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Abstract: This study addresses the importance of focal nodes in understanding the structural com-
position of networks. To identify these crucial nodes, a novel technique based on parallel Fuzzy
Cognitive Maps (FCMs) is proposed. By utilising the focal nodes produced by the parallel FCMs,
the algorithm efficiently creates initial clusters within the population. The community discovery
process is accelerated through a distributed genetic algorithm that leverages the focal nodes obtained
from the parallel FCM. This approach mitigates the randomness of the algorithm, addressing the
limitations of the random population selection commonly found in genetic algorithms. The proposed
algorithm improves the performance of the genetic algorithm by enabling informed decision making
and forming a better initial population. This enhancement leads to improved convergence and
overall algorithm performance. Furthermore, as graph sizes grow, traditional algorithms struggle
to handle the increased complexity. To address this challenge, distributed algorithms are necessary
for effectively managing larger data sizes and complexity. The proposed method is evaluated on
diverse benchmark networks, encompassing both weighted and unweighted networks. The results
demonstrate the superior scalability and performance of the proposed approach compared to the
existing state-of-the-art methods.

Keywords: parallel fuzzy cognitive maps; distributed genetic algorithm; community detection; focal
nodes; social networks

1. Introduction

Recent years have seen a dramatic increase in the amount of research on fuzzy cog-
nitive maps. Numerous applications of FCMs have been made in a variety of fields due
to their capacity to improve accuracy and handle uncertainties in data. Network science
is one such field in which FCMs’ potential is being intensively studied. Identifying the
focal nodes that make up a network is a significant challenge in network analysis. It has
various applications ranging from speeding up the propagation of information through
the network to understanding a particular network’s organization [1–4]. The term “focal
nodes” refers to the most prominent nodes that make up a network that have a substantial
role in the network’s overall organisation.

The various possibilities for identifying focal nodes in a given network have been
explored in many works in recent years. Many methods based on node centralities, such
as degree, closeness [5], betweenness [6], and eigenvector [7], as well as diffusion-based
or random-walk-based methods, like PageRank [8] and LeaderRank [2,9], exist. Some
of these techniques already account for the effects of neighbouring nodes, but they do
not make direct use of the interactions between them. Most of the existing techniques
for the discovery of focal nodes do not perform well in large networks. Identifying the
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focal nodes in the graphs becomes increasingly difficult as the size and complexity of the
graphs increase. This paper explores the possibility of using a fuzzy-cognitive-map-based
approach to identify the focal nodes in a given network. The fuzzy cognitive map is a
system motivated by the human capability of reasoning. It embodies a perception-based
system. It uses an iterative learning method to acquire knowledge about a particular
system and to determine the system’s various attributes. One of the largest impediments to
utilising FCM for complicated systems is the difficulty of the algorithm in handling huge
datasets. The suggested study tackles this specific issue and discusses a parallel fuzzy
cognitive map method. When a genetic algorithm is employed to detect the community
structure of the network, there is a quotient of randomness associated with the initial
population selection. The focal nodes identified are then used to detect the community
structure in the network thus reducing the randomness of the genetic algorithm. Following
that, a distributed genetic algorithm is employed to detect the network’s communities.

The key contributions of this research study can be summarised as follows:

• A parallel fuzzy cognitive map is used for the identification of focal nodes, which
reduces the time complexity of the problem;

• A novel distributed approach for community detection using a genetic algorithm
is proposed;

• To accelerate the convergence of the genetic algorithm, the focal nodes of the network
are provided as input, thus reducing the randomness of the initial population.

The paper is organized as follows. In Section 2, recent works in fuzzy cognitive maps
and the use of genetic algorithms for community detection are discussed. In Section 3,
a detailed elucidation of the proposed methods is given. Section 4 elaborates on the
experimental framework used. In Section 5, the results obtained are compared and analysed
while in Section 6, conclusions are provided.

