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Abstract: Monitoring the degradation of the dynamic elastic modulus (Ed) of concrete is of great
importance to track the durability deterioration for hydraulic concrete structures. For the aqueduct
under investigation in this study, the dynamic elastic modulus of bent frames and moment frame
supports (Ed-frame), the dynamic elastic modulus of arch trusses (Ed-arch) and the shear stiffnesses of
the asphaltic bearings of U-shaped flumes (Kflume) are the main parameters to define the dynamic
behavior of the structure, which have direct correlation with its vibrational characteristics and thus
practicably can be estimated by a BP (back-propagation) neural network using modal frequencies as
inputs. Since it is impossible to obtain sufficient experimental field data to train the network, a full-
scale 3D FE model of the entire aqueduct is created, and modal analyses under different combinations
of Kflume, Ed-arch and Ed-frame are conducted to generate the analytical dataset for the network. After the
network’s architecture is refined by the cross-validation process and its modeling accuracy verified
by the test procedure, the primary modal frequencies of the aqueduct obtained from in situ dynamic
tests are put into the network to obtain the final approximations for Kflume, Ed-arch and Ed-frame, which
sets an evaluation baseline of the general concrete Ed status for the aqueduct and indicates that the
makeshift asphaltic bearings of U-shaped flumes basically can be treated as a three-directional hinge
in the FE model. It is also found that more inputs of modal frequencies can improve the prediction
accuracy of the BP neural network.

Keywords: aqueduct; dynamic elastic modulus; BP neural network; dynamic test; modal analysis

1. Research Background

A large concrete aqueduct with a total length of 1083.6 m is a key structure of a
water supply project in eastern China. It has 21 spans with a 51.6 m equal span length.
The structural feature of the aqueduct is shown in Figure 1, and its main load-bearing
components are comprised of arch trusses (concrete design strength C50), bent frames (C40)
and moment frame supports (C40). The aqueduct was built in 2006, and after 17 years of
operation without any safety monitoring measures, the management now plans to install
an SHM on it.

The dynamic elastic modulus (Ed) of concrete is of great interest in hydraulic structures.
In the Chinese hydraulic concrete design code, the durability of concrete is evaluated by the
reduction of Ed, which can also provide appropriate dynamic parameters for the seismic
analysis [1,2]. For high-, normal- and low-strength concrete, the ratios of the dynamic-to-
static elastic modulus (Ed/Ec) are around 1.2, 1.3 and 1.4, respectively [1]. According to the
dynamic equilibrium equation, the natural vibration frequencies of a concrete structure
are directly related to its concrete Ed, which can be obtained from examining the dynamic
responses of the structure on site.
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Aqueducts are structurally similar, with bridges. Vibration-based (dynamic) tests 
have been considered as an effective approach to evaluate the structural health of bridg-
es [3]. Many previous studies focused on analyzing modal parameters (frequencies and 
shapes) through numerical models combined with field test results to identify and locate 
structural damages in bridges [4–8]. Analyses of modal parameters were performed to 
assess significant negative effects on bridges due to structural rehabilitation [9,10], and 
some researchers conducted ambient and vehicle-induced vibration tests for a real 
bridge subject to various deliberately designed damage conditions [11]. Besides 
full-scale applications, vibration tests were also used to evaluate local damages in decks 
and slab–girder connectors of bridges [12–14] and assist in optimizing the boundary 
constraints of the structural FE models [15]. In recent years, more researchers have em-
ployed machine learning, especially artificial neural networks, in the damage detection 
of bridges by exploiting in situ experimental and numerical analytical data [16–19], and 
particularly due to its maturity in both theory and performance as well as flexibility in 
network architecture, BP (back-propagation) neural network has been widely used [20–
23]. Efforts have also been made in applying convolutional neural networks (CNNs) to 
visually reveal structural defects in bridge girders [24,25]. 

