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Abstract: Cyberattacks are part of the continuous race, where research in computer science both
contributes to discovering new threats and vulnerabilities and also mitigates them. When new
vulnerabilities are not reported but sold to attackers, they are called “zero-days,” and are particularly
difficult to identify. Modern intrusion detection systems (IDS) that leverage artificial intelligence
(AI) and machine learning (ML) are becoming essential in identifying these cyber threats. This
study presents the design of an IDS using ML and Explainable AI (XAI) techniques for real-time
classification of various detected cyberattacks. By utilizing frameworks such as Apache Kafka and
Spark, along with libraries such as Scikit-learn and SHAP, the system identifies and classifies normal
or anomalous network traffic in real-time. The XAI offers the IDS the option to explain the rationale
behind each classification. The primary aim of this research is to develop a flexible and scalable
IDS that can provide clear explanations for its decisions. The second aim is to compare and analyze
different ML models to achieve the best results in terms of accuracy, f1, recall, and precision. Random
Forest models proposed in this research article obtained the best results in figuring out the key
features identified by the XAI model, which includes Ct_state_ttl, Sttl, Dmean, and Dbytes from the
UNSW-NB15 dataset. Finally, this research work introduces different machine learning algorithms
with superior performance metrics compared to other real-time classification methods.

Keywords: explainable AI; intrusion detection systems; machine learning; real-time processing

1. Introduction

Cyberattacks pose a growing problem in today’s world, affecting organizations, busi-
nesses, and individuals and increasing exponentially year after year [1]. This increase
is directly related to technological advancements in the field of computer science and
affects applications in different areas such as healthcare or industrial control systems [2,3].
Cybersecurity emphasizes the importance of seeking solutions to protect against security
problems. For this reason, before being able to block or eliminate any threat posed by an
attack, it is necessary to have a system that can detect and warn of its presence. Intrusion
detection systems are designed to perform this function, searching for any anomalies pro-
duced by new or known cyberattacks within networks. To accomplish this, IDS need to
predict, based on network data, whether an incoming pattern of traffic hides a new threat,
using various computer techniques to recognize patterns. One particularly useful field
for this type of recognition is Artificial Intelligence (AI). Thanks to the tools provided by
this area, numerous threats can be detected in real-time with a high degree of reliability,
integrating the capacities of AI into intrusion detection systems and allowing affected
parties to block, identify, and record the possible cyberattacks received.
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The incorporation of AI comes at a price, mainly the opacity of AI decisions. An
example applied to this situation is when a cybersecurity expert or technician who does not
have a working knowledge of AI manages an intrusion detection system that utilizes these
tools to analyze a network space to identify possible cyber-attacks. These technicians may
not be able to understand why the model is taking a particular instance of a network flow as
an attack or even identify if the network is under attack. This lack of explanation generates
a lack of understanding, which ultimately may lead to distrust of the tool. Several proposals
have been developed in the field of AI to determine responses, predictions, or solutions
based on input data [4–6]. For this reason, explainable artificial intelligence (XAI) is gaining
relevance thanks to its great power and simplicity when developing a specific solution for
a user knowledgeable in the area where it is applied to solve a particular problem.

The proposal of this research article is the design of an intrusion detection system
(IDS) using machine learning and explainable techniques that allows for proper functioning
in real-time classification of various detected attacks, optimizing the result, and offering
the user a simple and visual visualization. The model proposed uses machine learning
techniques to recognize patterns in network information, classifying and detecting normal
or anomalous traffic, along with possible types of attacks received in real time. Addi-
tionally, to address trust and reasoning issues, the incorporation of a new field called
XAI is proposed, providing a reasonable explanation for the chosen rationale behind a
particular classification.

The research work presented in [7] is based on a dynamic model for risk manage-
ment focused on cybersituational awareness. In this way, the system presented in this
research article is designed as part of the sensor components of [7], with a special focus on
traffic analysis.

Furthermore, to assess the tool, we use the UNSW-NB15 network dataset, a traffic
dataset characterization proposed in [8]. Additionally, we use network traffic tools such as
BroIDS and Zeek for optimal functionality, Apache Kafka [9] to interconnect the different
elements of the application [9], and Spark [10], which offers the capability to analyze each
network trace in real-time with machine learning technology using Spark streaming and
Spark SQL modules. Specialized libraries for this field, such as Scikit-learn, or those for
displaying explanations, like SHAP, are employed to train different models and learn about
different attacks using the UNSW-NB15 [8] dataset.

Therefore, the main objective of this proposal is to design an intrusion detection system
using machine learning and explainable techniques. This system provides a configurable
network sensing system to classify received attacks in real time and present the results
in a customizable, user-friendly, visual manner. This customizable and scalable system
allows for easy improvements or customization to cater to specific use cases. Additionally,
several other approaches are introduced, such as comparing the performance of different
ML models available in the Apache Spark library, evaluating the outcomes in terms of
multiclass and binary classification, and analyzing the results of the explainable model for
the dataset features. As previously mentioned, this system forms part of [7], serving as the
censoring and explainable component.

