
Citation: Lei, X.; Liang, J.; Gong, Z.;

Jiang, Z. LightSeg: Local Spatial

Perception Convolution for

Real-Time Semantic Segmentation.

Appl. Sci. 2023, 13, 8130. https://

doi.org/10.3390/app13148130

Academic Editor: Andrea Prati

Received: 13 June 2023

Revised: 5 July 2023

Accepted: 11 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

LightSeg: Local Spatial Perception Convolution for Real-Time
Semantic Segmentation
Xiaochun Lei 1,2,† , Jiaming Liang 1,† , Zhaoting Gong 1 and Zetao Jiang 1,2,*

1 School of Computer Science and Information Security, Guilin University of Electronic Technology,
Guilin 541004, China; lxc8125@guet.edu.cn (X.L.); 2000510129@mails.guet.edu.cn (J.L.);
gavin@gong.host (Z.G.)

2 Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic
Technology, Guilin 541004, China

* Correspondence: zetaojiang@guet.edu.cn
† These authors contributed equally to this work.

Abstract: Semantic segmentation is increasingly being applied on mobile devices due to advance-
ments in mobile chipsets, particularly in low-power consumption scenarios. However, the lightweight
design of mobile devices poses limitations on the receptive field, which is crucial for dense prediction
problems. Existing approaches have attempted to balance lightweight designs and high accuracy by
downsampling features in the backbone. However, this downsampling may result in the loss of local
details at each network stage. To address this challenge, this paper presents a novel solution in the
form of a compact and efficient convolutional neural network (CNN) for real-time applications: our
proposed model, local spatial perception convolution (LSPConv). Furthermore, the effectiveness of
our architecture is demonstrated on the Cityscapes dataset. The results show that our model achieves
an impressive balance between accuracy and inference speed. Specifically, our LightSeg, which does
not rely on ImageNet pretraining, achieves an mIoU of 76.1 at a speed of 61 FPS on the Cityscapes
validation set, utilizing an RTX 2080 Ti GPU with mixed precision. Additionally, it achieves a speed
of 115.7 FPS on the Jetson NX with int8 precision.

Keywords: semantic segmentation; low-power devices; real-time inference; efficient deep learning

1. Introduction

Unmanned systems, including autonomous driving and industrial robots, have experi-
enced significant advancements in recent years. These systems heavily rely on sensors and
intelligent algorithms to perform tasks such as object recognition and tracking. Semantic
segmentation plays a crucial role in obtaining semantic information for such systems,
as it assigns a label to each pixel on an image, representing its semantic class, such as
“road”, “building”, or “person”. However, performing semantic segmentation on low-
power devices poses challenges due to limited computing resources. To achieve real-time
performance on these devices, efficient and compact deep-learning models are required to
extract semantic information while keeping computational complexity low.

To address this challenge, researchers have proposed various approaches for lightweight
neural networks, including lightweight design, model compression, and network architec-
ture searching (NAS).

While depth-wise convolution is commonly used to reduce computational costs, group
convolution is employed to address information disfluency, where an output channel is de-
rived from only a small part of the input channel. The MobileNet [1–3] and ShuffleNet [4,5]
series utilize channel shuffle, respectively, to improve information quality and reduce com-
putational complexity. However, channel shuffle introduces memory access disruptions
and additional latency.

Appl. Sci. 2023, 13, 8130. https://doi.org/10.3390/app13148130 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148130
https://doi.org/10.3390/app13148130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5805-7283
https://orcid.org/0000-0003-2464-5893
https://orcid.org/0000-0002-4458-7240
https://orcid.org/0000-0002-0914-2131
https://doi.org/10.3390/app13148130
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148130?type=check_update&version=2

Appl. Sci. 2023, 13, 8130 2 of 15

In addition to computational efficiency, contextual information is crucial for image
segmentation. Recent studies have introduced self-attention mechanisms, such as non-
local [6] and DANet [7,8], to capture local, multi-scale, and global contexts. Inspired by
ResNeXt [9], RegSeg [10] employs a D block with dilated convolutions to increase the
receptive field without sacrificing local information. However, dilated convolutions can
introduce drawbacks such as the “Gridding effect” [11,12], which compromises pixel-level
dense prediction tasks.

To overcome these challenges, this study proposes a novel block called “local spatial
perception convolution” (LSPConv), which utilizes spatial separable convolutions to de-
compose a large kernel into the outer product of two vectors. A standard convolution is
employed to extract local features simultaneously. LSPConv aims to reduce model com-
plexity and parameter count. LSPConv achieves a 26.7% reduction in parameters while
achieving a speedup of up to 61 FPS on the RTX 2080Ti GPU (Graphics Processing Unit).

