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Abstract: The use of generative learning models in natural language processing (NLP) has signifi-
cantly contributed to the advancement of natural language applications, such as sentimental analysis,
topic modeling, text classification, chatbots, and spam filtering. With a large amount of text generated
each day from different sources, such as web-pages, blogs, emails, social media, and articles, one
of the most common tasks in NLP is the classification of a text corpus. This is important in many
institutions for planning, decision-making, and creating archives of their projects. Many algorithms
exist to automate text classification tasks but the most intriguing of them is that which also learns
these tasks automatically. In this study, we present a new model to infer and learn from data using
probabilistic logic and apply it to text classification. This model, called GenCo, is a multi-input
single-output (MISO) learning model that uses a collaboration of partial classifications to generate the
desired output. It provides a heterogeneity measure to explain its classification results and enables
a reduction in the curse of dimensionality in text classification. Experiments with the model were
carried out on the Twitter US Airline dataset, the Conference Paper dataset, and the SMS Spam
dataset, outperforming baseline models with 98.40%, 89.90%, and 99.26% accuracy, respectively.

Keywords: natural language processing; text classification; probabilistic models; machine learning;
generative learning; collaborative learning; explainable AI

1. Introduction

There has been an increase in human interactions over recent years due to the rise in
globalization [1]. Coupled with the increase in dependency on electronic communication,
the amount of electronic data generated has multiplied each day. This electronic data can
be in different modalities, such as sound, image, video, or text.

Textual communication has always been one of the predominant methods of commu-
nication in human society since the invention of writing by different cultures around the
world [2]. Added to the increase in human interactions in recent years, a large amount of
textual information is generated daily from different sources, such as web-pages, blogs,
emails, social media, and articles.

To understand the content of textual information, many language analysis tasks, such
as lexical (or morphological) analysis, syntax analysis (or parsing), semantic analysis, topic
modeling, and text classification, can be performed on the text corpus. In this paper,
we focus on text classification and provide a machine-learning solution to automate the
classification of textual information.

Text classification consists of assigning a sentence or document to an appropriate
predefined category [3]. This category can involve topic, sentiment, language, or all. So,
text classification tasks may include news classification, emotion classification, sentiment
analysis, citation intent classification, spam classification, and so on. This is important
in many institutions for creating archives and the organization of large amounts of text
needed for effective planning and decision-making on their projects.
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In general, depending on the type of category, text classification can be divided into
topic classification, sentiment classification (or analysis), language classification, and hybrid
classification based on any two or all three of these categories.

The pipeline of a general text classification task in NLP is presented in [4]. The initial
step in this pipeline is text preprocessing, where the text corpus is processed for case
harmonization, noise removal, tokenization, stemming, lemmatization, normalization,
feature extraction, and vectorization. After preprocessing, the vectorized features are then
fed into a classification algorithm that outputs a prediction of the category which defines
the given text corpus.

During preprocessing, case harmonization involves setting all text in the corpus to
the same case, that is, either lowercase or uppercase. Noise removal involves the removal
of stop words and special characters from the corpus. Tokenization involves splitting the
text into small chunks of words or sentences, called tokens. Stemming involves reducing
words to their root or base form. Lemmatization involves breaking a word down to its root
meaning to identify similarities.

Furthermore, normalization is the mapping of different, but semantically equivalent,
phrases onto a single canonical representative phrase. It can be divided into morpholog-
ical normalization, such as stemming and lemmatization, lexical normalization, such as
spelling correction, syntactic normalization, such as grammatic correction, and semantic
normalization, such as synonyms elimination. Since stemming and lemmatization are types
of morphological normalization techniques, the normalization step usually involves lexical,
syntactic, and/or semantic normalization.

Feature extraction involves the selection of features required for training and clas-
sification. Vectorization involves converting selected features from a text corpus into
numerical vectors. Different types of vectorization techniques are used in NLP, such as
Bag-of-Words, Term Frequency–Inverse Document Frequency (TF-IDF), Word2Vec, and
Continuous Bag-of-Words (CBOW) vectorizations.

The importance of text classification has led to the development of many algorithms
to automate the process [5]. Such algorithms may use either a deterministic, stochastic,
or hybrid approach to infer the category of a text corpus. The advancement in machine
learning algorithms as a stochastic logical operation has increased the use of the stochastic
approach in text classification.

Machine learning algorithms can broadly be divided into symbolic (mostly rule-based),
statistical (mostly data-driven and discriminative), and probabilistic (mostly generative)
models. Each of these models can be further divided into supervised, semi-supervised,
unsupervised, self-supervised, and reinforcement learning. Furthermore, based on their
number of input and output variables, they can be classified as single-input single-output
(SISO), multiple-input single-output (MISO), single-input multiple-output (SIMO), and
multiple-input multiple-output (MIMO) models. Multiple output (MO) models are also
called multitarget models, which include multilabel models for classification tasks. In this
paper, we use a MISO-based generative supervised learning model for text classification.

A major challenge in text classification algorithms is the classification of a heteroge-
neous text corpus (or corpora) [6,7]. Heterogeneous text corpuses (or corpora) are those
with latent relationships between their features (i.e., vocabularies), and their classification is
challenging. The vocabularies of a text (i.e., a document) in a corpus or a corpus in corpora
discussing housing prizes and sports will be explicitly unrelated, but the understanding of
any implicit (or hidden) relationship between their vocabularies can help in their classifica-
tion. The degree of such a heterogeneous relationship between features may vary and will
influence the classification of a text corpus (or corpora).

