
Citation: Nan, H.; Kong, Y.; Zhan, J.;

Zhou, M.; Bai, L. P System with

Fractional Reduction. Appl. Sci. 2023,

13, 8514. https://doi.org/10.3390/

app13148514

Academic Editor: Rocco Zaccagnino

Received: 10 June 2023

Revised: 11 July 2023

Accepted: 21 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

P System with Fractional Reduction
Hai Nan 1, Yumeng Kong 1, Jie Zhan 1, Mingqiang Zhou 2,* and Ling Bai 1,*

1 College of Computer Science and Engineering, Chongqing University of Technology,
Chongqing 400054, China; stillwater@cqut.edu.cn (H.N.); kkym@stu.cqut.edu.cn (Y.K.);
zhanjie@stu.cqut.edu.cn (J.Z.)

2 College of Computer Science, Chongqing University, Chongqing 400044, China
* Correspondence: zmqmail@cqu.edu.cn (M.Z.); bl8344@cqut.edu.cn (L.B.)

Abstract: Membrane computing is a branch of natural computing, which is a new computational
model abstracted from the study of the function and structure of living biological cells. The study
of numerical computation based on membrane computation has received increasing attention in
recent years, where maximum parallelism in the execution of evolutionary rules plays an important
role in improving the efficiency of numerical computation. Numbers in numerical computation are
usually represented as decimals or fractions, and this paper investigates the fundamental problem in
fraction representation and operations—fraction simplification. By improving the parallelization of
two traditional fractional reduction algorithms, we design the corresponding fractional reduction
class cells P System Π1 and P System Π2. Combining these two P Systems, this paper designs P
System Π3. The feasibility and effectiveness of the P System designed in this paper are verified
experimentally with the simulation software UPSimulator, and the characteristics and application
scenarios of the three P Systems are analyzed.

Keywords: more phase derogation algorithm; division algorithm; fraction simplification; membrane
computation; parallel computation

1. Introduction

Membrane computing (also known as P System) is a new branch of natural comput-
ing [1] introduced by Prof. Gh. Păun in a 1998 research paper and is an abstraction of a new
model of computing based on the study of the function and structure of living cells in living
organisms. The skin of a whole organism is equivalent to an entire computational System,
which contains individual computational units. The membrane model of computing di-
vides each biological cell into a hierarchy of regions, each of which is called a membrane;
i.e., regions correspond to membranes. Each region contains a multiset of objects that
evolve according to the evolutionary rules within the region, and the evolutionary rules
vary from region to region. Membrane computation is based on the abstraction of living
cells, and each computational unit is able to perform its own computation. Due to the
extremely large number of cell membranes and the small amount of energy required to
drive them, one of the greatest advantages of membrane computation is that it allows for
maximum parallelism in the computation. Although computers nowadays have a pro-
found impact on all aspects of human society, they still have limitations in their ability
to process information. Due to their shortcomings, such as small storage capacity, slow
computing speed and low intelligence, electronic computers are powerless to deal with
many real-life challenges, such as NP problems. In contrast, membrane computing brings
a finite, discrete, distributed, parallel, and hierarchical or mesh-based model of information
processing to computer science [2]. Gh. Păun has demonstrated in the literature [3] that
membrane computing has the equivalent computing power to Turing machines, and its
powerful parallel computing capability can effectively solve the bottlenecks currently faced
by electronic computers.

Appl. Sci. 2023, 13, 8514. https://doi.org/10.3390/app13148514 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148514
https://doi.org/10.3390/app13148514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3217-9503
https://doi.org/10.3390/app13148514
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148514?type=check_update&version=2

Appl. Sci. 2023, 13, 8514 2 of 45

There is a proliferation of international research in the field of membrane computing,
which has greatly facilitated the intersection and penetration of mathematics, computer
science and biology. The research on membrane computing and membrane computers is de-
veloping rapidly, and great progress has been made in such areas as membrane computing
applied to the solution of some NP-complete problems, membrane computing in biological
laboratories, language Systems for membrane computers, associative memory problems,
and the application of membrane computing to cryptography. For example, in solving NP
problems, [4] proposed a new solution based on membrane computing and the dynamic
window approximation algorithm, which enables the model to calculate the optimal motion
command of the robot in logarithmic time and avoid obstacles in real time. Membrane
computing is abstracted from living cells in organisms and is also applied to biology. In [5],
it improved the implementation of biological processes, including Mitogen-activated pro-
tein kinase (MAPK), by virtue of its biological characteristics. In [6], it introduced the
application of membrane computing in systems and Synthetic biology. Ref. [7] provided
a detailed explanation of the extensive applications of membrane computing in biology,
computer science, and linguistics for scholars to conduct in-depth learning and explore
new ideas.

However, to achieve a general-purpose computer, it must also be able to implement
basic arithmetic operations, such as the four operations of addition, subtraction, multipli-
cation and division. Arithmetic operations are considered the basic operations for many
complex operations, and therefore, to solve more complex problems, arithmetic operations
need to be fully investigated first. Ref. [8] implemented arithmetic operations based on
a designed arithmetic P System, but its membrane System structure was complex and did
not make full use of the maximum parallelism of membrane computation; literature [9]
designed a natural coding-based arithmetic P System to implement arithmetic operations,
which greatly simplified the membrane System structure; Ref. [10] designed a multi-layer
membrane P System to implement unsigned quadratic operations, which reduced the com-
putational complexity; Ref. [11] designed a single-layer membrane P System to implement
arithmetic operations, further simplifying the membrane structure and improving com-
putational efficiency; Ref. [12] designed a multi-layer membrane P System to implement
arithmetic operations with signed numbers, improving the application range and execution
efficiency of basic operations; Refs. [13–15] designed a single-layer membrane P System to
implement expression evaluation in the domain of integers; Ref. [16] used the P System
implemented basic arithmetic operations in the domain of rational numbers, expanding the
scope of application of arithmetic operations in P System to further enhance the computing
power of biological computers.

Since all numbers in the Rational number field can be expressed as fractions, the
results of arithmetic operations in the Rational number field may not be in the simplest
form. If these results continue to be used in the new operation process, the fraction needs
to be initialized first and reduced to its simplest form. In addition, from the perspective of
mathematical rigor, the numerical meanings of 1/2 and 1349/2698 are the same. In the P
System, the latter uses much more objects than the former. If used in other arithmetic P
Systems, the large number calculation process will also be more complex, reducing system
efficiency. In precise calculations, using 1/3 will be more accurate than 0.33333 and easier to
represent in the P System. For this reason, scholars have conducted research on the problem
of fractional simplification in order to simplify the process and obtain more accurate results
when applying the simplification results to other arithmetic operations [17]. In [18], the
authors studied a hybrid code-based arithmetic P System based on a cell-like P System and
used fractional simplification as an example to simplify the arithmetic operations on large
operands in the P System and to achieve fractional simplification after arithmetic operations
on real numbers expressed as fractions in the P System. Its method used multi-layer
membrane nesting, and the objects [19] inside each layer of membrane are related to the
objects generated by its parent membrane, so this is a highly serialized P System that does
not fully utilize the maximum parallelism of membrane computing. However, the solution

Appl. Sci. 2023, 13, 8514 3 of 45

to the problem of fractional simplification using membrane computing is not sufficient, and
currently, there is no other literature that can fully utilize the characteristics of membrane
computing to design a more suitable P System. In response to this phenomenon, we also
study the issue of fractional reduction in this article, considering partial improvements on
the basis of the more phase derogation method and attempting to find suitable solutions in
the two traditional reduction methods of more phase derogation and division to further
improve the parallelism of the P System, thereby improving the overall efficiency of
arithmetic operations.

To this end, this paper designs a fraction simplification P System based on rule priori-
ties, and the specific article is structured as follows:

Section 1 first introduces research on membrane computation in arithmetic operations,
then presents the purpose and significance of this paper, and finally gives the organization
of this paper.

Section 2 begins with an introduction to the biological basis of membrane computation,
followed by a definition of the cell-like P System.

Section 3 introduces the principles and algorithms of two methods, namely, the more
phase derogation algorithm and the division algorithm, respectively, and improves some parts
of the more phase derogation algorithm by combining them with applications in the P System.

Section 4 designs the corresponding cell-like P System based on the more phase dero-
gation algorithm and division algorithm methods, respectively, and proposes a new method
to combine the two to achieve fractional simplification. Detailed rules are introduced for
these three P Systems, and the execution flow of the rules is detailed with specific examples.

Section 5 verifies the execution efficiency of the three from an experimental point of
view, using the UPSimulator simulation tool for a large amount of data. Firstly, experiments
are conducted for the ξ values in the combined method, and the optimal solution is obtained
and then compared with the two original methods of the more phase derogation algorithm
and the division algorithm, and finally, the experimental conclusions are drawn.

Section 6 summarizes the work accomplished in this paper and presents the problems
that need to be improved in the future.

2. Fundamentals of Membrane Computing
2.1. Biological Basis of Membrane Computation

The work in this paper is based on the cell-like P System [19], so the basics of the cell-like
P System are introduced first. The structure of the cell-like P System is shown in Figure 1.
A schematic diagram of a cell is shown in Figure 1a, from which the membrane structure
is abstracted. The membrane structure, as shown in Figure 1b, consists of the skin and the
membranes within the skin arranged in a hierarchical structure. These membranes divide
the interior of the cell into regions with a hierarchical structure, with the boundaries of each
region being called membranes. The skin is the outermost membrane, which separates the P
System from the external environment. The area outside the skin is called the environment.
A basic membrane is a membrane that contains no other membrane inside.

Membrane calculations do not simply simulate the structure and function of the cell
but abstract the most basic essentials. Membranes play a very important role in the structure
and function of the cell by:

(1) The skin separates the cell from its external environment, creating an enclosed area
inside the cell that contains the internal space of the cell.

(2) The inner membrane divides the cell into regions with a hierarchical structure, within
each of which local biochemical reactions take place.

(3) The cell membrane acts as a communication channel between regions.

There are two general representations of membrane structure: the generalized table
and the tree structure.

Generalized table: A membrane is represented by [] and the ordinal number of the
membrane (represented by a number) is indicated by a subscript of [], i.e., []i can represent
basic membrane i; [[]i]j indicates that membrane j contains membrane i within it.

Appl. Sci. 2023, 13, 8514 4 of 45

Appl. Sci. 2023, 13, 8514 4 of 47

2

1

5

3

6

7

4

8 9

Skin

Membrane

Basic membrane

Environment

Region

(a) (b)

Figure 1. Structure of the cell-like P System. (a) Cell membrane; (b) Abstraction of membranes.

Membrane calculations do not simply simulate the structure and function of the cell

but abstract the most basic essentials. Membranes play a very important role in the struc-

ture and function of the cell by:

(1) The skin separates the cell from its external environment, creating an enclosed area

inside the cell that contains the internal space of the cell.

(2) The inner membrane divides the cell into regions with a hierarchical structure, within

each of which local biochemical reactions take place.

(3) The cell membrane acts as a communication channel between regions.

There are two general representations of membrane structure: the generalized table

and the tree structure.

Generalized table: A membrane is represented by [] and the ordinal number of the

membrane (represented by a number) is indicated by a subscript of [], i.e., []𝑖 can rep-

resent basic membrane 𝑖; [[]𝑖]𝑗 indicates that membrane j contains membrane 𝑖 within

it.

Tree structure: the nested properties of membranes can be conveniently described by

means of a tree structure, i.e., the skin membrane is represented by the root of the tree,

and the leaves of the tree represent the basic membrane.

2.2. Definition of the Cell-like P System

The cell-like P System is one of the most fundamental and earliest proposed models

for membrane computation [19]. A cell-like P System 𝛱 of degree m (𝑚 ≥ 1) is defined

as:

𝛱 = (𝑉, 𝑂, 𝐻, 𝜇, 𝜔1, . . . , 𝜔𝑚, 𝑅1, . . . , 𝑅𝑚, 𝑖𝑜) (1)

Among them,

(1) 𝑉 is a finite, non-empty alphabet whose elements are objects;

(2) 𝑂 ⊆ 𝑉 is the set of output objects;

(3) 𝐻 is the set of membrane markers, 𝐻 = {1,2, … , 𝑚};

(4) 𝜇 is the membrane structure containing 𝑚 membranes, where 𝑚 is called the

degree of 𝛱;

(5) 𝜔𝑖 ∈ 𝑉∗(1 ≤ 𝑖 ≤ 𝑚), denotes the multiset of objects contained inside membrane

𝑖. For example, if membrane 𝑖 contains 5 𝑎-objects and 3 𝑏-objects, then we have 𝜔𝑖 =

𝑎5𝑏3. 𝑉∗ is the set of arbitrary strings consisting of the characters in 𝑉. If ωi = λ, then it

means that no objects exist inside membrane 𝑖.

(6) 𝑅𝑖(1 ≤ 𝑖 ≤ 𝑚) is a finite set of evolutionary rules inside region 𝑖 in membrane

structure 𝜇. The evolutionary rules are a binary set (𝑢, 𝑣), usually written 𝑢 → 𝑣, where

u is a string in 𝑉∗, 𝑣 = 𝑣′ or 𝑣 = 𝑣′𝛿, where 𝑣′ is a string on the set {𝑎ℎ𝑒𝑟𝑒, 𝑎𝑜𝑢𝑡 , 𝑎𝑖𝑛𝑗
 | 𝑎 ∈

Figure 1. Structure of the cell-like P System. (a) Cell membrane; (b) Abstraction of membranes.

Tree structure: the nested properties of membranes can be conveniently described by
means of a tree structure, i.e., the skin membrane is represented by the root of the tree, and
the leaves of the tree represent the basic membrane.

2.2. Definition of the Cell-Like P System

The cell-like P System is one of the most fundamental and earliest proposed models
for membrane computation [19]. A cell-like P System Π of degree m (m ≥ 1) is defined as:

Π = (V, O, H, µ, ω1, ..., ωm, R1, ..., Rm, io) (1)

Among them,
(1) V is a finite, non-empty alphabet whose elements are objects;
(2) O ⊆ V is the set of output objects;
(3) H is the set of membrane markers, H = {1, 2, . . . , m};
(4) µ is the membrane structure containing m membranes, where m is called the degree

of Π;
(5) ωi ∈ V∗(1 ≤ i ≤ m), denotes the multiset of objects contained inside membrane i.

For example, if membrane i contains 5 a-objects and 3 b-objects, then we have ωi = a5b3.
V∗ is the set of arbitrary strings consisting of the characters in V. Ifωi = λ, then it means
that no objects exist inside membrane i.

(6) Ri(1 ≤ i ≤ m) is a finite set of evolutionary rules inside region i in membrane struc-
ture µ. The evolutionary rules are a binary set (u, v), usually written u→ v , where u is a string
in V∗, v = v′ or v = v′δ, where v′ is a string on the set

{
ahere, aout, ainj

∣∣∣ a ∈ V, 1 ≤ i ≤ m
}

,

and here indicates that object v′ is still in the the region where the rule is used; out indicates
that object v′ is moved out of the current region into the outer membrane containing the
current membrane; and inj indicates that object v′ will be moved into membrane j, which is
directly contained by membrane i. δ is a special character not belonging to V. When a rule
contains δ, the membrane is dissolved after execution of the rule.

(7) io is the output region of the membrane structure that is used to hold the results of
the computation, i ∈ H.

In addition to the rules introduced above, it is necessary to consider rules for creating
membranes of the form: e→ [W]i , where e ∈ V, W ∈ V+, i is a number on a given list of

Appl. Sci. 2023, 13, 8514 5 of 45

ordinal numbers. This rule indicates that the object e creates a membrane labelled i and the
objects inside the membrane are denoted by W [20].

In every membrane structure, the implementation of evolutionary rules will be guided
by two principles:

(1) Non-determinism

The P System will follow the non-determinism principle when executing evolutionary
rules, which means that when multiple rules can be satisfied simultaneously, the rules
chosen by the P System to execute are non-deterministic [3].

(2) Maximum parallelism

In the P System, each step of the computation follows the principle of maximum
parallelism, meaning that all rules that can be executed must be executed at the same time.

3. Principles and Algorithms of Fraction Simplification

Fractional reduction is an indispensable part of arithmetic operations. This paper
designs the membrane system based on two traditional methods of fractional reduction:
the more phase derogation algorithm and the division algorithm method, and Section 3
focuses on the principles of both and their algorithms.

3.1. The More Phase Derogation Algorithm
3.1.1. Principle

The more phase derogation algorithm is from the ancient Chinese mathematical
treatise “the Nine Chapters on the Mathematical Art”, and can be used to find the greatest
common divisor of two numbers.

The exact steps of this algorithm are as follows:
Step 1: Given any two positive integers, first determine if they are both even; if so, use

2 to approximate; if not, perform step 2.
Step 2: The larger number in the numerator denominator is subtracted from the smaller

number; the resulting difference is compared to the smaller number; and the number is
reduced by the larger number. Continue this operation until the resulting subtraction and
difference are equal.

The rule a|b means that a divides b (a is a divisor of b). gcd(a,b) means the greatest
common divisor of a, b.

a mod b means that a divides b by the remainder.
It may be useful to set A > B. Let the greatest common divisor of A and B be X so that

A = aX and B = bX, where a and b are both positive integers and a > b. C = A − B, then we
have C = aX − bX = (a − b)X.

Since both a and b are positive integers, C is also divisible by X, i.e., the greatest
common divisor of A, B and C is X. So gcd(A,B) = gcd(B,A − B), which means that the final
result is its greatest common divisor.

Then the numerator and denominator are divided by the maximum common divisor
X, which is obtained by the more phase derogation method, to obtain the final result.

3.1.2. Improvement of the More Phase Derogation Algorithm

Although it is relatively simple to find the maximum convention by the approximate
method of the more phase derogation algorithm, the steps of multiplication and simpli-
fication after finding the maximum convention are improved in this paper because the
membrane rules and the complexity required for multiplication and division in the P
System are much greater than those for addition and subtraction.

The specific steps are as follows:
Step 1: Given any two positive integers, subtract the smaller number from the larger

number in the numerator denominator, then compare the resulting difference with the
smaller number and record the relationship using z. If the difference is greater than the
minus number, then z is recorded as 0, and if the difference is less than the minus number,

Appl. Sci. 2023, 13, 8514 6 of 45

then it is recorded as 1, and the larger number is used to reduce the number. Continue this
procedure until the subtractor and the difference are equal.

Step 2: Design two other sequences {pi} and {qi}, starting with the last ordinal number
n of the array z, so that the initial value of pn is 2 and the initial value of qn is 1. Then
gradually assign values to the sequences: pn−1 = pn + qn, if z is 0, then qn−1 = qn; if z is 1,
then qn−1 = pn. Keep repeating this step, and the final approximate result is p1/q1.

3.1.3. Algorithms

Suppose we want to reduce the fraction x
y (0 < y < x). Based on the principle of

Section 3.1.1 and the refinement of Section 3.1.2, the process of fraction simplification by
a more phase derogation algorithm is described as follows:

(i) Input x, y(0 < y < x);
(ii) Calculate {xi}, {yi}, {ui}, {zi}, where i = 2, 3, ..., t, and x1 = x, y1 = y, u1 = x− y,

z1 = 0;
(iii) Calculate {pi}, {qi}, where i = t, t− 1, ..., 1;
(iv) Output p1, q1.

The Algorithm 1 using the more phase derogation technique is as follows:

Algorithm 1: Algorithm for fraction simplification using more phase derogation.

Input: x, y(0 < y < x)
Output: p1, q1, p1/q1 is the simplest form of x/y fractions.
procedure
Input: x, y(0 < y < x)
Output: p1, q1, p1/q1 is the simplest form of x/y fractions.
procedure

1 x1 ← x, y1 ← y ;
2 z1 ← 0 ;
3 u1 ← x− y ;
4 while yi! = ui
5 if ui < yithen xi+1 ← yi ;
6 yi+1 ← ui ;
7 zi+1 ← 1 ;
8 end if
9 if ui > yithen xi+1 ← ui ;
10 yi+1 ← yi ;
11 zi+1 ← 0 ;
12 end if
13 i ++;
14 ui ← xi − yi ;
15 end while
16 pi ← 2; qi ← 1 ;
17 repeat
18 i−−;
19 pi ← pi+1 + qi+1;
20 if zi+1 == 1then qi = pi+1;
21 end if
22 else then qi = qi+1;
23 end else
24 until i = 1;
25 end procedure

In this algorithm, the more phase derogation algorithm is split into two parts: the
complexity of the algorithm is O(1) when x is twice as long as y. For a general {xi}, {yi},
the time complexity of the first part of the algorithm is O(t) if the algorithm performs
t subtraction operations, at which point ut = yt, and the first part of the more phase

Appl. Sci. 2023, 13, 8514 7 of 45

derogation algorithm ends. It is easy to know that the length of the sequence {zi} is the
same as the number of times the first part of the algorithm is executed, so the length of the
sequence z is t. After t times of execution, the value of the more phase derogation algorithm
i goes to 0, and the second part of the more phase derogation algorithm ends. That is, the
time complexity of this algorithm in the second part is O(t) and its total time complexity
is O(t). That is, in the average case, the time complexity of this algorithm is O(t). If the
difference between x and y is large, then the worst time complexity is O(max(x, y)).