The purpose of this study was to determine the general concrete Ed status for the 
main load-bearing components (arch trusses, bent frames and moment frame supports) 
of the aqueduct, thus to set an evaluation baseline before the SHM implementation. So 
with the long-term concrete Ed data accumulated from the subsequent monitoring, it is 
possible to track the development of the health status of this old aqueduct. This task is 
completed by the application of in situ dynamic tests and the BP neural network trained 
with analytical data from a full-scale numerical model (see Figure 2), as discussed below. 

 
Figure 1. Main structural feature of the arch-truss aqueduct. Figure 1. Main structural feature of the arch-truss aqueduct.

Aqueducts are structurally similar, with bridges. Vibration-based (dynamic) tests have
been considered as an effective approach to evaluate the structural health of bridges [3].
Many previous studies focused on analyzing modal parameters (frequencies and shapes)
through numerical models combined with field test results to identify and locate structural
damages in bridges [4–8]. Analyses of modal parameters were performed to assess signifi-
cant negative effects on bridges due to structural rehabilitation [9,10], and some researchers
conducted ambient and vehicle-induced vibration tests for a real bridge subject to various
deliberately designed damage conditions [11]. Besides full-scale applications, vibration
tests were also used to evaluate local damages in decks and slab–girder connectors of
bridges [12–14] and assist in optimizing the boundary constraints of the structural FE
models [15]. In recent years, more researchers have employed machine learning, espe-
cially artificial neural networks, in the damage detection of bridges by exploiting in situ
experimental and numerical analytical data [16–19], and particularly due to its maturity
in both theory and performance as well as flexibility in network architecture, BP (back-
propagation) neural network has been widely used [20–23]. Efforts have also been made
in applying convolutional neural networks (CNNs) to visually reveal structural defects in
bridge girders [24,25].

The purpose of this study was to determine the general concrete Ed status for the main
load-bearing components (arch trusses, bent frames and moment frame supports) of the
aqueduct, thus to set an evaluation baseline before the SHM implementation. So with the
long-term concrete Ed data accumulated from the subsequent monitoring, it is possible to
track the development of the health status of this old aqueduct. This task is completed by
the application of in situ dynamic tests and the BP neural network trained with analytical
data from a full-scale numerical model (see Figure 2), as discussed below.
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Figure 2. Full-scale 3D FE model of the aqueduct. 
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was fixed as 10 min. In the final data processing, an FFT point of 4096, Hanning window 
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the frequency domain spectra. Under the aforementioned testing setups and analysis 
parameters, the velocity spectra in the frequency domain for all transducers in three di-
rections of the 4 spans are shown in Figures 4–7. To better show the consistency of test 
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each span, the peak amplitude frequencies obtained from the data collected by more 
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tions well coincide with one another. 
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with one another directly since dynamic tests were conducted individually for each 
span, a general trend can still be observed that the lateral velocity amplitudes of span 6 
and span 8 are much higher than those corresponding values of span 10 and span 14. 

The longitudinal vibration of the aqueduct basically exhibits two main modes on 
the four velocity spectra. The frequencies of the first longitudinal modes locate consist-
ently at 1.495~1.50 Hz, while the second longitudinal modes fluctuate within a very 

Figure 2. Full-scale 3D FE model of the aqueduct.