2. Literature Review

Fuzzy cognitive maps, a soft computing technique based on a human reasoning
approach, were proposed by Bart Kosko in 1986 [10]. They were inspired from cognitive
maps, proposed by Axelrod in 1976 [11]. Fuzzy cognitive maps, unlike conventional
cognitive maps, integrate the power of fuzzy logic into their framework. FCMs have proved
to be a good tool for modelling complex systems due to their capability of addressing
uncertainties and improving the dataset’s accuracy. Recent years have seen a tremendous
increase in research related to FCMs. In 2003, an FCM was used along with decision trees for
urinary bladder grading [12]. A hybrid model of an FCM with neural networks was used
for pattern classification in 2008 [13]. A new text categorization method based on a similar
rough set and an FCM was proposed in 2008 [14]. An extension of an FCM to aid in decision
making regarding pulmonary infections, known as the intuitionistic fuzzy cognitive map,
was introduced by Iakovidis and Papageorgiou [15] and considered the expert’s hesitancy
in decision making. An FCM combined with ensemble learning for autism identification
problems was proposed by Papageorgiou and Kannappan in 2012 [16]. Salmeron presented
fuzzy grey cognitive maps for modelling uncertainties [17]. Aguilar proposed dynamic
random fuzzy cognitive maps (DRFCM) to model dynamic systems [18]. In 2013, particle
swarm optimization and FCMs were used for autism classification [19]. Nápoles et al.
proposed a two-step learning process for FCM in which the first step was particle swarm
optimization, and the second step was ant colony optimization [20]. A time-dependent
FCM used for diagnosing pulmonary diseases was introduced by Bourgani et al. [21].
Ruan et al. developed the belief-degree-distributed fuzzy cognitive maps (BDD-FCMs),
where causal connections were represented by a belief structure [22]. In 2018, a fuzzy
cognitive map model utilising map-reduce was introduced, presenting a parallel fuzzy
cognitive map approach [23]. Choi et al. proposed a big-data-driven fuzzy cognitive map
model to handle big datasets using a fuzzy cognitive map [24]. Puerto et al. proposed
multilayer fuzzy cognitive maps to diagnose autism spectrum disorder [25]. A model for
identifying the pattern of load distribution on the plantar muscle of the foot to detect a
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flat or cavus foot using fuzzy cognitive maps (FCMs) trained by a genetic algorithm (GA)
against a multilayer perceptron neural network (MLPNN) was proposed in 2020 [26].

Community detection recognizes clusters of nodes that are more intimately connected
to one another than they are to other nodes in the network. These connected nodes in
networks are of crucial importance across different research domains, providing valuable
insights [27]. In social network analysis, identifying communities helps uncover hidden
social structures, such as groups of friends or communities of interest, facilitating targeted
marketing, understanding information diffusion, and analysing online behaviour [28,29].
In biology, community detection aids in uncovering functional modules in protein–protein
interaction networks, shedding light on cellular processes, disease mechanisms, and po-
tential drug targets [30]. In financial networks, community detection assists in identifying
risk concentrations, systemic vulnerabilities, and contagion paths [31]. A multitude of
techniques have been developed to identify communities within networks, such as the
Louvain method [32], the Walktrap algorithm [33], the Newman–Girvan algorithm [34],
simulated annealing [35], the random walk algorithm [36], influence-guided label propa-
gation [37], IGLP-weighted-ensemble [37], etc. Genetic algorithms are one of the widely
adopted techniques for the identification of the community structure of the network [38–43].
It is essential to encode the chromosome when utilising genetic algorithms to solve prob-
lems. For community detection, several encoding methods have been employed. The
most widely used encoding methods are label-based encoding [38,44–49] and locus-based
encoding [39,50–54]. The bulk of the implementations of genetic algorithms make use of
modularity as the fitness function [38,44,45,48,49,52,54]. Additionally, fitness functions
such as the community score [40,51] and modularity density [46,47] are utilised. The initial
population determination is conducted randomly in most of the existing methods. Also,
the network’s centrality is not considered while evaluating its community structure.

Many methods have been used in literature to detect the most influential nodes in
the network. The existing methods can be classified into topology-based methods and
diffusion-based methods. Degree-based methods [55], centrality-based methods [5–7], and
K-Shell [56] decomposition methods are topology-based. PageRank [8], LeaderRank [2,9],
and HITS Score [57] methods are diffusion-based. The topology-based methods take into
consideration the attributes of the nodes in the network, like degree, centrality, etc., whereas
the diffusion-based methods take into consideration the nodes visited by the diffusion
process. Based on the findings of the preceding investigation, we determined that the
existing techniques take longer to converge as the size of the network increases in scale. The
existing algorithms are incapable of dealing with the massive amounts of data generated
across the world.