Based on LSPConv, an LSPBlock is introduced to enhance the receptive field while
reducing computation. Leveraging these modules, a real-time semantic segmentation
model called LightSeg is proposed. LightSeg achieves impressive performance on different
devices and settings. It achieves 115.7 FPS on embedded devices when performing int8
inference, which is demonstrating its efficiency in resource-constrained environments. On
the RTX 2080Ti, LightSeg achieves a reasoning speed of 61 FPS using mixed precision,
even with a larger input resolution of 1024 × 2048. These results highlight the optimized
inference capabilities of LightSeg across embedded devices and precision modes.

In summary, this study contributes in three key areas:

1. It proposes the novel local spatial perception convolution (LSPConv) to extract both
global and local features.

2. It introduces the LSP Block, based on LSPConv, to enhance the receptive field while
reducing computation.

3. It presents LightSeg, a real-time semantic segmentation model, achieving high inference
speeds on embedded devices and GPUs, demonstrating its efficiency and versatility.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation has been a focus of research in computer vision, and several
models have contributed significantly to this field.

The fully convolutional network (FCN) [13] was a pioneering network that extended
end-to-end convolutional networks to semantic segmentation tasks. It introduced a de-
convolutional layer for upsampling, enabling the network to recover spatial information
lost during downsampling. Another influential model, U-Net [14], built upon the FCN
architecture by incorporating skip connections to combine high-level semantic information
with coarse and fine surface details. While FCN adds corresponding pixel values, U-Net
performs concatenation on its channels.

The Deeplab series, including Deeplab [15], DeeplabV2 [16], and DeeplabV3 [17],
have made significant contributions to semantic segmentation. These models introduced
hole convolution, which increases the field of view without sacrificing spatial resolution.
Deeplab models also incorporate Atrous spatial pyramid pooling (ASPP) [16] to extract
multi-scale features using multiple dilation rates. Additionally, they leverage fully con-
nected conditional random fields [15] (CRFs) to refine segmentation results and improve
boundary smoothness.

However, recent advancements in semantic segmentation have explored limitations
inherent in CNN methods, which primarily rely on local information processing. To
overcome these limitations, researchers have started to incorporate Transformer schemes
such as VIT [18], SETR [19], TransUNET [20], and SegFormer [21]. These models tok-
enize the input image, enabling the exploitation of global information for better semantic
segmentation performance.

Appl. Sci. 2023, 13, 8130 3 of 15

2.2. Real-Time Semantic Segmentation

Real-time semantic segmentation requires efficient models that can process images
quickly without sacrificing accuracy. Researchers have explored different strategies to
achieve real-time performance.

To avoid introducing additional branches for obtaining contextual information and
expanding the field of perception, some models have adopted skip connections [22] to
preserve image information. Additionally, lightweight segmentation networks based on
transformer structures have introduced new ideas for real-time semantic segmentation. For
example, EdgeNeXt [23] and Mobile-Former [24] propose novel architectures that leverage
transformer principles while maintaining computational efficiency.

In contrast, the RegSeg [10] model proposes the D block to enhance contextual informa-
tion and increase the receptive field. These modules enable real-time semantic segmentation
by avoiding additional computational overhead.

3. Methods
3.1. Overall Architecture

The overall architecture of LightSeg is depicted in Figure 1, which follows a standard
segmentation network design consisting of an encoder and a decoder. The encoder module
is responsible for extracting meaningful semantic features from the input image, capturing
essential information about the image’s content and context. These extracted features
are then forwarded to the decoder module, which utilizes them to make a pixel-wise
classification for the entire image by effectively leveraging the rich semantic information
encoded in the extracted features.

St
em

LS
PB

lo
ck
s

D
ec
od
er

Stage1 Stage2 Stage3

LS
PC

on
v

U
pS
am

pl
e

U
pH

ea
d

Figure 1. Network structure diagram of LightSeg, illustrating the encoder-decoder architecture. Each
stage is stacked with an LSPBlock module for robust feature extraction. The UpHead module serves
as the multi-scale feature fusion module.

Our network architecture starts with a stem module, which consists of a 3× 3 con-
volution. This module performs downsampling and reduces the size of the input feature
map. Extensive experiments and analysis have shown that this downsampling process
has little impact on the overall accuracy of the network [25] because the network effec-
tively captures and retains essential information for accurate predictions. Moreover, the
resulting lower spatial resolution improves inference speed. Subsequently, multi-level
features are extracted from the original resolution of 1/4, 1/8, and 1/16. These features
undergo a fusion process facilitated by the UpHead module, which combines them into
a unified representation. Finally, a 3× 3 convolutional layer is employed to predict the
segmentation mask at a 1/4 resolution. It is important to note that the Decoder consists of
C segmentation classes.

Appl. Sci. 2023, 13, 8130 4 of 15

3.2. Local Spatial Perception Convolution

This paper introduces a novel neural convolution architecture called “Local Spatial
Perception Convolution (LSPConv)” that integrates local perception and long-range de-
pendency capturing. Figure 2 illustrates the basic structure of LSPConv, highlighting its
distinctive features compared to ordinary convolutions.