2. Dynamic Tests of the Real Structure

In situ dynamic tests were performed to investigate the structural vibration charac-
teristics of the aqueduct under the natural wind excitation. Velocity transducers were
installed on the top surface of the bottom slabs of the U-shaped flumes at locations of 1/4,
1/2 and 3/4 spans for span 6, 8, 10 and 14 (see Figure 2). A three-directional transducer
layout, as shown in Figure 3, was adopted at the 1/2 span along the lateral, longitudinal
and vertical directions, whereas only lateral and longitudinal transducers were placed at
1/4 and 3/4 spans. The 4 spans were tested individually. A sampling frequency of 20 Hz,
which corresponds to a sampling interval of 50 ms, was set, and the total sampling time
was fixed as 10 min. In the final data processing, an FFT point of 4096, Hanning window
and 1/2 data-segment overlap were chosen, which gave rise to a 0.005 Hz resolution in the
frequency domain spectra. Under the aforementioned testing setups and analysis parame-
ters, the velocity spectra in the frequency domain for all transducers in three directions of
the 4 spans are shown in Figures 4–7. To better show the consistency of test results, two
typical spectra obtained from 3 lateral sensors (@ 1/4, 1/2 and 3/4 span) on span #8 and
#10 are also provided (see Figures 8 and 9). On the velocity spectrum of each span, the
peak amplitude frequencies obtained from the data collected by more than 2 transducers
in the same direction (lateral or longitudinal) but at different locations well coincide with
one another.
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of a pile can be calculated as follows: 
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It is obvious that the lateral vibration of the aqueduct is dominant among three
directions, with its velocity amplitudes being higher than those along the longitudinal and
vertical directions. Span 6 and span 8 essentially demonstrate the same lateral vibration
feature in which the frequencies of the first, second and third lateral modes stand at
0.97~0.975 Hz, 1.02 Hz and 1.06 Hz, respectively, and the first mode has much higher
velocity amplitude than the other two. Span 10 has the same lateral mode frequencies with
span 6 and span 8, but contrary to the two former spans, the velocity amplitude of the first
mode is lower than those of the second and third modes. Span 14 does not show the first
lateral mode at 0.97 Hz on the velocity spectrum, but two other peak amplitudes appear
at 1.04 Hz and 1.10 Hz, which are quite close to the second and third lateral modes of the
other three spans. Although the four sets of results cannot be compared with one another
directly since dynamic tests were conducted individually for each span, a general trend can
still be observed that the lateral velocity amplitudes of span 6 and span 8 are much higher
than those corresponding values of span 10 and span 14.

The longitudinal vibration of the aqueduct basically exhibits two main modes on the
four velocity spectra. The frequencies of the first longitudinal modes locate consistently at
1.495~1.50 Hz, while the second longitudinal modes fluctuate within a very small range
of 1.885~1.935 Hz. Unlike the lateral and longitudinal vibrations, the vertical vibration
of the aqueduct only manifests a single peak frequency around 5.285~5.395 Hz on the
velocity spectra of all four spans, with the velocity amplitudes maintaining at almost the
same magnitude.

From those field test findings, the dynamic characteristics of the whole aqueduct can
be summarized in Table 1.

Table 1. Dynamic characteristics of the aqueduct from field tests.

Modes Times Frequency (Hz)

Lateral modes
first 0.97

second 1.02
third 1.06

Longitudinal modes first 1.50
second 1.915 *

Vertical mode first 5.328 *
* average of span 6, 8 and 10.

3. Modal Analysis of the 3D Aqueduct Model

A 3D FE model is established using SAP2000 for the entire aqueduct, as shown
in Figure 2. The arch trusses, transverse bent frames above those trusses, moment
frame supports and foundation piles are generated by frame elements, and the water-
transferring U-shaped flumes and pile foundation caps are created using shell elements.
A 3 cm-wide contraction joint is set between two adjacent U-shaped flume segments.
The pot-type fixed rubber bearing of the arch trusses at the upstream end of each span is
simulated as a rubber isolator restrained in all translational and rotational DOFs, while
the pot-type sliding counterpart at the downstream end of each span is modeled with
the same DOF restraints except that the shear stiffness in the longitudinal translation is
set to be zero.