3. Proposed Methodology

This research introduces a model that utilizes a parallel fuzzy cognitive map approach
for the purpose of identifying the most prominent nodes within a designated network.
Though an FCM has been implemented in a variety of domains, the use of an FCM in
network science is limited. A focal node detection mechanism based on a fuzzy cognitive
map was proposed in [58]. Focal nodes have a profound influence on community formation
within a network. Focal nodes tend to attract other nodes due to their property of a high
degree of centrality. Nodes seeking connectivity, influence, or access to resources are
more likely to gravitate towards focal nodes. As nodes join the network, they often
form communities around these central figures. Focal nodes often become the core of a
community, around which other nodes cluster. They provide a focal point of connectivity
and influence, shaping the community’s structure and dynamics. Peripheral nodes in
the community are connected to the focal node but may have fewer connections with
each other. Focal nodes also act as bridges or connectors between communities. Their
connections to multiple communities facilitate the exchange of information, resources, or
influence across otherwise separate groups. Focal nodes enable the formation of cross-
community interactions and integration, contributing to a more cohesive network. Focal
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nodes also influence the boundaries of communities within a network. Their connections
and interactions with nodes from different communities can determine the extent of overlap
or separation between these communities. Focal nodes may attract nodes from different
communities, leading to the merging or expansion of communities. Alternatively, they
may repel nodes from certain communities, resulting in the formation of distinct isolated
groups. Focal nodes play a crucial role in maintaining community cohesion. Their high
connectivity ensures efficient communication and information flow within the community.
Focal nodes often possess a greater influence over decision-making processes and can shape
the community’s shared goals, norms, and values.

To uncover the community structure of the network, the identified focal nodes are
provided to a distributed genetic algorithm. The overall framework of the proposed
algorithm is depicted in Figure 1. To identify the focal nodes within a network, the fuzzy
cognitive map is provided with the network as input. The focal nodes, thus detected, aid
the genetic algorithm in detecting the community structure of the network.
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3.1. Focal Node Identification Using Distributed Fuzzy Cognitive Map

Fuzzy cognitive maps have a broad spectrum of application domains. Their ability to
model uncertainties and improve the accuracy of the modelled system makes them an ideal
choice to model extremely simple to highly complex systems. A fuzzy cognitive map (FCM)
is a directed graph that contains weighted edges with signed values that represent the fuzzy
causal relationships between its nodes; hence, an FCM can be adopted to represent complex
networks that comprise nodes and relationships between the nodes. The three components
of an FCM are:

• Concepts (Ci)
• Concepts are the fundamental components of a system that have a significant role in

resolving the issue at hand.
• State Vector (A) [0, 1]
• A vector is formulated through the process of integrating the values of each individual

concept from the given system, which usually falls within the range of 0 to 1.
• Weight Matrix (Wij)
• The weight matrix represents a collection of weights that corresponds to all the causal

relationships within the system. The presence of a link between the concepts is rep-
resented by its weight value; otherwise, it is 0. The diagonal elements are always
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zero. The weight values can be positive or negative. A positive weight value in-
dicates a positive causality between the concepts, and a negative value indicates a
negative causality.

The steps in using an FCM for focal node identification are initializing the state vector,
initializing the weight matrix, applying FCM learning, and finally identifying the focal
nodes. An initial state vector that contains the initial values of all the system concepts
is determined either by expert knowledge or computationally. The initial state vector is
obtained by examining all of the system’s characteristics. The initial state vector is subjected
to FCM learning until it converges to provide the desired outcome.

3.1.1. Initializing the State Vector and Weight Matrix

The state vector comprises all the values of the concepts. Since the problem under
consideration is the identification of focal nodes in a given network, the concept values
should depict the degree of connections between the nodes in the network and consider
the structural properties of the network. The betweenness centrality [59] measure was used
for this purpose. Betweenness centrality was chosen to measure the degree of connections
between nodes because it captures the flow of information by considering the number of
shortest paths passing through a node. This provides insight into its role in facilitating
communication within the network. Additionally, betweenness centrality takes into ac-
count the weights of the edges, assigning higher scores to nodes that lie on paths with
greater weights. This aspect is especially pertinent in the context of fuzzy cognitive maps
(FCMs), where the weights represent the causal relationships between nodes. Equation (1)
determines the betweenness centrality measure, which quantifies the number of shortest
routes passing through a specific vertex.

g(v) = ∑s 6=v 6=t
σst(v)

σst
. (1)

The overall number of shortest routes from the source to the target is equal to σst,
given in Equation (1), and the count of shortest routes that traverse through the vertex v can
be determined by σst(v). High centrality ratings imply that a particular vertex is included
in a significant percentage of the shortest routes that link pairs of vertices.