(a) Standard Convoluton (b) Groups Convoluton

(c) Local Spatial Perception(LSPConv,ours)

Input

Split
Channel

Figure 2. The figure illustrates the distinction between feature extraction methods: standard con-
volution, grouped convolution, and our proposed LSPConv module. In standard convolution, a
small kernel size is applied uniformly across all channels for feature extraction. Grouped convolution
divides the input channels into groups, performing feature extraction using standard convolution
within each group. In contrast, our LSPConv module partitions the channels into two groups, utilizing
standard convolution for one group and spatial separable convolution for the other group.

The LSPConv module aims to extract more informative features from the input feature
map by applying different types of convolutions to different parts of the input channels.
Specifically, the input feature map is divided into two channel parts, fa and fb, which are
processed separately using different convolutional layers. The mathematical expression is
shown in Equation (1). Figure 3 provides a more visual demonstration of this process.

f out
a = Wa ∗ fa + ba

f out
b = Wb,1 ∗ (Wb,2 ∗ fb) + bb

f out = σ(Concat(f out
a , f out

b))

(1)

For fa, a standard convolutional layer with weight parameters Wa and bias parameters
ba is applied. This operation produces the output feature map f out

a .
For fb, a depthwise separable convolutional layer is used, which consists of a depth-

wise convolutional layer. The depthwise convolution applies a separate filter to each input
channel. In this case, the depthwise convolutional layer applied a filter represented by the
weight parameters Wb,1 and Wb,2 to the input feature map fb, The output feature map of
this operation is denoted as f out

b .
Finally, the output feature maps f out

a and f out
b are concatenated along the channel axis

to form the final output feature map f out using the concatenation operator Concat.

Appl. Sci. 2023, 13, 8130 5 of 15

Input

Standard Filter

Separable Filter

Convolution

Figure 3. Illustration of the LSPConv module. The input feature map is split into two channel parts,
fa and fb, which are processed separately using different convolutional layers. The output feature
maps f out

a and f out
b are then concatenated and passed through a nonlinear activation function to

obtain the final output feature map f out.

3.3. Local Spatial Perception Block

A new network block named LSPBlock was designed based on LSPConv. Figure 4b
illustrates the difference between LSPBlock and DBlock [10]. LSPBlock maintains the
same number of input and output channels. First, LSPBlock applies a 5 × 5 standard
convolution to extract features from the input. Then, the input with w channels is split
into two groups, each group including w/2 channels. A standard convolution is applied to
one group while the other group undergoes spatial separable convolution. Next, LSPBlock
concatenates the outputs of the two groups and finally applies a pointwise convolution to
fuse different channel features. Notably, the LSPBlock module was not used in the early
stages of the network, and other modules were adopted instead. Additionally, similar to
the convolutions with the parameter g shown in LightSeg, group convolutions were also
used to reduce the number of parameters and computational complexity.

(a) D Block (b) LSP Block

Figure 4. Comparison of LightSeg’s LSP block and ResSeg D block. The symbol g denotes the
size of the group convolution, while the symbols d1 and d2 represent the dilation rates of the
dilated convolutions.

Appl. Sci. 2023, 13, 8130 6 of 15

Assuming the input feature X has C channels and the configuration of spatially
separable convolution size is m, the number of parameters P in the LSP block can be
calculated as follows when the stride is 1:

P5×5 = 52 × C

PSparable Conv = 32 C
2
+ 2m

C
2

P1×1 = C× C

⇓
P = P5×5 + PSparable Conv + P1×1

(2)

where P5×5 represents the number of parameters in a 5 × 5 convolutional layer,
PSparable Conv represents the number of parameters in a spatially separable convolutional
layer with kernel size m, P1×1 represents the number of parameters in a 1× 1 convolutional
layer, and P represents the total number of parameters in the LSP block.

A typical LightSeg Encoder is shown in Table 1.

Table 1. The architectures of lightseg-base and lightseg-large, where []× n denotes repeating the
corresponding block for n times.

Stage Output Size LightSeg-Base LightSeg-Large

1 H
4 ×

W
4 C1 48

3× 3, 48
3× 3, 48
1× 1, 48

stride 2
C1 = 64

3× 3, 64
3× 3, 64
1× 1, 64

stride 2

2 H
8 ×

W
8 C2 128

3× 3, 128
3× 3, 128
1× 1, 128

stride 2

C2 = 128

3× 3, 128
3× 3, 128
1× 1, 128

stride 2

3× 3, 128
3× 3, 128
1× 1, 128

× 2

3× 3, 128
3× 3, 128
1× 1, 128

× 2

3 H
16 ×

W
16 C3 256

3× 3, 256
3× 3, 256
1× 1, 256

stride 2

C3 = 256

3× 3, 256
3× 3, 256
1× 1, 256

stride 2

3× 3, 256

3× 3, 256 5× 1, 128
1× 5, 128

1× 1, 256

× 2

(LSPBlock)

3× 3, 256

3× 3, 128 5× 1, 128
1× 5, 128

1× 1, 256

× 2

(LSPBlock)
3× 3, 256

3× 3, 128 7× 1, 128
1× 7, 128

1× 1, 256

× 4

(LSPBlock)