The interaction between foundation piles and surrounding soil is simulated with node
springs using “m” method. According to the current Chinese code “Technical Code for
Building Pile Foundations (JGJ 94-2008) [26]”, the lateral stiffness of the node spring of a
pile can be calculated as follows:

K = ab0mZ (1)

where K is the lateral stiffness of the node spring (kN/m); a is the thickness of the foundation
soil layer, normally taken as 1~2 m; b0 is the effective width of the pile (m), and when
the pile diameter d is larger than 1 m, b0 = 0.9 × (d + 1); Z is the depth of the foundation
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soil layer (m); and m represents the proportional coefficient of horizontal resistance of
foundation soil (kN/m4), and for cast-in-place concrete piles can be taken as shown in
Table 2 for different foundation soils (in this case, it can be taken as 100~300 MN/m4).

Table 2. “m” value for different nonrock foundation soils.

Foundation Soils “m” Value/kN/m4

Silt and silty clay 2.5 × 103~6 × 103

Loose sand and earth fill 6 × 103~14 × 103

Medium-dense earth fill and fine sand 14 × 103~35 × 103

Medium-dense medium-coarse sand 35 × 103~100 × 103

Dense coarse sand and gravels 100 × 103~300 × 103

In the real structure, the prefabricated U-shaped concrete flume segments are laid
directly on the top beams of transverse bent frames erected on the arch trusses, but the
bearings only adopt two layers of thin (about 1 mm thickness) asphaltic felts instead of
commonly used plate rubber supports. In the 3D model, this makeshift asphaltic bearing is
simulated by an elastic link element restrained in vertical translation and rotation about
the vertical axis while free in the other two rotational DOFs, but the shear stiffnesses in
the transverse and longitudinal directions need to be defined, which can be assumed to be
equal based on the empirical equation:

K = GA/t (2)

where K is the bearing shear stiffness, G is the shear modulus of the bearing material, A is
the plane area of the bearing, and t is the bearing thickness.

The influence of the “m” value variation of foundation soil on the dynamic charac-
teristics of the aqueduct was investigated. In this case, certain dynamic elastic moduli
are assumed for arch trusses (40 GPa), bent frames (37.5 GPa), moment frame supports
(37.5 GPa), pile caps and piles (32.5 GPa) in the 3D model based on their respective
design strengths, and the shear stiffnesses of asphaltic bearings of U-shaped flumes in
both transverse and longitudinal directions are set to be 1.536 × 107 kN/m. The modal
analysis results are listed in Table 3. It can be seen that the change of the “m” value in a
code-specified range has an insignificant impact on the dynamic characteristics of the
aqueduct.

Table 3. Primary modal frequencies (Hz) of the aqueduct under different “m”.

m (MN/m4)
Lateral Modes Longitudinal Modes Vertical Mode

First Second Third First Second First

300 0.884 0.934 0.944 1.297 1.576 4.942
100 0.880 0.929 0.939 1.282 1.554 4.940

By altering one of those parameters while keeping others unchanged, the sensitivity
analyses of dynamic elastic moduli of arch trusses (Ed-arch), bent frames, moment frame
supports (Ed-frame), pile caps and piles (Ed-pile) on the dynamic characteristics of the aqueduct
are conducted, and the results are shown in Tables 4–6. It can be seen that under almost
the same variation, Ed-pile has much less influence compared with Ed-arch and Ed-frame, which
may be attributed to the large rigidity of the foundation (i.e., pile cap thickness 1.5 m and
pile diameter 1.5 m). It is also found that the vertical frequency is sensitive to Ed-arch, while
the lateral and longitudinal frequencies are sensitive to Ed-frame.
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Table 4. Dynamic characteristics of the aqueduct under different Ed-pile.

Ed-arch
/GPa

Ed-frame
/GPa

Ed-pile
/GPa

Primary Modal Frequencies/Hz

Lateral Longitudinal Vertical

1st 2nd 3rd 1st 2nd 1st

40 37.5 32.5 0.884 0.934 0.944 1.297 1.576 4.942
40 37.5 40 0.896 0.947 0.957 1.318 1.596 4.962

+0% +0% +23.1% +1.4% +1.4% +1.4% +1.6% +1.3% +0.4%

Table 5. Dynamic characteristics of the aqueduct under different Ed-arch.