3.2. Division Algorithm
3.2.1. Principle

The division algorithm, also known as Euclid’s algorithm [21,22] for finding the great-
est common divisor of two numbers, is considered to be the earliest algorithm in the world
(300 BCE). It first appeared in Euclid’s Principia Geometrica (Book VII, Propositions I and II),
and in China, it can be traced back to the Nine Chapters of Arithmetic, which appeared in the
Eastern Han Dynasty.

The greatest common divisor of two natural numbers is the largest positive integer
that can divide them simultaneously. The division algorithm is based on the principle that
the greatest common divisor of two integers is equal to the greatest common divisor of the
smaller number and the remainder of the division of the two numbers.

For example, the greatest common divisor of 1254 and 390 is 6 (1254 = 6 × 209;
390 = 6 × 65); the process of deriving the greatest common divisor using these two numbers
is as follows:

1254% 390 = 84
390% 84 = 54
84% 54 = 30
54% 30 = 24
30% 24 = 6
24% 6 = 0
So the greatest common divisor of these two numbers is 6.
The proof of this algorithm is as follows:
Let the two numbers be a and b (b < a) and denote by gcd(a,b) the greatest common

divisor of a and b. r = a mod b is the remainder of a divided by b, and k is the quotient of a
divided by b. The division algorithm method is to prove that gcd(a,b) = gcd(b,r).

Step 1: Let c = gcd(a,b), then let a = mc and b = nc;
Step 2: It follows from the premise that r = a − kb = mc − knc = (m − kn)c;
Step 3: It follows from the result of step 2 that c is also a factor of r;
Step 4: It can be concluded that m − kn and n are mutually exclusive; otherwise, one

can set m − kn = xd and n = yd (d > 1), then m = kn + xd = kyd + xd = (ky + x)d, and then
a = mc = (ky + x)dc and b = nc = ycd, so the maximum convention of a and b becomes cd, not
c, contradicting the previous conclusion.

From this, it follows that gcd(b,r) = c, and subsequently gcd(a,b) = gcd(b,r).

3.2.2. Algorithm

Suppose we want to approximate the fraction x
y . According to the principle of Sec-

tion 3.2.1, the process to achieve fractional simplification by the division algorithm is
described as follows:

(i) Input x, y(0 < y < x);
(ii) Calculate {ai}, {bi}, {ri}, where i = 2, 3, ..., t, and a1 = x, b1 = y, r1 = m%n;
(iii) Output k, l.

Appl. Sci. 2023, 13, 8514 8 of 45

The division Algorithm 2 is as follows:

Algorithm 2: Algorithm for fractional reduction using the division algorithm.

Input: x, y(0 < y < x)
Output: k, l, k/l is the simplest form of x/y fractions.
procedure

1 X ← x, Y ← y ;
2 a1 ← X, b1 ← Y ;
3 if a1 < b1then t← a1;
4 a1 ← b1;
5 b1 ← t;
6 end if
7 r1 ← a1%b1 ;8 i← 1;
9 while ri! = 0
10 ai+1 ← bi ;
11 bi+1 ← ri;
12 i← i + 1;
13 ri ← ai%bi;
14 end while
15 end procedure

In this algorithm, the complexity of the algorithm is O(1) when m is a multiple of n.
Generally, for the sequence {ri}, we know that rt+1 = 0 if the algorithm performs t coset opera-
tions. Comparing the sequence {rt+1}with the Fibonacci sequence {Fi}, we have F0 = 1 ≤ rt
and F1 = 1 ≤ rt−1. rk ≥ rk+1 + rk+2 can be obtained by rk mod rk+1 = rk+2(0 ≤ k ≤ t− 1).
Therefore, rk ≥ Ft−k can be concluded by mathematical induction. In addition, we can obtain
m = n0 ≥ Ft and n = n1 ≥ Ft−1. That is, if our algorithm performs the remainder operation
t times, then n must not be less than Ft−1 and vice versa. According to the characteristics of
the Fibonacci sequence, we have Ft−1 ≥ (1.618)t/

√
5, which gives us n ≥ (1.618)t/

√
5 and

t ≤ log1.618

(√
5n
)

. Therefore, in the worst case, the complexity of the algorithm is O(logn).

4. Fractional Simplification P System

In membrane computing, the execution of rules is parallel. If the system meets the
execution conditions of multiple rules simultaneously and there are no conflicts between
the rules, these rules will be executed synchronously. After execution, continue to judge
whether all rules are met in the new state. If the system still has rules that are met, continue
to execute, and if not, stop running. If there is a conflict between rules (referring to the
situation where an object has multiple rules that can be executed), the system will choose
to execute the rules indefinitely. At this point, we can specify the priority so that the rules
are executed in the order of priority.. For this purpose, we designed three priority-based
cellular P systems. This section will define, explain rules, and analyze examples of the three
P Systems Π1, Π2 and Π3.

In order to aid scholars when verifying the efficiency of the system, during manual
simulation and simulation using simulation software UPS [23], the execution time of each
rule is recorded as a time slice, and the efficiency of each P system is judged based on the
number of time slices. In each time slice, the system will execute all the rules that can
be executed once, until there are no rules to execute and the system stops running. At
this point, the number of time slices can reflect the time consumed by the P system, thus
comparing the efficiency of each P system.

In addition, when explaining the rule execution process and instance analysis in detail
in the P System, if multiple objects execute a rule at the same time or if a rule generates
multiple objects at the same time, in order to make the object representation clearer, we
use “,” or “and” to partition between objects without corner markers. Among them, the
objects with practical effects will be explained in detail in this article, while the process
objects with auxiliary effects will be omitted or briefly explained.

Appl. Sci. 2023, 13, 8514 9 of 45

4.1. P System for Fractional Simplification of More Phase Derogation Algorithm

This section first introduces the definition and initial pattern of the P System for the
more phase derogation algorithm, and then provides a detailed explanation of the complete
rules of the P System and provides specific examples to demonstrate the execution process
of the rules.

4.1.1. Definition of the P System for More Phase Derogation Algorithm

The more phase derogation P System is formalized as:

Π1 =
(
V, O, H, µ, ωM1 , ωA1 , . . . , ωAt , RM1 , RA1 , . . . , RAt , io

)
, (2)

Among them,
(1) V = {m, n, c, CreateSubMem, Num, a, b, g, x, y, l, u, k, f , v};
(2) H = {M1, A1, . . . , At}, in this article, for clarity, membrane labels are expressed in

the form of a combination of membrane type and subscripts.
(3) µ =

{ [[[[
]At]...]A1]M1

}
, in the initial state, the P System only contains mem-

brane M1 and membrane A1, and membrane A1 is included in membrane M1. Ai(2 ≤ i ≤ t)
is dynamically generated during the execution of membrane rules, and any Ai always
includes Ai−1 in;

(4) ωM1 = mxny,ωA1 = cCreateSubMem, and x and y represent the numerator and
denominator of fractions, respectively;

(5) The RM1 , RA1 , . . . , RAt evolution rule finite set will be explained in Section 4.1.2;
(6) io = M1 indicates that when the entire System stops, the final result can be obtained

in the membrane M1;
For the convenience of description, there is the following agreement in the remaining

content of this section: the newly created class A membrane is named A2, A3, . . . , At,
and the rules within these membranes are consistent with those within membrane A1.
Therefore, there will be no further explanation in the remaining content of this section. The
initial pattern of the fraction simplification P System based on the more phase derogation
algorithm is shown in Figure 2.

Appl. Sci. 2023, 13, 8514 10 of 47

pattern of the fraction simplification P System based on the more phase derogation algo-

rithm is shown in Figure 2.

c CreateSubMem

A1

M1

mxny

Figure 2. Initial Pattern of the More Phase Derogation Algorithm P System.

Figure 2 depicts the initial pattern of the P System using the more phase subtraction

method for fractional reduction: membrane 𝑀1 is mainly used to compare the sizes of

molecule x and denominator y, transfer the larger and smaller values into object a and

object b of membrane 𝐴1, respectively, and save the final calculation results and dissolve

other objects transferred from membrane 𝐴1. Membrane 𝐴1 and its dynamically gener-

ated sub membranes 𝐴2, 𝐴3, … , 𝐴𝑡 are used for more phase reduction operations, and the

values of variables such as sequence {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖}, {𝑧𝑖}, {𝑝𝑖}, {𝑞𝑖} are calculated (where

i = 1,2, … , t). Except for membrane 𝑀1 and membrane 𝐴1 , other required membrane

structures are dynamically created during the reduction process based on the actual con-

ditions of the fraction, and the newly created membrane rules are completely consistent

with the rules in membrane 𝐴1.

In Figure 2, objects m and n are used to represent the numerator and denominator,

respectively; x and y are the numbers of objects m and n, and object c is used to trigger the

execution of rules in membrane 𝐴1 and determine whether a new membrane needs to be

generated based on different conditions. Membrane 𝐴1 and other newly created sub-

membranes are used together to calculate variables in the rules. These newly created

membranes are nested layer by layer: membrane 𝐴2 is created within membrane 𝐴1 ,

membrane 𝐴3 is created within membrane 𝐴2 , and finally, membrane 𝐴𝑡 is created

within membrane 𝐴𝑡−1.

The process of calculating sequences {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖} is described below, and the spe-

cific execution process of membrane rules will be explained in detail in Section 4.1.2.

(i) In the initial state, a partial rule is executed in membrane 𝑀1 to determine the mag-

nitude of the numerator x and denominator y, passing the larger and smaller values

to object a and object b in membrane 𝐴1, respectively. For e.g., if 𝑥 = 12 𝑎𝑛𝑑 𝑦 = 9,

then the rule is executed to generate a multiset 𝑎12𝑏9 in membrane 𝐴1 , i.e., 𝑥1 =

12 𝑎𝑛𝑑 𝑦1 = 9 in the corresponding sequence.

(ii) In membrane 𝐴1, the multiset 𝑎𝑥1𝑏𝑦1 is consumed by partial execution of the rule, a

judgment is made as to whether 𝑧1 is produced while a new membrane 𝐴2 is pro-

duced, and the multiset 𝑎𝑥2𝑏𝑦2 is produced by passing some material into the sub-

membrane. This step is repeated until no new membranes are generated when the

stopping condition for more phase loss is met in membrane 𝐴𝑡, and the computation

of the sequence {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖} is completed.

(iii) In general, within the membrane 𝐴𝑖 (2 ≤ i < t − 1), the multisets 𝑎𝑥𝑖 and 𝑏𝑦𝑖 gener-

ated by substances transported by the membrane 𝐴𝑖−1 are then transformed into

new multisets into the submembrane according to the corresponding rules, respec-

tively, until the end when 𝑦𝑡 is equal to 𝑢𝑡.

Figure 2. Initial Pattern of the More Phase Derogation Algorithm P System.

Figure 2 depicts the initial pattern of the P System using the more phase subtraction
method for fractional reduction: membrane M1 is mainly used to compare the sizes of
molecule x and denominator y, transfer the larger and smaller values into object a and
object b of membrane A1, respectively, and save the final calculation results and dissolve
other objects transferred from membrane A1. Membrane A1 and its dynamically generated
sub membranes A2, A3, . . . , At are used for more phase reduction operations, and the val-
ues of variables such as sequence {xi}, {yi}, {ui}, {zi}, {pi}, {qi} are calculated (where
i = 1, 2, . . . , t). Except for membrane M1 and membrane A1, other required membrane
structures are dynamically created during the reduction process based on the actual condi-
tions of the fraction, and the newly created membrane rules are completely consistent with
the rules in membrane A1.

Appl. Sci. 2023, 13, 8514 10 of 45

In Figure 2, objects m and n are used to represent the numerator and denominator,
respectively; x and y are the numbers of objects m and n, and object c is used to trigger
the execution of rules in membrane A1 and determine whether a new membrane needs
to be generated based on different conditions. Membrane A1 and other newly created
submembranes are used together to calculate variables in the rules. These newly created
membranes are nested layer by layer: membrane A2 is created within membrane A1,
membrane A3 is created within membrane A2, and finally, membrane At is created within
membrane At−1.

The process of calculating sequences {xi}, {yi}, {ui} is described below, and the
specific execution process of membrane rules will be explained in detail in Section 4.1.2.

(i) In the initial state, a partial rule is executed in membrane M1 to determine the mag-
nitude of the numerator x and denominator y, passing the larger and smaller values
to object a and object b in membrane A1, respectively. For e.g., if x = 12 and y = 9,
then the rule is executed to generate a multiset a12b9 in membrane A1, i.e., x1 = 12
and y1 = 9 in the corresponding sequence.

(ii) In membrane A1, the multiset ax1 by1 is consumed by partial execution of the rule,
a judgment is made as to whether z1 is produced while a new membrane A2 is
produced, and the multiset ax2 by2 is produced by passing some material into the
submembrane. This step is repeated until no new membranes are generated when the
stopping condition for more phase loss is met in membrane At, and the computation
of the sequence {xi}, {yi}, {ui} is completed.

(iii) In general, within the membrane Ai (2 ≤ i < t − 1), the multisets axi and byi generated
by substances transported by the membrane Ai−1 are then transformed into new
multisets into the submembrane according to the corresponding rules, respectively,
until the end when yt is equal to ut.

4.1.2. Membrane Rules for the More Phase Derogation Algorithm

According to Section 4.1.1, the fraction simplification using the more phase derogation
algorithm consists of calculating the sequences {xi}, {yi}, {ui}, {zi}, {pi}, {qi}. The value of
each sequence indicates the number of corresponding objects in each layer of the membrane.
For example, x1 = 12 means the number of x in membrane A1 is 12. Combined with the
idea of Algorithm 1 in Section 3.1.3, it can be seen that membrane A1 and the dynamically
created submembrane only need to use the addition and subtraction method to complete
the calculation, and the specific process is shown in Figure 3.

Appl. Sci. 2023, 13, 8514 11 of 47

4.1.2. Membrane Rules for the More Phase Derogation Algorithm

According to Section 4.1.1, the fraction simplification using the more phase deroga-

tion algorithm consists of calculating the sequences {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖}, {𝑧𝑖}, {𝑝𝑖}, {𝑞𝑖}. The value

of each sequence indicates the number of corresponding objects in each layer of the mem-

brane. For example, 𝑥1 = 12 means the number of x in membrane 𝐴1 is 12. Combined

with the idea of Algorithm 1 in Section 3.1.3, it can be seen that membrane 𝐴1 and the

dynamically created submembrane only need to use the addition and subtraction method

to complete the calculation, and the specific process is shown in Figure 3.

...c

At

At 1

Ai

A2

A1

M1

axt 1

byt 1

...

... axi

byi

z

ax2

by2

z

ax1

by1

c

mx

ny

c

...

At

At-1

Ai

A1

M1

ppt-2

qqt-2

...
ppi

qqi

...

pp1

qq1

rp1

wq1

OR

r1q1

w1p1

At-2

p2q

(a) (b)

Figure 3. Flowchart of the fraction simplification solution of the more phase derogation algorithm

P System. (a) Flowchart of the sequence {𝑥𝑖}, {𝑦𝑖} by more phase derogation algorithm; (b)

Flowchart of the sequence {𝑝𝑖}, {𝑞𝑖} by more phase derogation algorithm.

The following is a specific description of the membrane rules.

(1) Compare the values of the numerator and denominator

According to the principle and algorithm of the more phase derogation algorithm, it

is necessary to ensure that the subtracted number is larger than the subtracted number in

the class A membrane, so the size of the numerator x and the denominator y are compared

in the membrane 𝑀1 first. The multiplicity set in the initial state is 𝑚𝑥𝑛𝑦, and the com-

parison rules are as follows:

r1: (m n → g, 1) r2: (m → a(a Num, in all)|g, 2)

r3: (n → b(a Num, in all)|g, 2) r4: (g → (a b Num, in all), 3)

(i) When x > y, the membrane rules are executed in the following order: 𝑟1 → 𝑟2 → 𝑟4.

Execution of rule 𝑟1, which corresponds to converting object n to g, also leaves x − y

m in the membrane System. Executing 𝑟2 under the condition that both g and m are

present backs up the difference of x − y in the membrane as a multiset 𝑎𝑥−𝑦, while

generating a multiset 𝑎𝑥−𝑦𝑁𝑢𝑚𝑥−𝑦 to pass into the submembrane 𝐴1.

(ii) When x < y, the membrane rules are executed in the following order: 𝑟1 → 𝑟3 → 𝑟4.

Executing rule 𝑟1, there is no remaining m in the membrane, so executing 𝑟3 backs

up the excess n in the membrane as multiset 𝑏𝑦−𝑥 , while generating multiset

𝑎𝑦−𝑥𝑁𝑢𝑚𝑦−𝑥 to pass into submembrane 𝐴1.

The execution of 𝑟4 continues in both cases, passing the smaller of the two, g, to a

and b in the submembrane, so that the number of objects a in membrane 𝐴1, 𝑥1, is equiv-

alent to performing a calculation of x − y + y or y − x + x. The number of objects b in mem-

brane 𝐴1, 𝑦1 is the smaller of the numerator and denominator, a and b in membrane 𝑀1

still represent the numerator and denominator.

(2) Compute the sequence {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖}, {𝑧𝑖}

Figure 3. Flowchart of the fraction simplification solution of the more phase derogation algorithm P
System. (a) Flowchart of the sequence {xi}, {yi} by more phase derogation algorithm; (b) Flowchart
of the sequence {pi}, {qi} by more phase derogation algorithm.

The following is a specific description of the membrane rules.

Appl. Sci. 2023, 13, 8514 11 of 45

(1) Compare the values of the numerator and denominator
According to the principle and algorithm of the more phase derogation algorithm, it is

necessary to ensure that the subtracted number is larger than the subtracted number in the
class A membrane, so the size of the numerator x and the denominator y are compared in
the membrane M1 first. The multiplicity set in the initial state is mxny, and the comparison
rules are as follows:

r1 : (m n→ g, 1) r2 :
(
m→ a(a Num, in all)|g, 2

)
r3 :

(
n→ b(a Num, in all)|g, 2

)
r4 : (g→ (a b Num, in all), 3)

(i) When x > y, the membrane rules are executed in the following order: r1 → r2 → r4 .
Execution of rule r1, which corresponds to converting object n to g, also leaves x − y m
in the membrane System. Executing r2 under the condition that both g and m are
present backs up the difference of x − y in the membrane as a multiset ax−y, while
generating a multiset ax−yNumx−y to pass into the submembrane A1.

(ii) When x < y, the membrane rules are executed in the following order: r1 → r3 → r4 .
Executing rule r1, there is no remaining m in the membrane, so executing r3 backs up
the excess n in the membrane as multiset by−x, while generating multiset ay−x Numy−x

to pass into submembrane A1.

The execution of r4 continues in both cases, passing the smaller of the two, g, to a and
b in the submembrane, so that the number of objects a in membrane A1, x1, is equivalent to
performing a calculation of x − y + y or y − x + x. The number of objects b in membrane A1,
y1 is the smaller of the numerator and denominator, a and b in membrane M1 still represent
the numerator and denominator.

(2) Compute the sequence {xi}, {yi}, {ui}, {zi}
After first comparing the size of the numerator denominator in M1, the multiset ax1 by1

is placed in membrane A1, at which point the complete multiset within the membrane
is ax1 by1 cNumx1 CreateSubMem. Within membrane A1 and other dynamically generated
submembranes, object c evolves into k and f, which is used to control the loop; each layer
of the generated membrane is initialized with a and b. To avoid confusion, the sequences
{xi} and {yi} are designed to hold the number of a and b in the ith layer of the membrane,
respectively, with x1 and y1 representing the initial larger and smaller values.

The rules for computing the sequence {xi}, {yi}, {ui}, {zi} are as follows:

r1 : (a b→ x y, 1) r2 : (a→ l u|c, 2) r3 : (c→ k f|u, 2)
r4 : (y u→ v, 3) r5 : (k→ (c, in all)|v, 4) r6 : (y f→ i (z, in all)|v, 4)
r7 : (u f→ h |v, 4) r8 : (x→ (a, in all) |i, 4) r9 : (x→ (b, in all) |h, 4)
r10 : (l→ (b, in all) |i, 4) r11 : (l→ (a, in all) |h, 4
r12 : (CreateSubMem Num→ A : a{} |v, 3
r13 : (Num→ (Num, in all)|!CreateSubMem, 3)

The membrane rule is executed in the following order when xi > yi: r1 → r2 → r3 →
r4 → r12 →{r5,r6,r13}→{r8,r10} or r1 → r2 → r3 → r4 → r12 → {r5,r7,r13}→{r9,r11} (for con-
venience, if the rule rj1 , rj2 , . . . , rjk can be executed simultaneously, it is denoted as{

rj1 , rj2 , . . . , rjk
}

).