This degree of heterogeneity between features of the same corpus or different corpora
is different from the similarity measure between documents, which is estimated using
cosine similarity and hamming distance measures, for example. The heterogeneity mea-
sure used in this study focuses on capturing the correlation in terms of the probabilistic
dissimilarity between features in the same corpus or different corpora, while conventional
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similarity measures focus on capturing similarity between documents in the same corpus
or different corpora.

Furthermore, the number of vectorized features in most text classification tasks is very
large such that conventional text classification models cannot perform very well due to the
curse of dimensionality. A common technique to solve this problem is to use an n-gram
language model, where n > 1. The downside of this technique is that it leads to a sparsed
vectorization, which is less useful in generating a reliable classification result, especially
when n increases. Also, many preprocessing operations, such as defining the count limits
of feature occurrences, are performed to reduce unwanted features.

These are the challenges we seek to solve in this paper, and we do so using a collabo-
rative learning model which takes into account the relationship between the features of a
text corpus and their dimensionality, as we shall explain in Section 2.2.

Related Works

In the field of NLP, much research has been undertaken to provide solutions for text
classification.

Zhang et al. [8] presented a text classifier using Naive Bayes. They applied their model to
spam filtering by using preclassified emails as prior knowledge to train their model. Their model
was able to detect if an email was spam or not spam. Also, Shuo [9] proposed a Gaussian Naive
Bayes model for text classification after proving, using 20 newsgroups and WebKB datasets, that
the Gaussian Naive Bayes model was better than its classical counterpart.

Mitra et al. [10] presented a text classifier using the least square support vector machine
(LS-SVM) on a corpus of 91,229 words from the University of Denver’s Penrose Library
catalog. Their proposed LS-SVM is based on a Gaussian radial basis function (GRBF)
kernel, which uses the probabilistic coefficients generated by the Latent Semantic Indexing
algorithm. Its performance on this corpus was over 99.99%, outperforming the performance
of Naive Bayes and K-nearest neighbor.

Guo Qiang [11] proposed a text classification algorithm to improve the performance
of the Naive Bayes classifier. It was applied to spam filtering on different text corpora; the
results were compared to those for the classical Naive Bayes model and were shown to
outperform them. The author actually proposed a new expression for word counts, which
solved the problem in Naive Bayes that multiple occurrences of the same word in a docu-
ment can reduce the probability of other important features which have few occurrences.

Akhter et al. [12] proposed a document classification model for the Urdu language using
a single-layer multisize filters convolutional neural network (SMFCNN). They compared this
model with sixteen machine learning baseline models on three imbalanced datasets. Their
method achieved a higher accuracy than the selected baseline models, with accuracy values of
95.4%, 91.8%, and 93.3% on medium, large, and small size datasets, respectively.

Li et al. [13] proposed a text classification model based on the Bidirectional Encoder
Representations from Transformers (BERT) model and feature fusion. A comparison with
the state-of-the-art model showed that the accuracy of the proposed model outperformed
those of state-of-the-art models. The model can improve the accuracy of tag prediction for
text data with sequence features and obvious local features.

Du et al. [14] proposed an attention-based recurrent neural network for text classifica-
tion. The network was trained on two news classification datasets published by NLPCC2014
and Reuters, respectively. The classification results showed that the model outperformed
baseline models by achieving F-values of 88.5% and 51.8% on the two datasets.

Conventional models focus on the classification of a text corpus without considering
the heterogeneity between the features, which may reduce the explainability of their results.
Also, most text classification uses a large number of features, and working with a large
number of features may cause conventional approaches to be less efficient because of the
curse of dimensionality.

In this study, we propose a generative model based on collaborative partial classi-
fications as a solution to the problem of a heterogeneous text corpus and the curse of
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dimensionality in text classification. We performed experiments to evaluate the perfor-
mance of our model on different heterogeneous text datasets and compared the outcome
with results from other studies. We propose a method to explain the classification results of
our proposed model.

The rest of the paper is organized as follows: Section 2 presents the conventional
and proposed approaches to text classification and the performance measures for their
evaluation. Section 3 focuses on the experimental results and discussions of the proposed
approach and its comparison with other models. This work is concluded in Section 4.

2. Materials and Methods

In this section, the conventional and proposed models related to text classification in
this study are presented.

2.1. Conventional Approach

The conventional approach to classifying text makes use of all the extracted features
of the text corpus to predict the given category. This can be represented mathematically as

ŷ , f (X) (1)

where X is a vector of the text features, ŷ is the predicted value of the text category, and
f (.) is a function defining the prediction process.

Different conventional models are used to implement this prediction process. These
include Naive Bayes (NB), Support Vector Machine (SVM), Deep Neural Networks (DNN),
Bidirectional Encoder Representations from Transformers (BERT), and Recurrent Neural
Networks (RNN). Figure 1 represents the conventional text classification using NB.

Text Corpus with 
Categories 

Naïve Bayes Classification Model

Text preprocessing

Naïve Bayes

…….

Vectorized features

!𝑦

𝑥!
𝑥"
𝑥#
𝑥$

𝑥%

𝑃 𝑦 𝑥!, 𝑥", … , 𝑥# =
𝑃(𝑦)∏$%!

# 𝑃(𝑥$|𝑦)
𝑃(𝑥!, 𝑥", … , 𝑥#)

Predicted
 label

- Case harmonization

- Noise removal

- Tokenization

- Stemming

- Lemmatization

- Normalization

- Feature extraction

- Vectorization

Figure 1. Text classification using Naive Bayes.