Ed-arch
/GPa

Ed-frame
/GPa

Ed-pile
/GPa

Primary Modal Frequencies/Hz

Lateral Longitudinal Vertical

1st 2nd 3rd 1st 2nd 1st

40 37.5 32.5 0.884 0.934 0.944 1.297 1.576 4.942
50 37.5 32.5 0.899 0.952 0.963 1.308 1.593 5.363

+25.0% +0% +0% +1.7% +1.9% +2.0% +0.8% +1.1% +8.5%

Table 6. Dynamic characteristics of the aqueduct under different Ed-frame.

Ed-arch
/GPa

Ed-frame
/GPa

Ed-pile
/GPa

Primary Modal Frequencies/Hz

Lateral Longitudinal Vertical

1st 2nd 3rd 1st 2nd 1st

40 37.5 32.5 0.884 0.934 0.944 1.297 1.576 4.942
40 46.5 32.5 0.950 1.001 1.012 1.398 1.698 5.029

+0% +24.0% +0% +7.5% +7.2% +7.2% +7.8% +7.7% +1.8%

The flumes have the same design strength (C40) with bent frames and moment frame
supports, so in the modal analysis, the dynamic elastic modulus Ed-flume is assigned to be
the same with Ed-frame. Following the same procedure, the impact of Ed-flume variation on
the dynamic characteristics of the aqueduct was also investigated and found to be minor,
as shown in Table 7.

Table 7. Dynamic characteristics of the aqueduct under different Ed-flume.

Ed-arch
/GPa

Ed-frame *
/GPa

Ed-pile
/GPa

Primary Modal Frequencies/Hz

Lateral Longitudinal Vertical

1st 2nd 3rd 1st 2nd 1st

40 37.5 32.5 0.884 0.934 0.944 1.297 1.576 4.942
40 46.5 * 32.5 0.885 0.936 0.946 1.313 1.615 4.948

+0% +24.0% +0% +0.1% +0.2% +0.2% +1.2% +2.5% +0.1%

* Ed-frame is kept as 37.5 GPa.

Therefore, after neglecting those two parameters, the main parameters left that may
affect the dynamic characteristics of the 3D aqueduct model are the shear stiffnesses of
the asphaltic bearings of U-shaped flumes, the dynamic elastic modulus of arch trusses
(concrete design strength C50), and the dynamic elastic modulus of bent frames and
moment frame supports (C40). By arranging those 3 parameters into various combinations,
a series of modal analyses of the aqueduct are performed, and the typical primary mode
shapes are shown in Figures 10–15.
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The first lateral modes of the aqueduct for all analysis scenarios have modal partic-
ipating mass ratios nearing 20%, which are higher than those of other lateral modes. As
shown in Figure 10, the first lateral mode typically manifests itself as a lateral vibration of
some interior spans (i.e., span 6 to span 11) in the same direction, whereas the motions of
exterior spans including span 14 are not activated, which may justify the missing of the
first lateral mode on the velocity spectrum of span 14 (see Figure 7). It can be seen from
Figures 11 and 12 that the second and third lateral modes involve transverse vibration of
more spans including span 6, 8, 10 and 14, which conforms to the appearances of these two
modes on all velocity spectra obtained from field dynamic tests (see Figures 4–7).

As shown in Figures 13 and 14, the first (normally with a modal participating mass
ratio around 20~50%) and second longitudinal modes of the aqueduct for all analysis
scenarios both show longitudinal vibration of most spans concurrently, which also accords
with the presence of two longitudinal peak frequencies in Figures 4–7.

The first vertical modes of the aqueduct for all analysis scenarios have modal par-
ticipating mass ratios around 20%, typically displaying a simultaneous vertical vibration
shape of arch trusses in most interior spans, as shown in Figure 15. In fact, there still exist
one or two similar vertical modes which have slightly lower or higher frequencies but
much less modal participation mass ratios than that primary mode, and this may explain
the small differences of the first vertical mode frequencies obtained from the field dynamic
tests of the four spans, as shown in Figures 4–7.