For a weighted undirected graph, the weight matrix of the fuzzy cognitive map
is initialized with the weight values of the connections between nodes of the network;
when there is no connection between two nodes the weight value is set to 0. In the
case of unweighted undirected networks, if a connection exists between two nodes, the
corresponding weights are set to 1; otherwise, it is 0. A resilient distributed dataset is
employed for the storage of both the weight matrix and the state vector. Figure 2 represents
the initial state vector and weight matrix evaluated for a sample weighted network.

3.1.2. FCM Learning

Equation (2) was utilised to apply FCM learning on the initial state vector:

A(k+1)
i = f

(
Ak

i + ∑N
j 6=i,j=1 Ak

j ·Wij

)
, (2)

where Wij indicates the weight of the connection between concepts Ci and Cj, and A(k+1)
i

denotes the concept Ci at step k + 1. The threshold function f (x) selected is the sigmoid
function defined in Equation (3).

f (x) =
1

1 + e−λx . (3)

Repetitively, the calculation of the state vector continued until epsilon was reached,
which represents a residual value indicating the difference in error between successive
concepts, with the aim of minimizing this difference. The ε value was set as 0.001. The
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maximum number of iterations of the FCM was set to 1000. State vector data were then
filtered on the basis of a predefined threshold, and the outcome indicated the total number
of focal nodes. The λ value was computed using a grid search method where the possible
values of λ were assigned in the grid in the range of 1 to 10. The optimum value was
determined using exhaustive evaluation.
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3.1.3. Parallelization of FCM

This FCM learning process was parallelized in the proposed work. The weight matrix
RDD was provided as an input to the parallelize function. By employing the parallelize
function, the weight matrix RDD was partitioned into distinct subsets, each representing
specific causal relations within the system. This division led to the creation of multiple new
RDDs, each containing a specific subset of weight matrix values. These RDDs were then
distributed across individual nodes within the distributed system.

The process of FCM learning entails operating on both the weight matrix and the
state vector. In order to enable this process, it is necessary for the state vector to be readily
available across all the nodes in which the weight matrix is spread out. To accomplish this
task, the broadcast function was utilised on the state vector RDD, thereby replicating the
state vector spanning every node in the network. Moreover, the state vector was cached on
each of the distributed nodes. The state vector RDD was a unidimensional vector; thus, its
replication across nodes resulted in negligible effects on the memory capability of each node.
In contrast, the RDD for the weight matrix was characterised by a considerable number
of rows and columns, resulting in a substantial spatial requirement. As a result, it was
disseminated across the various nodes within the cluster. At each node, the FCM learning
process was applied using Equation (1), generating partial results. The final state vector,
representing the final global solution, was derived by amalgamating the aforementioned
partial outcomes. The parallel learning of the FCM is depicted in Figure 3, which was
adopted from [60].

3.2. Parallel Genetic Algorithm to Determine the Community Structure of the Network

A genetic algorithm was used to detect the communities in the network. A genetic
algorithm is an optimization method that works with a population of individuals and up-
dates the population until the optimal result is reached. A genetic algorithm maintains the
population’s genetic diversity through crossovers and mutations. The fitness function was
used to determine the generated result’s efficiency. Each generation incorporated the best
characteristics of the previous generations, resulting in a genetically enhanced generation.
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3.2.1. Initialization of the Population:

The initial communities in the network were created using a deterministic strategy that
took into account the focal nodes identified by the FCM. Each prominent node was chosen
as a seed node, and the community was expanded by iteratively adding neighbouring
nodes based on different similarity criteria such as connectivity, distance measures, etc. A
distributed genetic algorithm model was adopted. The population for the genetic algorithm
was initialized using the population size and the number of focal nodes obtained from the
FCM. Every chromosome within the population was depicted using a label-based encoding
technique. Each chromosomal gene related to a community.