This way, we provide transparent and understandable reasoning behind the classifi-
cations generated by the machine learning models. This proposal focuses on developing
multiple machine learning models with high-quality metrics to ensure the reliability and
security of the system’s performance. Finally, to represent the results of each network
trace analyzed by the system, we have designed and implemented a simple and intuitive
user interface to display the analyzed network trace results, enhancing the overall user
experience. The end goal is to create a fully functional intrusion detection system that
supports user-driven modifications and updates, enabling continuous improvement and
adaptation to ever-evolving cybersecurity threats.

For that purpose, in Section 2, we introduce the background and related works; in
Section 3, we analyze in detail the proposal, presenting the experimentation and evaluation
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in Section 4. Then, in Section 5, we present the interface visualization as the result of the
proposed system. Finally, in Section 6, we present some conclusions and future lines.

2. Background and Related Works
IDS Models Approaches

Currently, a wide variety of related works to IDS using ML techniques have been
presented in the state of the art. At the same time, some works have focused on XAI,
comparing different technologies, and solving different problems due to the growing need
in this field to create more comprehensive systems that allow predicting or describing prob-
lems with comprehensible explanations for any user specialized in the issue to be resolved.
Explaining the decisions of AI can help to improve the system in the potential event of a
false positive, and false positives always happen in automatic classifiers. Explainability is
an important driver of user confidence in a system. Consequently, we opt to sacrifice a bit
of accuracy in favor of explainability.

This section is divided into research focused on IDS using ML techniques and, finally,
works that utilize XAI techniques (especially SHAP) to address various challenges.

Most IDS proposals with ML algorithms have the primary goal of selecting the appro-
priate dataset that allows up-to-date attacks and provides good results when conducting
practical evaluations of real attacks on the system. These studies usually also use bench-
mark datasets such as KDD99 or UNSW-NB15 [11]. Following these considerations, we
have analyzed different research works such as [12] that employ a SVM algorithm with the
KDD dataset [13] for attack and anomaly classifications, obtaining optimal metrics with an
accuracy of 99.92%, a true positive rate (TPR) of 99.93%, and a false positive rate (FPR) of
0.14%. The objective of this research is to improve the quality of the mentioned dataset by
increasing features (using the LMDRT technique) for this transformation.

There are other research articles, such as [14], that focus on comparing the results of
multiple algorithms and studying how the percentage of dataset usage affects them, i.e.,
using all available samples, half, or a quarter of them, always referring to 80% of the total
used for training. The dataset used is NSL-KDD [15], comparing the SVM, random forest,
and extreme learning machine (ELM) algorithms, demonstrating that the ELM model
obtained the best results in terms of accuracy (99.5%), precision (98.6%), and recall (98.6%)
when the entire dataset is used. Meanwhile, SVM achieves the best results when it uses
half of it (98.4%, 98.9%, and 98.7%) and a quarter of it (99.3%, 98.6%, and 98.6%). These
research articles are focused on anomaly detection.

Other approaches introduce the application of Apache SPARK in the field of IDS based
on ML [14,16,17]. These models were tested using the NSL-KDD and KDD99 datasets
without creating a real software implementation. The study is conducted with the SVM and
GB trees models for binary classification and logistic regression, Naive Bayes, random forest,
and MLP for multiclass classification. The best results obtained with the NSL-KDD dataset
correspond to an accuracy and recall of 95.56% in both cases for multiclass classification.
The study also analyzes the application of random forest (RF), which obtained a 99.96%
precision metric for binary classification.

The application of real-time classification and multi-class classification is implemented
in [17]. It performs packet monitoring and inspection for information extraction, creates
connection logs, and updates them at a determined interval (2 s). These associations,
formed by records of a specific size, are sent for processing and classified as a specific type
of attack according to the majority of the associations. It uses various models for multiclass
classification, highlighting the decision tree with an accuracy of 99% and a recall of 99%.

IDS and machine learning techniques with optimal metrics focus on the importance
of feature extraction for the UNSW-NB15 dataset [18]. It uses the XGBoost extraction
technique and tests different algorithms, concluding that the most optimal for binary
classification in terms of accuracy of 90.85%, recall of 98.38%, and precision of 80.33% is the
decision tree model.
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As for research with the same purpose but featuring the explanatory component of
this work, there is not currently a wide variety. One of them [19] deals intensively with the
importance of feature extraction using Shapley values but does not focus on optimizing
results. The results obtained with the NSL-KDD dataset for multiclass classification are 83%
precision and 80.3% recall. Furthermore, another research work [20] uses the same XAI al-
gorithms and achieves considerably better results. This research explores feature extraction
using various methods, including an IoT-focused dataset, for detecting anomalous traffic.
The results were presented with an AUC of 97% using the proposed decision tree model.