Considering a news corpus with a feature vector X = (x1, x2, . . . , xn) and category set
y = {y1, y2, . . . , ym}, where the elements of y are mutually exclusive. Using a conventional
probabilistic learning model such as NB, the text classification can be expressed based on
the Bayes rule as follows:

ŷ = P(y|x1, x2, . . . , xn) =
P(y)P(x1, x2, . . . , xn|y)

P(x1, x2, . . . , xn)
(2)

where n is the number of features in X, P(y) is the prior distribution of the category y, ŷ
is the posterior distribution of the category y, P(X|y) is the likelihood of the category y
given all text features in X (i.e., probability of X given y), and P(x1, x2, . . . , xn) = P(X) is
the marginal distribution of the text features (also called evidence).
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The final predicted category (or class) ŷk of y is defined by the class yk with the
maximum probability over all categories.

ŷk = arg max
k∈{1,2,...,m}

(
P(yk)P(x1, x2, . . . , xn|yk)

P(x1, x2, . . . , xn)

)
(3)

where m is the number of categories in y, y = {y1, y2, . . . , ym}, and P(yk) is the probability
of a given category yk of y.

Given that P(x1, x2, . . . , xn) is independent on y, then

ŷk ∝ arg max
k∈{1,2,...,m}

(P(yk)P(x1, x2, . . . , xn|yk)) (4)

In this way, P(x1, x2, . . . , xn) is considered as a normalizing factor that depends only
on X, and, thus, will be a constant if the values of all the features of X are known.

The learning process based on this Bayesian inference model is then defined as an
update operation that aims to maximize the predicted distribution ŷ over the cumulative
instances of X and y.

max(ŷ) = arg max
j∈{1,2,...,l}

(
P(y(j))P(X(j)|y(j))

P(X(j))

)
(5)

where j is the numbering of the cumulative instances (also considered here as the learning
or update time), and l is the total instances of X and y, i.e., the data size.

As l increases, the probability improves [15], but increase in l will also increase the
computational complexity of the learning and inference process. Thus, this model is
preferable with a small data size. Nevertheless, unlike data-hungry models, such as deep
neural networks that require a large data size to perform well, this Bayesian model does
perform well with small data sizes.

From this Bayesian inference and learning, NB is defined using the assumption of
mutual independence between the features of X conditioned on the category y.

P(xi|X, y) = P(xi|y) (6)

Thus, NB inference and learning models can be obtained from the Bayesian model
as follows,

ŷk = arg max
k∈{1,2,...,m}

(
P(yk)∏n

i=1 P(xi|yk)

P(x1, x2, . . . , xn)

)
(7)

max(ŷ) = arg max
j∈{1,2,...,l}

(
P(y(j))∏n

i=1 P(x(j)
i |y

(j))

P(X(j))

)
(8)

As an example, consider the sentences from a news corpus:

1. The weather is worse today due to climate change.
2. The increase in economic crises is due to the pandemic.
3. World leaders are determined to end world crises.
4. Major decisions to end climate change were made by world leaders at the climate summit.
5. During the pandemic, economic activities were shut down, making world leaders

struggle with the world economy.
6. No world economy survives the pandemic.
7. World climate change summit discusses how to tackle world climate change crises

during a pandemic crisis.
8. Most world leaders don’t have a large economy to tackle the pandemic and climate

change crises.
9. Without a sustainable economy, it may take longer to survive the pandemic shock.
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10. World economic crises and pandemics are headaches to world leaders.

After preprocessing the news corpus, consider that the extracted vectorized features
and labels are those shown in Table 1. The task is to classify each sentence into Business (B)
or Geography (G) news based on the extracted features.

Table 1. Bag-of-Words (i.e., 1-gram word) vectorization of a news corpus.

x1 x2 x3 x4 x5 x6 x7 y

1 0 0 0 1 1 0 0 G
2 1 1 1 0 0 0 0 B
3 0 1 1 0 0 2 1 B
4 0 0 0 2 1 1 1 G
5 2 0 1 0 0 2 1 B
6 1 0 1 0 0 1 0 B
7 0 2 1 2 2 2 0 G
8 1 1 1 1 1 1 1 G
9 1 0 1 0 0 0 0 B

10 1 1 1 0 0 1 1 B
x1 denotes economy, x2 denotes crises, x3 denotes pandemic, x4 denotes climate, x5 denotes change, x6 denotes
world, x7 denotes leader, y denotes class.

Using NB, we first compute the prior of each class, then calculate the likelihoods,
and finally estimate the posterior by multiplying the prior with the likelihood since the
marginal is fixed. A Laplacian smoothing is used as a normalizer to avoid the probability
of zero. A log probability is used to avoid computational underflow (i.e., floating point
underflow) in the case of many features.

Computing the prior and the likelihood is given as follows

Class priors: P(c) =
nc

n
(9)

Likelihoods: P(w|c) = nw,c + α

nc + α|V| , α = 1 (10)

where c is a class, nc is the frequency (number of occurrences) of a class, n is the total
occurrences of all the classes, w is a feature, nw,c is the frequency (number of occurrences)
of a feature given a class c, α is a smoothing parameter which is equal to 1 for Laplacian
smoothing, and V is the number of vectorized features.