4. BP NEURAL Network Modeling

As discussed in Section 3, each combination of shear stiffnesses of the asphaltic
bearings of U-shaped flumes (Kflume), the dynamic elastic modulus of arch trusses (Ed-arch)
and the dynamic elastic modulus of bent frames and moment frame supports (Ed-frame) will
yield a set of primary modal frequencies of the aqueduct in three directions. So, according
to the Universal Approximation Theorem of a feed-forward neural network [27], Kflume,
Ed-arch and Ed-frame of the aqueduct can be approximated with a BP neural network using
the primary modal frequencies of the structure obtained from the in situ dynamic tests.

To fulfill the BP neural network modeling, a large number of modal analyses of the 3D
aqueduct model need to be conducted to obtain the training data.

Using Equation (2), for a rubber bearing with A and t being 250 × 400 mm2 and 2.0 mm,
respectively, the shear modulus G can be taken as 1.2 MPa per the Chinese code “Laminated
Bearing for Highway Bridge (JT/T 4-2019)”, and then the bearing shear stiffness would
be calculated as 6 × 104 kN/m. However, the asphaltic bearing material is not rubber,
and its mechanical property is difficult to determine. Taking the hardened asphalt as a
reference, the elastic modulus typically falls into a range from 1000 MPa to 9000 MPa, so
the bearing shear stiffness could be several thousand times the rubber bearing. Considering
other unknown factors, Kflume array is then formed using a geometric progression in a wide
range from 4.8 × 105 kN/m to 1.2288 × 108 kN/m with a constant multiplier of 2, which
contains 9 elements. Ed-arch and Ed-frame are taken from two arithmetic progressions from
35 GPa to 60 GPa and from 30 GPa to 55 GPa with a constant increment of 5, respectively,
and 20 pairs are randomly selected. Each pair of Ed-arch and Ed-frame is combined with each
element of the Kflume array, which leads to a total of 180 combinations.

These 180 combinations of Kflume, Ed-arch and Ed-frame are put back into the 3D model
individually to perform modal analyses, while the “m” value of foundation soil and the
dynamic elastic modulus of pile caps and piles are taken as constant values (300 MN/m4

and 35 GPa, respectively). Each combination will generate one set of primary modal
frequencies of the aqueduct (i.e., the first, second and third lateral modes fT1, fT2 and fT3,
the first and second longitudinal modes fL1 and fL2, and the first vertical mode fV1,), which
finally creates a dataset with 180 lines, and each line contains 9 elements, namely, the six
inputs fT1, fT2, fT3, fL1, fL2, fV1 and three outputs Kflume, Ed-arch, Ed-frame.

In BP modeling, this total dataset is randomly divided into training, validation and
testing sets with a division ratio of 8:1:1, so the sizes for the three sets are 144, 18 and
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18, respectively. The validation set is employed to optimize the hyperparameters of the
BP neural network (i.e., the number of hidden layers, the size of each hidden layer and
the transfer function of each layer). Since the size of the training and validation dataset
(180) is relatively small, a K-fold cross-validation process is utilized with K = 9. So, the BP
neural network will be trained 9 times, and the average MSE (mean square error) and the
average MAE (mean absolute relative error) of the 9 validations will be used to determine
the optimal architecture of the network.

Since the ratio of the minimum input Kflume to its maximum value is only 1/256, it
is found in the BP neural network pretraining that approximations are not satisfactory.
So, Kflume in the total dataset is pretreated with natural logarithm, but even after this
pretreatment, a BP neural network with just one hidden layer still gives rise to notable
errors through the aforementioned 9-fold cross-validation process. So, a BP neural network
with two hidden layers is employed, and when the neuron number for each hidden layer
is 9, the cross-validation results for the transfer functions of the hidden and output layers
are shown in Table 8, where case 6 gives the best approximation and quick convergence.
Further investigation shows that when the neuron number of each hidden layer is decreased
to 7 or increased to 11, the average MAE and MSE will not show any improvement.

