were designated as A and the predicted
images were designated as B. The DSC serves as an index to assess the level of agreement
between the images, with a value approaching 1 indicating a higher degree of agreement.
The highest DSC model was used to extract the prostate after the next section.

DSC =
2× |A ∩ B|
|A|+ |B|

2.3. Image Preprocessing

Images were acquired using two whole-body Siemens 3T MR scanners (MAGNETOM
and Skyra). Image acquisition details have been previously reported [27]. This dataset
was collected and curated for research on prostate MRI CAD at the Prostate MR Reference
Center, Radboud University Medical Center, Nijmegen, Netherlands. T2WI was acquired
using a turbo spin echo sequence and with a resolution of around 0.5 and 3.6 mm for plane
and slice thickness, respectively. DWI was acquired using a single-shot echo planar imaging
sequence comprising diffusion-encoding gradients in three directions with a resolution and
slice thickness of 2.0 and 3.6 mm, respectively. Three b-values were acquired (50, 400, and
800), and scanner software calculated the ADCmap. All images were acquired without an
endorectal coil.

The T2WI and ADCmap in the dataset had different fields of view, spatial image
resolution, and slice numbers at imaging time. Each subject’s slice number differed, with
most ADCmaps having fewer slices than T2WI. Therefore, T2WI positions exceeding those
in the ADCmap were deleted by referencing the ADCmap head and tail slice positional
information retrieved from the digital imaging and communications in medicine tag infor-
mation. The T2WI was processed using the prostate extraction obtained from the semantic
segmentation model, resulting in an image containing only the prostate. The same co-
ordinate information was used to generate an ADCmap, which also contained only the
prostate. The ADCmap and T2WI with and without semantic segmentation were resized to
224 × 224 for 3D-CNN input. The image data were saved in Neuroimaging Informatics
Technology Initiative format (Figure 2). A segmentation volume was defined as a file group
with segmentation, while a normal volume was defined as one without segmentation.
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2.4. Network Architecture

The network architecture used in this study is shown in Figure 3. It is a network
consisting of 177 layers in total. This network architecture is 3D-ResNet50, based on
ResNet50 pre-trained by ImageNet, and has a structure in which the input size is changed
to 224 × 224 × 25 to allow 25 image slices of 224 × 224 to be input in one input section [30].
This network consists of several layers, including 3D convolutional, activation, batch
normalization, pooling, fully connected, and softmax layers. The model has 48 million
learnable parameters. The final layer is the classification layer, which can output the
classification results of multiple slices input in 3D using the features trained based on the
GS in this study.
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2.5. Experimental Setup

Table 2 demonstrates the subdivision of five subsets (a–e) for both GS ≥ 7 and <7 as
the subject number differed between the two groups. The classifiers were evaluated by
five-fold cross-validation using the training dataset, divided into training and test data
(Figure 1). The dataset numbers for GS ≥ 7 were half compared to those <7. Therefore,
the rotated datasets above GS 7 were doubled using left-right flipping to align the dataset
numbers above and below GS 7.

Table 2. Subset data of classification for the five-fold cross-validation.

Number of Subjects (Images) per Subset

a b c d e Total

GS a
≥7

14 14 14 14 14 70
(350) (350) (350) (350) (350) (1750)

<7
27 27 27 27 26 134

(378) (378) (378) (378) (364) (1876)
a Gleason score.

The deep learning technique was implemented using the same software environment
as described in Section 2.2. A 3D-ResNet was used as a CNN for data classification into
GS ≥ 7 and GS < 7. The input was changed to 224 × 224 × 25, and the parameters were
trained by loading the Neuroimaging Informatics Technology Initiative files. The optimizer
was stochastic gradient descent and momentum optimization. Regarding the training
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parameters, the batch size for the number of training samples was 128, the number of
epochs was 15, and the initial learning rate was 0.0001. The learning rate drop factor
was 0.1, the learning rate drop period was 10, the L2 regularization was 0.0001, and the
momentum was 0.9.