Further advances in the fields of XAI and IDS [21] do not only use the SHAP library
but also conduct the results with the application of the LIME library. They present some
differences, such as the use of the KDD dataset and binary classification for the study; the
model employed is a neural network with precision results of 96.4%. It concludes that
LIME is a less precise tool than SHAP, which is more comprehensive but has a significantly
higher computational time in some cases.

3. Proposed Method

This research focuses on the development of a real-time intrusion detection system
primarily built upon the architecture delineated in [22]. An additional module incorporat-
ing XAI is introduced, which is specifically designed for anomaly detection and multi-class
classification within the system initially proposed in [22]. This system is built in accordance
with the network traffic sensor for risk management focused on cyber situational aware-
ness [7]. The structure of the proposed system in this research adheres to a distributed and
modular framework, guaranteeing the autonomy of each primary component.

This article introduces an additional module utilizing XAI based on anomalies and
multiclass classification for the system mentioned before in [22]. The proposed system is
mainly based on the system architecture proposed in [22] and presented in this research,
which is based on a distributed and modular structure, ensuring each primary component
maintains autonomy. The proposed system proposes a classification in real-time of network
flow as either normal or anomalous traffic and types of attacks based on a multiclass
classification according to the attacks defined in the UNSW-NB15 dataset. Consequently,
an evaluation of the performance of machine learning algorithms developed within this
research and supported by the framework of Spark [7].

An additional objective is to enhance user customization of the software by facilitat-
ing the incorporation of proprietary artificial intelligence algorithms without component
alteration, preserving the explanatory aspect of the work, and allowing modifications to
the traffic monitoring mechanism without systemic disruption. This component is based
on a real-time acquisition and transmission of network traces.

Concurrently, this research additionally introduces a system with the capabilities to
utilize an artificial intelligence module for real-time analysis and transmission of received
traces, along with their results, for graphical representation and historical recording in a
database. The visualization component is designed to display classified data along with
their explanations, the aforementioned database, and system customization settings for
user personalization.

The system architecture is defined by four primary blocks. These blocks are categorized
as trace monitoring, data transmission, real-time processing, and result representation.

3.1. Trace Monitoring

This block is responsible for obtaining and monitoring network traces in real-time
based on the UNSW-NB15 data flows. SQL Dataframe objects are compatible with Spark
structured streaming dataframes. It captures and preprocesses the network traffic, ex-
tracting relevant features and preparing the data for further analysis. The monitoring
component ensures that the system can effectively detect and analyze potential intrusions
or anomalies in network traffic.
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3.2. Data Transmission

This block focuses on the efficient transmission of data between the different com-
ponents of the system. It facilitates the flow of information from the trace monitoring
component to the real-time processing component and then to the result representation
component. This block ensures that the data is communicated effectively and securely
throughout the system. This block was developed using Kafka [9].

3.3. Real-Time Processing

This block is responsible for analyzing the network traces in real-time using machine
learning algorithms and XAI techniques. It processes the data received from the data
transmission component, classifies it as normal traffic or anomalies, and identifies the
type of anomaly based on the attacks studied in the UNSW-NB15 dataset. The real-time
processing component ensures that the system can accurately and quickly detect intrusions
and anomalies in the network traffic.

3.4. Result Representation

This block is responsible for displaying the classified data along with its explanation,
allowing users to visualize the detected intrusions and anomalies as presented in Figure 1.
It is based on Mongo DB due to its real-time data storage capacity. Furthermore, a Flask
server was utilized for result representation. This database stores historical data and has
a configuration interface for user customization. The result representation component
ensures that the system’s findings are presented in an understandable and actionable
manner for users.
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4. Experimentation and Evaluation

In this section, we evaluate the performance of the entire software, beginning with a
study conducted to optimize the algorithms of each implemented model type. From the
various candidates of each model type, we select the one considered optimal, subsequently
verifying the developed explainer generator. After completing this process with all model
types. The models were compared for binary and multiclass classification. Finally, the
complete functionality was tested using models in the data processing block and their
respective explainers in the results representation block.
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4.1. Feature Selection Methodology

To compare model types as described in this chapter, it is first necessary to detail the
common feature selection methodology based on preprocessing. We have divided it into
two stages: first the data normalization and then the data balancing method.

4.1.1. Data Preparation

Initially, for the training dataset, records containing an unknown service, written as
“-”, were removed. Next, the features were transformed into their corresponding types,
resulting in three categorical features: “proto”, “service”, and “state”. OneHotEncoder [4]
encoding was chosen for these categories.