(i) Execution of rule r1: In Ai(1 ≤ i ≤ t− 1), objects a and b are consumed to generate the
multiset xyi yyi , indicating that the numerator and denominator values are consumed
in both yi copies, leaving ui(ui = xi − yi) copies of object a. Matter x and y are used
to back up the subtractor b and to compare with the difference ui, respectively. Rule
r2 is executed under the condition of the existence of object c. The multiset lui uui is
generated by executing r2, where l is used to backup the difference ui , and u is used
to compare the size with the subtraction y.

(ii) Execute rule r3 under the condition that there is an object u: c generates object k and
f, k is used to control the loop, and f is used to check the size of yi and ui. If yi > ui,

Appl. Sci. 2023, 13, 8514 12 of 45

the rules are executed in the first order. If yi < ui, the rules are executed in the second
order. When yi = ui, the dynamic generation of submembranes has ended, and will
be discussed in the subsequent calculation of sequence {pi}, {qi}, which will not be
explained in detail here.

(iii) Execute rule r4 and y and u evolve into v. Compare the size of yi and ui by observing
which object remains within the environment. If there is still y in the membrane after
evolving into v, then xi+1 = yi, yi+1 = ui, and zi+1 = 1 in the child membrane Ai+1;
otherwise, xi+1 = ui, yi+1 = yi, and zi+1 = 0 (i.e., there is no substance z in the child
membrane). So when y is still present within the environment, rules r5 and r6 are
executed with object v as catalyst.

(iv) Before executing r5, we must first execute r12 to consume CreateSubMem and a Num
in the membrane to generate a child membrane, and then we can subsequently
pass the object into the child membrane. Each class A membrane is initialized with
a CreateSubMem, and Num is passed from the parent membrane to the submembrane;
to ensure sufficient Num, the number of initialized Num is x1. Execute r5 and r6: object
k generates a new c and sends it to the submembrane; if yi+1! = yi, then y and f evolves
to i and generates a new object z and sends it to the submembrane; then, execute r13
after consuming a Num; the remaining Num is passed into the submembrane for the
submembrane to dynamically generate membranes.

(v) If object i exists, it is shown that both a and b values of the submembrane need to be
changed, for which rules r8 and r10 are executed: r8 passes the subtractive backup x to
the a of the submembrane (i.e., xi+1 = yi) and r10 passes the differential backup l to the
b of the submembrane (i.e., yi+1 = ui). If u is left in the environment, rules r5 and r7 are
executed with object v as the catalyst. When h is generated in the environment, it is
proved that yi+1 = yi in the submembrane Ai+1. Therefore, r9 and r11 are executed to
pass the subtractive backup to x to the submembrane yi+1 and the differential backup
l to xi+1 in the submembrane, respectively. The above steps are executed several times
until the dynamic generation ends when xt−1 = 2yt−1.

When the submembrane At−1 is executed to xt−1 = 2yt−1, the order of rule execu-
tion is: r1 → r2 → r3 → r4 → r12 → {r5,r13}. The rule execution is the same as the parent
membrane, at this time ut−1 = yt−1, so the rest of the rules in this part are not eligible for
execution, and the innermost membrane At no longer executes any rules and starts the
second part of the calculation.

(3) Compute the sequence {pi}, {qi}
When both y and u in membrane At−1 are consumed, i.e., when the condition of

termination of the more phase derogation algorithm is reached (the decrement is equal to
the difference), the calculation of object z is ended and no new submembrane is generated
in membrane At. At this point, the sequence {pi}, {qi} is started, i.e., the execution of
the improved part of the more phase derogation algorithm is started. According to the
description of the improved step of the more phase derogation algorithm in Section 3.1.2,
it is known that, by several calculations, object z is generated in part of the membrane,
and object z is a marker of whether the value of q in the parent membrane is changed or
not. By the idea of the more phase derogation algorithm, it is known that the subtraction
operation ends when the subtraction and difference are equal, and based on this conclusion,
the following rule is designed:

r14 : (f→ p̂ 2 q | ! y & ! u & ! a & ! b, 6) r15 : (p→ p1(r, out), 5)
r16 : (q→ q1(w, out), 5) r17 : (z→ (o, out), 5)
r18 : (r→ p q |o, 5) r19 : (w→ p |o, 5)
r20 : (w→ p q, 6) r21 : (r→ p, 6)

(i) The order of the execution of the rules in membrane At−1 is r14 → {r15, r16, r17}. To
avoid confusion, the following explanation is given: in the membrane rule, p̂ 2 means

Appl. Sci. 2023, 13, 8514 13 of 45

that the membrane contains 2 objects p, and p1 means that the System contains
an object named “p1”.

(a) Since the final step of the method of finding the maximum convention by the
more phase derogation algorithm is that the subtraction is equal to the differ-
ence, and this equal value is the sought maximum convention, in the absence
of objects y,u,a, and b, which is the case when proving that the subtractors are
equal to the difference after executing rule r4, the object f evolves to object p2q
(i.e., pt−1 = 2, qt−1 = 1) by executing rule r14, which means that the subtracted
number in membrane At−1 is two times the subtracted number.

(b) Then execute rules r15 and r16: p and q evolve into p1 and q1, respectively,
for saving pt−1 and qt−1 in this membrane, while generating objects r and w
into the parent membrane for backup. Execute rule r17: when there is z in the
membrane, evolve z to object o and release it to the parent membrane.

(ii) Execution order of the rule in membrane Ai(1 ≤ i < t− 1): {r18, r19} or ({r20, r21})→
{r15, r16, r17}
(a) Under the condition that an object o exists, prove the existence of z in the

submembrane, which requires changing qi. Execute rules r18, r19: the multiset
rpi+1 evolves into the multiset ppi+1 qpi+1 and the multiset wqi+1 evolves into the
multiset ppi (at this time pi = pi+1 + qi+1, qi = pi+1). Under the condition that
there is no object o, execute rules r20 and r21: the multiset wqi+1 evolves into
the multiset pqi+1 qqi+1 , and the multiset rpi+1 evolves into the object ppi (at this
time pi = pi+1 + qi+1, qi = qi+1).

(b) Then execute r15 and r16 to pass pi and qi in this membrane to the parent
membrane, and if there is z in this membrane, execute r17 to generate o to pass
to the parent membrane.

(c) The above steps are repeatedly executed until membrane A1 finally generates
the results p1 and q1. Execute rules r15 and r16 to output the multiset rp1 wq1 ,
where pi and qi are the values after simplification of the larger and smaller
values in the numerator denominator, respectively.

(d) Finally, the comparison is performed in membrane M1: if the numer-
ator ≥ denominator, the result pi/qi is directly derived (i.e., the quantity
ratio of objects r and w), and if the numerator < denominator, rp1 and wq1 are
replaced in membrane M1 as w1

p1 and r1
q1 , respectively, and the final result is

qi/pi (i.e., the quantity ratio of objects r1 and w1).

4.1.3. Example of Fraction Simplification by the More Phase Derogation Method

In this subsection, we will give an example to describe in detail the process of imple-
menting fractional reduction using the more phase derogation algorithm of Section 4.1.1.
For example, the fraction simplification process for 6/15 is shown in Figure 4:

Appl. Sci. 2023, 13, 8514 14 of 47

(b) Then execute r15 and r16 to pass 𝑝𝑖 and 𝑞𝑖 in this membrane to the parent

membrane, and if there is z in this membrane, execute r17 to generate o to pass

to the parent membrane.

(c) The above steps are repeatedly executed until membrane 𝐴1 finally generates

the results 𝑝1 and 𝑞1. Execute rules r15 and r16 to output the multiset 𝑟𝑝1𝑤𝑞1,

where 𝑝𝑖 and 𝑞𝑖 are the values after simplification of the larger and smaller

values in the numerator denominator, respectively.

(d) Finally, the comparison is performed in membrane 𝑀1 : if the numerator ≥

denominator, the result 𝑝𝑖 /𝑞𝑖 is directly derived (i.e., the quantity ratio of

objects r and w), and if the numerator < denominator, 𝑟𝑝1 and 𝑤𝑞1 are

replaced in membrane 𝑀1 as 𝑤1
𝑝1 and 𝑟1

𝑞1, respectively, and the final result

is 𝑞𝑖/𝑝𝑖 (i.e., the quantity ratio of objects 𝑟1 and 𝑤1).

4.1.3. Example of Fraction Simplification by the More Phase Derogation Method

In this subsection, we will give an example to describe in detail the process of imple-

menting fractional reduction using the more phase derogation algorithm of Section 4.1.1.

For example, the fraction simplification process for 6/15 is shown in Figure 4:

A1

A2

A3

A4

m6

n15

a15

b6

a9

b6
a6

b3

c

p2

q
p3

q2

p5

q2
r12

w15

Figure 4. Flowchart of the more phase derogation algorithm example.

The following details the execution process of rules in this P System.

(1) Initial pattern

First, put the multiset 𝑚6𝑛15 in the membrane M1 , execute the rule r16 times to

generate the multiset 𝑔6; execute 𝑟3 under the condition that both g and n exist, generate

𝑏9 in the membrane, and at the same time generate the multiset 𝑎9𝑁𝑢𝑚9 to pass to the

submembrane A1; execute r4 to generate the multiset 𝑎6𝑏6𝑁𝑢𝑚6 into the submembrane

A1; at this time, the multiset in the membrane M1 is 𝑏6, and the initialized multiset of the

membrane A1 is 𝑎15𝑏6𝑐𝑁𝑢𝑚15CreateSubMem.

(2) Calculate the sequence {𝑥𝑖}, {𝑦𝑖}, {𝑢𝑖}, {𝑧𝑖}

(i) The rules available in membrane A1 are executed in the following order: r1 → r2 →

r3 → r4 → r12 → {r5,r7,r13}→{r9,r11}.

(a) Execute the rule r1 6 times in the membrane A1 until 𝑏6 is completely

consumed, generating the multiset 𝑥6𝑦6 and 𝑎9 remains; execute the rule r2

under the condition that the object c exists, generating 𝑙9𝑢9.

(b) At this point, only the rule r3 can be executed: evolve c to the multisets k and f

under the condition that the object u exists; execute the rule r4 six times to

generate the multiset 𝑣6, at which point, the multiset in the membrane A1 is

𝑥6𝑢3𝑙9𝑣6𝑘𝑓. Execute the rule r12, as described in Section 4.1.2, consuming the

CreateSubMem and a Num in this membrane to generate the membrane A2.

Figure 4. Flowchart of the more phase derogation algorithm example.

Appl. Sci. 2023, 13, 8514 14 of 45

The following details the execution process of rules in this P System.
(1) Initial pattern
First, put the multiset m6n15 in the membrane M1, execute the rule r16 times to generate

the multiset g6; execute r3 under the condition that both g and n exist, generate b9 in the
membrane, and at the same time generate the multiset a9Num9 to pass to the submembrane
A1; execute r4 to generate the multiset a6b6Num6 into the submembrane A1; at this time,
the multiset in the membrane M1 is b6, and the initialized multiset of the membrane A1 is
a15b6cNum15CreateSubMem.

(2) Calculate the sequence {xi}, {yi}, {ui}, {zi}
(i) The rules available in membrane A1 are executed in the following order:

r1 → r2 → r3 → r4 → r12 → {r5, r7,r13}→{r9,r11}.

(a) Execute the rule r1 6 times in the membrane A1 until b6 is completely consumed,
generating the multiset x6y6 and a9 remains; execute the rule r2 under the
condition that the object c exists, generating l9u9.

(b) At this point, only the rule r3 can be executed: evolve c to the multisets k and
f under the condition that the object u exists; execute the rule r4 six times to
generate the multiset v6, at which point, the multiset in the membrane A1 is
x6u3l9v6k f . Execute the rule r12, as described in Section 4.1.2, consuming the
CreateSubMem and a Num in this membrane to generate the membrane A2.

(c) Execute the rules {r5,r7, r13} within the same time slice. Execute the rule r5 to
generate a new object c from k into the control loop in membrane A2; execute
the rule r7 so that the multiset u and f is consumed to generate object h, and
execute r13 to pass the remaining Num into the submembrane for subsequent
continuation of submembrane generation.

(d) The next time slice executes {r9, r11} at the same time. Execute the rule r9 6 times
to evolve x6 into the multiset b6 and send b6 into the membrane A2, execute r11 at
the same time to evolve l9 into the multiset a9 and send it into the membrane A2.

(ii) At this time, there are multiple a9b6cNum14 sets in membrane A2. Execute the rules
in the following order: r1 → r2 → r3 → r4 → r12 → {r5, r6,r13}→{r8,r10}

(a) After executing the membrane rule in the order of r1 → r2 → r3 → r4 → r12 ,
the multiset within the membrane is l3y3x6v3k f , and a new submembrane A3
is generated.

(b) As described in Section 4.1.2, the next time slice simultaneously executes the
rule {r5,r6,r13}: execute the rule r5, object k evolves into object c to be sent to
membrane A3; while executing the rule r6, object y and object f evolves into
object i and sends z to membrane A3, and executes the rule r13 to pass the
remaining Num to membrane A3.

(c) Execute the rules {r8,r10} under the condition that object i exists. The rule r8

is executed 6 times, and the multiset x6 evolves into the multiset a6 into the
membrane A3, while the rule r10 is executed 3 times, and the l3 evolves into
the multiset b3 into the membrane A3.

At this point, the membrane A3 contains the multiset a3b3czNum13. Similarly in A2,
the available rules are executed in order r1 → r2 → r3 → r4 → r12 , and after execution, the
multiset in membrane A3 is l3x3v3k f zNum12. This result indicates that the subtraction and
difference are equal, and the first part of the more phase derogation algorithm is over.

(3) Compute the sequence {pi}, {qi}
(i) At this time, the multiset in the membrane A3 is l3, x3, v3, k, f , z. The P System executes

the rules in the following order: r14 → {r15,r16,r17}.

(a) Execute the rule r14, f generate the multiset p2q; at this point, the multiset in
the membrane A3 is l3, x3, v3, k, z, p2, q;

(b) The next time slice simultaneously executes the rules {r15,r16,r17}: execute r15 to
evolve p2 into the multiset p1

2, and generate the multiset r2 into the membrane

Appl. Sci. 2023, 13, 8514 15 of 45

A2; execute the rule r16 to evolve q into the multiset q1, generate the object w
into the membrane A2, and execute the rule r17 to generate the multiset o of
object z to output into A2.

(ii) At this time, the multiset in membrane A2 is o, i, y2, v3, r2, w and the order of execution
of the rules is {r18,r19}→{r15,r16}.

(a) Under the condition that the object o exists, execute the rules {r18,r19}: w
generates the multiset p, r2 generates the multiset p2q2, at which point, the
multiset in A2 is o, i, y2, v3, p3, q2;

(b) Next, execute the rule {r15,r16} to generate the multiset p1
3q1

2 within the mem-
brane A2, and also generate the multiset r3w2 to pass into the membrane A1.

(iii) At this time, the multiset in membrane A1 is r3, w2, h, u2, v6, and the order of execution
of the rules is {r20,r21}→{r15,r16}.

(a) Execute the rule {r20,r21}, the multiset r3 generates the multiset p3, and the
multiset w2 generates the multiset p2q2. At this time, the multiset in the
membrane is p5, q2, h, u2, v6.

(b) Then execute {r15,r16} to pass out r and w, respectively. In the membrane, M1

obtains r5w2, corresponding with the numerator and denominator, and then
converts it to r1

2w1
5. After that there is no rule to execute, so the whole System

stops. So the final simplification of 6/15 results in 2/5.

The specific execution process is divided according to the time slice, as shown in
Table 1. To facilitate experimental verification, all the membranes generated do not dissolve
within the system. The number of membranes is large and the substances are complex, so
only multiset that have changed is listed in the table. If a membrane is not listed in one of
the rows of the table, it means that the material in this membrane has not changed during
that time slice and the multiset in that membrane is the same as the last time it was listed.

Table 1. Time slice process of the more phase derogation algorithm procedure.

Time Slice Rules for Implementation Results of the Implementation

Initial Status None M1: m6, n15;
A1: c, CreateSubMem;

1 r1 M1: g6, n9;

2 r3, r4
M1: b9;

A1: a15, b6, c, Num6, CreateSubMem;
3 r1, r2 A1: c, Num6, u9, x6, y6, CreateSubMem, l9;
4 r3, r4 A1: Num6, u3, f, v6, x6, k, CreateSubMem, l9;

5 r5, r7, r12
A1: Num5, u2, v6, x6, h, l9;

A2: c, CreateSubMem;

6 r8, r10, r13
A1: u2, v6, h;

A2: a9, b6, c, Num5, CreateSubMem;
7 r1, r2 A2: c, Num5, u3, x6, y6, CreateSubMem, l3;
8 r3, r4 A2: Num5, f, v3, x6, y3, k, CreateSubMem, l3;

9 r5, r7, r12
A2: Num4, v3, x6, y2, i, l3;
A3: c, z, CreateSubMem;

10 r8, r10, r13, r17
A2: v3, y2, i, o;

A3: a6, b3, c, Num4, CreateSubMem;
11 r1, r2 A3: c, Num4, u3, x3, y3, CreateSubMem, l3;
12 r3, r4 A3: Num4, f, v3, x3, k, CreateSubMem, l3;

13 r5, r12, r14
A3: q, Num3, v3, x3, l3, p2;

A4: c, CreateSubMem;

14 r13, r15, r16
A3: p1

2, v3, x3, l3, q1;
A4: c, Num3, CreateSubMem;

15 r18, r19 A3: p1
2, v3, x3, l3, q1;

16 r15, r16 A2: p1
3, v3, y2, i, o, q1

2;

Appl. Sci. 2023, 13, 8514 16 of 45

Table 1. Cont.

Time Slice Rules for Implementation Results of the Implementation

17 r20, r21
A1: q2, u2, v6, h, p5;

A2: p1
3, v3, y2, i, o, q1

2;
18 r15, r16 M1: b9, r5, w2; A1: p1

5, u2, v6, h, q1
2;

19 r20, r21 M1: b9, w1
5, r1

2;
20 No enforceable rules

From the above analysis process, it can be seen that using the P System Π1 for fractional
reduction on 6/15 requires a total of 19 time slices.

4.2. P System for Fraction Simplification in the Division Algorithm
4.2.1. Definition of the P System for Rolling Division

The definition of the P System based on the division algorithm is as follows (3):

Π2 =
(
V, O, H, µ, ωM1 , ωA1 , . . . , ωAt , RM1 , RA1 , . . . , RAt , io

)
, (3)

Among them,
(1) V = {m, n, c, t, CreateSubMem, Num, a, b, g, x, y, d, e, h, z, o, i, l, u, k, f , w, v};
(2) The definitions of H and µ are similar to those in Section 4.1.1, so this section does

not provide detailed explanations;
(3) ωM1 = mxnyct, ωA1 = cCreateSubMem, and x and y represent the numerator and

denominator of fractions, respectively;
(4) The RM1 , RA1 , . . . , RAt evolution rule finite set will be explained in Section 4.2.2;
(5) io = M1 indicates that when the entire System stops, the final result can be obtained

in the membrane M1.
Figure 5 depicts the initial layout of the division algorithm P System: membrane M1 is

mainly used to compare the magnitudes of the numerator x and the denominator y. The
larger and smaller values are passed to object a and object b in membrane A1, respectively,
and after obtaining the maximum convention x from membrane A1 and the dynamically
generated class A membrane, the numerator and denominator are divided by x, respectively,
saving the final result of the operation k/l. Membrane A1 is used to perform the division
algorithm operation and calculate the value of the maximum convention, x. With the
exception of membrane M1 and membrane A1, all other required membrane structures
are created dynamically during the reduction process based on the actual situation of the
partition, and the rules within the newly created membrane are identical to those within
membrane A1. In Figure 5, objects m and n are used to represent the numerator and
denominator, respectively; x and y are the numbers of objects m and n. Object c is used to
trigger the execution of the rules in the membrane, and CreateSubMem determines whether
new membranes need to be generated according to different conditions. Membrane A1 and
other newly created submembranes are used to calculate the parameters in the rules. These
newly created membranes are nested in a layer: membrane A2 is created within membrane
A1, membrane A3 is created within membrane A2, and finally, membrane At is created
within membrane At−1.