3.2.2. Parallelizing the Population and Calculating the Fitness Function

The initialized population was then parallelized using the parallelize method into
populationRDD. The entire population was divided into segments, and each segment of the
population was assigned to an individual node in the distributed environment to process
as depicted in Figure 4. The island model was used to parallelize the genetic algorithm
in which the entire population was subdivided into finite populations. After mapping
the parallel population segments with a fitness function, each population partition was
assessed in parallel. Modularity [34] was employed as the fitness function to optimise
the solutions until the network achieved the optimal community structure. Modularity
is a metric that is used to analyse the different communities in a network, and the ideal
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community structure has the maximum modularity value. Modularity exists within the
range [−1, 1]. Equation (4) can be used to accurately estimate the modularity.

Q =
1

2w∑N
i=1 ∑N

j

(
wij −

wout
i win

j

2w

)
δ
(
CiCj

)
, (4)

where
wout

i = ∑j wij, (5)

win
j = ∑i wij, (6)

2w = ∑i wout
i = ∑j win

j = ∑N
i=1 ∑N

j wij, (7)

where the Kronecker delta function δ
(
CiCj

)
is 1 if there is a link between vertex i and j, and

it is 0 otherwise. Following that, the evolution operations were carried out.
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3.2.3. Selection, Crossovers, and Mutation

A roulette selection mechanism was used to choose chromosomes depending on their
fitness scores. On the basis of a crossover probability value, the crossover technique was
implemented in a small subsection of the chromosomes. The descendants were generated
using the single-point crossover technique. After applying the crossovers, mutation was
applied on randomly chosen chromosomes based on the mutation rate [28]. When the
stopping condition was met, the fittest individual in the population was returned; otherwise,
the evolution continued. Since the genetic algorithm is a non-deterministic technique, the
final results were computed by taking an average of the results of five runs of the model.
The pseudocode for the distributed genetic algorithm is given in Algorithm 1.
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Algorithm 1 Distributed Genetic Algorithm.
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3.2.4. Evaluation of the Effectiveness of the Detected Communities

The effectiveness of the detected communities can be evaluated using mainly two meth-
ods: normalised mutual information (NMI) and modularity. Normalized mutual informa-
tion [61] is an evaluation measure to determine the quality of the clusters formed and to
determine how accurately the community detection algorithm has performed. Normalized
mutual information determines the similarity of the detected communities to the existing
communities in the network. It requires the groundtruth information to evaluate a com-
munity. It is predicated on a theory known as mutual information (MI), which attempts to
quantify the amount of information that is shared between two distinct random variables.
The NMI is a normalised variant of the MI that takes into consideration both the overall
number of data points as well as the size of the clusters. Calculating the NMI requires
first calculating the mutual information that exists between the two clusters and then
normalising that value by the entropy that exists in each cluster:

NMI(X, Y) =
2×MI(X, Y)
H(X) + H(Y)

(8)

where

• X and Y are the two different clusters.
• MI(X, Y) is the mutual information between X and Y, which measures the amount of

shared information.
• H(X) and H(Y) are the entropies of clusters X and Y, respectively, which measure the

uncertainty or randomness in each cluster.

The mutual information is given by

MI(X, Y) = ∑|X|
i=1 ∑|Y|

j=1 P(i, j)log
P(i, j)

P(i) + P′(j)
(9)

where

• P(i,j) is the probability of data occurring in cluster i (actual) and cluster j (predicted);
• P(i) is the probability of data occurring in cluster i (actual);
• P(j) is the probability of data occurring in cluster j (predicted).

The entropy is given by

H(X) = ∑|X|
i=1 P(i)log P(i) (10)
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H(Y) = ∑|Y|
j=1 P(j)log P(j) (11)

where

• H(X) is the actual cluster assignments.
• H(Y) is the actual cluster assignments.

Another measure used to evaluate the communities detected is modularity. Modu-
larity gives the strength of the partitions in the network. In modularity, the groundtruth
information is not needed, which means that the modularity-based community detec-
tion algorithms do not require information about the real communities in order to detect
communities in a network. The equation for modularity is given in Equation (4).