After preprocessing, we observe different anomaly and non-anomaly distributions for
binary classification (Table 1) and attack distributions for multiclass classification (Table 2).

Table 1. Distribution of UNSW-NB15 dataset categories used in anomaly and normal traffic for the
dataset after preprocessing.

Type Distribution

Normal 9625
Anomaly 26,118

Table 2. Distribution of classes after preprocessing.

Type Codification Distribution

Analysis 0 564
Backdoor 1 11

DoS 2 717
Exploits 3 5293
Fuzzers 4 535
Generic 5 18,460

Reconnaissance 6 504
Worms 7 34

4.1.2. Data Balancing Method

Then, the distributions of classes are evaluated. The significant disparity between
them indicates that the dataset is unbalanced. An unbalanced dataset implies a substantial
difference in the number of records to classify and can negatively impact the model,
primarily by causing overfitting. This may mean that our models tend to learn to classify
the majority class or classes, ignoring the rest and not affecting metrics such as accuracy.
Therefore, the study in the following subchapters is conducted with the unbalanced or
non-balanced (SB) dataset and the balanced (B) dataset to observe which models perform
more effectively.

To balance the dataset, we opted for oversampling, which involves duplicating samples
from minority classes to match those of the majority classes. For this process, multiple
methods based on mathematical correlations of the attributes with the target label were
analyzed, such as Kendall, Pearson, or Spearman correlation. Kendall correlation was
used, which is a non-parametric method that utilizes the ranking of observations. It is
similar to Pearson’s correlation but is more commonly employed when parameters are not
standardized, making it important to highlight the following information:

• The correlation result ranged between 1 and −1 (perfect positive correlation and
perfect negative correlation);

• They were used as a measure of the strength of association between two variables,
meaning they quantified the effect size. It can be said that a value of 0 is a null
correlation, between 0.1 and 0.3 a (0.1–0.3) small association, between 0.3 and 0.5 a
(0.3–0.5) medium correlation, between 0.5 and 0.7 a (0.5–0.7) moderate association, and
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higher a high or very high association. Using the Pandas library, correlation matrices
were obtained for the four possible combinations by selecting the associated features
from the proposed ranges.

Upon applying the previously mentioned methodology, coefficients greater than 0.45
were selected for both balanced and unbalanced datasets for binary classification. For
the multiclass classification approach, a coefficient greater than 0.75 was chosen for the
unbalanced dataset due to the high correlation factor between the features. Moreover,
for the balanced dataset, a coefficient greater than 0.22 was selected due to a low corre-
lation factor between the features. The selected metrics are the following for each of the
mentioned datasets:

• Binary class (B): dinpkt, ct_dst_src_ltm, sbytes, dpkts, dbytes, ct_src_dport_ltm, dmean,
ct_dst_sport_ltm, dload, state, sttl, ct_state_ttl;

• Binary class (SB): dbytes, dpkt, ct_dst_sport_ltm, dmean, state, dload, ct_state_ttl, sttl;
• Multiclass (B): sload, dloss, dload, dbytes, response_body_len, dmean, sttl;
• Multiclass (SB): dmean, ct_state_ttl, state_FIN, service_dns, swin, dwin, proto_tcp,

proto_udp, dttl, state_INT.

4.2. Algorithms under Study
4.2.1. Decision Tree

The decision tree model was created by modifying various hyperparameters, which
affected the different results and training times. In this research, only the max_depth
parameter was altered, influencing the number of depth nodes the model could have.
Therefore, to have an adequate number of models of this type for comparison, decision
trees with 10, 15, 20, and 25 nodes were chosen for each dataset type. The following figures
show the results obtained by the no-balanced (B) and no-balanced (SB) datasets. As (SB)
and a balanced dataset as (B).

Binary Classification

The results for all combinations of parameters and dataset types were found to be
quite evenly matched. If we consider the F1 metric as the most important, as it indicates the
success rate for anomaly detection combined with the precision for classifying it, several
models could be chosen. However, the best model is deemed to be the one configured
with a maximum of 25 layers and trained on a balanced dataset due to the number of data
points used for attacks. Having chosen this model, it is saved and stored in the real-time
processing block under the name “DT”. Once stored, we use the developed explainer
generator to create its SHAP value generator. This is saved on the result representation
server under the name “DT.” After generating the model, the importance of each feature
for classifying anomalies is observed, as represented in Figure 2. Upon analysis, we can
determine the correspondence with the correlation values calculated earlier.