Table 8. Cross validation of the hidden-layer 2 BP neural network.

Case
Transfer Function Ed-Arch Ed-Frame Ln (Kl-flume)

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Avg.
MAE

Avg. MSE
/GPa2

Avg.
MAE

Avg. MSE
/GPa2

Avg.
MAE

Avg. MSE
/(kN/m)2

1 purelin tansig tansig 0.25% 0.06 0.36% 0.06 0.58% 0.03
2 tansig tansig tansig 0.38% 0.29 0.25% 0.07 1.65% 0.39
3 purelin purelin tansig 2.25% 1.11 2.30% 1.43 16.54% 10.97
4 tansig purelin tansig 0.22% 0.09 0.25% 0.12 9.93% 5.94
5 tansig logsig tansig 0.25% 0.06 0.20% 0.02 0.72% 0.04
6 logsig logsig tansig 0.15% 0.02 0.18% 0.03 0.47% 0.02
7 tansig tansig logsig 13.1% 48.92 6.98% 19.99 6.85% 1.81

MATLAB is used to perform the BP neural network modeling and approximation. The
purelin, tansig and logsig transfer functions are illustrated as shown in Figure 16:
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Therefore, it can be concluded that a BP neural network of which both the first
and second hidden layers have 9 neurons with a transfer function of “logsig” and the
output layer has 3 neurons with a transfer function of “tansig” can provide very good
approximations for Kflume, Ed-arch and Ed-frame. The final BP neural network for evaluating
Kflume, Ed-arch and Ed-frame is trained using this architecture with the training and validation
dataset, and then the testing dataset is applied, which produces the following test results,
as shown in Table 9.
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Table 9. Test results of BP neural network with 6 frequency inputs.

Ed-arch Ed-frame Ln (Kl-flume)

MAE MSE/GPa2 MAE MSE/GPa2 MAE MSE/(kN/m)2

0.09% 0.003 0.19% 0.029 0.41% 0.023

Using the dynamic characteristics of the whole aqueduct obtained from field tests, as
shown in Table 1, as the six inputs (fT1 0.97 Hz, fT2 1.02 Hz, fT3 1.06 Hz, fL1 1.50 Hz, fL2
1.915 Hz and fV1 5.328 Hz) of the trained BP neural network, the three outputs (Kflume, Ed-arch

and Ed-frame) are estimated to be 1.2288 × 108 kN/m, 47.8 GPa and 46.1 GPa, respectively. It
should be noted that Kflume is approximated to be the maximum value of the corresponding
training data, and this indicates that the asphaltic bearings of U-shaped flumes essentially
behave more like a three-directional hinge which cannot provide effective dynamic isolation
during seismic events.

Normally the first modes of the aqueduct in three directions are most prone to be
excited when the structure is subjected to exterior dynamic loading, so technically they can
be more easily and accurately detected by a field dynamic test than the other higher modes.
If only such three frequencies as fT1, fL1 and fV1 are chosen as the inputs of the BP neural
network of which the architecture still adopts the one specified by case 6 in Table 8, the
modeling results of Kflume, Ed-arch and Ed-frame using the same training and test procedures
for Table 9 are shown in Table 10. It can be seen that a BP neural network with only 3 inputs
(fT1, fL1 and fV1) is still capable of providing good approximations for Kflume, Ed-arch and
Ed-frame. By substituting the three first modes of the aqueduct in three directions (fT1 0.97 Hz,
fL1 1.50 Hz and fV1 5.328 Hz) into the BP neural network specified in Table 10, the three
outputs (Kflume, Ed-arch and Ed-frame) are estimated to be 1.2288 × 108 kN/m, 48.1 GPa and
44.3 GPa, respectively. It can be seen that the BP neural networks with six and three inputs
generate almost the same approximations for Kflume and Ed-arch, but the approximations for
Ed-frame are somewhat different.