There are many variants of NB but the two most popular variants used for text classifi-
cation are Multinomial NB [16] and Bernoulli NB [17]. For example, using a Bernoulli NB
model on Table 1 will require Table 1 be transformed to a binary Bag-of-Words vectorization,
as shown in Table 2; then, Equations (9) and (10) will be applied to Table 2 for prior and
likelihood estimations, respectively.

Table 2. Binary Bag-of-Words (i.e., 1-gram word) vectorization of a news corpus.

x1 x2 x3 x4 x5 x6 x7 y

1 0 0 0 1 1 0 0 G
2 1 1 1 0 0 0 0 B
3 0 1 1 0 0 1 1 B
4 0 0 0 1 1 1 1 G
5 1 0 1 0 0 1 1 B
6 1 0 1 0 0 1 0 B
7 0 1 1 1 1 1 0 G
8 1 1 1 1 1 1 1 G
9 1 0 1 0 0 0 0 B

10 1 1 1 0 0 1 1 B
x1 denotes economy, x2 denotes crises, x3 denotes pandemic, x4 denotes climate, x5 denotes change, x6 denotes
world, x7 denotes leader, y denotes class.



Appl. Sci. 2023, 13, 8211 7 of 18

Using Equation (9), the prior estimations with respect to Table 2 will be

P(G) = 4/10, P(B) = 6/10

Using Equation (10), the likelihood estimations will be

P(x1|G) =
1 + 1
4 + 7

=
2
11

, P(x1|B) =
5 + 1
6 + 7

=
6
13

P(x2|G) =
2 + 1
4 + 7

=
3
11

, P(x2|B) =
3 + 1
6 + 7

=
4
13

P(x3|G) =
2 + 1
4 + 7

=
3
11

, P(x3|B) =
6 + 1
6 + 7

=
7
13

P(x4|G) =
6 + 1
4 + 7

=
7
11

, P(x4|B) =
0 + 1
6 + 7

=
1
13

P(x5|G) =
4 + 1
4 + 7

=
5
11

, P(x5|B) =
0 + 1
6 + 7

=
1
13

P(x6|G) =
3 + 1
4 + 7

=
4
11

, P(x6|B) =
4 + 1
6 + 7

=
5
13

P(x7|G) =
2 + 1
4 + 7

=
3
11

, P(x7|B) =
3 + 1
6 + 7

=
4
13

For the same text classification problem, the Bernoulli model will be,

P(G|x1, x2, x7) ∝
2

11
× 3

11
× 7

13
× 1

13
× 1

13
× 5

13
× 3

11
× 4

10
= 0.00017

P(B|x1, x2, x7) ∝
6

13
× 4

13
× 3

11
× 7

11
× 5

11
× 4

11
× 4

13
× 6

10
= 0.00075

Since the probability for the statement to be Business news is higher than that to be
Geography news, the sentence is classified as Business news.

As shown in the prediction and learning processes of conventional Bayesian learning
models, such as NB, no consideration is made to capture the relationship between the
features. This is considered to be computationally expensive, especially when estimating
the marginal P(X) for large data size and number of features. This leads to approximate
solutions, such as (4), that ignore such complexities.

As previously explained, the elimination of such a relationship will affect the classifi-
cation performance of the model, and eliminate the possibility to manage the heterogeneity
between the features of the text corpus. In the next section, we propose an inference
and learning model that takes into account such a relationship and applies it to classify
heterogeneous text corpora in Section 3.

2.2. Proposed Model

Unlike the conventional approach that makes use of all the features of the text corpus
to infer and learn the given category, our proposed approach provides the possibility
to segment the input features into multiple groups of input features, forming different
corpora, on which separate learning and inference are performed. This model is defined
mathematically using probabilistic logic as follows:

Axiom 1.

P(Xi|X, y) = P(Xi|y) (11)



Appl. Sci. 2023, 13, 8211 8 of 18

Proposition 1.

ŷ = P(y|X) =
1

P(y)n−1

n

∏
i=0

P(y|Xi)

(
P(Xi+1|

⋂i
µ=0 Xµ)

P(Xi+1)

)−1

(12)

where y is the given set of categories, X is a vector of feature vectors X = (X0, X1, . . . , Xn)
and Xi = (x1, x2, . . .), ŷ is the posterior distribution (i.e., class posterior) of y given X, P(y)
is the prior distribution (i.e., class prior) of y based on X, P(y|Xi) is the partial posterior
distribution (i.e., partial class posterior) of y given Xi, P(Xi+1) is the prior distribution (i.e.,
observation prior) of Xi+1 based on

⋂i
µ=0 Xµ, P(Xi|

⋂i
µ=0 Xµ) is the posterior distribution

(i.e., observation posterior) of Xi given
⋂i

µ=0 Xµ, and n is the number of features vectors.
It is worth noting that the posterior probability distributions can be interpreted as

likelihood functions, i.e., the posterior of y given X is similar to the likelihood of X given y,
and so on. Thus, the term posterior is used interchangeably with the term likelihood in this
manuscript. The proof of Proposition 1 is given in Appendix A.