4.2.2. Membrane Rule of Division Algorithm

Combining the design idea of the P System and the principle of Section 3.2, the
P System of fraction simplification by division algorithm mainly consists of calculating
the sequence of larger values {ai}, the sequence of smaller values {bi}, the maximum
convention x1, the numerator k after reduction, and the denominator l after reduction. The
initial state of the multiset mx, ny, c, t is first put into the membrane M1, where x denotes the
number of numerators and n denotes the number of denominators. Then, after comparing
the size of the numerator and denominator in membrane M1, the larger and smaller values
are passed into membrane A1, respectively, and the maximum convention number x1 is

Appl. Sci. 2023, 13, 8514 17 of 45

calculated according to the rule, and then x1 is passed into membrane M1 to calculate the
final approximate result k/l. Following this idea, a specific flow chart can be obtained, as
shown in Figure 6.

Appl. Sci. 2023, 13, 8514 17 of 47

(1) 𝑉 = {𝑚, 𝑛, 𝑐, 𝑡, 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝑀𝑒𝑚, 𝑁𝑢𝑚, 𝑎, 𝑏, 𝑔, 𝑥, 𝑦, 𝑑, 𝑒, ℎ, 𝑧, 𝑜, 𝑖, 𝑙, 𝑢, 𝑘, 𝑓, 𝑤, 𝑣}；

(2) The definitions of 𝐻 and 𝜇 are similar to those in Section 4.1.1, so this section

does not provide detailed explanations;

(3) 𝜔𝑀1
= 𝑚𝑥𝑛𝑦𝑐𝑡 , 𝜔𝐴1

= 𝑐𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝑀𝑒𝑚 , and 𝑥 and 𝑦 represent the numerator

and denominator of fractions, respectively;

(4) The 𝑅𝑀1
, 𝑅𝐴1

, … , 𝑅𝐴𝑡
 evolution rule finite set will be explained in Section 4.2.2;

(5) 𝑖𝑜 = 𝑀1 indicates that when the entire System stops, the final result can be ob-

tained in the membrane 𝑀1.

Figure 5 depicts the initial layout of the division algorithm P System: membrane 𝑀1

is mainly used to compare the magnitudes of the numerator x and the denominator y. The

larger and smaller values are passed to object a and object b in membrane 𝐴1, respectively,

and after obtaining the maximum convention x from membrane 𝐴1 and the dynamically

generated class A membrane, the numerator and denominator are divided by x, respec-

tively, saving the final result of the operation k/l. Membrane 𝐴1 is used to perform the

division algorithm operation and calculate the value of the maximum convention, x. With

the exception of membrane 𝑀1 and membrane 𝐴1, all other required membrane struc-

tures are created dynamically during the reduction process based on the actual situation

of the partition, and the rules within the newly created membrane are identical to those

within membrane 𝐴1. In Figure 5, objects m and n are used to represent the numerator

and denominator, respectively; x and y are the numbers of objects m and n. Object c is used

to trigger the execution of the rules in the membrane, and CreateSubMem determines

whether new membranes need to be generated according to different conditions. Mem-

brane 𝐴1 and other newly created submembranes are used to calculate the parameters in

the rules. These newly created membranes are nested in a layer: membrane 𝐴2 is created

within membrane 𝐴1, membrane 𝐴3 is created within membrane 𝐴2, and finally, mem-

brane 𝐴t is created within membrane 𝐴t−1.

c CreateSubMem

A1

M1

mxnyct

Figure 5. Initial pattern of the P System in the division algorithm.

4.2.2. Membrane Rule of Division Algorithm

Combining the design idea of the P System and the principle of Section 3.2, the P

System of fraction simplification by division algorithm mainly consists of calculating the

sequence of larger values {𝑎𝑖}, the sequence of smaller values {𝑏𝑖}, the maximum conven-

tion 𝑥1, the numerator k after reduction, and the denominator l after reduction. The initial

state of the multiset 𝑚𝑥, 𝑛𝑦, 𝑐, 𝑡 is first put into the membrane 𝑀1, where x denotes the

number of numerators and n denotes the number of denominators. Then, after comparing

the size of the numerator and denominator in membrane 𝑀1, the larger and smaller val-

ues are passed into membrane 𝐴1, respectively, and the maximum convention number

𝑥1 is calculated according to the rule, and then 𝑥1 is passed into membrane 𝑀1 to calcu-

late the final approximate result k/l. Following this idea, a specific flow chart can be ob-

tained, as shown in Figure 6.

Figure 5. Initial pattern of the P System in the division algorithm.

Appl. Sci. 2023, 13, 8514 18 of 47

M1

A1

mx

ny aa1

bb1

A2

aa2

bb2 ...

Ai

aai

bbi ...

At 1

aat 1

bbt 1

At

Figure 6. Flow diagram of the division algorithm P System.

The following is a specific description of the membrane rules.

(1) Calculate the sequence {ai}, {bi} and the maximum convention 𝑥1

𝑚𝑥𝑛𝑦𝑐𝑡 is the initial state of membrane 𝑀1. The numerator x and denominator y are

compared in membrane 𝑀1 and then the larger and smaller values are passed to object

𝑎 and object 𝑏 in membrane 𝐴1, respectively. The specific conversion rules are similar

to membrane 𝑀1 in the more phase derogation algorithm, which can be found in Section

4.1.1. The membrane rule within this System improves the division into multiple additions

and subtractions; the initialized multiset in membrane 𝐴1 is 𝑎𝑎1𝑏𝑏1𝑐𝑁𝑢𝑚𝑎1

𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝑀𝑒𝑚, where 𝑎1 is the value of the larger number in the numerator denomina-

tor, and 𝑏1 is the value of the smaller number.

The rule for calculating the maximum convention 𝑥1 is as follows:

r1: (a b → x, 1) r2: (c → y|x, 1) r3: (a y → a d, 2)

r4: (x → b|d, 3) r5: (d → c, 4) r6: (b y → b e g, 2)

r7: (CreateSubMem Num → A: a{}|b, 3) r8: (g → h, 3)

r9: (x → (b, in)|h, 4) r10: (b → (a, in)|h, 4) r11: (h → (c, in)|h, 5)

r12: (y → z e, 3) r13: (x → (z x, out)|z, 4)

r14: (Num → (Num, in)|!CreateSubMem)

(i) When 𝑎𝑖 − 𝑛𝑏𝑖 > 𝑏𝑖(𝑖 = 1,2, … , 𝑡 − 1, 𝑛 = 0,1, … , 𝑡 − 1) the rules are executed in the

following order: {r1,r7}→ {r2, r14} → r3 → r4 → r5.

(a) Execution of rule r1 within membrane 𝐴𝑖: consume the multiset 𝑎𝑏𝑖𝑏𝑏𝑖, gener-

ating 𝑥𝑏𝑖, which means that the values of the denominator and numerator are

consumed in 𝑏𝑖 copies at the same time, leaving 𝑎𝑖 − 𝑏𝑖 copies of the object 𝑎,

while executing r7 to generate a new submembrane 𝐴𝑖+1; execution of rule r2:

object c evolves into y under the condition that object x exists; this step is used

to control the loop, while execution r14 passes the remaining Num into the sub-

membrane 𝐴𝑖+1;

(b) Then execute r3, the object y evolves into object d, where 𝑎 plays a catalytic

role; under the condition that d exists, execute rule r4; the object x evolves into

object b and returns 𝑥𝑏𝑖 to 𝑏𝑏𝑖. At this time, the existing multiset in the mem-

brane is 𝑎𝑎𝑖−𝑏𝑖𝑏𝑏𝑖𝑑𝑁𝑢𝑚𝑎𝑖, and the System satisfies the execution conditions of

r1 and continues to generate x.

(c) Execute r5, object d evolves into object c; at this time, there are x generated in

the membrane 𝐴𝑖, so the execution conditions of r2 are satisfied again. Because

there is only one CreateSubMem object in the membrane, r7 and r14 in a mem-

brane can only be executed once, but the rule r1 → r2 → r3 → r4 → r5 may be

Figure 6. Flow diagram of the division algorithm P System.

The following is a specific description of the membrane rules.
(1) Calculate the sequence {ai}, {bi} and the maximum convention x1
mxnyct is the initial state of membrane M1. The numerator x and denominator y are

compared in membrane M1 and then the larger and smaller values are passed to object
a and object b in membrane A1, respectively. The specific conversion rules are similar to
membrane M1 in the more phase derogation algorithm, which can be found in Section 4.1.1.
The membrane rule within this System improves the division into multiple additions
and subtractions; the initialized multiset in membrane A1 is aa1 bb1 cNuma1 CreateSubMem,
where a1 is the value of the larger number in the numerator denominator, and b1 is the
value of the smaller number.

The rule for calculating the maximum convention x1 is as follows:

r1 : (a b→ x, 1) r2 : (c→ y|x, 1) r3 : (a y→ a d, 2)
r4 : (x→ b|d, 3) r5 : (d→ c, 4) r6 : (b y→ b e g, 2)
r7 : (CreateSubMem Num→ A : a{}|b, 3) r8 : (g→ h, 3)
r9 : (x→ (b, in)|h, 4) r10 : (b→ (a, in)|h, 4) r11 : (h→ (c, in)|h, 5)
r12 : (y→ z e, 3) r13 : (x→ (z x, out)|z, 4)
r14 : (Num→ (Num, in)|!CreateSubMem)

(i) When ai − nbi > bi(i = 1, 2, . . . , t− 1, n = 0, 1, . . . , t− 1) the rules are executed in the
following order: {r1,r7}→ {r2, r14} → r3 → r4 → r5 .

Appl. Sci. 2023, 13, 8514 18 of 45

(a) Execution of rule r1 within membrane Ai: consume the multiset abi bbi , generat-
ing xbi , which means that the values of the denominator and numerator are
consumed in bi copies at the same time, leaving ai − bi copies of the object a,
while executing r7 to generate a new submembrane Ai+1; execution of rule
r2: object c evolves into y under the condition that object x exists; this step is
used to control the loop, while execution r14 passes the remaining Num into
the submembrane Ai+1;

(b) Then execute r3, the object y evolves into object d, where a plays a catalytic role;
under the condition that d exists, execute rule r4; the object x evolves into object
b and returns xbi to bbi . At this time, the existing multiset in the membrane is
aai−bi bbi dNumai , and the System satisfies the execution conditions of r1 and
continues to generate x.

(c) Execute r5, object d evolves into object c; at this time, there are x generated
in the membrane Ai, so the execution conditions of r2 are satisfied again.
Because there is only one CreateSubMem object in the membrane, r7 and r14 in
a membrane can only be executed once, but the rule r1 → r2 → r3 → r4 → r5
may be cyclically executed n times, until ai − nbi < bi stops the cycle of
execution, or ai − nbi = bi proves that the remainder is 0; then, the System has
found the maximum convention x and stops the cycle of execution.

(ii) When ai − nbi < bi in the membrane Ai, the rules are executed in the following order:
r1 → r2 → r6 → {r7, r8} → {r9, r10, r11, r14} .

(a) Execution rule r1: the multiset aai−nbi bai−nbi is consumed to generate the multi-
set xai−nbi . This means that the values of the denominator and numerator are
consumed in both ai − nbi copies, leaving bi − (ai − nbi) copies of object b. At
this time, the number of x ai − nbi is the remainder of ai divided by bi.

(b) Under the condition that object x exists, rule r2 is executed to evolve object c
into y. This step is used to control the loop; rule r6 is executed, and object y
evolves into objects e and g under the action of catalyst b.

(c) Execute rules {r7, r8}: consume CreateSubMem with a Num to generate a new
submembrane Ai+1 under the condition that object b exists, while g evolves
into object h for synchronization control.

(d) Then execute the rules {r9, r10, r11, r14}: under the condition that the object h ex-
ists, convert the multiset xai−nbi to multiset bbi+1 directly into the submembrane
Ai+1 and the multiset bbi−(ai−nbi) to multiset aai+1 into the submembrane; at
this time, bi+1 = ai − nbi and ai+1 = bi − (a i − nbi), while the object h evolves
into c into the membrane Ai+1 to continue the execution. In membrane Ai+1,
we continue to judge the size relationship between ai+1 and bi+1 and execute
the corresponding rules.

(iii) When at−1 − nbt−1 = bt−1, the rules are executed in the following order:
r1 → r2 → r12 → r13 .

(a) Rule r1,r2 is executed as above. At this time, there is no excess a or b in the
membrane, proving that the two numbers have no remainder, which also
means that they have been integregated; therefore, the execution of rule r12:
the object y evolves into z and e. Under the condition that there is z, the
execution of rule r13 converts the multiset xbt−1 into the multiset zx1 xx1 directly
into the parent membrane, i.e., bt−1 is the maximum common divisor.

(b) In membranes At−2, At−3, . . . , A1, after receiving the zx1xx1 of the submem-
brane, rule r13 is executed to output the maximum common divisor, and finally
output it from membrane A1 to membrane M1. Calculate k and l according to
the rules in membrane M1.

Appl. Sci. 2023, 13, 8514 19 of 45

(2) Calculate k, l
The calculation of k and l begins when membrane M1 receives the maximum conven-

tion x1 from membrane A1. The specific calculation rules are as follows:

r5 : (x→ w v) r6 : (a w→ i, 1) r7 : (c→ y|i, 1)
r8 : (a y→ a d, 2) r9 : (i→ w|d, 3) r10 : (d→ k c, 4)
r11 : (y→ k, 3) r12 : (b v→ f, 1) r13 : (t→ e|f, 1)
r14 : (b e→ b h, 2) r15 : (f→ v|h, 3) r16 : (h→ l t, 4)
r17 : (e→ l, 3)

The main job of membrane M1 (at this point) is to divide the numerator and denominator
by the maximum common divisor, respectively, and finally arrive at the result. Firstly, rule r5 is
executed: the multiset xx1 is converted into a multiset wx1 vx1 for backup, so that the numerator
and denominator can be synchronously simplified and parallelism can be improved.

(i) The rules involved in simplifying the molecule x and the order of execution are as
follows: r6 → r7 → r8 → r9 → r10 → r11 .

(a) Execute rule r6: The multiset ax1 wx1 evolves into ix1 . At this point, object i re-
tains the number of conventions x1, and there are x− x1 objects a remaining in
the System. Because x1 is the largest convention of the numerator denominator,
object a must be an integer multiple of x1.

(b) In the condition that object i exists, execute rule r7: object c evolves into object
y. This step is used to control the loop; execute r8: object y evolves into object d
under the action of catalyst a. This step proves that there is no end to integer
division in the System, at this time;

(c) Execute rule r9 under the condition that object d exists: object i evolves into
object w, and then the value of the convention number is passed to w; at this
point, r6 execution conditions are met, and rule r10 is executed while continuing
to execute r6: object d evolves into objects k and c, i.e., the convention number
is subtracted once for one more k, which is equivalent to a counter.

(d) The above steps can be executed several times. Until there is no object a in
the System after executing r6 again, it indicates that the molecules have been
completely divided. Execution rule r7 and r11: object y evolves into object
k. The last number of k is the value of the numerator after the approximate
simplification, and also, the number of times the subtraction is used.

(ii) The rules involved in simplifying the denominator and the order of execution are
as follows: r12 → r13 → r14 → r15 → r16 → r17 . The execution rules are similar to
the steps for dividing the numerator by the greatest common divisor, and the final
number of l is the value of the denominator after simplification. Due to the maximum
parallelism of the membrane calculation, the number of steps required to implement
the division function is the number of steps in the larger value simplification.

The final result of the approximate fractional simplification in the division algorithm
P System is k/l.

4.2.3. Example of Fraction Simplification by the Division Algorithm

In this subsection, we will give an example to describe in detail how to implement
fractional simplification using the division algorithm P System. For example, the reduction
process for 6/15 is shown in Figure 7:

The following details the execution process of rules in this P System.
(1) Initial pattern
As shown in Figure 7a, the initial multiset m6n15ct of this System is first put into the

membrane M1, and the membrane A1 has the initial object c and the object CreateSubMem.
The object n is used to represent the denominator of the fractional equation with the number
of 15, and the object m is used to represent the numerator of the fractional equation with
the number of 6.

Appl. Sci. 2023, 13, 8514 20 of 45

Appl. Sci. 2023, 13, 8514 20 of 47

(a) Execute rule r6: The multiset 𝑎𝑥1𝑤𝑥1 evolves into 𝑖𝑥1. At this point, object i re-

tains the number of conventions 𝑥1, and there are 𝑥 − 𝑥1 objects a remaining in

the System. Because 𝑥1 is the largest convention of the numerator denominator,

object a must be an integer multiple of 𝑥1.

(b) In the condition that object i exists, execute rule r7: object c evolves into object

y. This step is used to control the loop; execute r8: object y evolves into object d

under the action of catalyst a. This step proves that there is no end to integer

division in the System, at this time;

(c) Execute rule r9 under the condition that object d exists: object i evolves into ob-

ject w, and then the value of the convention number is passed to w; at this point,

r6 execution conditions are met, and rule r10 is executed while continuing to

execute r6: object d evolves into objects k and c, i.e., the convention number is

subtracted once for one more k, which is equivalent to a counter.

(d) The above steps can be executed several times. Until there is no object a in the

System after executing r6 again, it indicates that the molecules have been com-

pletely divided. Execution rule r7 and r11: object y evolves into object k. The

last number of k is the value of the numerator after the approximate simplifica-

tion, and also, the number of times the subtraction is used.

(ii) The rules involved in simplifying the denominator and the order of execution are as

follows: r12 → r13 → r14 → r15 → r16 → r17 . The execution rules are similar to the

steps for dividing the numerator by the greatest common divisor, and the final num-

ber of l is the value of the denominator after simplification. Due to the maximum

parallelism of the membrane calculation, the number of steps required to implement

the division function is the number of steps in the larger value simplification.

The final result of the approximate fractional simplification in the division algorithm

P System is k/l.

4.2.3. Example of Fraction Simplification by the Division Algorithm

In this subsection, we will give an example to describe in detail how to implement

fractional simplification using the division algorithm P System. For example, the reduc-

tion process for 6/15 is shown in Figure 7:

A1

A2

A3

m6

n15 a15

b6

a3

b3

...

A1

M1

klk2l2k2l4k2l5 k2l3

(a) (b)

Figure 7. Process diagram for solving the example of the division algorithm P System. (a) Flowchart

for finding the greatest common divisor x in the division algorithm; (b) Flowchart for simplifying

the result of the division algorithm example.

The following details the execution process of rules in this P System.

(1) Initial pattern

Figure 7. Process diagram for solving the example of the division algorithm P System. (a) Flowchart
for finding the greatest common divisor x in the division algorithm; (b) Flowchart for simplifying the
result of the division algorithm example.

First execute the rule r1 six times, and the multi-set m6n6 is completely consumed to
generate the object g6; then execute the rule r3 nine times under the condition of having the
object g. The remaining object n9 evolves into b9 and generates the objects a9 and Num9

into the membrane A1, while g6 generates the multi-set a6b6 and passes a6b6Num6 to the
membrane A1. At this time, there is no other executable rule in the membrane M1, so wait
for the end of the execution of the membrane of class A to continue the execution. The
initialized multiset in membrane A1 is a15b6cNum15CreateSubMem.

(2) Calculate the maximum common divisor x1

(i) Execute rules in the following order: {r1, r7} → {r2, r14} → r3 → r4 . In membrane
A1, execute rule r1 6 times to generate object x6, while executing rule r7, under
the condition of having b directly consume CreateSubMem and a Num to generate
submembrane A2 for backup. The existing object in Membrane A1 is a9x6c . Execute
rule r2 to evolve object c to y under the condition that object x exists, while executing
r14 to pass the remaining Num value into submembrane A2.

At this point, only the rule r3 can be executed, in the role of catalyst a object y evolved
to d; according to the conditions of the implementation of the rule r4, the object x6 evolved
to b6; implementation of the rule r5, the object d evolved to c; at this time, the r1 condition
is met again, and the multiset in the membrane A1 is a3b6c, after the rules are executed in
the order of r1 → r2 → r3 → r4.

(ii) At this time a < b, the rules are executed in the order of r1 → r2 → r6 → {r7, r8} →
{r9, r10, r11}; execute the rule r1 three times to generate the multiset x3; execute the
rule r2, and the object c evolves into the object y; thus, at this time the multiset in the
membrane A1 is x3b3y; this case can only execute the rule r6, converting the multiset b
and y to the multiset b,e,g; then execute the rule r8, converting the object g to h ; under
the condition that h exists at the same time, execute the rules r9, r10, r11, generating
a3b3c passed to membrane A2.