3× 3, 256

3× 3, 256 7× 1, 128
1× 7, 128

1× 1, 256

× 4

(LSPBlock)
3× 3, 256

3× 3, 128 11× 1, 128
1× 11, 128

1× 1, 256

× 6

(LSPBlock)

3× 3, 256

3× 3, 256 11× 1, 128
1× 11, 128

1× 1, 256

× 6

(LSPBlock)
3× 3, 320

3× 3, 320 11× 1, 160
1× 11, 160

1× 1, 320

(LSPBlock)

3× 3, 512

3× 3, 512 11× 1, 256
1× 11, 256

1× 1, 512

(LSPBlock)

Appl. Sci. 2023, 13, 8130 7 of 15

In the initial stage of the network, i.e., stem, stage 4, the standard convolution was
used to extract feature information from the input.

Downsampling is performed at the beginning of each stage by applying the s block
with stride = 2 (S = 2). The network is structured as Figure 5, and features are downsampled
at the first standard 5× 5 convolution. The above steps are performed to reduce the image
resolution as quickly as possible and increase the network speed.

split

concat

Figure 5. The symbol s denotes the stride of the convolution. When the stride is set to 2 using the
LSPBlock, a 2× 2 average pooling operation is performed for downsampling, followed by a 1× 1
convolutional layer for channel transformation.

Table 2 demonstrates a comparison between LSPBlock and DBlock [10] in terms of
parameter quantity and inference speed. The kernel shape denotes the distinct specifications
of the LSPBlock and DBlock kernels. It should be noted that the core purpose of the DBlock
is to modify the dilation rate of the 3× 3 kernel, without altering its size. As a result, there
is only one row dedicated to the DBlock in the table. The input channel was set to 64, with
the output channel equal to the input channel. The input image size was 116. The results
showed that LSPBlock significantly reduced the inference time at the same receptive field.

Table 2. Paramete and Benchmark: The table illustrates a comparison between LSPBlock and DBlock
in terms of parameter quantity and benchmark metrics. The symbol "↓" indicates that a smaller
value in the column is preferred, while the symbol "↑" indicates that a larger value in the column is
preferred. The color of the text indicates the ranking, with red indicating the best and blue indicating
the second-best.

Kernel Shape Parameter ↓ Delay ↓

LSPBlock

[
3× 3 1× 3

3× 1

]
16.05 KB 0.7552 ms[

3× 3 1× 5
5× 1

]
18.10 KB 0.8159 ms[

3× 3 1× 7
7× 1

]
20.14 KB 0.8477 ms[

3× 3 1× 11
11× 1

]
24.24 KB 0.8653 ms

DBlock [10]
[
3× 3 3× 3

]
19.92 KB 0.9437 ms

3.4. Hierarchical Feature Decoding and Fusion

The Up-Head approach was used to decode features from different levels of the
encoder. Drawing from the experience of DeeplabV3+ [26], we use 1× 1 convolutions

Appl. Sci. 2023, 13, 8130 8 of 15

were used to reduce the dimensionality of low-level features, minimizing the weakening
of high-level features. Two sizes of Up-Head were designed to suit different scenarios.
Specifically, the final 1/4, 1/8, and 1/16 features from the backbone were selected as
inputs, and different convolutional operations and upsampling techniques were used to
fuse the features. For example, a 1 × 1 convolution is first applied [1× 1, 128] on the
1/16 feature for dimensionality reduction, which then undergoes upsampling and is added
to the 1/4 feature. Subsequently, [3× 3, 64] convolution is used for feature fusion, and
the 1/4 feature is finally concatenated with the output as input to the SegHead. The
SegHead typically consists of a 1× 1 convolutional layer for final feature mapping. The
UpHead structure is illustrated in Figure 6. This simple decoder provides a convenient
parameter search paradigm and can be easily inserted into existing networks to search for
optimal performance.

s=
1

s=
1

s=
1

s=
1

s=
1

s=
1 s=
1

s=
1

s=
1

s=
1

(a) UP-HeadA (b) UP-HeadB

8

128

128

8

Upsample + Add

Upsample + Concat

128

128

128

BN + ReLU

Figure 6. The Up-Head approach enables the decoding of features from various levels of the encoder.
The diagram depicts the process of fusing features from the final 1/4, 1/8, and 1/16 stages of
the backbone.

4. Experiments
4.1. Datasets

Cityscapes [27] is a large-scale street view dataset. The semantic segmentation dataset
contains 2975 images for training, 500 images for validation, and 1525 images for testing.
The objects in the images were divided into 19 categories, with an image size of 1024× 2048.

CamVid [28,29] is a dataset consisting of street scene images. It contains 367 images for
training, 101 for validation, and 233 for testing. We specifically focus on using 11 predefined
classes while assigning the ignore label = 255 to all other classes. During our training
process, we train the model on the trainval set and evaluate its performance on the test set.
The images in the CamVid dataset have a standardized size of 720 × 960 pixels.