Multiclass Classification

For multiclass classification, the model was also applied to the balanced and unbal-
anced datasets. To determine the optimal configuration, the average TPR and FPR of all
classes were calculated, scoring proportionally from 1 to 0 for the best and worst results,
adding the scores obtained for the TPR and subtracting those obtained for the FPR. The
models trained with the balanced dataset stand out for their significant advantage in multi-
class classification, with the best model being the one created with a maximum depth of
20 layers. The same process as in binary classification is performed, saving the model and
generating the explainer. Once generated, it is loaded and observed for this model. The
importance of each feature for classifying each type of anomaly is shown in Figure 3.
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4.2.2. XGBoost

The different hyperparameters for the XGBoost model that were analyzed for this
model are as follows:

• Objective: customize the learning task of the algorithm. Logistic and pairwise were
used for binary classification, and Softmax for multiclass classification;

• Max_depth: maximum depth of decision trees. The values used are 25 and 20;
• N_estimators: number of decision trees within the boosting. The values used were 10,

15, and 40.

Binary Classification

Due to the high average values achieved for binary classification because of the similar-
ity of the metrics in F1, Precision, and Recall, both the model with 15 and 40 estimators with
a balanced dataset could be chosen as the best. For simplicity, the model with 15 estimators
was selected. Once stored, we use the developed explainer generator to generate its SHAP
values. It is saved on the results display server with the name XGB. The influence of each
feature for this model is generated for classifying a trace as an anomaly, i.e., with a value
of 1 (Figure 4).
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Multiclass Classification

The TPR and FPR values measured for multiclass classification and the balanced and
unbalanced datasets for each class in this type of model were analyzed. Using the balanced
dataset, much better results were shown for these models, with a primary equality between
the models with 40 and 30 estimators. As in the previous case, the model with 30 estimators
was chosen for simplicity in training times and model structure. Continuing with the same
process as in binary classification, saving the model and generating the explainer, we load
and observe for this model the importance of each feature for classifying each type of
anomaly (Figure 5).
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4.2.3. Logistic Regression

For the logistic regression model, only two types of models were created, varying the
penalty hyperparameter between L1 and L2.

Binary Classification

In this case, the unbalanced model with L1 penalty stands out among the rest with an
F1 score of 0.98, an almost perfect Recall, and a Precision value considerably higher than
the rest. Once stored, we used the developed explainer generator to generate its SHAP
values. It was saved on the results display server under the name LogR (Figure 6).
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Multiclass Classification

The TPR and FPR values measured for multiclass classification and the balanced and
unbalanced datasets for each class in this type of model were analyzed. The results were
not optimal, but like in the binary case, the best model is the one with the L1 penalty and the
unbalanced dataset. Continuing with the same process as in binary classification, the model
was saved and the explainer generated. We then loaded and observed the importance of
each feature for classifying each type of anomaly for this model (Figure 7).
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4.2.4. KNN

For the KNN model, the number of neighbors ranges between 5, 15, 35, and 75.

Binary Classification

The results for the different combinations and binary classifications were analyzed.
In this case, optimal results for F1, Recall, and Precision were obtained for all models,
ultimately choosing the model with KNN equal to 5, which displays the highest metrics.
Once stored, we used the developed explainer generator to generate its SHAP values. The
influence of each feature for this model on classifying a trace as an anomaly was generated,
revealing that most features for this model do not have a significant influence, except for
Sttl, Dload, and Dbytes (Figure 8).
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Multiclass Classification

The TPR and FPR values measured for multiclass classification and the balanced and
unbalanced datasets for each class in this type of model were also analyzed. As in binary
training, the best model is one with K equal to 5, but this time with a balanced dataset,
significantly outperforming the other options with the highest TPR and the lowest FPR.
Continuing with the same process as in binary classification, the model was saved and
the explainer generated. We observed the importance of each feature for classifying each
type of anomaly in this model. In this case, Dmean, Dloss, and Sttl do not have great
relevance for classification despite the relevance these features provide in the Kendall linear
relationship (Figure 9).
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4.2.5. Random Forest

The random forest (RF) model was developed by modifying different hyperparame-
ters, which vary the results and training times. In this experimentation, we adjusted the
max_depth parameter, which influences the number of depth nodes that the model can have,
and the criterion parameter, alternating between Gini and Entropy. Therefore, to have
enough models of this type for comparison, random forest models with 50, 100, 150, and
200 nodes were tested for each type of dataset.