(iii) At this time, the multiset in membrane A2 is a3b3cNum14CreateSubMem, i.e., a2 = b2 = 3,
according to {r1, r7} → {r2, r14} → r12 → r13 ; execute the rule r1 three times, consume
all the a and b to generate x3, while executing r7 to generate submembrane A3; execute
the rule r2, the multiset c evolves into the multiset y, and at this time, the multiset in the
membrane A2 is x3y, while executing the rule r14 to pass the remaining Num values to
the submembrane A3. In this environment, one can only execute the rule r12 to evolve y
into the multiset z and e; execute under the condition that the multiset z exists, and rule
r13 transforms x3 into z3x3 and passes it to membrane A1; rule r13 continues in membrane

Appl. Sci. 2023, 13, 8514 21 of 45

A1 and passes the multiset z3x3 to membrane M1, where the number of objects x is the
maximum convention x1. This concludes the computation of the maximum convention x1.

(3) Calculate k, l
At this point, the multiset in the membrane M1 is a6b15z3x3ct.

(i) Execute rule r5 in membrane M1, backing up the maximum convention as w3v3 for
simultaneous simplification of the numerator and denominator; execute rule r6 three
times, consuming the multiset a3w3 to generate i3, and execute rule r12 three times
simultaneously, consuming the multiset b3v3 to generate f 3;

(ii) Execute rule r7 to evolve object c into y under the condition that object i exists, and the
execution of the rule r13 involving the evolution of multiset f 3 to multiset v3 under
the condition that object h exists;

(iii) Simultaneous execution of the rules r8,r14, evolving y to d in the presence of catalyst a
and e to h in the presence of catalyst b.

(iv) Simultaneously execute the rules r9,r15, under the condition that d exists, the object i3

evolves into w3, and f 3 evolves into v3. Then simultaneously execute the rules r10, r16,
evolve d into k, c and h into l, t, respectively; at this time, k and l start to accumulate,
and the multiset in the membrane M1 is z3, a3, b12, w3, v3, c, t, k, l.

(v) After the numerator is repeated once in the order {r6, r11} and the denominator is
repeated once in the order {r12, r17}, the multiset inside the membrane is z3i3b9v3k2l2t.
Since a has been completely consumed, the rule {r6, r11} is stopped and the denomi-
nator continues to be executed. After repeating the execution three times in sequence,
the multiset within the membrane is now z3i3 f 3k2l4e, at which point, only rule r17
can be executed and object e evolves to l. At this time, the multiset in the membrane
is z3i3 f 3k2l5.

The execution up to this point has no rules to execute, so the whole system stops.
The number of objects k and l denote the values of the numerator and denominator after
simplification, respectively, so 6/15 ends up with a simplification result of 2/5.

The specific execution process is divided according to the time slice, as shown in
Table 2. This table is also partially omitted.

Table 2. Time slice process for the division algorithm.

Time Slice Rules for Implementation Results of the Implementation

Initial Status None M1: m6, n15, c, t; A1: c, CreateSubMem;
1 r1 M1: g6, n9, c, t;

2 r3, r4
M1: a6, b15, c, t;

A1: a15, b6, c, Num15, CreateSubMem;
3 r1, r7 A1: a9, c, Num14, x6; A2: CreateSubMem;

4 r2, r14
A1: a9, x6, y;

A2: Num14, CreateSubMem;
5 r3 A1: a9, x6, d;
6 r4, r5 A1: a9, b6, c;
7 r1 A1: a3, x6, c;
8 r2 A1: a3, x6, y;
9 r3 A1: a3, x6, d;
10 r4 A1: a3, b6, c;
11 r1 A1: b3, x3, c;
12 r2 A1: b3, x3, y;
13 r6 A1: b3, x3, e, g;
14 r8 A1: b3, x3, e, h;

15 r9, r10
A1: e;

A2: a3, b3, c, Num14, CreateSubMem;
16 r1, r7 A2: c, Num13, x3; A3: CreateSubMem;
17 r2, r14 A2: x3, y; A3: Num13, CreateSubMem;

Appl. Sci. 2023, 13, 8514 22 of 45

Table 2. Cont.

Time Slice Rules for Implementation Results of the Implementation

18 r12 A2: e, x3, z;
19 r13 A1: e, x3, z3; A2: e, z;
20 r13 M1: a6, b15, c, t, x3, z3; A1: e, z3; A2: e, z;
21 r5 M1: a6, b15, c, t, v3, w3, z3

22 r6, r12 M1: a3, b12, c, t, f3, i3, z3;
23 r7, r13 M1: a3, b12, e, f3, i3, y, z3;
24 r8, r14 M1: a3, b12, d, f3, h, i3, z3;
25 r9, r10,r15,r16 M1: a3, b12, c, t, v3, w3, z3, k, l;
26 r6, r12 M1: b9, c, t, f3, i3, z3, k, l;
27 r7, r13 M1: b9, e, f3, i3, y, z3, k, l;
28 r11, r14 M1: b9, f3, h, i3, z3, k2, l;
29 r15, r16 M1: b9, t, v3, i3, z3, k2, l2;
30 r12 M1: b6, t, f3, i3, z3, k2, l2;
31 r13 M1: b6, e, f3, i3, z3, k2, l2;
32 r14 M1: b6, f3, h, i3, z3, k2, l2;
33 r15, r16 M1: b6, t, v3, i3, z3, k2, l3;
34 r12 M1: b3, t, f3, i3, z3, k2, l3;
35 r13 M1: b3, e, f3, i3, z3, k2, l3;
36 r14 M1: b3, f3, h, i3, z3, k2, l3;
37 r15, r16 M1: b3, t, v3, i3, z3, k2, l4;
38 r12 M1:t, f3, i3, z3, k2, l4;
39 r13 M1: e, f3, i3, z3, k2, l4;
40 r17 M1: f3, i3, z3, k2, l5;
41 No enforceable rules

From the above process analysis, it is clear that the total time slice for this example is 40.

4.3. P System Combined with the More Phase Derogation and the Tossing and Division Algorithm
4.3.1. Definition of a Combinatorial P System

The P System of a combinatorial more phase derogation algorithm and the tossing
and division algorithm is defined as Equation (4):

Π3 = (V, O, H, µ, ωM1 , ωA1 , . . . , ωAt1
, ωB1 , . . . , ωBt2

, RM1 , RA1 , . . . , RAt1
, RB1 , . . . , RBt2

, io), (4)

Among them,
(1) V = {m, n, c, t, CreateSubMem, Num, a, b, g, x, y, d, e, h, z, o, i, l, u, k, f , w, v};
(2) H = {M1, A1, . . . , At1 , B1, . . . , Bt2}, when the P System is in its initial state; it only

contains membrane M1, membrane A1, and membrane B1. During the execution process,
membranes A2, . . . , At1 , B2, . . . , Bt2 are generated according to different conditions.

(3) µ =
{[[[[

]At1
]...]A1

[[[
]Bt2

]...]B1]M1

}
, in the initial state, membrane A1 and mem-

brane B1 are siblings, both included in membrane M1; Ai(2 ≤ i ≤ t1) and Bk(2 ≤ k ≤ t2)
are dynamically generated during the execution of the membrane rules; any Ai is always
included in Ai−1, and any Bk is always included in Bk−1.

(4) ωM1 = ambnct,ωA1 = cCreateSubMem, and ωB1 = cCreateSubMem; m and n
represent the numerator and denominator of fractions, respectively;

(5) The RM1 , RA1 , . . . , RAt1
, RB1 , . . . , RBt2

evolution rule finite set will be explained in
Section 4.3.2;

(6) io = M1 indicates that when the entire System stops, the final result can be obtained
in the membrane M1.

As shown in Figure 8, this diagram shows the initial pattern of a fraction simplification
P System with a combination of the more phase derogation and division algorithms. The
order of execution of the various types of membranes in this P System is: membrane M1 →
membrane A1 and submembranes→ membrane M1 → membrane B1 and submembranes→

Appl. Sci. 2023, 13, 8514 23 of 45

membrane M1 → membrane A1 and submembranes. The function of each type of membrane
and the complete process of the P System are briefly described as follows: membrane A1 is
first used to perform a more phase derogation algorithm to determine the relationship with ξ,
and when the difference is greater than ξ, it continues to generate submembrane for a more
phase derogation algorithm until the difference is less than or equal to ξ; the intermediate
truncation results m,n are obtained and passed to membrane M1 and then from membrane
M1 to membrane B1. Membrane B1 receives m,n and the division algorithm to calculate the
maximum convention x and passes it to membrane M1. Membrane M1 finds the approximate
result of the intermediate m,n and passes it to membrane A1. Membrane A1 passes the result
of the more phase derogation algorithm r/w to membrane M1. Finally, within membrane M1,
r and w correspond to the numerator and denominator: if the numerator > denominator, the
final result is directly r/w, otherwise r and w are “interchanged”, and the final result is w1/r1
with exception to membrane M1 and membranes A1 and B1, all other required membrane
structures are created dynamically during the reduction process, and the rules in the newly
created class A membranes, A2, A3,. . .,At1 , are identical to those in membrane A1; class B
membranes B2,B3,. . .,Bt2 have exactly the same rules as those in membrane B1.

Appl. Sci. 2023, 13, 8514 24 of 47

Membrane B1 receives m,n and the division algorithm to calculate the maximum conven-

tion x and passes it to membrane M1. Membrane M1 finds the approximate result of the

intermediate m,n and passes it to membrane A1. Membrane A1 passes the result of the

more phase derogation algorithm r/w to membrane M1. Finally, within membrane M1, r

and w correspond to the numerator and denominator: if the numerator > denominator,

the final result is directly r/w, otherwise r and w are “interchanged”, and the final result is

w1/r1 with exception to membrane M1 and membranes A1 and B1 , all other required

membrane structures are created dynamically during the reduction process, and the rules

in the newly created class A membranes, A2, A3,…,𝐴𝑡1
, are identical to those in mem-

brane A1; class B membranes B2,B3,…,𝐵𝑡2
 have exactly the same rules as those in mem-

brane B1.

c CreateSubMem

A1

M1

axbyct c CreateSubMem

B1

Figure 8. Process diagram for solving the example of the rolling phase division P System.

4.3.2. Membrane Rules for Combining the Two Methods

As can be seen from Section 4.1 of the more phase derogation algorithm P System, if

the difference between the numerator and denominator is too large, the number of dy-

namically generated membranes is too large, and if Section 4.2 of the division algorithm

is used, each division is equivalent to multiple subtractions, making the number of sub-

traction steps too heavy for a membrane System. For this reason, this sub-section discusses

in detail the fraction simplification of the P System using a combination of the idea of a

more phase derogation algorithm and a division algorithm.

The process of fraction simplification using the combination of the two methods con-

sists of finding the sequence {𝑎𝑖}, {𝑏𝑖}, {𝑢𝑖}, {𝑧𝑖}, the intermediate values m, n of the method

transformation, the greatest common divisor 𝑥1, the result of the reduction of the inter-

mediate values 𝑘1, 𝑙1, and the sequence {𝑝𝑖}, {𝑞𝑖}. Combining the design ideas of the two

P Systems in Sections 4.1 and 4.2, it can be seen that all membrane structures require only

addition and subtraction to complete the calculation of fractional simplification, as shown

in Figure 9.

Figure 8. Process diagram for solving the example of the rolling phase division P System.

4.3.2. Membrane Rules for Combining the Two Methods

As can be seen from Section 4.1 of the more phase derogation algorithm P System, if the
difference between the numerator and denominator is too large, the number of dynamically
generated membranes is too large, and if Section 4.2 of the division algorithm is used, each
division is equivalent to multiple subtractions, making the number of subtraction steps
too heavy for a membrane System. For this reason, this sub-section discusses in detail the
fraction simplification of the P System using a combination of the idea of a more phase
derogation algorithm and a division algorithm.

The process of fraction simplification using the combination of the two methods
consists of finding the sequence {ai}, {bi}, {ui}, {zi}, the intermediate values m, n of the
method transformation, the greatest common divisor x1, the result of the reduction of the
intermediate values k1, l1, and the sequence {pi}, {qi}. Combining the design ideas of the
two P Systems in Sections 4.1 and 4.2, it can be seen that all membrane structures require
only addition and subtraction to complete the calculation of fractional simplification, as
shown in Figure 9.

The following is a specific description of the membrane rules.
(1) Calculate the larger value of the partition a and the smaller value of b.
The multiset axbyct (here x is the numerator value and y is the denominator value) is

put into the membrane M1, and the magnitudes of the numerator and denominator are
compared in the membrane M1. When the numerator is greater than the denominator,
the number of objects a and b are directly passed into the membrane A1; otherwise, the
rules are executed to convert the object b to a and directly passed to the membrane A1
and swapping the order of numerators and denominators in membrane A1. At this point,

Appl. Sci. 2023, 13, 8514 24 of 45

there are no other rules to execute in membrane M1, so we wait for membrane A1 to finish
calculating the intermediate values m,n and then continue the execution.

Now the number of objects a and b in each layer of class A membrane is designed as
a sequence {ai}, {bi}. For example, the number of object a in membrane A1 is a1, and the
number of b in membrane At1 is bt1 .

Appl. Sci. 2023, 13, 8514 25 of 47

...

B1

M1

A1

A2

Ai

At1 1

......... ...

At1

ax

by aa1

bb1
aa2

bb2 aai

bbi aat1 1

bbt1 1
aat1

bbt1

mat1

nbt1

mat1

nbt1

mat1

nbt1

mat1

nbt1

m1
a1

n1
b1

mat1

nbt1

(a)

...

B1

M1

A1

B2

Bi

Bt2 1

......
... ...

Bt2

m1a1

n1b1
m1a2

n1b2
m1ai

n1bi
mat2 1

nbt2 1 c

xx1

zx1

xx1

zx1
xx1

zx1
xx1

zx1
xx1

zx1

(b)

...

B1

M1

A1

A2

Ai

At1 1

......... ...

At1

kk1

ll1

kk1

ll1

kk1

ll1

kk1

ll1

kk1

ll1

kk1

ll1

ppt1

qqt1

ppt1 1

qqt1 1
ppi

qqi

pp2

qq2

pp1

qq1

rp1

wq1

(c)

Figure 9. Flow chart for solving the combined method P System. (a) Flow chart for the combination

of the two methods to find the intermediate values m, n; (b) Flow chart for finding the maximum

common divisor by the division algorithm; (c) Flow chart for the sequence {𝑝𝑖}, {𝑞𝑖} by the more

phase derogation algorithm.

Figure 9. Flow chart for solving the combined method P System. (a) Flow chart for the combination
of the two methods to find the intermediate values m, n; (b) Flow chart for finding the maximum
common divisor by the division algorithm; (c) Flow chart for the sequence {pi}, {qi} by the more
phase derogation algorithm.

Appl. Sci. 2023, 13, 8514 25 of 45

Initialize the membrane A1 in a1, b1. The rules are as follows:

r1 : (a b→ g, 1) r2 :
(
a→ a2(a Num, in all) |g, 2

)
r3 :

(
b→ b2(a Num, in all) |g, 2

)
r4 : (g→ (a b Num, in all), 3)

(i) When x > y, the rules within membrane M1 are executed in the following order:
r1 → r2 → r4 .

(a) Execution rule r1: objects a and b are consumed and the multiset ayby generates
the multiset gy, with ax−y remaining. This means that the numerator and
denominator values are consumed in y copies at the same time, leaving x− y
of object a;

(b) Execute the rule r2 under the condition that object g exists, passing the remain-
ing a to object a in the submembrane;

(c) Execute r4 to convert the multiset gy into ayby and transfer it to the submem-
brane; at this time, the number of a in membrane A1 and membrane B1 is
equivalent to performing a cumulative addition to obtain a1 = x, b1 = y. The
multiplicity set, Numx, is used to generate membranes dynamically.

(ii) When x < y, the rules in membrane M1 are executed in the following order: r1 → r3 → r4.

(a) Execution rule r1: objects a and b are consumed and the multiset axbx generates
the multiset gx, with by−x remaining. This means that x copies of the numerator
and denominator are consumed simultaneously, leaving y − x objects, b;

(b) Execute rule r3 in the presence of object g, passing the remaining b to object
a in the submembrane;

(c) Execute r4 to convert the multiset gx into axbx and transfer it to the submem-
brane; at this time, the object a in membrane A1 and membrane B1 is also
equivalent to performing an addition, obtaining a1 = y, b1 = x. The multiset
Numy is used for the dynamic generation of membranes.

(2) Calculate the sequence {ai}, {bi}, {ui}, {zi} and the intermediate values m,n
The process is performed by the membrane A1 and the dynamically generated

class A submembrane. Initially, aa1 bb1 cdξ Numa1 CreateSubMem is placed in membrane
A1. Within membrane A1 and other newly created submembranes, object c evolves into
k, e, j, and k is used to control the execution of any dynamical membrane; e is involved
in generating sequences {zi}; object j is used to determine the special case where bi and
difference are directly equal; a1 and b1 denote the larger and smaller values in the fractional
equation, respectively; the number of d is the value of the parameter ξ in the conversion of
the more phase derogation algorithm to division algorithm, and CreateSubMem is used for
the dynamic generation of submembranes.

Calculate the sequence {ai}, {bi}, {zi} and the intermediate values m, n by the follow-
ing rules:

r1 : (a b→ x y, 1); r2 : (c→ k e j, 1); r3 : (a→ a1u i, 2)
r4 : (d i→ g, 1); r5 : (i g→ f, 1); r6 : (y u→ λ|f);
r7 : (CreateSubMem Num→ A : a{}|λ);
r8 : (Num→ (Num, in all)|!CreateSubNum); r9 : (y e→ δ(z, in all)|λ, 4
r10 : (k→ (c, in all)|λ); r11 : (x→ (a, in all)|δ, 4); r12 : (a1 → (b, in all)|δ, 4)
r13 : (u e→ h|λ); r14 : (x→ (b, in all)|h, 4); r15 : (a1 → (a, in all)|h, 4)
r16 :

(
j→ j1|!y & !u & λ

)
; r17 :

(
j1 → p̂2 q|!y & !u & λ

)
; r18 : (g→ o|!i & !f, 2)

r19 : (x→ (m n, out)|o); r20 : (a1 → (m, out)|o)
r21 : (m→ (m, out)|!o); r22 : (n→ (n, out)|!o)

(i) In class A membranes, the rules are executed in the following order: {r1, r2} →
r3 → r4 → r5. Taking membrane A1 as an example, the multiset xb1 yb1 generated by
executing rule r1 is the value used for temporary storage b1 and is used to compare
with ξ to determine whether to convert; r2 converts c to k, e, j; execute r3 to converts the

Appl. Sci. 2023, 13, 8514 26 of 45

remaining multiset aa1−b1 to multiset a1
u1 uu1 iu1 for backup (u1 = a1 − b1): a1 passes

the difference u1 to the submembrane and does not participate in other comparisons;
object u compares size with y and decides how to pass A2 and b2 to submembrane a2;
and object i compares value with d and determines whether to end the more phase
derogation algorithm and start using the division algorithm. Execute r4 to compare
the difference between u1 and ξ, at this point.

(ii) When u1 > ξ (i.e., after executing r4, object i remains in the membrane after the
execution), the execution of r5 converts i and g to f and continues using the more
phase derogation algorithm, the order of execution in this case is r6 → {r7, r10} →
{r8, r9} → {r11, r12} or r6 → {r7, r10} → {r8, r13} → {r14, r15} .

(a) Execute rule r6 to convert y and u into object λ to determine the magnitude of the
subtraction and the difference. When there is λ in the membrane, r7 is executed
to dynamically generate Class A submembrane. After the object CreateSubMem
is consumed, it indicates that the submembrane has been generated. At the same
time, r10 is executed to transfer c into the submembrane A2.

(b) As the CreateSubMem in the membrane is consumed, r8 is then executed to
pass the remaining multiset, Numa1−1, into the submembrane for continued
dynamic generation of the membrane. At this point, if the object y is still
remaining within the membrane, it indicates that the minus number is larger
and that both the larger and smaller values in the submembrane need to be
replaced. Execution of r9 generates δwithin this membrane and also generates
z to be passed into the inner membrane A2, i.e., z2 = 1.

(c) Object δ serves as the condition for executing r11, passing the subtractive
backup xb1 of the membrane to the subtractive a of the submembrane, and
executing r12 to transfer the differential backup a1

u1 to the subtractive b of
the submembrane, i.e., a2 = b1, b2 = u1.

(d) If there is still object u in membrane A1, it proves that only the subtracted
number a needs to be replaced in the submembrane A2, and the value of b is
equal to that of the membrane A1, i.e., a2 = u1. b2 = b1, and z2 = 0 (indicating
that there is no object z inside the submembrane A2 and no need to execute the
rule); at this time, there are still objects u and e in the membrane, and executing
r13 generates h; under the catalysis of h, execute r14 to transfer the backup
subtracted number xb1 to the subtracted number bb2 in the submembrane,
and execute r15 to transfer the difference backup a1

u1 to the subtracted number
aa2 in the submembrane.