2.6. Evaluation of the Classifier and Statistics

Four training datasets comprising the T2WI and ADCmap with and without semantic
segmentation were used to evaluate model performance. These datasets were applied to
the test images, with precision, recall, and overall accuracy calculated using the following
equations (Equations (1)–(3)).

Precision =
True Positives

True Positives + False Positives
(1)

Recall =
True Positives

True Positives + False Negatives
(2)

Overall accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(3)

The AUROC was calculated as an additional indicator of the model’s effectiveness;
AUROC values ranged from 0.5 to 1, with larger values indicating the better generalization
and prediction performance of the model.

The evaluation indices for each dataset were expressed as the mean ± standard devia-
tion. The Wilcoxon signed-rank test was used for precision and recall with a significance
level of less than 5% to determine the semantic segmentation effectiveness. Statistical
analyses were performed using JMP Pro version 16.2.0 (SAS Institute Inc., Cary, NC, USA).

3. Results

Table 3 demonstrates the DSC for segmentation. The mean DSC of five folds was
0.7528. The segmentation model created in Fold 3 was used to extract the prostate.

Table 3. DSC for segmentation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

DSC 0.6981 0.7462 0.7897 0.7421 0.7879 0.7528

Table 4 demonstrates the overall ADCmap and T2WI for segmentation and normal
volume accuracy. There was no significant difference between overall segmentation ac-
curacy and normal volumes or between T2WI and ADCmap images. Figure 4 shows the
AUROC for each dataset.

Table 4. Overall accuracy and AUROC of the classification.

Overall Accuracy (%) AUROC c

Segmentation volume
ADCmap a 64.68 ± 3.97 0.70 ± 0.05

T2WI b 66.64 ± 6.72 0.71 ± 0.07

Normal volume
ADCmap 69.60 ± 2.89 0.69 ± 0.08

T2WI 64.72 ± 8.16 0.63 ± 0.08
a apparent diffusion coefficient map; b T2-weighted images; c area under the receiver operating characteristic curve.



Appl. Sci. 2023, 13, 8028 8 of 13Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 
Figure 4. Area under the receiver operating characteristic curve (AUROC) for each dataset: dataset 
A (orange), dataset B (purple), dataset C (light blue), dataset D (blue) and dataset E (yellow). (a) 
ADCmap for segmentation volume; (b) T2WI for segmentation volume; (c) ADCmap for normal 
volume; (d) T2WI for normal volume. 

Table 5 displays the precision and recall values for the ADCmap and T2WI in seg-
mentation and normal volume. The ADCmap exhibited the highest values for precision 
for GS ≥ 7 and recall for GS < 7 in the segmentation volume. The ADCmap demonstrated 
the highest values for GS ≥ 7 and GS < 7 compared to the ADCmap and T2WI. 

Table 5. Precision and recall for classification. GS, Gleason score; T2WI, T2-weighted images; 
ADCmap, apparent diffusion coefficient map diffusion. 

  
Precision Recall 

GS ≥ 7 GS < 7 GS ≥ 7 GS < 7 

Segmentation volume ADCmap 0.73 ± 0.13 0.60 ± 0.11 0.50 ± 0.04 0.82 ± 0.06 
T2WI 0.57 ± 0.13 0.72 ± 0.13 0.53 ± 0.09 0.76 ± 0.04 

Normal volume 
ADCmap 0.34 ± 0.06 0.88 ± 0.04 0.61 ± 0.07 0.72 ± 0.02 

T2WI 0.49 ± 0.12 0.73 ± 0.11 0.50 ± 0.12 0.73 ± 0.05 
p-value 0.0015 0.0137 0.2097 0.008 

4. Discussion 
The AI-based CAD system is drawing significant attention due to its potential to rev-

olutionize the diagnostic workflow, improve diagnostic accuracy among observers, re-
duce costs, and decrease the workload of healthcare personnel. The role of AI is not merely 
to replicate human cognitive processes but to enhance and augment them, facilitating a 
higher level of diagnostic precision that could lead to more effective treatment plans. This 
shift toward AI-centered diagnostic methods could also redefine the role of healthcare 
professionals, with an increased emphasis on interpreting and implementing AI-gener-
ated data in patient care. 