4.2. Training Setup and Parameters

Our CNN network uses a momentum of 0.9, an initial learning rate of 0.05, and a
weight decay of 0.0001 in the Pytorch 1.11.0 framework and CUDA 11.3 (Compute Unified
Device Architecture). The input image resolution was cropped to 768 × 768, and the
learning rate was adjusted by the poly strategy when doing the training. Random resize
was applied in the range [400, 1600] to the Cityscapes dataset and images were randomly
cropped to [768] with a 50% probability RandomHorizontalFlip, Furthermore, a set of
simplified RandAug [30] operations (auto-contrast, equalization, rotation, color, contrast,
luminance, and sharpness) was applied. In addition, a category uniform sampling [31]
method was applied for category enhancement sampling, with uniform percent = 0.5, and
the model was initialized using Pytorch’s default initialization method. A single NVIDIA
RTX 2080Ti GPU was trained with 1000 epochs at a batch size of 8. The NVIDIA Jetson
Xavier NX with 21 TOPS was used to test the FPS in a real deployment.

Appl. Sci. 2023, 13, 8130 9 of 15

The following loss function Equation (3) was employed to supervise the network:

`(x, y) = L = {l1, . . . , lN}>, ln = − log
exp

(
xn,yn

)
∑C

c=1 exp(xn,c)
· 1{yn 6= ignore _index } (3)

Given an input data point x and its corresponding true label y, the loss L is computed
as a vector of individual losses ln for each class in the output. The individual loss ln for
class n is obtained by taking the negative logarithm of the softmax probability of the model
output for class n. The softmax probability is calculated by exponentiating the output
scores and normalizing them by the sum of exponentiated scores over all classes. The loss
for class n is only considered if its corresponding label yn is not marked as an ignore index.

When performing the ablation experiments, only 400 epochs were trained. Since no
pre-training was performed on ImageNet, all the experiments were averaged three times.

4.3. LSPBlock Ablation Studies

Experiments on the sizes and numbers of the kernels were conducted for the last
13 blocks with the same experimental settings. In the notation [m], m represents the
LSPConv size. The rate indicates the ratio of NormConv to the number of blocks in Stage 4.
For example, a rate of 0.3 indicates that NormConv was used for the first four (d0.3× 13e)
blocks in Stage 4 and LSPConv for the remaining nine blocks. The experiment results are
displayed in Figure 7.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate

71.25

71.50

71.75

72.00

72.25

72.50

72.75

73.00

m
Io

U

71.73

72.50

72.11

73.05

71.26

71.74

72.84

71.68

72.41
72.48

72.01

72.49

LSPConv
[5, 5]
[7, 7]
[9, 9]

Figure 7. The effect of the proportion of LSPConv on network performance for different kernel sizes.

The results in Figure 7 show that the proportion of LSPConv has a significant effect
on the performance of the network. For larger kernel sizes, using a higher proportion of
LSPConv can lead to improved performance. Conversely, the improvement in performance
may not be as significant for smaller kernel sizes. This indicates that the choice of LSP-
Conv proportion is dependent on the kernel size and should be adjusted accordingly for
optimal performance.

4.4. LSPBlock Location Ablation Studies

In addition, the effects of location within the network on network performance were
investigated for LSPConvs of different sizes. Therefore, the network performance was tested
with LSPConvs of different sizes located at different depths of the network. Figure 8 shows
the experimental setup for the location ablation study, where Bx represents the x-th block
(from 1 to 7) and k represents the length of LSPBlock, which was set to 5 in the experiments.
Figure 9 shows the results of the location ablation study for LSPConv placement.

The results of the experiments showed that the position of LSPConv in the network
affects the effectiveness of different kernel sizes. Specifically, deeper layers in the network
may be more effective for larger kernel sizes, while shallower layers may be more effective
for smaller kernel sizes.

Appl. Sci. 2023, 13, 8130 10 of 15

This finding could be attributed to the receptive field of the convolution operation. As
the receptive field of a convolutional layer increases with network depth, it becomes more
capable of capturing more spatial information in the input image. Therefore, the deeper
layers with a larger receptive field could be more effective for larger kernel sizes. On the
other hand, shallower layers may be more effective for smaller kernel sizes since they can
capture local features better than deeper layers.

NormBlock LSPBlock

Figure 8. We conducted experiments on the positions of different sizes of LSPBlocks in Stage 3 to
investigate the preference of different kernel sizes for network depth. In the experiments, k represents
the length of consecutive LSPBlocks, while x represents the starting block of using LSPBlock.

2 3 4 5 6
Location of LSPConv in the Stage 3

72.75

73.00

73.25

73.50

73.75

74.00

74.25

m
Io

U

LSPConv
[5]
[7]
[9]

Figure 9. We conducted experiments with three different kernel sizes of LSPBlock, namely 5, 7, and 9.
The horizontal axis represents the starting position of five consecutive LSPBlocks in Stage 3, while
the vertical axis represents the mIoU metric.