{r16, r17} is aimed at the special case where the subtraction bi is directly equal to the
difference ui, and there is no need for tossing and dividing. They directly generate p2q to
start the more phase decrement improvement part. For details, please refer to Section 4.1.2
of this paper.

(iii) When u1 ≤ ξ, the order of rule execution in this membrane, at this time, is
r18 → {r19, r20} . When the object g exists and both i and f do not exist, execute
r18 to convert g to o. The presence of o indicates that the P System is to be converted
from the more phase derogation algorithm to the division algorithm; stop generating
new membranes and execute r19 and transfer the backup subtractor xb1 to m and n
in the parent membrane; execute r20 and transfer the backup difference a1

u1 to m in
the parent membrane. Execute r20, pass the backup difference a1

u1 to m in the parent
membrane; at which point, the number of m in the parent membrane is a1.

The above rules take membrane A1 as an example. In addition to membrane A1
requiring initialization of a1b1, other rules also apply to membranes A2, A3, . . . , At1 . All
membranes except membrane A1 in type A membrane execute {r21, r22} after receiving
m,n values, and transmit the received multiset, mmnn, directly to the parent membrane, and
finally from membrane A1 to membrane M1.

(3) Calculation of the maximum convention x1

Appl. Sci. 2023, 13, 8514 27 of 45

The relevant rules for implementing this function in class B membranes are as follows:

r1 : (m1 n1 → x, 1) r2 : (c− > y |x, 1) r3 : (m1 y→ m1 d, 2)
r4 : (x→ n1 |d, 3) r5 : (d→ c, 4) r6 : (n1 y→ n1 e g, 2)
r7 : (CreateSubMem Num→ B : b{} |n1 , 3)
r8 : (Num→ (Num, in all) |!CreateSubMem)
r9 : (g→ h, 3) r10 : (x→ (n1, in all)|h, 4) r11 : (n1 → (m1, in all)|h, 4)
r12 : (h→ (c, in all) |h, 5) r13 :

(
y→ z |!m1 & !n1 , 3

)
r14 : (x→ (z x, out)|z, 4)

r15 : (a→ λ, 1) r16 : (b→ λ, 1)

The procedure for finding the greatest common divisor x1 of intermediate values m
and n in a class B membrane is the same as that for finding the greatest common divisor x
in the division algorithm P System, as described in Section 4.2.2.

(4) Calculating the intermediate value simplification results k1, l1
The procedure for finding the m and n simplification results k1/l1 in membrane M1

is the same as that for simplifying k/l in the division algorithm P System, as described in
Section 4.2.2

(5) Compute the sequence {pi}, {qi}

r23 : (k1 → (k1, in all)|!o, 1); r24 : (l1 → (l1, in all)|!o, 1); r25 : (k1 → p, 2);
r23 : (k1 → (k1, in all)|!o, 1); r24 : (l1 → (l1, in all)|!o, 1); r25 : (k1 → p, 2);
r26 : (l1 → q, 2); r27 : (p→ (r, out)); r28 : (q→ (w, out));
r29 : (z→ (o1, out)); r30 : (r→ p q|o1); r31 : (w→ p|o1);
r32 :

(
w→ p q|!o1

)
; r33 :

(
r→ p|!o1

)
;

(i) Firstly, the membrane M1 sends k1,l1 to membrane A1 and then executes {r23, r24} to
gradually transfer k1 and l1 to the submembrane into the submembrane. When k1 and
l1 reaches the innermost membrane, the order of execution in the innermost class A
substratum is {r25, r26} → {r27, r28, r29}.
(a) Simultaneous execution of rules r25 and r26 translate the quantities of k1 and l1

into the initial values pt1 and qt1 ;
(b) Under the condition that multiset of ppi qqi exists within membrane

Ai(i = t1, . . . , 2, 1), simultaneous execution of r27, r28 conversion to rpi wqi is
passed directly to the parent membrane Ai−1, with r29 deciding whether or
not to execute based on the presence or absence of z in each layer, and. if the
layer has z, convert z into o1 and output it to the parent membrane.

(ii) The order of execution of all class A membranes is {r30, r31} → {r27, r28, r29} or
{r32, r33} → {r27, r28, r29}.
(a) If o1 is received from the parent membrane, it means that the minus number

changes to the minus number during the more phase derogation algorithm,
so it is necessary to convert the multiset rpi to ppi qpi and then the multiset
wqi to the object p. At this point, pi−1 = pi + qi, qi−1 = pi, i.e., the execution
{r30, r31}. If no o1 is passed in the substratum, it means that the decrement is
not replaced. Execute r32, r33 directly, converting objects w to p,q and r to p, i.e.,
pi−1 = pi + qi, qi−1 = qi.

(b) Any class A membrane with {r27, r28, r29} performs the same process as the
innermost submembrane, and finally membrane A1 performs {r27, r28} to
output the multiset rp1 wq1 to M1 in the membrane, which is then assigned
according to the size of the numerator and denominator: when the numer-
ator > denominator, the fraction simplification result is rp1 /wq1 ; when the nu-
merator < denominator, the objects r and w are swapped in membrane M1 and
transformed into w1 and r1, respectively, and the final fraction simplification
result is r1

q1 /w1
p1 .

Appl. Sci. 2023, 13, 8514 28 of 45

4.3.3. Examples of Fractional Simplification by Combining the Two Methods

In this subsection, we will give an example to describe in detail how to implement
fractional simplification in a P System using a combination of the more phase derogation
algorithm and the division algorithm. For example, the reduction process for a P System
taking a manifold of 15/40 with ξ = 20 is shown in Figure 10:

Appl. Sci. 2023, 13, 8514 29 of 47

(a) Simultaneous execution of rules r25 and r26translate the quantities of 𝑘1 𝑎𝑛𝑑 𝑙1

into the initial values 𝑝𝑡1
 and 𝑞𝑡1

;

(b) Under the condition that multiset of 𝑝𝑝𝑖𝑞𝑞𝑖 exists within membrane 𝐴𝑖(𝑖 =

𝑡1, … ,2,1), simultaneous execution of r27, r28 conversion to 𝑟𝑝𝑖𝑤𝑞𝑖 is passed di-

rectly to the parent membrane 𝐴𝑖−1, with r29 deciding whether or not to exe-

cute based on the presence or absence of z in each layer, and. if the layer has z,

convert z into 𝑜1 and output it to the parent membrane.

(ii) The order of execution of all class A membranes is {r30, r31} → {r27, r28, r29} or

{r32, r33} → {r27, r28, r29}.

(a) If o1 is received from the parent membrane, it means that the minus number

changes to the minus number during the more phase derogation algorithm, so

it is necessary to convert the multiset 𝑟𝑝𝑖 to 𝑝𝑝𝑖𝑞𝑝𝑖 and then the multiset 𝑤𝑞𝑖

to the object 𝑝 . At this point, 𝑝𝑖−1 = 𝑝𝑖 + 𝑞𝑖 , 𝑞𝑖−1 = 𝑝𝑖 , i.e., the execution

{r30, r31}. If no o1 is passed in the substratum, it means that the decrement is not

replaced. Execute r32, r33 directly, converting objects w to p,q and r to p, i.e.,

𝑝𝑖−1 = 𝑝𝑖 + 𝑞𝑖 , 𝑞𝑖−1 = 𝑞𝑖.

(b) Any class A membrane with {r27, r28, r29} performs the same process as the in-

nermost submembrane, and finally membrane 𝐴1 performs {r27, r28} to out-

put the multiset 𝑟𝑝1𝑤𝑞1 to 𝑀1 in the membrane, which is then assigned ac-

cording to the size of the numerator and denominator: when the numerator >

denominator, the fraction simplification result is 𝑟𝑝1/𝑤𝑞1; when the numerator

< denominator, the objects r and w are swapped in membrane 𝑀1 and trans-

formed into 𝑤1 and 𝑟1, respectively, and the final fraction simplification result

is 𝑟1
𝑞1/𝑤1

𝑝1.

4.3.3. Examples of Fractional Simplification by Combining the Two Methods

In this subsection, we will give an example to describe in detail how to implement

fractional simplification in a P System using a combination of the more phase derogation

algorithm and the division algorithm. For example, the reduction process for a P System

taking a manifold of 15/40 with ξ = 20 is shown in Figure 10:

A1

M1

B1

a15b40 a40b15 a25b15 m25n15 m25n15 m125n115 m15n110 m15n15

z5x5

B3

B2

z5x5 z5x5z5x5

k15l13 k15l13 k15l13

A2

p5q3 r5w3 r3w8 w18r13

Figure 10. Simplified flow chart for approximate differentiation of the two combined examples.

The following details the execution process of rules in this P System.

(1) Initial pattern

First, put the multiset 𝑎15𝑏40𝑐𝑡 in the membrane 𝑀1; where: the number of object a

is 15, which is used to represent the numerator of the partition; the number of object b is

40, which is used to represent the denominator. Preprocessing in membrane 𝑀1, execut-

Figure 10. Simplified flow chart for approximate differentiation of the two combined examples.

The following details the execution process of rules in this P System.
(1) Initial pattern
First, put the multiset a15b40ct in the membrane M1; where: the number of object a is

15, which is used to represent the numerator of the partition; the number of object b is 40,
which is used to represent the denominator. Preprocessing in membrane M1, executing
rules in the order r1 → r3 → r4 : execute rule r1 fifteen times until object a is fully consumed,
generating g15; execute rule r3 twenty-five times in the presence of object g, converting
multiset b25 to multiset b2

25 and generating multiset a25Num25 to be fed into submembranes
A1, B1; after executing rule r4, the multiset g15 generates the multiset a15b15Num15 and
feeds it into submembrane A1, B1; at this point, the multiset in membrane M1 is b2

25ct.
(2) More phase derogation algorithm

(i) At this time, the multiset in membrane A1 is a40b15d20cNum40 CreateSubMem, and
the order of execution of the rules is: {r1, r2} → r3 → r4 → r5 → r6 → {r 7, r13} →
{r8, r10, r14, r15}.
(a) Execute the rule r1, and the multiset a15b15 evolves to x15y15; while executing

the rule r2, the object c evolves to k, e, j;
(b) Execute the rule r3, and the multiset a25 evolved to a1

25u25i25; then the rule
r4 is executed to compare the numerical values of 25 and ξ, and generate the
multiset g20;

(c) Because of the remaining i5, the conditional execution rule r5 is met and the
multiset i5g5 evolves to f 5;

(d) Under the condition that the object f exists, execute the rule r6, and the multiset
y15u15 evolves to generate the multiset λ15;

(e) If object λ exists, the System executes the rule r7 to generates a new submem-
brane A2, while executing r13 to evolve u and e into object h;

(f) Simultaneous execution of rules r8, r10, r14, r15 and a25b15Num39c is passed di-
rectly into the newly created submembrane A2. At which point, the remaining
multiset in membrane A1 is λ15u9 f 5g15 j h.

(ii) At this point, the initialized multiset in membrane A2 is a25b15Num39c CreateSubMem,
and the rules are executed in the order {r1, r2} → r3 → r4 → r18 → {r19, r20} .

Appl. Sci. 2023, 13, 8514 29 of 45

(a) Execute the rule r1, and the multiset a15b15 evolves to multiset x15y15; while
executing the rule r2, c evolves to multiset k,e,j;

(b) Execute the rule r3, and the multiset a10 is evolved to a1
10u10i10; then execute

the rule r4 to evolve d10i10 to multiset g10; then the multiset in the membrane
A2 is x15, y15, a1

10, u10, g10, d10, k, e, j,Num39, CreateSubMem.
(c) Execute the rule r18 in the absence of object i and object f. The multiset g10

evolves into o10; by executing rule r19, r20 in the presence of o, the multisets
x15 and a1

10 evolve into the multisets m15n15 and m10, respectively, which are
transferred to the parent membrane A1.

At this point, the multiset in membrane A2 is y15, u10, o10, d10, k, e, j,Num39,
CreateSubMem, and the multiset in membrane A1 is m25, n15, λ15, u9, f 5, g15 j, h; execute
the rules r21, r22 simultaneously without object o; the multiset m25n15 is fed into the mem-
brane M1.

(3) Division algorithm

(i) The multiset in membrane B1 is m1
25n1

15cNum40CreateSubMem, and the rules are
executed in the order r1 → r2 → r3 → r4 → r5 .

(a) Implementation rules r1, multiset m1
15n1

15 evolves to x15; then execute the
rule r2 that evolves object c to y, subject to the existence of object x;

(b) Implementation rules r3, multiset m1y evolves to m1d; execute the rule r4 under
the condition that object d exists, so that x15 evolves into the multiplicity set
n1

15; then execute the rule r5, and the object d evolves to object c;

(ii) At this time, the multiset in membrane B1 is m1
10n1

15cNum40CreateSubMem, and the
rules are executed in the order r1 → r2 → r6 → {r7, r9} → {r8, r10, r11} → r12 .

(a) Execute the rule r1 that evolves m1
10n1

10 to the multiset x10; execute the rule
r2 to evolve c into y under the condition that object x exists; then execute the
rule r6 to evolve the multiset n1, y to n1, e, g;

(b) Execution rules r7, r9, consume CreateSubMem and a Num to generate a sub-
membrane B2, while the object g evolves to h;

(c) Under the condition that the multiset h exists, execute the rule r8, r10, r11 that
transfers the multiset Num39n1

10m1
5 to the membrane B2;

(d) Execute the rule r12, and the multiset h evolves into c and feeds into the
membrane B2.

(iii) The initialized multiset in membrane B2 is m1
5n1

10cNum39CreateSubMem. The rules
are executed in the same order r1 → r2 → r6 → {r7, r9} → {r8, r10, r11} → r12 . After
the rules are executed, the remaining multiset in membrane B2 is e. The multiset
obtained from membrane B3 is m1

5n1
5cNum38.

(iv) At this point, the initialized multiset in B3 is m1
5n1

5cNum38CreateSubMem. And the
rules are executed in the order r1 → r2 → r13 → r14 .

(a) Implementation rules r1, multiset m1
5n1

5 evolves to x5, and then, execute the
rule r2 to evolve c into the object y;

(b) Under the condition that there are no objects m1 and n1, execute rules r13 that
evolves y to z; at this point, the condition is met to execute r14, the multiset x5

evolves to z5x5 and is fed into membrane B2;

In membrane B2, continue to execute the rule r14 to generate the multiset z5x5 in
membrane B1; membrane B1 also executes the rule r14, and finally sends the multiset
z5x5 into the membrane M1; at this point, the number of x is the maximum number of
conventions x1.

(4) Calculate the median simplification result k1, l1
At this point, the multiset in membrane M1 is a1

25b1
15b2

25z5x5ct. The execution
process of the rule is the same as the approximate partitioning process of the example
in Section 4.2.3, and will not be described too much here. After the rule is executed, the

Appl. Sci. 2023, 13, 8514 30 of 45

multiset in membrane M1 is l13k1
5 f 5i5b2

25, and the multiset passed into membrane A1 is
l13k1

5.
(5) Calculate the final result

(i) At this point, the multiset in membrane A1 is λ15u9g15 f 5hjl13k1
5, and the condition is

met to execute rule r23, r24 to pass the multiset l13k1
5 into membrane A2, respectively.

(ii) When membrane A2 receives a multiset l13k1
5 from the parent membrane, the rules

are executed in the order {r25, r26} → {r27, r28}.
(a) First executing rule r25, r26 in membrane A2, converts the multisets k1

5 and l13

into p5 and q3, respectively;
(b) Then executing rule r27, r28 converts the multiset p5q3 into a multiset r5w3 to

pass directly into membrane A1;

(iii) The order of execution in membrane A1, at this time, is: {r32, r33} → {r27, r28}.
(a) In the absence of object o1, rule r32, r33 is executed at the same time, and the

multiset r5w3 evolves into p8q3;
(b) Execute rule r27, r28 to convert the multiset p8q3 to r8w3 and feed it into the

membrane M1.

(iv) When the membrane M1 receives the multiset r8w3, the object b2 is generated when
the rule is executed because the numerator is smaller than the denominator, so the
corresponding rule is executed to evolve the multiset r8w3 into the multiset w1

8r1
3.

At this time, the multiset in the membrane M1 is l13k1
5 f 5i5b2

25w1
8r1

3, and there is no
rule to execute in the System, so the whole System is stopped. The number of objects
w1 and r1 represent the values of denominator and numerator, respectively, so the
final reduction result of 15/40 is 3/8.

Table 3 shows the partial process of simplifying 15/40 in a combinatorial P System
Π3, including system initialization, obtaining the maximum convention x, calculating
the intermediate value reduction results k1, l1, and other key time slices. The complete
execution process is shown in Appendix A.

From the above process analysis, it is clear that the total time slice for this example is 61.

Table 3. Partial time slice of a combinatorial P System Π3.

Time Slice Rules for Implementation Results of the Implementation

Initial Status None
M1: a15, b40, c, t;

A1: c, d20, CreateSubMem;
B1: c, CreateSubMem;

2 M1: r3, r4;
M1: c, t, b2

25;
A1: a40, b15, d20, e, Num40, j, k, CreateSubMem;

B1: a40, b15, c, Num40, CreateSubMem;

7 A1: r13, r7, r10;

M1: c, t, b2
25;

A1: Num39, u9, f5, g15, x15, h, j, λ15, a1
25;

A2: c, d20, CreateSubMem;
B1: c, Num40, λ55, CreateSubMem;

13 A1: r30, r31;

M1: c, t, m25, n15, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, Num40, λ55, CreateSubMem;

14 M1: r6, r5;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, n1
15, m1

25, λ55, Num40, CreateSubMem;

Appl. Sci. 2023, 13, 8514 31 of 45

Table 3. Cont.

Time Slice Rules for Implementation Results of the Implementation

34 B1: r12;

M1: c, t, b1
15, b2

25, a1
25, x5, z5;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

54 M1: r20, r24;
A2: r23;

M1: l13, k1
5, f5, i5, w1

6, r1
3, b2

25;
A1: n1

15, m1
25, f5, k1, g15, h, j, r, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

61 M1: r24

M1: l13, k1
5, f5, i5, w1

8, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

62 No enforceable rules

5. Experimental Results

To determine the appropriate parameters ξ for the combination of the two methods, in
this experiment, we randomly selected 100 sets of data and used the P System simulation
software UPSimulator for validation analysis. We compared the steps obtained when
introducing different parameters into the data. The fewer steps, the shorter the time used,
and the better the rules.

5.1. Simulation Experiments

Various P System simulation tools are listed in the literature [24]. In this paper, we
make use of the P System simulation software UPSimulator (UPS for short), which is used
to read the P System model described by UPL and to perform simulation experiments on
the model. Therefore, this section first introduces the relevant knowledge of UPLanguage,
then introduces the UPSimulator simulation software, and finally provides an example to
demonstrate the simulation process.

5.1.1. UPSimulator: P System Simulation Software

In order to more conveniently describe the simulation model, literature [23] introduced
the language UPLanguage (UPL for short) for describing the P System, which is used to
describe the membrane structure, membrane properties, initial object multiset and rule sets
of the P System. It integrates object-oriented thinking and can define a membrane with
a certain function as a membrane class. Membranes can be used as a type of membrane,
and when used, only one statement is needed to instantiate a membrane of that type.
Membranes can also be inherited by another membrane, and the inherited membrane
will have all the content of that membrane and can also have its own unique content.
Meanwhile, in UPL, rules are described as having two parts: conditions and results,
allowing the characteristics of the rules to be arbitrarily combined.

UPL will be described using the BNF paradigm. In UPL, define a membrane class,
starting with the keyword ‘Membrane’, followed by the type of membrane (a combination
of letters), and the membrane content enclosed in parentheses:

<MembraneDef> ::=“Membrane”<MemType> [“extends”<MemType> { “,” <Mem-
Type> }] “{”{<Submembrane> | <Objects> | <RuleDef> | <Properties>}“}”

<MemType> ::= <Letters>
The ‘extensions’ section declares which membrane classes this membrane class inherits

from, and this section is optional.

Appl. Sci. 2023, 13, 8514 32 of 45

After introducing UPL to describe the simulation model, the author also designed
UPS simulation software, whose overall architecture is shown in Figure 11. When using the
P System to solve problems, the problem can be decomposed into a series of subtasks. For
each subtask, we can use one or more membranes to complete it, and each membrane that
completes these tasks is a membrane class. After constructing all the required membrane
classes, construct validation examples based on the problem, which is the simulation
environment. Then use a recognizer to identify the environment and the string composed
of all the membranes used. When the recognizer recognizes, it will continuously construct
conditions, results, rules, objects, and membranes based on the identified content and place
them inside the correct membranes. Finally, based on the identified simulation environment,
a skin membrane is constructed. The skin membrane and its internal submembranes will
evolve according to rules under the control of the controller, whose main function is to
ensure parallelism and randomness during membrane execution. The user interface will
display the status of the skin membrane in a timely manner, and users can also control
the entire simulation process through the interface. The specific design of the P System
description language and simulation software can be referred to in reference [23].