Figure 4. Area under the receiver operating characteristic curve (AUROC) for each dataset: dataset
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Table 5 displays the precision and recall values for the ADCmap and T2WI in segmen-
tation and normal volume. The ADCmap exhibited the highest values for precision for
GS ≥ 7 and recall for GS < 7 in the segmentation volume. The ADCmap demonstrated the
highest values for GS ≥ 7 and GS < 7 compared to the ADCmap and T2WI.

Table 5. Precision and recall for classification. GS, Gleason score; T2WI, T2-weighted images;
ADCmap, apparent diffusion coefficient map diffusion.

Precision Recall

GS ≥ 7 GS < 7 GS ≥ 7 GS < 7

Segmentation volume
ADCmap 0.73 ± 0.13 0.60 ± 0.11 0.50 ± 0.04 0.82 ± 0.06

T2WI 0.57 ± 0.13 0.72 ± 0.13 0.53 ± 0.09 0.76 ± 0.04

Normal volume
ADCmap 0.34 ± 0.06 0.88 ± 0.04 0.61 ± 0.07 0.72 ± 0.02

T2WI 0.49 ± 0.12 0.73 ± 0.11 0.50 ± 0.12 0.73 ± 0.05

p-value 0.0015 0.0137 0.2097 0.008

4. Discussion

The AI-based CAD system is drawing significant attention due to its potential to
revolutionize the diagnostic workflow, improve diagnostic accuracy among observers,
reduce costs, and decrease the workload of healthcare personnel. The role of AI is not merely
to replicate human cognitive processes but to enhance and augment them, facilitating a
higher level of diagnostic precision that could lead to more effective treatment plans. This
shift toward AI-centered diagnostic methods could also redefine the role of healthcare
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professionals, with an increased emphasis on interpreting and implementing AI-generated
data in patient care.

The present study proposed a non-invasive GS classification method, classifying GS
as either ≥7 or <7, utilizing semantic segmentation and a 3D-CNN. This approach aimed
to address the challenges and limitations associated with current diagnostic methods. In
prostate outcome studies, GS and its associated Gleason Grade Group have consistently
remained the most powerful prognostic predictors, often influencing treatment decisions.
However, the GS is currently determined based on pathological diagnoses that require
invasive biopsies and has been observed to demonstrate poor reproducibility.

There is an inherent discordance between the inter- and intra-observer variability
of pathologists, primarily due to the subjectivity of the GS. This variability can lead to
discrepancies in diagnosis and treatment, potentially impacting patient outcomes. This
observation underscores the need for more objective and reproducible methods of GS
determination. In response to this, Nagpal et al. proposed a deep learning system for GSs
of whole-slide prostatectomy images [31]. Their results revealed a significantly higher
diagnostic accuracy in deep learning (0.70), which showed a trend toward improved patient
risk stratification in correlation with clinical follow-up data.

The potential of deep learning system applications to improve the accuracy of GSs
without observer dependence is compelling. The ability of such systems to analyze vast
amounts of data and identify subtle patterns that may be missed by human observers could
revolutionize prostate cancer diagnosis. However, the implementation of these systems is
not without challenges and considerations. The integration of AI into clinical practice must
be performed thoughtfully, with a clear understanding of its potential impact on patient
care, professional roles, and healthcare systems more broadly.

Several groups have attempted to use AI-based approaches for non-invasive GS esti-
mation of prostate cancer. Cao et al. proposed multi-class CNN (FocalNet) to jointly detect
prostate cancer lesions and predict their aggressiveness using GS and evaluated the GS
classification by AUROC for clinically significant lesions (GS 7) (AUROC = 0.81 ± 0.01) in
comparison to U-Net-Mult and Deeplab (AUROC = 0.72 ± 0.01 and 0.71 ± 0.02, respec-
tively) [25]. Since they used a publicly unavailable dataset, it is difficult to compare their
study directly with ours. In the previously reported grand challenges by Armato et al.
using a publicly available dataset, the AUROC for the PROSTATEx Challenge task for
differentiating between lesions that are and are not clinically significant ranged from 0.45
to 0.87 [32]. Although the AUROC in our results was not state-of-the-art, the AUROC in
segmentation volume was higher than that in normal volume (Table 2). As shown in our re-
sult in Figure 4, all datasets outperformed random guessing (AUROC = 0.5). Moreover, the
PROSTATEx-2 Challenges demonstrated the five-point Gleason Grade Group classification
task. For further reduction of unnecessary biopsies, we will focus on the discrimination of
the five-point Gleason Grade Group classification.