Binary Classification

The results for all parameter combinations and dataset types are very similar. Con-
sidering the F1 metric as the most important, all models have similar values in the other
metrics as well. However, due to the precision, accuracy, and simplicity of the number of
nodes, the model with 50 nodes and the entropy criterion was chosen. Once stored, we
used the developed explainer generator to generate its SHAP values. The importance of
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each feature for classifying an anomaly or not was loaded and observed for this model
(Figure 10).
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Multiclass Classification

In this case, it is noteworthy that the models trained with the balanced dataset show
a significant advantage in multiclass classification. All the tests done presented similar
values, and therefore, following the same criterion as in binary classification, the model
with 100 nodes and the Gini criterion was chosen for simplicity. The same process as in
binary classification was carried out, saving the model and generating the explainer. Once
generated, the importance of each feature for classifying each type of anomaly was loaded
and observed for this model (Figure 11).
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4.2.6. Multi-Layer Perceptron

For the multi-layer perceptron (MLP) model, the configuration of essential hyperpa-
rameters primarily involves defining the model’s layer structure. Mathematical equations
and layer numbers observed in various works were employed, and different combinations
were tested. The structure defined in the work [23] was followed, using architectures with
four hidden layers in some cases and the following neuron calculations:

• Hidden Layer 1: 0,75 · Input Neurons + Output Neurons;
• Hidden Layer 2: (Input Neurons + Output Neurons)/2;
• Hidden Layer 3: 70% Input Neurons;
• Hidden Layer 4: 90% Input Neurons.
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Binary Classification

For binary classification, two models with proper functioning were used for both
balanced and unbalanced datasets: one with a single hidden layer of 100 neurons and
another with two hidden layers of 50 neurons. Following the calculations previously
explained, it is essential to recall that binary models with unbalanced datasets have nine
input features and balanced datasets have 12. Consequently, two additional models were
calculated for each type, varying the rounding given by the equation results.

On this occasion, optimal F1, Recall, and Precision results were obtained for all models.
However, there was a significant dispersion in most cases when one metric was very high
compared to the others. The model trained with the unbalanced dataset with two hidden
layers of 50 neurons maintained the highest values for all three measures. Once stored,
the explainer generator was used to generate the SHAP value generator for the model. It
was saved on the result representation server under the name MLP. The influence of each
feature for this model in classifying a trace as an anomaly or not was generated. It can be
observed that Sttl, Dmean, and Dbytes have a significant impact (Figure 12).
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Multiclass Classification

For multiclass classification, two models with proper functioning were used for both
balanced and unbalanced datasets, similar to binary classification. Following the calcula-
tions previously explained, it is essential to recall that multiclass models with unbalanced
datasets have ten input features and balanced datasets have seven. Consequently, two ad-
ditional models were calculated for each type, varying the rounding given by the equation
results. According to the scoring system, there is a clear advantage to the balanced model
with a single hidden layer of 100 neurons. Continuing with the same process as in binary
classification, the model was saved, and the explainer was generated. The importance of
each feature for classifying each type of anomaly was loaded and observed for this model
(Figure 13).

Table 3 summarizes the configuration of the neural networks for the different models.
Each row represents a model, and the columns provide information on the number of
hidden layers and neurons in each layer.

In summary, the various combinations and results for both binary and multiclass
classifications were analyzed, and the most effective models were identified. The influence
of different features on the classification was also examined, highlighting key features
that significantly impact the classification’s performance. The selected models and their
corresponding explainers were saved and implemented for further use in the application.
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Table 3. Hypreparameters of the MLP neural network.

Model
Type Dataset Hidden

Layer 1
Hidden
Layer 2

Hidden
Layer 3

Hidden
Layer 4

Model
Type

Binary Imbalanced 8 neurons 5 neurons 6 neurons 8 neurons Binary

Binary Imbalanced 7 neurons 5 neurons 7 neurons 8 neurons Binary

Binary Balanced 10 neurons 7 neurons 8 neurons 11 neurons Binary

Binary Balanced 10 neurons 6 neurons 9 neurons 10 neurons Binary

Multiclass Imbalanced 16 neurons 9 neurons 7 neurons 9 neurons Multiclass

Multiclass Imbalanced 15 neurons 9 neurons 7 neurons 9 neurons Multiclass

Multiclass Balanced 14 neurons 7 neurons 5 neurons 6 neurons Multiclass

Multiclass Balanced 13 neurons 8 neurons 5 neurons 6 neurons Multiclass

4.2.7. Choice of the Best Model

Once the analysis was completed and the best model of each type was chosen, an
evaluation was performed to determine the optimal model for binary and multiclass
classification. Furthermore, a comparison of the SHAP values of the models was conducted
to observe the relationships and conclusions of the various attributes used. As for binary
classification, a comparison of the models can be seen in Figure 14.
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Upon analyzing the results, similar values were observed for most metrics. However,
the model with the highest values in Precision, Recall, and F1 was the random forest, which
was subsequently chosen for the XAI model. Continuing with the SHAP values observed in
previous sections, models with the same characteristics were compared, specifically those
trained with the balanced dataset. These models were decision tree and XGBoost, both of
which had nearly identical SHAP values, with significant importance placed on the Sttl
and ct_state_ttl features. On the other hand, the SHAP values for anomaly classification in
the random forest model showed a different importance, with very high and even values
among the Dbytes, Dmean, Dintpkt, ct_state_ttl, Sbytes, and dload features. This result could
indicate that the model is more stable due to the greater influence of multiple features,
meaning it uses more information from the traces and does not primarily depend on two
fields of information. This is illustrated in Figures 2, 4, and 10. Figure 15 represents the
sensitivity of the different features for identifying an anomalous trace, helping to better
understand the chosen model for demonstration.
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Several conclusions can be drawn from the most important features, which can be
compared with the real-time performance validated in Section 4.2:

• Ct_state_ttl: A relatively low value directly influences the classification of a trace as an
anomaly;

• Sttl: An extremely low value influences the classification as an anomaly, but an
extremely high value influences it to an even greater extent. This indicates that
extreme values in this field are crucial for classifying a trace as anomalous;

• Dmean: It can be observed that a range of average or slightly low values to the highest
possible values does not influence the labeling of a trace as an anomaly or only slightly
influences the classification as normal traffic. However, very low values significantly
influence the classification as an anomaly;

• Dbytes: Average or slightly low values compared to the average influence the classi-
fication of the trace as not normal, while high or extremely low values considerably
influence the classification as abnormal traffic;



Appl. Sci. 2023, 13, 8587 16 of 22

• Dinpkt: From slightly above average values to the lowest possible values, the influence
for classifying as anomalous traffic is observed. Values outside this range have little or
no influence on classifying the trace as anomalous.

After selecting the model for binary classification, the best model for anomaly-type
classification was chosen when a trace was classified as non-normal behavior. For this
study, Figure 16 was used, comparing the TPR and FPR values of the models.
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Figure 16. TPR and FPR metrics for the best multiclass classification models.

Due to the relatively similar values across all models, the system used in previous
sections could not be followed. For this reason, the average TPR and FPR values were
calculated as shown in Table 4.

Table 4. Comparison of the results for the proposed algorithms.

Model Type MEAN TPR MEAN FPR

DT3_B (20) 0.60 0.012
XGB3_B (multi:softmax, 25, gbtree, 0.1.30) 0.59 0.011
RL1_SB (l1, liblinear) 0.26 0.019
KNN1_B (5) 0.48 0.014
RF1_B (100, gini) 0.61 0.017
MLP1_B (7.100, 8) 0.35 0.023
DT3_B (20) 0.60 0.012
XGB3_B (multi:softmax, 25, gbtree, 0.1.30) 0.59 0.011

The MLP, logistic regression, and KNN models were discarded due to their low
average TPR values compared to the remaining models. For the three remaining models,
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the difference between their TPR and FPR values was calculated to determine the most
comprehensive model, with random forest emerging as the best model for multiclass
classification. Following the same procedure as in binary classification, a similar analysis
for each class can be obtained. As an example, the classification of an anomalous trace as a
DoS attack or exploit is studied in Figure 17. It is noteworthy that an extremely low value
for the Sttl attribute is crucial for classifying an attack as DoS, while an extremely high value
prevents it from being classified as such, with the opposite behavior for Exploit-type attacks.
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5. Interface Visualization

As a last step, we will validate the final software performance with simulated network
traces created from the validation test, predicting in real time with the best model obtained
for binary and multiclass classification. Finally, the record stored in the database is shown
together with the representation of results available to the user and the corresponding
explanation for each prediction.

When starting the trace simulator, we observe that some anomalies are received and
detected (Figure 18).

First, we will check a trace classified as normal traffic (Figure 19), where it can be seen
that for this prediction, the Dmean field, Sbytes, and Dpkts are the main reasons why it has
been classified as normal traffic.

Another example of a trace classified as DoS (Figure 20) shows that the trace has been
classified as anomalous by the Dmean (79) and dpkts (28) fields, while it has been classified
as a DoS attack by the values of all fields, having a rather high total SHAP value.
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6. Conclusions and Future Lines

The aim of this research was to create a reliable IDS using machine learning, while
integrating the function of providing useful explanations for users without necessarily
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being experts in the field of artificial intelligence. To this end, a modular system was created
to monitor traces and analyze them in real time with a choice of certain machine learning
algorithms linked to a representation of the results, with statistics and explanations of
each classification. To this end, the reliability and confidence of the algorithms have been
studied by performing different metric measurements and checks, observing combinations
of hyperparameters, and preprocessing and modifying the UNSW-NB15 dataset. The
software uses the Spark distributed data processing tool, allowing communication between
the different elements in real time through Kafka. This IDS has eliminated the machine
learning limitation that Spark’s MLlib library currently has by using different coding tools
and thus using specific Python libraries for Artificial Intelligence, such as Sklearn, without
losing functionality. Finally, the explanations of this proposal have been achieved with
one of the most commonly used tools for XAI, such as SHAP. With it, we have studied
the importance of the classifications that have the different values of each feature of the
different traces and represent the explanations graphically for each individual prediction in
a Flask server. As for the best algorithm found of all the combinations and types evaluated,
the best results were obtained with the random forest model.