Appl. Sci. 2023, 13, 8514 34 of 47

Problem

Task

Membranes Environment

UPLanguage

UPSimulator

Result

Condition

Rule

Membrane

Object Passage

Membrane

Lexical
Analysis

Grammatical
Analysis

Semantic
Analysis

Controller
Skin

Membrane

User Interface

Recognizer

Emulator

Java class

Step 1: Testing Rules

Step 2: Consuming Object

Step 3: Setting Rules

Figure 11. Software structure of UPS.

5.1.2. Simulation examples

Taking 576/378 as an example, when ξ = 8, the initial interface is shown in Figure 12.

Figure 12. Initial state of the instance.

Figure 11. Software structure of UPS.

5.1.2. Simulation Examples

Taking 576/378 as an example, when ξ = 8, the initial interface is shown in Figure 12.

Appl. Sci. 2023, 13, 8514 33 of 45

Appl. Sci. 2023, 13, 8514 34 of 47

Problem

Task

Membranes Environment

UPLanguage

UPSimulator

Result

Condition

Rule

Membrane

Object Passage

Membrane

Lexical
Analysis

Grammatical
Analysis

Semantic
Analysis

Controller
Skin

Membrane

User Interface

Recognizer

Emulator

Java class

Step 1: Testing Rules

Step 2: Consuming Object

Step 3: Setting Rules

Figure 11. Software structure of UPS.

5.1.2. Simulation examples

Taking 576/378 as an example, when ξ = 8, the initial interface is shown in Figure 12.

Figure 12. Initial state of the instance. Figure 12. Initial state of the instance.

From Figure 12, it can be seen that the initial state in membrane m1 sets molecule
576 as the initial value of substance a, denominator 378 as the initial value of b (highlighted
in red box in Figure 12), assigns the number of experimental parameters ξ to substance d in
membrane a1, creates CreateSubMem to determine whether a new membrane is generated,
and both c and t are used to control the cycle. The final experimental results are shown in
Figure 13.

Appl. Sci. 2023, 13, 8514 35 of 47

From Figure 12, it can be seen that the initial state in membrane m1 sets molecule 576

as the initial value of substance a, denominator 378 as the initial value of b (highlighted in

red box in Figure 12), assigns the number of experimental parameters ξ to substance d in

membrane a1, creates CreateSubMem to determine whether a new membrane is gener-

ated, and both c and t are used to control the cycle. The final experimental results are

shown in Figure 13.

Figure 13. Example simulation results.

When the numerator is greater than or equal to the denominator (i.e., a ≥ b), the ex-

perimental result is r/w in membrane m1. When the numerator is less than the denomina-

tor (i.e., a < b), the experimental result is 𝑟1/𝑤1 in membrane 𝑀1. In this example, the

reduction result of 576/378 is 32/21 (highlighted in red box in Figure 13), and the total

number of steps consumed is 98.

5.2. Parameter Experiments

In this experiment, we randomly selected 100 sets of data and conducted validation

analysis using UPSimulator to compare the steps (i.e., the number of time slices) obtained

when introducing different parameters into the data. Group the digits with the larger

value in the numerator and denominator, with a minimum digit of one and a maximum

digit of six. A specific example of digit distribution is shown in Table 4.

Table 4. Range of experimental data values.

Serial Number Maximum Number of Digits Value Range Number of Groups

1 4 0–9999 40

2 5 100–99,999 30

3 6 1000–999,999 30

Among them, for the first group with a maximum number of digits of four, we take

the values of parameter ξ as 8, 20, 50, 100, 500, and 1000, respectively. For the second set

of data in Table 4, add the parameter ξ = 10,000. Add an additional parameter ξ = 100,000

to the third set of data. This experiment is to observe how different values of parameter ξ

will affect the execution efficiency of the system. Therefore, each parameter is randomly

obtained within different digits from small to large and has no specific meaning. In each

Figure 13. Example simulation results.

When the numerator is greater than or equal to the denominator (i.e., a ≥ b), the
experimental result is r/w in membrane m1. When the numerator is less than the denomi-
nator (i.e., a < b), the experimental result is r1/w1 in membrane M1. In this example, the
reduction result of 576/378 is 32/21 (highlighted in red box in Figure 13), and the total
number of steps consumed is 98.

Appl. Sci. 2023, 13, 8514 34 of 45

5.2. Parameter Experiments

In this experiment, we randomly selected 100 sets of data and conducted validation
analysis using UPSimulator to compare the steps (i.e., the number of time slices) obtained
when introducing different parameters into the data. Group the digits with the larger value
in the numerator and denominator, with a minimum digit of one and a maximum digit of
six. A specific example of digit distribution is shown in Table 4.

Table 4. Range of experimental data values.

Serial Number Maximum Number of Digits Value Range Number of Groups

1 4 0–9999 40
2 5 100–99,999 30
3 6 1000–999,999 30

Among them, for the first group with a maximum number of digits of four, we take
the values of parameter ξ as 8, 20, 50, 100, 500, and 1000, respectively. For the second set
of data in Table 4, add the parameter ξ = 10,000. Add an additional parameter ξ = 100,000
to the third set of data. This experiment is to observe how different values of parameter ξ
will affect the execution efficiency of the system. Therefore, each parameter is randomly
obtained within different digits from small to large and has no specific meaning. In each
P System that combines the two, parameter ξ exists in the form of substance d in class
A membranes, and the membrane rules are completely the same except for the different
quantities of substance d in the initial state. Due to the fact that the intermediate value
of each class A film needs to be compared with parameter ξ to determine whether to
switch from a more phase derogation algorithm to a division algorithm. Therefore, in class
A membranes, it is not allowed to transfer substance d to the parent or daughter membranes
to prevent changes in the x value in each layer of the membrane. For each generation of
a class A membrane, ξ d objects are fixed in the membrane and initialized. Due to the
different ranges of parameter values, three sets of data were statistically analyzed separately.

5.2.1. Four-Digit Experimental Result

For forty randomly selected sets of data, each set of data will have six parameters
substituted for the experiment, and the experimental results will be tabulated for statistical
analysis. Because the number of steps may vary greatly when different parameters are used
for experiments, in order to make the broken line of parameter ξwith the least number of
steps more obvious, all the following line charts may be incomplete due to the long number
of steps. This phenomenon is normal and not statistically incomplete.

According to the discount Figure 14 made based on the experimental results, it can
be seen that out of the 40 randomly selected sets of data, 39 sets of data required the least
number of steps for the experiment when the parameter ξ = 8, and only one set of data had
the least number of steps when ξ = 100, while the experimental steps for each set of data
reached the highest value when ξ = 1000. Therefore, a preliminary conclusion is drawn that
in the reduction process of fractions with a maximum of four digits, it is more appropriate
to use the combination of the more phase derogation algorithm and the division algorithm
with parameter ξ = 8.

5.2.2. Five-Digit Experimental Result

For thirty randomly selected sets of data, each set of data will have seven param-
eters substituted for the experiment, and the experimental results will be tabulated for
statistical analysis.

According to the discount Figure 15 made based on the experimental results, it can
be seen that among the 30 randomly selected sets of data, each set of data requires the
least number of experimental steps when the parameter ξ = 8, while the experimental
steps for each set of data reach the highest value when ξ = 10,000. Therefore, a preliminary

Appl. Sci. 2023, 13, 8514 35 of 45

conclusion is drawn that in the reduction process of fractions with a maximum number
of five digits, it is more appropriate to use the combination of the more phase derogation
algorithm and the division algorithm and also take the parameter ξ = 8.

Appl. Sci. 2023, 13, 8514 36 of 47

P System that combines the two, parameter ξ exists in the form of substance d in class A

membranes, and the membrane rules are completely the same except for the different

quantities of substance d in the initial state. Due to the fact that the intermediate value of

each class A film needs to be compared with parameter ξ to determine whether to switch

from a more phase derogation algorithm to a division algorithm. Therefore, in class A

membranes, it is not allowed to transfer substance d to the parent or daughter membranes

to prevent changes in the x value in each layer of the membrane. For each generation of a

class A membrane, ξ d objects are fixed in the membrane and initialized. Due to the dif-

ferent ranges of parameter values, three sets of data were statistically analyzed separately.

5.2.1. Four-Digit Experimental Result

For forty randomly selected sets of data, each set of data will have six parameters

substituted for the experiment, and the experimental results will be tabulated for statisti-

cal analysis. Because the number of steps may vary greatly when different parameters are

used for experiments, in order to make the broken line of parameter ξ with the least num-

ber of steps more obvious, all the following line charts may be incomplete due to the long

number of steps. This phenomenon is normal and not statistically incomplete.

According to the discount Figure 14 made based on the experimental results, it can

be seen that out of the 40 randomly selected sets of data, 39 sets of data required the least

number of steps for the experiment when the parameter ξ = 8, and only one set of data

had the least number of steps when ξ = 100, while the experimental steps for each set of

data reached the highest value when ξ = 1000. Therefore, a preliminary conclusion is

drawn that in the reduction process of fractions with a maximum of four digits, it is more

appropriate to use the combination of the more phase derogation algorithm and the divi-

sion algorithm with parameter ξ = 8.

Figure 14. Four-digit parameter comparison line chart.

5.2.2. Five-Digit Experimental Result

For thirty randomly selected sets of data, each set of data will have seven parameters

substituted for the experiment, and the experimental results will be tabulated for statisti-

cal analysis.

According to the discount Figure 15 made based on the experimental results, it can

be seen that among the 30 randomly selected sets of data, each set of data requires the

least number of experimental steps when the parameter ξ = 8, while the experimental steps

for each set of data reach the highest value when ξ = 10,000. Therefore, a preliminary con-

clusion is drawn that in the reduction process of fractions with a maximum number of

0

50

100

150

200

250

300

350

400

450

Four digits parameter comparison line chart

ξ=8 ξ=20 ξ=50 ξ=100 ξ=500 ξ=1000

Figure 14. Four-digit parameter comparison line chart.

Appl. Sci. 2023, 13, 8514 37 of 47

five digits, it is more appropriate to use the combination of the more phase derogation

algorithm and the division algorithm and also take the parameter ξ = 8.

Figure 15. Five-digit parameter comparison line chart.

5.2.3. Six-Digit Experimental Result

For thirty randomly selected sets of data, each set of data will have eight parameters

substituted for the experiment, and the experimental results will be tabulated for statisti-

cal analysis.

According to the discount Figure 16 made based on the experimental results, it can

be seen that out of the 30 randomly selected sets of data, 29 required the least number of

steps for the experiment when the parameter ξ = 8, and only one set of data had the least

number of steps when ξ = 20, while the experimental steps for each set of data reached the

highest value when ξ = 100,000. Therefore, a preliminary conclusion is drawn that in the

reduction process of fractions with a maximum of six digits, it is more appropriate to use

the combination of the more phase derogation algorithm and the division algorithm and

also take the parameter ξ = 8.

Figure 16. Six-digit parameter comparison line chart.

0

100

200

300

400

500

Five digits parameter comparison line chart

ξ=8 ξ=20 ξ=50 ξ=100

ξ=500 ξ=1000 ξ=10,000

0

100

200

300

400

500

600

Six digits parameter comparison line chart

ξ=8 ξ=20 ξ=50 ξ=100

ξ=500 ξ=1000 ξ=10,000 ξ=100,000

Figure 15. Five-digit parameter comparison line chart.

5.2.3. Six-Digit Experimental Result

For thirty randomly selected sets of data, each set of data will have eight parame-
ters substituted for the experiment, and the experimental results will be tabulated for
statistical analysis.

According to the discount Figure 16 made based on the experimental results, it can
be seen that out of the 30 randomly selected sets of data, 29 required the least number of
steps for the experiment when the parameter ξ = 8, and only one set of data had the least
number of steps when ξ = 20, while the experimental steps for each set of data reached the
highest value when ξ = 100,000. Therefore, a preliminary conclusion is drawn that in the
reduction process of fractions with a maximum of six digits, it is more appropriate to use
the combination of the more phase derogation algorithm and the division algorithm and
also take the parameter ξ = 8.

Appl. Sci. 2023, 13, 8514 36 of 45

Appl. Sci. 2023, 13, 8514 37 of 47

five digits, it is more appropriate to use the combination of the more phase derogation

algorithm and the division algorithm and also take the parameter ξ = 8.

Figure 15. Five-digit parameter comparison line chart.

5.2.3. Six-Digit Experimental Result

For thirty randomly selected sets of data, each set of data will have eight parameters

substituted for the experiment, and the experimental results will be tabulated for statisti-

cal analysis.

According to the discount Figure 16 made based on the experimental results, it can

be seen that out of the 30 randomly selected sets of data, 29 required the least number of

steps for the experiment when the parameter ξ = 8, and only one set of data had the least

number of steps when ξ = 20, while the experimental steps for each set of data reached the

highest value when ξ = 100,000. Therefore, a preliminary conclusion is drawn that in the

reduction process of fractions with a maximum of six digits, it is more appropriate to use

the combination of the more phase derogation algorithm and the division algorithm and

also take the parameter ξ = 8.

Figure 16. Six-digit parameter comparison line chart.

0

100

200

300

400

500

Five digits parameter comparison line chart

ξ=8 ξ=20 ξ=50 ξ=100

ξ=500 ξ=1000 ξ=10,000

0

100

200

300

400

500

600

Six digits parameter comparison line chart

ξ=8 ξ=20 ξ=50 ξ=100

ξ=500 ξ=1000 ξ=10,000 ξ=100,000

Figure 16. Six-digit parameter comparison line chart.

5.2.4. Summary of Parameter Experiments

Based on the comparison results of the above experiments, we can draw a specific
conclusion: for the vast majority of data sets, when the parameter ξ value is 8, the steps
required for the UPS experiment are the least, while the larger the parameter ξ value, the
more steps required for the UPS experiment. When the ξ value exceeds a certain range, the
steps required for the experiment do not change.

Based on the properties and functions of parameter ξ, the smaller the value of pa-
rameter ξ, the longer it takes for the system to transition from more phase derogation to
division. That is to say, when conducting experiments on the same set of data, the larger
the proportion of execution time that is reduced, the higher the efficiency of the system.
From the perspective of limit, when ξ gets smaller and smaller until it approaches zero, it
means that only when the difference between the larger value and the smaller value is less
than zero can it be converted to the Euclidean algorithm. For the positive integer fractional
reduction membrane system designed in this article without considering symbols, there
is no case where the difference is less than zero. Therefore, in the combination of the two
methods, only the first part of the more phase derogation method is used, and only the
rules in membrane M1 and class A membranes are executed. There is no need to use class
B membranes for rolling and dividing to obtain the results. However, when ξ becomes
larger and larger and the difference between the numerator and denominator is even larger,
only membrane A1 of type A films normally executes the subtraction rule. After judging
the difference and the size of ξ, directly use type B films to use the Euclidean algorithm
method. At this time, the initial value of membrane B1 is the initial value of the numerator
and denominator, which means that in this case, only the second part of the Euclidean
algorithm is performed.

Through the above analysis on the limit, we have a new guess: when comparing the
more phase derogation method, the Euclidean algorithm method, and the combination of
the two methods, is the number of time slices for the more phase derogation the least?

5.3. Comparative Experiment of Three Methods

We will substitute all 100 sets of data into the combination of the more phase derogation
algorithm, the division algorithm, and the optimal parameter ξ = 8 obtained from the
experiment in Section 5.2 for experiments. The experimental results will be tabulated for
statistical analysis.

Appl. Sci. 2023, 13, 8514 37 of 45

According to the discount Figure 17 made based on the experimental results, it can be
seen that out of the 100 randomly selected sets of data, 99 sets of data required the least
number of steps when using the more phase subtraction method for the experiment, and
only one set of data consumed the least number of steps when using the division algorithm.
Ninety-nine percent of the data steps reached the highest value when using the division
algorithm for the experiment. The number of steps consumed by ξ = 8 is mostly in the
middle of the steps consumed by the more phase derogation algorithm and the division
algorithm, and in a few cases, it overlaps with the division algorithm.

Appl. Sci. 2023, 13, 8514 39 of 47

Figure 17. Step number comparison of three methods in a line chart.

Analyzing the case of ξ = 8 in conjunction with Section 5.2.4: In the method of com-

bining the two, regardless of the data values of the numerator and denominator, when the

difference is less than eight, the P System needs to convert from a more phase derogation

algorithm to a division algorithm for calculation. However, the implementation rules of a

class A membrane in the first part are actually consistent with those of a class A membrane

in the more phase derogation algorithm P System. If the maximum common divisor of the

numerator and denominator is not less than eight, the final result can be obtained directly

by the more phase derogation algorithm without passing out the intermediate value in

the innermost membrane. At this point, the steps of combining the two in the P System

are the same as the steps of reducing the loss of the P System, so it is necessary to focus

on the impact of other rules on the time slices. However, the rule that multiset in all mem-

branes realizes one-way transmission between membranes is only executed once, which

has little impact on the total steps in the whole System. Therefore, the main reason for the

increase in time slices is the rolling division.

According to the execution process of the Section 4.2.2 division membrane rules, it

can be seen that our designed film rule actually converts division into subtraction: the

process of dividing a larger value by a smaller value to obtain a remainder is converted

into the process of subtracting a larger value by an integer multiple of the smaller value.

When the P System determines that subtraction cannot continue, the remaining value is

the remainder. Repeat this step until the maximum common divisor is found when there

is no remainder. Therefore, only one subtraction is needed for each layer of class A mem-

brane in the more phase derogation P System, and then the object is directly transferred

to the submembrane, while the division P System is to subtract an integer multiple in each

layer until the rules of this layer cannot be executed, then the Multiset can be transferred

to the inner membrane, and then the same rules are executed in the inner membrane until

the maximum common divisor is found. For this reason, in theoretical applications, every

time a division is performed, it actually requires multiple subtractions in the P System,

resulting in a much higher cumulative number of subtractions compared to using the

more phase derogation method alone.

Therefore, the final experimental conclusion is drawn: in the process of fractional re-

duction, the efficiency is higher when using a more phase derogation algorithm P System.

Or, to put it another way, it is also correct: in a combined P system, when the parameter ξ

is set to 0, the efficiency of the system is the highest.

0

100

200

300

400

500

600

700

800

Step number comparison of three methods line chart

More phase derogation algorithm Division algorithm ξ=8

Figure 17. Step number comparison of three methods in a line chart.

Analyzing the case of ξ = 8 in conjunction with Section 5.2.4: In the method of
combining the two, regardless of the data values of the numerator and denominator, when
the difference is less than eight, the P System needs to convert from a more phase derogation
algorithm to a division algorithm for calculation. However, the implementation rules of
a class A membrane in the first part are actually consistent with those of a class A membrane
in the more phase derogation algorithm P System. If the maximum common divisor of the
numerator and denominator is not less than eight, the final result can be obtained directly
by the more phase derogation algorithm without passing out the intermediate value in the
innermost membrane. At this point, the steps of combining the two in the P System are
the same as the steps of reducing the loss of the P System, so it is necessary to focus on the
impact of other rules on the time slices. However, the rule that multiset in all membranes
realizes one-way transmission between membranes is only executed once, which has little
impact on the total steps in the whole System. Therefore, the main reason for the increase
in time slices is the rolling division.

According to the execution process of the Section 4.2.2 division membrane rules, it
can be seen that our designed film rule actually converts division into subtraction: the
process of dividing a larger value by a smaller value to obtain a remainder is converted
into the process of subtracting a larger value by an integer multiple of the smaller value.
When the P System determines that subtraction cannot continue, the remaining value is the
remainder. Repeat this step until the maximum common divisor is found when there is no
remainder. Therefore, only one subtraction is needed for each layer of class A membrane
in the more phase derogation P System, and then the object is directly transferred to the
submembrane, while the division P System is to subtract an integer multiple in each layer
until the rules of this layer cannot be executed, then the Multiset can be transferred to the
inner membrane, and then the same rules are executed in the inner membrane until the

Appl. Sci. 2023, 13, 8514 38 of 45

maximum common divisor is found. For this reason, in theoretical applications, every time
a division is performed, it actually requires multiple subtractions in the P System, resulting
in a much higher cumulative number of subtractions compared to using the more phase
derogation method alone.

Therefore, the final experimental conclusion is drawn: in the process of fractional
reduction, the efficiency is higher when using a more phase derogation algorithm P System.
Or, to put it another way, it is also correct: in a combined P system, when the parameter ξ
is set to 0, the efficiency of the system is the highest.