The inference and learning based on this proposed model can then be expressed as

ŷk = arg max
k∈{1,2,...,m}

P(yk|X)

= H(X) arg max
k∈{1,2,...,m}

(
1

P(yk)n−1

n

∏
i=0

P(yk|Xi)

)
(13)

⇒ ŷk ∝ arg max
k∈{1,2,...,m}

(
1

P(yk)n−1

n

∏
i=0

P(yk|Xi)

)
(14)

max(ŷ) = arg max
j∈{1,2,...,l}

P(y(j)
k |X

(j)) (15)

where H(X) = ∏n
i=0

(
P(Xi+1|

⋂i
µ=0 Xµ)

P(Xi+1)

)−1
, H(X) ∈ [0, ∞]

During inference and learning, estimating the priors and likelihoods (i.e., posteriors)
based on this model for both the class and observation is given as

Class prior: P(c) =
nc

n
(16)

Observation prior: P(w) =
nw

n
(17)

Class Likelihood: P(c|w) =
nc,w + α

nw + α|V| , α = 1 (18)

Observation Likelihood: P(wi|wj) =
nwi ,wj + α

nwj + α|V| , α = 1 (19)

where n is the total number of instances in the text vectorization, c is a class, nc is the
frequency (number of) occurrences of a class, w is a feature vector, nw is the frequency of
occurrences of a feature vector w, nc,w is the frequency of occurrence of a class c given the
occurrence of a feature vector w, nwi ,wj is the frequency of occurrence of a feature vector
wi given the occurrence of another feature vector wj, α is a smoothing parameter, which is
equal to 1 for Laplacian smoothing, and V is the number of vectorized features.

Using this proposed model, for any given classification task, the first step is to segment
the features into parts, forming separate feature vectors, then inference and learning are
applied on each of the feature vectors using the class likelihood (or partial class posterior)
P(c|w). The partial class posterior can also be expressed as an inference problem on each
segmented feature where our model or a Bayesian model can be applied to generate its
results. The results from each partial class posterior are then integrated (or aggregated
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in the case of a logarithmic scale) to represent the classification result on the whole text
corpus.

Segmenting a feature vector into sub-vectors while maintaining the relationship be-
tween the features can be a daunting task. One way to approach this is to organize the
segmented feature vectors in a sequence, then to apply Proposition 1, taking into account
the heterogeneity between the features in the sequence. This heterogeneity between the
features is given by the value of H(X) and is independent of y.

The classification process is illustrated in Figure 2 and described in Algorithm 1.
As an example, using the vectorized features defined in Table 2, and applying Algorithm 1

with one feature per segment, the following priors and likelihoods can be estimated.

Algorithm 1 GenCo learning and classification of heterogeneous text corpora

Require: X (binary vectorized input), k (number of class), m(number of observation instances).

Ensure: max(P(y|X))

n← n . number of feature segments

for j = 1 to m do . learning of class posterior

P(y(j))← P(y(j)) . estimating class priors

for i = 0 to n do . estimating partial posteriors

P(X(j)
i )← P(X(j)

i ) . estimating observation priors

ai ← P(y(j)|X(j)
i ) . partial class posterior

bi ← H(X(j)
i )/P(y(j)) . partial heterogeineity

end for

P(y(j)|X(j))← ∏n
i=0 a(j)

i b(j)
i . class posterior update

end for

ŷk ← arg max
k∈{1,2,3,...}

(P(yk|X)) . final class posterior

Text Corpus with 
Categories 

GenCo Classification Model
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…….
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Figure 2. Text classification using GenCo.

Using Equation (16), the class priors will be

P(G) = 4/10, P(B) = 6/10

Using Equation (17), the observation priors will be

P(x1 = yes) = 6/10, P(x2 = yes) = 5/10,

P(x3 = yes) = 8/10, P(x4 = yes) = 4/10,

P(x5 = yes) = 4/10, P(x6 = yes) = 7/10,
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P(x7 = yes) = 5/10

Using Equation (18), the class likelihoods will be

P(G|x1) =
0 + 1
6 + 7

=
1

13
, P(G|¬x1) =

3 + 1
4 + 7

=
5
11

,

P(G|x2) =
2 + 1
5 + 7

=
3

12
, P(G|¬x2) =

2 + 1
5 + 7

=
3
12

,

P(G|x3) =
2 + 1
8 + 7

=
3
15

, P(G|¬x3) =
2 + 1
2 + 7

=
3
9

,

P(G|x4) =
4 + 1
4 + 7

=
5

11
, P(G|¬x4) =

0 + 1
6 + 7

=
1
13

,

P(G|x5) =
4 + 1
4 + 7

=
5

11
, P(G|¬x5) =

0 + 1
6 + 7

=
1
13

,

P(G|x6) =
3 + 1
7 + 7

=
4

14
, P(G|¬x6) =

1 + 1
3 + 7

=
2
10

,

P(G|x7) =
2 + 1
5 + 7

=
3

12
, P(G|¬x7) =

2 + 1
5 + 7

=
3
12

,

Using Equation (19) and ordering the features to be conditionally dependent from x1
to x7 with a Markov property of a level 1 assumption, the observation likelihoods will be

P(x2|x1) =
3 + 1
6 + 7

=
4

13
, P(x2|¬x1) =

1 + 1
4 + 7

=
2

11

P(x3|x2) =
5 + 1
5 + 7

=
6

13
, P(x3|¬x2) =

0 + 1
5 + 7

=
1

13

P(x4|x3) =
1 + 1
8 + 7

=
2

15
, P(x4|¬x3) =

2 + 1
2 + 7

=
3
9

P(x5|x4) =
4 + 1
4 + 7

=
5

11
, P(x5|¬x4) =

0 + 1
6 + 7

=
1

13

P(x6|x5) =
3 + 1
4 + 7

=
4

11
, P(x6|¬x5) =

4 + 1
6 + 7

=
5

13

P(x7|x6) =
5 + 1
7 + 7

=
6

14
, P(x7|¬x6) =

0 + 1
3 + 7

=
1

10

This implies that, using the Bernoulli version of our proposed model, the classification
of a corpus given that it has the words economy, crises and leaders, will be,