Table 10. Test results of BP neural network with 3 frequency inputs.

Ed-arch Ed-frame Ln (Kl-flume)

MAE MSE/GPa2 MAE MSE/GPa2 MAE MSE/(kN/m)2

0.12% 0.005 0.23% 0.049 1.06% 0.069

To evaluate which network could provide a better prediction, the three outputs (Kflume,
Ed-arch and Ed-frame) obtained from those two BP neural networks are fed back into the 3D
FE model to perform the modal analysis, and the results are shown in Tables 11 and 12.

Table 11. Comparison of frequencies obtained from field test and FE modal analysis using outputs of
BP neural network with 6 frequency inputs.

Modal Frequencies fT1/Hz fT2/Hz fT3/Hz fL1/Hz fL2/Hz fV1/Hz

Field test results 0.970 1.020 1.060 1.500 1.915 5.328
FE modal analysis 0.976 1.032 1.043 1.445 1.771 5.402

Relative error 0.62% 1.18% −1.60% −3.67% −7.52% 1.39%

It can be seen that the FE modal analysis using Kflume, Ed-arch and Ed-frame predicted by
the BP neural network with six inputs generally show improved approximations to the
main modal frequencies obtained from the in situ dynamic tests, especially for fL1 and fL2,
indicating that more input information on modal frequencies could enhance the prediction
accuracy of the BP neural network.
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Table 12. Comparison of frequencies obtained from field test and FE modal analysis using outputs of
BP neural network with 3 frequency inputs.

Modal Frequencies fT1/Hz fT2/Hz fT3/Hz fL1/Hz fL2/Hz fV1/Hz

Field test results 0.970 1.020 1.060 1.500 1.915 5.328
FE modal analysis 0.964 1.019 1.030 1.424 1.745 5.396

Relative error −0.62% −0.10% −2.83% −5.07% −8.88% 1.28%

5. Conclusions

For the aqueduct under investigation in this study, Kflume, Ed-arch and Ed-frame are
among the main parameters to define its dynamic behavior, but there is no easy approach
to get them tested directly on site. Since these parameters have direct correlation with the
vibrational characteristics of the aqueduct, it is practicable to apply a BP neural network to
evaluate them using the primary modal frequencies of the structure as inputs. However,
it is impossible to obtain a large amount of experimental data to train the network from
the real structure. To solve this data deficiency problem, a full-scale 3D FE model which
can simulate the real structure to its best is established, and various modal analyses under
different combinations of Kflume, Ed-arch and Ed-frame are conducted to create the analytical
dataset for the network. Through cross-validation procedure, the network architecture with
two hidden layers is determined, and it shows that with appropriated transfer functions
for the hidden and output layers, the trained BP neural network can provide very good
approximations for Kflume, Ed-arch and Ed-frame using the primary modal frequencies obtained
from the FE model.

The actual primary modal frequencies acquired from in situ dynamic tests are then
put into the BP neural network to estimate Kflume, Ed-arch and Ed-frame of the aqueduct. By
substituting the Kflume, Ed-arch and Ed-frame obtained from two BP neural networks with
different sizes (6 and 3) of input frequency vectors into the 3D FE model, it is found that
more inputs of modal frequencies can improve the approximation accuracy of the BP
neural network.

Finally the Ed-arch and Ed-frame of the aqueduct are approximated to be 47.8 GPa and
46.1 GPa, respectively, and Kflume is estimated to be the maximum value of the correspond-
ing training data, implying that the makeshift asphaltic bearings of U-shaped flumes
basically can be treated as a three-directional hinge (i.e., fixed in vertical, lateral and
longitudinal translations) in the FE model.
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