6. Conclusions

Membrane computing is a computational model abstracted from the functions and
structures of living biological cells and the tissues or organs made up of cells and is a branch
of biological computing. It is distributed, parallel and non-deterministic in nature. Membrane
computing has developed very rapidly, and its methods have been applied to fields such
as theoretical computing, image processing and bioinformatics. In this paper, we study the
fraction simplification problem in numerical computation, improve the traditional fraction
simplification method from the perspective of computational parallelism, and design three
fractional reduction P System Π1, Π2 and Π3. Among them, Π1 is a P System design based
on improved parallelization of the more phase derogation algorithm; Π2 is a P System
design based on improved parallelization of the division algorithm, and Π3 is a P System
designed by combining Π1 and Π2 Systems. The feasibility and effectiveness of these P
System evolution rules are verified by experiments on the simulation software UPSimulator.
From the comparison experiments of the three P Systems, it is clear that the P System Π1
based on the more phase derogation algorithm has higher computational efficiency.

From another point of view, both the more phase derogation P System and the P System
combining the two methods are more efficient than the Euclidean P System in finding the
greatest common divisor. However, the rolling division is widely used. This algorithm can
be used to obtain the least common multiple of two numbers and the maximum common
subsequence, and it even has some connection with the RSA algorithm in Cryptography.
In future research, we can also optimize other problems that can be solved by the Euclid
algorithm so that the P System can achieve higher efficiency.

Fractional reduction is a frequently used calculation in numerical computation, and
improving its computational efficiency is one of the most effective ways to improve numer-
ical computation efficiency. Designing P systems with more efficient fractional reduction
methods and fewer evolutionary rules is still worth further research.

Author Contributions: Conceptualization, H.N. and J.Z.; methodology, Y.K.; validation, Y.K., J.Z. and
L.B.; formal analysis, M.Z.; investigation, H.N.; resources, M.Z.; data curation, Y.K.; writing—original
draft preparation, J.Z.; writing—review and editing, Y.K. and J.Z.; visualization, J.Z.; supervision,
H.N.; project administration, L.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Science and Technology Research Program of
Chongqing Municipal Education Commission (Grant No. KJQN201901133).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in insert article.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 8514 39 of 45

Appendix A

Table A1. The complete process of simplifying 15/40 using the combined P system Π3 (complete
data for Table 3).

Time Slice Rules for Implementation Results of the Implementation

Initial Status None
M1: a15, b40, c, t;

A1: c, d20, CreateSubMem;
B1: c, CreateSubMem;

1 M1: r1; A1: r2

M1: b25, c, t, g15;
A1: d20, e, j, k, CreateSubMem;

B1: c, CreateSubMem;

2 M1: r3, r4;
M1: c, t, b2

25;
A1: a40, b15, d20, e, Num40, j, k, CreateSubMem;

B1: a40, b15, c, Num40, CreateSubMem;

3 A1: r3, r1;
B1: r14, r13;

M1: c, t, b2
25;

A1: d20, e, Num40, u25, x15, y15, i25, j, k, CreateSubMem, a1
25;

B1: c, Num40, λ55, CreateSubMem;

4 A1: r4;
M1: c, t, b2

25;
A1: e, Num40, u25, g20, x15, y15, i5, j, k, CreateSubMem, a1

25;
B1: c, Num40, λ55, CreateSubMem;

5 A1: r5;
M1: c, t, b2

25;
A1: e, Num40, u25, f5, g15, x15, y15, j, k, CreateSubMem, a1

25;
B1: c, Num40, λ55, CreateSubMem;

6 A1: r6;
M1: c, t, b2

25;
A1: e, Num40, u10, f5, g15, x15, j, lan15, k, CreateSubMem, a1

25;
B1: c, Num40, λ55, CreateSubMem;

7 A1: r13, r7, r10;

M1: c, t, b2
25;

A1: Num39, u9, f5, g15, x15, h, j, λ15, a1
25;

A2: c, d20, CreateSubMem;
B1: c, Num40, λ55, CreateSubMem;

8 A1: r8, r14, r15;
A2: r2;

M1: c, t, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: a25, b15, d20, Num39, e, j, k, CreateSubMem;

B1: c, Num40, λ55, CreateSubMem;

9 A2: r1, r3;

M1: c, t, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: d20, Num39, e, u10, x15, y15, i10, j, k, CreateSubMem, a1

10;
B1: c, Num40, λ55, CreateSubMem;

10 A2: r4;

M1: c, t, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, g10, x15, y15, j, k, CreateSubMem, a1

10;
B1: c, Num40, λ55, CreateSubMem;

11 A2: r16;

M1: c, t, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, x15, y15, j, k, CreateSubMem, o10, a1

10;
B1: c, Num40, λ55, CreateSubMem;

12 A2: r17, r18;

M1: c, t, b2
25;

A1: u9, f5, g15, h, j, λ15, m25, n15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, Num40, λ55, CreateSubMem;

Appl. Sci. 2023, 13, 8514 40 of 45

Table A1. Cont.

Time Slice Rules for Implementation Results of the Implementation

13 A1: r30, r31;

M1: c, t, m25, n15, b2
25;

A1: u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, Num40, λ55, CreateSubMem;

14 M1: r6, r5;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, n1
15, m1

25, λ55, Num40, CreateSubMem;

15 B1: r1, r15;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: c, m1
10, x15, Num39, λ55;

B2: CreateSubMem;

16 B1: r16, r2;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1:m1
10, x15, λ55, y;

B2: Num39, CreateSubMem;

17 B1: r3;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: d, m1
10, x15, λ55;

B2: Num39, CreateSubMem;

18 B1: r5, r4;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: n1
15, c, m1

10, λ55;
B2: Num39, CreateSubMem;

19 B1: r1;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: n1
5, c, x10, λ55;

B2: Num39, CreateSubMem;

20 B1: r2;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: n1
5, x10, y, λ55;

B2: Num39, CreateSubMem;

21 B1: r6;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: n1
5, x10, e, g, λ55;

B2: Num39, CreateSubMem;

22 B1: r7;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: n1
5, x10, e, h, λ55;

B2: Num39, CreateSubMem;

23 B1: r8, r9, r10;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: n1

10, c, m1
5, Num39, CreateSubMem;

Appl. Sci. 2023, 13, 8514 41 of 45

Table A1. Cont.

Time Slice Rules for Implementation Results of the Implementation

24 B2: r1, r15;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: n1

5, c, x5, Num38;
B3: CreateSubMem;

25 B2: r2, r16;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: n1

5, x5, y;
B3: Num38, CreateSubMem;

26 B2: r6;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: n1

5, x5, e, g;
B3: Num38, CreateSubMem;

27 B2: r7;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: n1

5, x5, e, h;
B3: Num38, CreateSubMem;

28 B2: r8, r9, r10;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: e;

B3: n1
5, m1

5, c, Num38, CreateSubMem;

29 B3: r1, r15;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55; B2: e;
B3: c, Num37, x5; B4: CreateSubMem;

30 B3: r16, r2;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55; B2: e; B3: y, x5;
B4: Num37, CreateSubMem;

31 B3: r11;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55; B2: e;
B3: z, x5;

B4: Num37, CreateSubMem;

32 B3: r12;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55;
B2: e, x5, z5;

B3: z; B4: Num37, CreateSubMem;

Appl. Sci. 2023, 13, 8514 42 of 45

Table A1. Cont.

Time Slice Rules for Implementation Results of the Implementation

33 B2: r12;

M1: c, t, b1
15, b2

25, a1
25;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, x5, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

34 B1: r12;

M1: c, t, b1
15, b2

25, a1
25, x5, z5;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

35 M1: r7, r13;

M1: c, t, f5, i5, b1
10, b2

25, a1
20;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

36 M1: r8, r14;

M1: e, f5, i5, b1
10, b2

25, a1
20;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

37 M1: r9, r15;

M1: d, f5, h, i5, b1
10, b2

25, a1
20;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

38 M1: r10, r11, r16, r17;

M1: c, t, z5, x5, k, l, b1
10, b2

25, a1
20;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

39 M1: r7, r13, r20, r21

M1: c, t, f5, i5, k1, l1, b1
5, b2

25, a1
15;

A1: n1
15, m1

25, u9, f5, g15, k1, l1, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: k1, l1, e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

40 A1: r19, r20;
M1: r8, r14;

M1: e, f5, i5, k1, l1, b1
5, b2

25, a1
15;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: d10, Num39, e, u10, k1, l1, y15, j, k, CreateSubMem, o10;

B1: k1, l1, e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

41 A2: r21, r22;
M1: r9, r15;

M1: d, f5, i5, k1, l1, b1
5, b2

25, a1
15;

A1: n1
15, m1

25, u9, f5, g15, h, j, λ15;
A2: q, p, d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: k1, l1, e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

42 A2: r24, r23;
M1: r10, r11, r16, r17;

M1: c, t, k1, l1, x5, z5, k, l, b1
5, b2

25, a1
15;

A1: r, n1
15, m1

25, u9, f5, g15, w, h, j, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: k1, l1, e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

Appl. Sci. 2023, 13, 8514 43 of 45

Table A1. Cont.

Time Slice Rules for Implementation Results of the Implementation

43 M1: r7, r13, r20, r21;
A1: r28, r29;

M1: c, t, k1
2, l12, f5, i5, b2

25, a1
10;

A1: n1
15, m1

25, l1, k1, f5, g15, h, j, p2, q, u9, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: k1
2, l12, e, λ55, z5;

B2: e, z5; B3: z; B4: Num37, CreateSubMem;

44 M1: r8, r14;
A1: r19, r20, r23, r24;

M1: r2, k1
2, e, l12, f5, w, i5, y, b2

25, a1
10;

A1: n1
15, m1

25, f5, g15, h, j, u9, λ15;
A2: d10, Num39, e, u10, l1, k1, y15, j, k, CreateSubMem, o10;

B1: k1
2, l12, e, λ55, z5;

B2: e, z5; B3: z; B4: Num37, CreateSubMem;

45 M1: r9, r18, r22 r23;
A2: r21, r22;

M1: d, l12, k1
2, f5, i5, λ2, l, r1, b2

25, a1
10;

A1: n1
15, m1

25, f5, g15, h, j, u9, λ15;
A2: q, d10, Num39, e, u10, y15, j, k, CreateSubMem, o10, p;

B1: k1
2, l12, e, λ55, z5;

B2: e, z5; B3: z; B4: Num37, CreateSubMem;

46 M1: r10, r11, r21 r24;
A2: r23, r24;

M1: c, l13, k1
2, f5, x5, w1

2, k, r1, b2
25, a1

10;
A1: n1

15, m1
25, l1, f5, g15, h, j, r, u9, w, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: k1

2, l13, e, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

47 M1: r7, r20;
A1: r20, r28, r29;

M1: c, l13, k1
3, f5, i5, w1

2, r1, b2
25, a1

5;
A1: n1

15, m1
25, f5, k1, g15, h, j, p2, q, u9, λ15;

A2: d10, Num39, e, u10, l1, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

3, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

48
M1: r8;

A1: r19, r23, r24;
A2: r22;

M1: r2, l13, k1
3, f5, w, i5, y, w1

2, r1, b2
25, a1

5;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: q, k1, d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

3, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

49 M1: r9, r22, r23;
A2: r21, r24;

M1: d, l13, k1
3, f5, i5, w1

2, lan2, r1
2, b2

25, a1
5;

A1: n1
15, m1

25, f5, g15, h, j, u9, w, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;

B1: e, l13, k1
3, λ55, z5;

B2: e, z5; B3: z; B4: Num37, CreateSubMem;

50
M1: r10, r11, r24;

A1: r28;
A2: r23;

M1: c, l13, k1
3, f5, x5, w1

4, k, r1
2, b2

25, a1
5;

A1: n1
15, m1

25, f5, g15, h, j, p, q, r, u9, λ15;
A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10, p;

B1: e, l13, k1
3, λ55, z5;

B2: e, z5; B3: z; B4: Num37, CreateSubMem;

51 M1: r7, r20;
A1: r23, r24, r29;

M1: r, c, l13, k1
4, f5, w, i5, w1

4, r1
2, b2

25;
A1: n1

15, m1
25, f5, g15, k1, h, j, p, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10, p;
B1: e, l13, k1

4, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

52 M1: r8, r22, r23;
A1: r19, r23;

M1: r, l13, k1
4, f5, i5, y, w1

4, λ, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, k1, j, k, CreateSubMem, o10;
B1: e, l13, k1

4, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

Appl. Sci. 2023, 13, 8514 44 of 45

Table A1. Cont.

Time Slice Rules for Implementation Results of the Implementation

53 M1: r12, r22, r24;
A2: r21;

M1: l13, k1
4, f5, i5, w1

5, λ, k, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10, p;
B1: e, l13, k1

4, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

54 M1: r20, r24;
A2: r23;

M1: l13, k1
5, f5, i5, w1

6, r1
3, b2

25;
A1: n1

15, m1
25, f5, k1, g15, h, j, r, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

55 A1: r19, r29;

M1: l13, k1
5, f5, i5, w1

6, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, p, u9, λ15;

A2: d10, Num39, e, u10, k1, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

56 A1: r23;
A2: r21;

M1: r, l13, k1
5, f5, i5, w1

6, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10, p;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

57 M1: r22;
A2: r23;

M1: l13, k1
5, f5, i5, w1

6, r1
3, b2

25, λ;
A1: n1

15, m1
25, f5, g15, h, j, r, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

58 M1: r24;
A1: r29;

M1: l13, k1
5, f5, i5, w1

7, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, p, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

59 A1: r23;

M1: r, l13, k1
5, f5, i5, w1

7, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

60 M1: r22

M1: l13, k1
5, f5, i5, w1

7, r1
3, b2

25, λ;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

61 M1: r24

M1: l13, k1
5, f5, i5, w1

8, r1
3, b2

25;
A1: n1

15, m1
25, f5, g15, h, j, u9, λ15;

A2: d10, Num39, e, u10, y15, j, k, CreateSubMem, o10;
B1: e, l13, k1

5, λ55, z5;
B2: e, z5; B3: z; B4: Num37, CreateSubMem;

62 No enforceable rules

References
1. de Castro, N.L. Fundamentals of natural computing: An overview. Phys. Life Rev. 2007, 4, 1–36. [CrossRef]
2. Păun, G.; Mario, J.P.-J. Membrane computing: Brief introduction, recent results and applications. Biosystems 2006, 85, 11–22.

[CrossRef] [PubMed]
3. Păun, G. A quick introduction to membrane computing. J. Log. Algebraic Program. 2010, 79, 291–294. [CrossRef]

https://doi.org/10.1016/j.plrev.2006.10.002
https://doi.org/10.1016/j.biosystems.2006.02.001
https://www.ncbi.nlm.nih.gov/pubmed/16650521
https://doi.org/10.1016/j.jlap.2010.04.002

Appl. Sci. 2023, 13, 8514 45 of 45

4. Pérez Hurtado de Mendoza, I.; Orellana Martín, D.; Martínez del Amor, M.Á.; Valencia Cabrera, L. A Membrane Computing
Framework for Social Navigation in Robotics. Comput. Electr. Eng. 2021, 95, 107408. [CrossRef]

5. Mohan, B.S.; Mahmood, A.A.; Mohammed, M.Q.; Zaki, N.D. Replicating the MAP Kinase Cascade in Membrane Computing; IOP
Publishing: Bristol, UK, 2021; Volume 1963, p. 012156.

6. Frisco, P.; Gheorghe, M.; Pérez-Jiménez, M.J. Applications of Membrane Computing in Systems and Synthetic Biology; Springer:
Berlin/Heidelberg, Germany, 2014; ISBN 3-319-03191-0.

7. Ciobanu, G.; Păun, G.; Pérez-Jiménez, M.J. Applications of Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2006;
Volume 17.

8. Atanasiu, A.; Carlos, M. Arithmetic with membranes. In Proceedings of the Workshop on Mutiset Processing, Dubrovnik, Croatia,
29 June 2000; pp. 1–17.

9. Ciobanu, G. A Programming perspective of the membrane systems. Int. J. Comput. Commun. Control 2006, 1, 13–24. [CrossRef]
10. Guo, P.; Jing, C. Arithmetic operation in membrane system. In Proceedings of the 2008 International Conference on BioMedical

Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 1, pp. 231–234.
11. Guo, P.; Zhang, H. Arithmetic operation in single membrane. In Proceedings of the 2008 International Conference on Computer

Science and Software Engineering, Wuhan, China, 12–14 December 2008; Volume 3, pp. 532–535.
12. Guo, P.; Luo, M. Signed numbers arithmetic operation in multi-membrane. In Proceedings of the 2009 First International

Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009; pp. 393–396.
13. Guo, P.; Liu, S.J. Arithmetic expression evaluation in membrane computing with priority. In Advanced Materials Research; Trans

Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 225, pp. 1115–1119.
14. Guo, P.; Chen, H.; Zheng, H. Arithmetic expression evaluations with membranes. Chin. J. Electron. 2014, 23, 55–60. Available

online: https://cje.ejournal.org.cn/article/id/8163 (accessed on 16 July 2022).
15. Guo, P.; Chen, H. Arithmetic expression evaluation by P systems. Appl. Math 2013, 7, 549–553. [CrossRef]
16. Guo, P.; Zheng, H.; Chen, H.; Chen, J. Fraction arithmetic operations performed by P systems. Chin. J. Electron. 2013, 22, 690–694.
17. Rich, A.D.; Stoutemyer, D.R. Representation. Simplification and Display of Fractional Powers of Rational Numbers in Computer

Algebra. arXiv 2013, arXiv:1302.2169.
18. Guo, P.; Zhang, H.; Chen, H.; Liu, R. Fraction reduction in membrane systems. Sci. World J. 2014, 2014, 858527. [CrossRef]

[PubMed]
19. Păun, G. From cells to computers: Computing with membranes (P systems). Biosystems 2001, 59, 139–158. [CrossRef] [PubMed]
20. Martın-Vide, C.; Gheorghe, P.; Alfonso, R.-P. On P systems with membrane creation. Comput. Sci. J. Mold. 2001, 9, 26.
21. Backhouse, R.; Joao, F.F. On Euclid’s algorithm and elementary number theory. Sci. Comput. Program. 2011, 76, 160–180. [CrossRef]
22. Rogers, H. The Euclidean Algorithm as a Means of Simplifying Fractions. Arith. Teach. 1970, 17, 657–662. [CrossRef]
23. Guo, P.; Quan, C.; Ye, L. UPSimulator: A general P system simulator. Knowl.-Based Syst. 2019, 170, 20–25. [CrossRef]
24. Raghavan, S.; Chandrasekaran, K. Tools and simulators for membrane computing—A literature review. In Bio-Inspired Computing—

Theories and Applications; Gong, M., Pan, L., Song, T., Zhang, G., Eds.; BIC-TA 2016; Communications in Computer and Information
Science; Springer: Singapore, 2016; Volume 681, pp. 249–277. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compeleceng.2021.107408
https://doi.org/10.15837/ijccc.2006.3.2291
https://cje.ejournal.org.cn/article/id/8163
https://doi.org/10.12785/amis/072L26
https://doi.org/10.1155/2014/858527
https://www.ncbi.nlm.nih.gov/pubmed/24772037
https://doi.org/10.1016/S0303-2647(00)00143-X
https://www.ncbi.nlm.nih.gov/pubmed/11311465
https://doi.org/10.1016/j.scico.2010.05.006
https://doi.org/10.5951/AT.17.8.0657
https://doi.org/10.1016/j.knosys.2019.01.013
https://doi.org/10.1007/978-981-10-3611-8_23

	Introduction
	Fundamentals of Membrane Computing
	Biological Basis of Membrane Computation
	Definition of the Cell-Like P System

	Principles and Algorithms of Fraction Simplification
	The More Phase Derogation Algorithm
	Principle
	Improvement of the More Phase Derogation Algorithm
	Algorithms

	Division Algorithm
	Principle
	Algorithm

	Fractional Simplification P System
	P System for Fractional Simplification of More Phase Derogation Algorithm
	Definition of the P System for More Phase Derogation Algorithm
	Membrane Rules for the More Phase Derogation Algorithm
	Example of Fraction Simplification by the More Phase Derogation Method

	P System for Fraction Simplification in the Division Algorithm
	Definition of the P System for Rolling Division
	Membrane Rule of Division Algorithm
	Example of Fraction Simplification by the Division Algorithm

	P System Combined with the More Phase Derogation and the Tossing and Division Algorithm
	Definition of a Combinatorial P System
	Membrane Rules for Combining the Two Methods
	Examples of Fractional Simplification by Combining the Two Methods

	Experimental Results
	Simulation Experiments
	UPSimulator: P System Simulation Software
	Simulation Examples

	Parameter Experiments
	Four-Digit Experimental Result
	Five-Digit Experimental Result
	Six-Digit Experimental Result
	Summary of Parameter Experiments

	Comparative Experiment of Three Methods

	Conclusions
	Appendix A
	References