P(G|x1, x2, x7) ∝
(

4
10

)−6
× 1

13
× 3

12
× 3

9
× 1

13
× 1

13
× 2

10
× 3

12
= 0.012

P(B|x1, x2, x7) ∝
(

6
10

)−6
× 7

13
× 4

12
× 1

9
× 7

13
× 7

13
× 3

10
× 4

12
= 0.046

Similar to the classification results using conventional models, our proposed model
also classifies the statement as Business news but with larger floating point value than
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the conventional model. Furthermore, the heterogeneity between the features at the last
prediction instance can be estimated using the heterogeneity function H(X) as follows:

H(X) =
7

∏
i=1

(
P(xi+1|

⋂i
µ=1 xµ)

P(xi+1)

)−1

=
4

13
5

10
×

1
13
8
10
×

1
9
6

10
×

7
13
6

10
×

3
13
3

10
×

1
10
5

10
= 0.001513

We consider the reciprocal of this value as a form of mutuality between the features,
which measures their similarity (i.e., homogeneity), and can be used to indirectly measure
their heterogeneity in this model. Thus, the mutuality M(X) between the features will be,

M(X) =
1

H(X)
, M(X) ∈ [0, ∞] (20)

Therefore, if H(X) = 0.001513, then M(X) = 660.983143. This implies that there is
more probabilistic similarity than dissimilarity between the features. In other words, the
features are probabilistically more joined together than disjoint in their occurrence.

In this study, M(X) measures the correlation (or association) between the features
in terms of the probabilistic similarity (i.e., homogeneity) of their dependency on one
another. For any two features Xi and Xj, where each one is conditioned on the other, if
M(Xi, Xj) = 1, then P(Xi|Xj) = P(Xi) and P(Xj|Xi) = P(Xj), which implies Xi and Xj are
probabilistically identical, but non-similar in their dependence to each other. If M(X) > 1,
then P(Xi|Xj) > P(Xi) and P(Xj|Xi) > P(Xj), which implies Xi and Xj have a direct (i.e.,
increase in value when conditioned) probabilistic similarity in their dependency to one
another. If M(X) < 1, then P(Xi|Xj) < P(Xi) and P(Xj|Xi) < P(Xj), which implies Xi
and Xj have an indirect (i.e., decrease in value when conditioned) probabilistic similarity in
their dependency to one another. Using M(X) in the logarithmic scale will lead to M(X) = 0
(region of no mutuality), M(X) > 0 (region of increasing mutuality), and M(X) < 0 (region
of decreasing mutuality), respectively. These also apply to the dissimilarity measure H(X).

M(X) can be compared with conventional similarity measures in NLP, such as the
cosine similarity and hamming distance measures. However, unlike conventional similarity
measures which are separated from the classification model, our proposed similarity
measure M(X) and dissimilarity measure H(X) form part of our classification model;
hence, they can be used to explicitly explain the classification results.

One advantage of this proposed model in text classification rests on the fact that
it enables the breakdown of a high computational classification problem into smaller
less computational classification problems. This may be better in terms of conventional
models, whose computational complexity increases with the number of features due to
the computation of the marginal distribution. The Markov property can also be applied to
reduce such complexity in both the conventional and our proposed models.

Also, the use of a heterogeneity function or homogeneity function in the model,
rather than a marginal function as in conventional probabilistic models, enables clear
visibility of the influence of the relationship between the features to the learning and
prediction processes of the model. We shall present a mutuality matrix in Section 3 to
capture the probabilistic variation in the homogeneous relationship between the features
during learning and show how this variation influences the learning and prediction results
of the model.

Furthermore, this model can be expressed as an algebraic series as follows:

f (y|X) = a0b0 × a1b1 × a2b2 × a3b3 × . . .× anbn (21)

where a0 = P(y|X0), a1 = P(y|X1), . . . , an = P(y|Xn), b0 = 1, b1 = H(X1)
P(y) , b2 = H(X2)

P(y) ,

. . . , bn = H(Xn)
P(y) , H(X1) =

P(X1)
P(X1|X0)

, H(X2) =
P(X2)

P(X2|X0,x1)
, . . . , H(Xn) =

P(Xn)

P(Xn |
⋂n−1

µ=0 Xµ
), and

X = (X0, X1, X2, . . . , Xn).



Appl. Sci. 2023, 13, 8211 12 of 18

The first term a0 is considered as a bias partial class posterior in the model, and b is
a combination of the heterogeneity (or mutuality) and regularization values. In general,
P(y) is considered to act as a regularizer to each heterogeneous (or mutual) relationship
H(Xi), while H(Xi) acts as a normalizer of the partial class posterior ai. In this way, H(X)
acts as a normalizer of the merged (integrated or aggregated) class posterior f (y|X), while
(P(y))1−n acts as a regularizer of H(X).

This representation transforms the model into a network of partial actions, as shown
in Figure 2. Such a representation is useful for mathematical analysis and the network can
be expanded to multiple segmentation and partialization layers; however, this will increase
its design and computational complexities. This network is different from conventional
Bayesian networks (i.e., belief networks) [18,19] and Markov networks (i.e., Markov random
field) [19], which focus on using the marginal distribution of the input features and ignore
the heterogeneity between the input features.

To avoid computational overload, the conditional expressions between the features
can be reduced to fewer dependent features through the application of the Markov property.
Also, each term in the series can be normalized using logarithmic normalization to avoid
computational underflow.