This study has several limitations. First, the prostate volume on the MRI was small
in the overall image. The same image matrix size was used when performing 3D-CNN,
regardless of prostate semantic segmentation use. This suggests that the amount of rele-
vant data available for AI to analyze was limited, potentially affecting learning accuracy.
This implies that the AI system may require more extensive data to improve its per-
formance, which could involve utilizing larger MRI images or incorporating additional
imaging modalities.

Secondly, the training data used in this study were scarce, with only 134 and
70 patients with GS < 7 and ≥7, respectively, available in the public database. This limita-
tion emphasizes the need for larger, more diverse datasets to train the AI system efficiently.
The NCCN prostate cancer guidelines currently select the initial therapy based on initial
risk stratification and staging workup for clinically localized diseases. The risk group is
categorized according to clinical or pathological features, which are characterized by the
Gleason pattern or Gleason Grade Group. Based on the GS division, these are very low,
low, favorable, unfavorable intermediate, high, and very high-risk groups.
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The Gleason Grade Group was categorized into five groups based on combinations of
GS and Gleason patterns, including ≤6 and ≤3 + 3; 7 and 3 + 4; 7 and 4 + 3; 8 and 4 + 4,
3 + 5, 5 + 3; 9 or 10 and 4 + 5, 5 + 4, or 5 + 5. However, the SPIE–AAPM–NCI PROSTATEx
Challenge dataset training cohort was labeled as GS ≥ 7 for clinically significant prostate
cancer. Therefore, the proposed method represents a two-class classification of a GS ≥ 7 or
GS < 7 using semantic segmentation and 3D-CNN.

This highlights the need for more nuanced classification systems, which could poten-
tially be achieved through the use of larger and more diverse datasets. Moreover, further
research is necessary to utilize more detailed GS and Gleason pattern data for a five-class
classification, which could offer a more precise and personalized approach to prostate
cancer diagnosis and treatment.

Third, there is a shortage of publicly available, high-quality prostate MRI datasets.
The SPIE–AAPM–NCI PROSTATEx Challenge is a popular and publicly available prostate
MRI dataset that was used in this study [29]. However, despite its focus on quantitative
image analysis methods for diagnostic, clinically significant prostate cancer classification,
and prostate AI, radiology, and urology expert involvement, this study contained a small,
single-center, and multivendor dataset.

The need for well-curated, larger datasets with diverse, multi-center, and multivendor
data is clear. These datasets are essential for training the AI-based CAD system effectively
and ensuring meaningful validation, robust performance, and a generalized model [33].
Unfortunately, most public datasets are too small, and the quality of annotations provided
per dataset varies significantly.