4.5. Block Ablation Studies

The encoder based on spatially separable convolution was compared with Regseg’s
encoder. To ensure fairness, RegSeg’s decoder was used for both CNNs in the compari-
son. The FPS and GFLOPs for each test experiment were tested on an RTX 2080Ti. For
3 × 2048 × 1024 input images, the spatially separable convolution-based model showed a
reduction in GFLOPs of about 14.14% and an increase in FPS of 52.36%. mIoU was reduced
by about 2.56% compared to Regseg (see Table 3).

Table 3. Comparison of frames per second (FPS) and Gigaflops (GFLOPs) with 3 × 2048 × 1024
Image Resolution.

Model mIoU ↑ FPS ↑ GFLOPs (Whole Model) ↓
Our 76.8 61.1 16.887 G

Regseg 78.1 40.1 19.670 G

Appl. Sci. 2023, 13, 8130 11 of 15

4.6. Timing Setup and Parameters

An RTX 2080 Ti GPU was used to time LightSeg in mixed-precision mode. PyTorch
1.10.0 and CUDA 11.3 were used. The input size was 1 × 3 × 1024 × 2048 on Cityscapes
10 iterations were processed as a warm-up before officially starting the test, and the infer-
ence times were averaged over the next 100 iterations.

Jetson Xavier NX used Pytorch 1.11.0 Jetpack 5.0.2-b231 and accelerated with TensorRT.

4.7. Comparison with State-of-the-Art Methods

In Table 4, our model was compared with other lightweight real-time semantic seg-
mentation models, revealing leading results in both speed and complexity. Here, “IM”
indicates that the model was pre-trained on ImageNet. Notably, our model achieved a
16% faster inference speed and a nearly 56% reduction in complexity compared to the
previous state-of-the-art model RegSeg, while maintaining a similar MIoU performance.
Furthermore, the model was deployed using TensorRT on Jetson NX, achieving a score of
115.7 FPS and outperforming most of the results in Table 4. Notably, the improvements
in speed and complexity can be attributed to the design of our LSPBlock and UpHead
modules, which effectively reduce computational and memory costs while maintaining
segmentation accuracy. Figure 10 displays the visual results of LightSeg and Regseg under
different scenarios.

Table 4. Comparison with state-of-the-art methods on Cityscapes. IM means ImageNet. † indicates
that the deployment uses TensorRT benchmark.

Model val MIoU ↑ Speed (FPS) ↑ Pre-Training GPU Resolution GFLOPs ↓ Params ↓

MSFNet [32] - 41 IM RTX 2080Ti 2048× 1024 96.8 -
SwiftNetRN-18 [33] - 39.9 IM RTX 2080Ti 2048× 1024 104 11.8 M

FasterSeg [34] 73.1 163.9 None RTX 2080Ti 2048× 1024 28.2 4.4 M
BiSeNet1 [35] 69.0 40.9 IM RTX 2080Ti 2048× 1024 14.8 5.8 M
BiSeNet2 [35] 74.8 42.2 IM RTX 2080Ti 2048× 1024 55.3 49 M

DDRNet-23 [36] 79.5 (79.1± 0.3) 37.1 IM RTX 2080Ti 2048× 1024 143.1 20.1 M
RegSeg [10] 78.13± 0.48 35 None RTX 2080Ti 2048× 1024 39.1 3.34 M

LightSeg 76.8 61.1 None RTX 2080Ti 2048× 1024 16.88 2.44 M
LightSeg † - 115.7 None Jetson NX 2048× 1024 16.88 2.44 M

Image LightSegGround Truth RegSeg BiSeNetV2 DDRNet-23-slim

Figure 10. Visual results comparison of LightSeg and Regseg on Cityscapes validation set under
various scenarios. The visualization results clearly indicate the superiority of our network over
RegSeg in accurately capturing elongated objects. Moreover, the inherent local spatial perception
ability of LSPConv significantly enhances the segmentation performance for large-scale objects.

Appl. Sci. 2023, 13, 8130 12 of 15

As shown in Table 5, our proposed method, LightSeg, achieves mIOU of 77.1% on
the challenging CamVid test set while operating at an impressive speed of 99.4 FPS. This
performance improvement is significant when compared to the previous state-of-the-art
(SOTA) model, DDRNet-23 [36], as our method achieves a 5% increase in speed. Moreover,
in comparison to RegSeg, our approach demonstrates a substantial speed boost of 42%.

Table 5. Comparison with state-of-the-art methods on Camvid, IM: ImageNet,C: Cityscapes.

Model Extra Data FPS ↑ mIOU ↑
STDC2-Seg [37] IM 152.2 73.9

GAS [38] - 153.1 72.8
CAS [39] - 169 71.2

VideoGCRF [40] C - 75.2
BiSeNetV2 [41] C 124 76.7

BiSeNetV2-L [41] C 33 78.5
DDRNet-23 [36] C 94 80.1

RegSeg [10] C 70 80.9

LightSeg C 99.4 77.1

4.8. Effective Receptive Field Analysis

The receptive fields of RegSeg and LightSeg were visualized to demonstrate how our
network effectively addresses the “Gridding Effect” [12] issue in RegSeg.