2.3. Performance Measure

The performance of this model can be evaluated based on its prediction, learning,
and complexity. In this study, we focus on prediction performance. We also present
a heterogeneous (and mutuality) matrix of the features to show how the heterogeneity
between the given features affects the inference and learning of the model. The prediction
performance is evaluated using the confusion matrix, from which the accuracy, precision,
recall, and F-score can be calculated. Further discussion on prediction performance is
provided in [20].

3. Experimental Results and Discussions

The aim of the experiment was to demonstrate the performance of our proposed text
classification model and to compare the performance results with conventional models.
For validating the performance of our model, we carried out simulation experiments on
different datasets and compared the results with other models.

3.1. Experimental Setup

Two important aspects of the experiments are the model definition and the datasets.

3.1.1. Dataset and Feature Presentation

The datasets (i.e., text corpora) used for the experiment included the Twitter US Airline
Sentiment dataset [21] for sentimental analysis, the Conference Paper dataset [22] for topic
classification, and the SMS Spam dataset [23] for spam classification, as shown in Table 3.

Table 3. Statistics of the datasets.

Datasets Documents Vocabularies Vocabulary Segments Categories

(1) Twitter US Airline dataset [21] 14,640 100 10 3
(2) Conference Paper dataset [22] 2507 100 10 5
(3) SMS Spam dataset [23] 5574 50 5 2

3.1.2. Dataset Pre-Processing

The general data preprocessing steps, as shown in Figure 2, were used for all the
datasets as part of the text classification pipeline. These data preprocessing steps were
performed using the Python NLTK [24] library and were explained in Section 1 of this
current paper. The vectorized vocabulary for each dataset was generated using Python
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sklearn CountVectorizer. A lower and upper bound frequency of the vocabularies was set
to reduce non-semantic vocabularies and computational complexity.

Each vectorized dataset was later split into 70% training and 30% test instances. Label
encoding was used to encode the labels.

3.1.3. Model Definition

The model used during this experiment is based on Proposition 1 and is defined by
the following hyperparameters:

• Smoothing parameter: The smoothing parameter α ∈ (0, 1], which is fixed to α = 1,
corresponding to a Laplacian smoothing.

• Number of segmentation: The number of segments used depends on the number of
features (i.e., dimensions of the vocabulary) of the dataset concerned.

• Number of partialization layers: A single layer of partialization is used, and the
number of partial class posteriors in the layer is equal to the number of feature
segments.

3.2. Results Discussions

The classification results for the experiments are presented in this section, together with
the homogeneity measure between the features of each dataset using a mutuality matrix.
Also, the confusion matrix and classification report based on each dataset is presented.
Lastly, we provide a comparison of the classification results of our model for each dataset
with models from different studies that used the same dataset.

3.2.1. Twitter US Airline Dataset Results

The confusion matrix of our model based on the Twitter US Airline dataset is presented
in Figure 3, together with the mutuality matrix of the 10 feature segments.

(a) (b) (c)

Figure 3. Results with the Twitter US Airline dataset. (a) Confusion matrix. (b) Mutuality ma-
trix for the 10 feature segments. (c) Combined mutuality of each feature in the segment with the
highest mutuality.

The results presented in Figure 3a show that the proposed model classifies negative
labels better than both positive and neutral labels. To explain this behavior of the model,
we generate the mutuality matrix for the 10 feature segments, as presented in Figure 3b.

The mutuality between every two feature segments is defined using (20), applying a
level 1 Markov property assumption and Axiom 1. This results in the diagonal values next
to the leading diagonal values in Figure 3b. The mutuality matrix at this level gives infor-
mation about the interrelationship between the feature segments. As shown in Figure 3b,
most of these relationships are decreasing mutual relationships because, for every two
feature segments, Xi and Xj, M(Xi, Xj) < 1.

We further examined the mutuality of the features in each segment and found that
the segment X10 with the highest combined mutuality contained features with semanti-
cally negative sentiments and whose combined mutuality was amongst the highest in
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all the segments, such as the words “worst” and “wait” in Figure 3c. This implies that
mutuality (and heterogeneity) between the features or feature segments plays an essen-
tial role in the classification process of this model; hence, they can be used to explain its
classification results.

The type of semantic distinctions (classification) of features with respect to a class label
during label classification is considered in this study to represent the semantic intelligence
of the model on the labels, i.e., the ability to understand the meanings of the labels. This
implies that training the predictive (causal) intelligence of this model will imply training its
semantic intelligence and vice versa. However, one should not expect the semantic logic of
the model on the text to always be similar to human semantic logic applied to the same text,
since the model may use a different semantic logic from humans, although it is formally
trained for human semantic awareness.

3.2.2. Conference Paper Dataset Results

The confusion matrix of our model based on the Conference Paper dataset is presented
in Figure 4, together with the mutuality matrix of the 10 feature segments.

The results presented in Figure 4a show that the model classifies the WWW label better
than the other labels. Using the mutuality matrix defined for the 10 feature segments as
presented in Figure 4b, we also obtain information about the interrelationships between
the feature segments, where segment X4 has the highest combined mutuality.

(a) (b) (c)

Figure 4. Results with the Conference Paper dataset. (a) Confusion matrix. (b) Mutuality ma-
trix for the 10 feature segments. (c) Combined mutuality of each feature in the segment with the
lowest mutuality.