With this model, it has been determined thanks to explanatory artificial intelligence
that some of the most important characteristics are ct_state_ttl (relationship between state
and dependency of the protocol used with the lifetime), Sttl (lifetime from source to
destination), Dmean (average number of packets transmitted by the destination), or Dbytes
(transaction bytes from destination to source). In addition, optimal metrics have been
achieved compared to the related research, considering that many do not allow real-
time classification, both binary and multi-class classification, and the explanation of each
respective model. We have included static classification in the comparison to validate the
results of the optimal model obtained in this research. Although it is not performed in real
time or using the same algorithm, we believe that it provides a general overview of this
approach in comparison to related research in the same area. Due to the high computing
resources required for the SVM algorithm, we do not compare the results obtained by this
algorithm. This comparison is presented in Table 5.

Table 5. Final comparison with Related Works.

Work Algorithm Classification Dataset Real Time XAI Accuracy Precision Recall FRP F1

This
research

Random
Forest Binary UNSW-NB15 YES YES 98.9% 98.9% 99.0% 2.21% 98.9%

This
research

Random
Forest Multiclass UNSW-NB15 YES YES 96.7% 96.1% 94.7% 5.2% 95.4%

[24] Random
Forest Multiclass UNSW-NB15 NO YES 91% - - - -

[25] Random
Forest Multiclass UNSW-NB15 NO YES 83.12% - - 3.7% -

[26] Random
Forest Multiclass UNSW-NB15 NO YES 77.16% - - 22% -

[27] Random
Forest Binary UNSW-NB15 NO YES - 99% 99% 0 -

[12] SVM Binary NSL-KDD NO NO 99.92% - 99.93% 0.14% -
[14] ELM Binary NSL-KDD NO NO 99.5% 98.6% 98.6% - -

[14] SVM Binary (1/2)
NSL-KDD NO NO 98.4% 98.9% 98.7% - -

[14] SVM Binary (1/4)
NSL-KDD NO NO 99.3% 98.6% 98.6% - -

[16] LSTM Multiclass KDD YES NO 83.57 96.45% 72.62% 3.57% 82.95%
[17] Decision

Tree Multiclass RLD09 YES NO 99% - 99% - -

[18] Decision
Tree Binary UNSW-NB15 NO NO 90.85% 80.33% 98.38% - -

[19] Neural
Network Multiclass NSL-KDD NO YES 80.6% 83% 83% 80.3% −79.7%

[21] MLP Binary KDD NO YES 82% 96.4% 71% - 82%

In this research, different technologies and tools have been used to create an IDS with
explanatory artificial intelligence while maintaining user customization functions, with
the priority of offering modular software for the separate improvement of different key
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components without losing the final operation of the system in a software-spaced design
to be deployed in a real system [7]. For this reason, there are several points that could be
improved or extended in each block to provide more complete functionality to the user.

The trace monitoring block is the component that can be updated and improved
the most using real tools such as Zeek or Bro-IDS, as explained throughout the research,
to obtain real information from a network point, classifying the different characteristics
necessary for the operation of the system.

If we continue with the next big component of the research, the data processing
block, it is the main container of the Spark executor script, with different points that can be
improved or extended to provide greater functionality. As a first phase, increase the number
of models available, including others as SVM (support vector machines) or combinations
of algorithms for Stacking model assembly types, which were not carried out due to the
computational capacity and simplicity of the research. Another feature to be studied in a
possible continuation is increasing user customization of the pre-processing performed on
the dataset with different normalizations or encodings. Finally, an important functionality
to add would be to connect the explanatory module hosted in the results visualization block
to calculate the SHAP values directly in the Spark script, thus improving the performance
of the system.

In the last module of the research, the results representation block, there are three
functionalities that could be updated or added: Firstly, an improvement in the presentation
of results in a more detailed way, if necessary. Secondly, a functionality to allow adding a
static option to choose local records stored in the MongoDB database and displaying them
in the same way as the real-time traces. Lastly, an improvement of the representation of
the results of the explanation of each trace, a more textual way of explaining why each
prediction has been made without the user needing to understand the graphs, together
with the aggregation of different visualizations that the SHAP library allows, with even
more complex and exact explanations available for the models.

Finally, the system would benefit from an anomaly alarm system with real-time
warning to the user or, as for the studied default machine learning models, an improved
cleaning of the dataset that allows the individual improvement of the TPR metric of the
multiclass classification and thus avoids false alarms. Also, these same models can be
trained by combining different datasets to increase the information on the types of attacks
and traffic classified as anomalous that the network can receive, creating a more robust and
secure IDS system.
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