Sunoqrot et al. reviewed 17 public prostate MRIs [34]. The SPIE–AAPM–NCI PROSTA-
TEx Challenge, including the SPIE–AAPM–NCI PROSTATEx-2 Challenges running from
15 May 2017, to 23 June 2017, presents additional difficulties, such as the focus on quantita-
tive multiparametric MRI biomarker development to determine the Gleason Grade Group
in prostate cancer [27–29]. As of 5 May 2022, the PI-CAI challenge has publicly released
1500 anonymized multiparametric prostate MRIs from 1476 patients at multi-centers in
The Netherlands, acquired with a multivendor between 2012 and 2021 [35]. This challenge
aimed to validate the diagnostic performance of AI and radiologists at clinically significant
prostate cancer detection or diagnosis in MRI with histopathology and over three years
of follow-up as the reference standard. Therefore, datasets should be added cautiously,
ensuring that they provide unique and high-quality data. Another primary limitation of
our study is that we have not delved into the investigation of hyperparameters in deep
learning model training. In machine learning, and more specifically in deep learning, hy-
perparameters are crucial elements that can significantly influence the accuracy, efficiency,
and computational cost of models. These variables, set before the model training process
begins, control the overall behavior of a learning algorithm and can substantially affect
the performance of the model. Although many public prostate MRI data may be available,
it is difficult to consolidate multiple public datasets using the definition and annotation
quality provided per dataset with missing information across images and cohort distribu-
tions. Also, data overlap in public datasets should be avoided, as multiple public datasets
may contain identical cases [34]. Sunoqrot et al. reviewed data overlap as an example of
how The National Cancer Institute’s Cancer Imaging Program, in collaboration with the
International Society for Biomedical Imaging (NCI–ISBI 2013) dataset [36], combined the
Prostate-3T [37] and PROSTATE-DIAGNOSIS dataset [38], and the PROSTATEx [27] and
Prostate-3T datasets were included in the PI-CAI dataset [34,35]. Therefore, datasets should
be added cautiously.

Although this study was ensured to use well-established, robust, and commonly
accepted values for hyperparameters in our models, an exhaustive hyperparameter tuning
process was not implemented. There could potentially exist a different set of hyperparam-
eters that could yield better performance or more accurate results for the same models
applied to the same dataset. In addition, further study of the segmentation model for
prostate extraction is needed to determine changes in extraction accuracy and classification
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results. It is important to consider common factors between segmentation models and
classification models, as well as the extent of obtaining large-scale data, to ensure accuracy.
To address this, we believe it is crucial to thoroughly investigate previous research papers
and refer to them in order to understand how much data is needed to guarantee accuracy.
It is also important to train models using not only publicly available databases but also
real-world datasets that can be obtained through ethical approval. This approach will
contribute to refining and enhancing the performance of the models.

Despite the limitations of the current study, its findings underline the potential of
AI-based systems for advancing prostate cancer diagnosis. There is a clear need for more
detailed classification systems in the clinical guidelines for initial therapy, and further
research is required to non-invasively estimate the GS using multiparametric MRI.

Public prostate MRI datasets are often small and feature different cohorts and annota-
tion qualities, underscoring the need for larger and more diverse datasets. More studies are
required to provide independent validation, build trust in non-invasive GS prostate cancer
prediction, and ultimately enhance the effectiveness of AI-based CAD systems in improving
diagnostic accuracy and patient outcomes. The future of AI in healthcare is promising, with
its potential to revolutionize diagnostic processes, improve patient outcomes, and reshape
healthcare systems. However, realizing this potential requires concerted and collaborative
efforts to overcome the existing challenges and limitations.

In future work, we plan to improve the network models and evaluate them with
external validation data. In this study, we used 3D-ResNet as a CNN for data classification
into GS < 7 and ≥ 7. Today, new models are constantly being developed. For example,
ViT, an architecture with a transformer that was originally used predominantly in the
natural language processing field, has now started to find a place in the field of medical
image analysis for the segmentation and classification of medical images [39]. Utilizing
such new models is expected to improve GS estimation accuracy. Also, we used five-fold
cross-validation using the training dataset divided into training and test data from public
data. Using the external validation data, which completely isolated patient cohorts from
training datasets, will achieve an assessment of external validity.

5. Conclusions

The objective of this study was to investigate the possibility that a highly accurate
estimation of GS from MRI images using 3D-CNN, which uses semantic segmentation to
isolate images and limit the evaluation range to the prostate, would allow grade group
determination without invasive prostate biopsy, thereby reducing the physical burden on
the patient. Based on this hypothesis, this study aimed to construct a system to estimate
GS noninvasively from diagnostic MRI images. A methodology for GS classification was
proposed using a 3D-CNN with semantic segmentation. The precision for GS ≥ 7 and
recall for GS < 7 were significantly higher using semantic segmentation. Using quantitative
MRI features, an AI-based GS estimation system may not only automate and support the
workflow of radiologists but also reduce the workload of medical staff.
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