Looking further into the mutuality of the features in each segment, we also found
that the segment X4 with the highest combined mutuality contained features which were
semantically related to the WWW label and whose combined mutuality was amongst the
highest in all segments, such as the words “dynamic”, “efficient” and “fast”, as shown in
Figure 4c. Nevertheless, the low normalized true positive (TP) value for the WWW label
implies some features in the label were not semantically classified by the model under the
WWW label. The incorrect semantic classification of features with respect to the labels
using mutual value allocation may account for the low TP of the other labels.

3.2.3. SMS Spam Dataset Results

The confusion matrix of our model based on the SMS Spam dataset is presented in
Figure 5, together with the mutuality matrix of the five feature segments.
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(a) (b) (c)

Figure 5. Results with SMS Spam dataset. (a) Confusion matrix. (b) Mutuality matrix for the 5 feature
segments. (c) Combined mutuality of each feature in the segment with the lowest mutuality.

The results in Figure 5a show that the model classifies the “ham” label better than the
“spam” label. Using the mutuality matrix defined for the five feature segments as presented
in Figure 5b, segment X2 has the highest combined mutuality; the combined mutuality of
each of its features is presented in Figure 5c. The features with high combined mutuality
include words such as “help” and “hi”, which are common words in spam SMS, while
words such as “good”, “got” and “hi” are common words used in ham SMS. The high
mutual value allocation on both ham and spam words explains the high true positive (TP)
results for both ham and spam labels in Figure 5a.

3.2.4. Performance and Comparison with Models from Other Studies

The performance of the proposed model was compared with models from other
studies, considered as baseline models. The results are presented in Table 4.

Table 4. Performance and comparison.

Datasets Models Accuracy (%) BIC

Twitter US Airline dataset RoBERTa-GRU [25] 91.52 2455.53
ULMFit-SVM [26] 99.78 1352.18

ABCDM [27] 92.75 1178.23
GenCo (our work) 98.40 959.18

Conference Paper dataset Linear SVM [28] 74.63 1041.10
GenCo (our work) 89.90 782.90

SMS Spam dataset Discrete HMM [29] 95.90 833.61
Hybrid CNN-LSTM [30] 98.37 2103.36

GenCo (our work) 99.26 431.31

As shown in Table 4, the proposed model, GenCo, resulted in performances of 98.40%,
89.9%, and 99.26%, better than other models on the Twitter US Airline dataset, Conference
Paper dataset, and SMS Spam dataset, respectively. However, on the Twitter US Airline
dataset, the ULMFit-SVM model had an accuracy of 99.7%, better than the GenCo model,
with an accuracy of 98.4% on the same dataset. The low performance of the proposed
model on some datasets can be explained by reference to the mutuality matrices from the
different datasets. From these matrices, it can be inferred that the model performs better
on datasets on which it can easily maximize the combined mutual value of the features or
feature segments but performs less well otherwise.

Furthermore, the models were statistically compared by calculating their Bayesian
information criterion (BIC) [31] on the different datasets. GenCo had the lowest BIC values
of 959.18, 782.90, and 431.31 for the Twitter US Airline dataset, Conference Paper dataset,
and SMS Spam dataset, respectively.
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4. Conclusions

In this study, we presented a probabilistic generative model for text classification
based on collaborative partial classifications. The model considers both the dimension and
the heterogeneity of the features in the text corpus. A mathematical representation was
provided for the model along with that of a conventional model. Using this mathematical
representation, the model was implemented and tested on three different datasets, and the
classification results were presented for each dataset.

For each classification result, the confusion matrix, mutuality matrix, and combined
mutuality values for 10 words were presented. Using these mutuality values, the results
of the confusion matrix were explained, where features or feature segments with high
combined mutual value enhanced the true positive values of a particular class label in the
confusion matrix, hence indicating a type of semantic intelligence. The accuracy of the
model was evaluated and was observed to outperform that of conventional models on
most of the datasets.

This model can be deployed in many applications, such as large-scale heterogeneous
email spam filtering, multilingual fake-news detection, part-of-speech (PoS) tagging, search
engines, and large language modeling. We look forward to implementing it for these
different applications.
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Appendix A

Proof of Proposition 1. Consider the joint probability distribution P(X1, X2, X3, y).

P(X1, X2, X3, y) = P(X1)P(X2|X1)P(X3|X1, X2)P(y|X1, X2, X3) (A1)

P(X1, X2, X3, y) = P(y)P(X1|y)P(X2|X1, y)P(X3|X2, X1, y) (A2)

Equating (A1) and (A2),

P(y|X1, X2, X3) = P(y)P(X1|y)P(X2|X1, y)P(X3|X2, X1, y)
1

P(X1)P(X2|X1)P(X3|X1, X2)
(A3)

Applying Axiom 1,

P(y|X1, X2, X3) = P(y)P(X1|y)P(X2|y)P(X3|y)
1

P(X1)P(X2|X1)P(X3|X1, X2)
(A4)

Applying Bayes rule to P(X1|y), P(X2|y), and P(X3|y)

P(y|X1, X2, X3) = P(y|X1)P(y|X2)P(y|X3)

[
P(X2|X1)P(X3|X1, X2)

P(X2)P(X3)

]−1 1
P(y)2 (A5)
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Therefore, for P(y|X = X0, X1, X2, X3, . . . , Xn)

P(y|X) =
1

P(y)n−1

n

∏
i=0

P(y|Xi)

(
P(Xi+1|

⋂i
µ=0 Xµ)

P(Xi+1)

)−1

(A6)
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