The visualization results are shown in Figure 11; the darker colors indicate that the
coordinates are focused within the receptive field of the corresponding feature kernel.
Based on the visualization results, the following conclusions can be drawn:

• The D Block in RegSeg effectively increases the receptive field, but also causes sparse
gradients due to its dilated convolution structure, resulting in the “Gridding Effect”.

• Both LightSeg and RegSeg exhibited relatively small ERFs in the early stages of the network.
• In Stage 3, LightSeg showed a global receptive field while still maintaining a strong

focus on local regions.

Stage 4 Stage 8 Stage 16 Head

(a) RegSeg

Stage 4 Stage 8 Stage 16 Head

(b) LightSeg

Figure 11. Effective receptive field (ERF) Analysis on Cityscapes. The depth of color represents the
degree of influence of the input image on the target value. A darker color indicates a significant
influence, while a lighter color indicates a minimal impact on the target value.

Appl. Sci. 2023, 13, 8130 13 of 15

5. Conclusions

This paper introduces LSPConv, a novel convolutional neural network (CNN) module
specifically designed for intelligent recognition and detection on mobile devices. LSPConv
effectively addresses the challenge of limited receptive field in lightweight designs by
employing spatial separable convolutions with large kernels in the encoder, while also
capturing local information using local convolutions. The proposed LSPBlock further
enhances the network’s receptive field without the drawbacks of dilated convolutions and
reduces computational complexity through depthwise separable convolutions.

By performing spatial separable convolutions channel-wise and fusing features using
point-wise convolutions, the proposed approach achieves real-time performance on low-
power embedded platforms. This results in a 41% reduction in the number of parameters
compared to standard convolution, while increasing inference speed by 30%, thereby improving
efficiency for deployment on unmanned systems with limited computational resources.

Experiments on kernel size combinations reveal that incorporating large kernels in
the initial stage using LSPConv does not significantly improve network performance.
Therefore, the kernel size is gradually increased in the LSPBlock of stage 3.

Evaluation of the Cityscapes dataset demonstrates the effectiveness of our model.
Compared to DDRNet-23 [36], our model achieves nearly a 13% speedup while sacrificing
only 1.7% accuracy compared to RegSeg. These results highlight the efficiency and accuracy
achieved by our LSPConv-based approach in real-time semantic segmentation tasks on
resource-constrained mobile devices.

Author Contributions: Conceptualization, X.L. and J.L.; methodology, X.L. and J.L.; software, J.L.
and Z.G.; validation and J.L.; formal analysis, J.L.; investigation, X.L. and J.L.; resources, X.L. and Z.J.;
data curation, J.L. and Z.G.; writing—original draft preparation, J.L.; writing—review and editing,
J.L., X.L., and Z.J.; visualization, J.L. and Z.G.; supervision, Z.J.; project administration, Z.J.; funding
acquisition, Z.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61876049,
62172118) and Nature Science Key Foundation of Guangxi (2021GXNSFDA196002); in part by the
Sichuan Regional Innovation Cooperation Project (2021YFQ0002); in part by the Guangxi Key Labo-
ratory of Image and Graphic Intelligent Processing under Grants (GIIP2004) and Student’s Platform
for Innovation and Entrepreneurship Training Program under Grant (S202210595177, 202210595029).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For the Cityscape dataset, the data supporting reported results can be
found at the following link: https://www.cityscapes-dataset.com/ (accessed on 12 May 2023). The
dataset is publicly available for research purposes and can be downloaded upon registration on the
website. For CamVid dataset, the data supporting reported results can be found at the following link:
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/ (accessed on 20 June 2023). The
dataset is publicly available for research purposes and can be downloaded upon registration on the
website.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.cityscapes-dataset.com/
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

Appl. Sci. 2023, 13, 8130 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

FCN Fully Convolutional Networks
CNN Convolutional Neural Networks
LSPConv Local Spatial Perception Convolution
LSPBlock Local Spatial Perception Block
CUDA Compute Unified Device Architecture (a parallel computing platform by NVIDIA)
GPU Graphics Processing Unit
FPS Frames Per Second (the number of frames processed or displayed per second)
GFlops Gigaflops (the number of billions of floating-point operations per second)

mIoU
Mean Intersection over Union (a metric used to evaluate the accuracy of
segmentation models)

TensorRT Tensor Runtime (an optimization and inference engine for deep learning models)

References
1. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
2. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: The next generation of on-device computer vision

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018.

3. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, 27 October–2
November 2019; pp. 1314–1324.

4. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

5. Yan, M.; Xiong, R.; Shen, Y.; Jin, C.; Wang, Y. Intelligent generation of Peking opera facial masks with deep learning frameworks.
Herit. Sci. 2023, 11, 20. [CrossRef]

6. Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric non-local neural networks for semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 27 October–2 November 2019; pp. 593–602.

7. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154.

8. Yan, M.; Lou, X.; Chan, C.A.; Wang, Y.; Jiang, W. A semantic and emotion-based dual latent variable generation model for a
dialogue system. CAAI Trans. Intell. Technol. 2023, 8, 319–330. [CrossRef]

9. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

10. Gao, R. Rethinking Dilated Convolution for Real-Time Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, BC, Canada, 18–22 June 2023; pp. 4674–4683.

11. Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 472–480.

12. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In
Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15
March 2018; pp. 1451–1460.

13. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

14. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9
October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

15. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

16. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

17. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

18. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

http://doi.org/10.1186/s40494-023-00865-z
http://dx.doi.org/10.1049/cit2.12153
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

Appl. Sci. 2023, 13, 8130 15 of 15

19. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Virtual, 19–25 June 2021; pp. 6881–6890.

20. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

21. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

22. Jia, S. LRD-SLAM: A Lightweight Robust Dynamic SLAM Method by Semantic Segmentation Network. Wirel. Commun. Mob.
Comput. 2022, 2022, 7332390. [CrossRef]

23. Maaz, M.; Shaker, A.; Cholakkal, H.; Khan, S.; Zamir, S.W.; Anwer, R.M.; Shahbaz Khan, F. Edgenext: Efficiently amalgamated cnn-
transformer architecture for mobile vision applications. In European Conference on Computer Vision; Springer: Cham, Switzerland,
2022; pp. 3–20.

24. Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobile-former: Bridging mobilenet and transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 July 2022;
pp. 5270–5279.

25. Zhao, P.; Haitao, H.; Li, A.; Mansourian, A. Impact of data processing on deriving micro-mobility patterns from vehicle availability
data. Transp. Res. Part Transp. Environ. 2021, 97, 102913. [CrossRef]

26. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

27. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2016.

28. Brostow, G.J.; Shotton, J.; Fauqueur, J.; Cipolla, R. Segmentation and Recognition Using Structure from Motion Point Clouds. In
Proceedings of the European Conference on Computer Vision (ECCV), Marseille, France, 12–18 October 2008; pp. 44–57.

29. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic Object Classes in Video: A High-Definition Ground Truth Database. Pattern
Recognit. Lett. 2008, 30, 88–97. [CrossRef]

30. Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical automated data augmentation with a reduced search space.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, hlSeattle, WA, USA, 13–19 June 2020;
pp. 702–703.

31. Zhu, Y.; Sapra, K.; Reda, F.A.; Shih, K.J.; Newsam, S.; Tao, A.; Catanzaro, B. Improving semantic segmentation via video
propagation and label relaxation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 16–20 June 2019; pp. 8856–8865.

32. Si, H.; Zhang, Z.; Lv, F.; Yu, G.; Lu, F. Real-time semantic segmentation via multiply spatial fusion network. arXiv 2019,
arXiv:1911.07217.

33. Orsic, M.; Kreso, I.; Bevandic, P.; Segvic, S. In defense of pre-trained imagenet architectures for real-time semantic segmentation
of road-driving images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019; pp. 12607–12616.

34. Chen, W.; Gong, X.; Liu, X.; Zhang, Q.; Li, Y.; Wang, Z. FasterSeg: Searching for Faster Real-time Semantic Segmentation. arXiv
2019, arXiv:1912.10917.

35. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.

36. Pan, H.; Hong, Y.; Sun, W.; Jia, Y. Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic
Scenes. IEEE Trans. Intell. Transp. Syst. 2022, 24, 3448–3460. [CrossRef]

37. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 9716–9725.

38. Lin, P.; Sun, P.; Cheng, G.; Xie, S.; Li, X.; Shi, J. Graph-guided architecture search for real-time semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, hlSeattle, WA, USA, 13–19 June 2020;
pp. 4203–4212.

39. Zhang, Y.; Qiu, Z.; Liu, J.; Yao, T.; Liu, D.; Mei, T. Customizable architecture search for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11641–11650.

40. Chandra, S.; Couprie, C.; Kokkinos, I. Deep spatio-temporal random fields for efficient video segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8915–8924.

41. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic
segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2022/7332390
http://dx.doi.org/10.1016/j.trd.2021.102913
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1109/TITS.2022.3228042
http://dx.doi.org/10.1007/s11263-021-01515-2

	Introduction
	Related Works
	Semantic Segmentation
	Real-Time Semantic Segmentation

	Methods
	Overall Architecture
	Local Spatial Perception Convolution
	Local Spatial Perception Block
	Hierarchical Feature Decoding and Fusion

	Experiments
	Datasets
	Training Setup and Parameters
	LSPBlock Ablation Studies
	LSPBlock Location Ablation Studies
	Block Ablation Studies
	Timing Setup and Parameters
	Comparison with State-of-the-Art Methods
	Effective Receptive Field Analysis

	Conclusions
	References