3.3. Time Complexity Analysis

In this section, we analyse the time complexity of the proposed distributed genetic
algorithm for community detection along with the parallel fuzzy cognitive map. The time
complexity of the algorithm can be analysed by examining each step and considering
the dominant factors that contribute to the overall complexity. In the given distributed
genetic algorithm for community detection, modularity was used as the fitness function.
To compute its time complexity, we analysed each step of the algorithm. The algorithm
involved mainly two steps, the focal node identification using a parallel fuzzy cognitive
map and the community detection using the distributed genetic algorithm.

We let G be a network, where n was the number of nodes, and m was the number
of edges in the network. Firstly, the state vector was computed using the betweenness
centrality measure for the focal node identification part, which took O(n × (n + m)) for
serial execution. Since a distributed approach was adopted, and the data were partitioned
across PR physical nodes, the complexity was O((n × (n + m))/PR). Also, the weight
matrix was distributed to the PR nodes of the network; hence, it took the complexity O(PR).
Subsequently, the FCM iterations were performed, which involved updating the state vector
based on the weights and biases, which took O((max_iterations × n2)/PR). Therefore, the
total time complexity of the FCM algorithm was expressed as O(PR) + O((n× (n + m))/PR) +
O((max_iterations × n2)/PR), and simplifying this expression, the total complexity of the
FCM was O((max_iterations × n2)/PR).

The next step was to calculate the time complexity of the distributed genetic algorithm.
For the GA, the main operations that contributed to the time complexity were the evaluation
of the fitness, selection, crossover, and the mutation. The first step was initialising the
population, which took O(p), where p was the size of the population. The fitness was
evaluated for the population using modularity as the fitness function. The time complexity
for the fitness function was O(p × n × m). The selection operation had a complexity
of O(plogp). The crossover and mutation operations had a complexity of O(p). Hence,
combining these, the total complexity of the distributed GA was O((max_generations ×
(p × n × m + p × log(p)))/PR), which was further simplified to O((n × m × log(p))/PR).

4. Experimental Framework

The study was conducted leveraging a Hadoop cluster of high performance, consisting
of a single name node server and two data node servers. The combined computational
power of the servers was 768 GB of RAM and a 144-core processor. The cluster supported
the Hortonworks Data Platform, HDP 3.0. The software used was Apache Spark 2.3.0.
The Spark platform produced a directed acyclic graph that was used to track all the
operations performed by the Spark engine. In Spark, a job is associated with a chain of
RDD dependencies organised in a direct acyclic graph (DAG).

One of the execution DAGs produced during the proposed work is shown in Figure 5.
The outer rectangle represents the different stages of the operation, the inner square boxes
represent the user function calls, and the dots within the boxes represent the RDDs pro-
duced. Under the hood, this visualization illustrates a sequence of map, join, and group-
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ByKey processes. Additionally, it illustrates the succession of caching operations that occur
during the execution of a spark job, which accelerates the execution.
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5. Results and Discussion

In this work, the efficiency of the proposed model was tested on 11 real-world bench-
mark network datasets and five synthetic network datasets.

5.1. Real-World Benchmark Network Datasets

The results obtained for the real-world benchmark datasets compared the time dif-
ference between the FCM focal-node identification in normal mode and in parallel mode,
as the proportions of the network grew. The results depicted that while there was no
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considerable difference in the time taken to detect the focal nodes in the case of smaller
networks, the time taken by the simple FCM increased exponentially as the size of the
network increased, whereas the parallel FCM took just fractions of a second to process even
the largest network being considered. The results are depicted in Table 1.

Table 1. Focal node identification in a normal FCM vs. the parallel FCMs.

Input Network No. of Nodes No. of Edges No. of Focal Nodes FCM Parallel FCM

Karate club network [62] 34 78 13 300 ms 350 ms

Dolphin social
network [63] 62 159 32 500 ms 600 ms

Books about U.S.
politics [64] 105 441 41 574 ms 651 ms

U.S. college football [28] 115 613 50 692 ms 664 ms

Les Miserables [34] 77 254 37 887 ms 809 ms

C. Elegans metabolic
Network [65] 453 2025 244 0 m 1 s 890 ms

Human protein
(Figeys) [66] 2239 6452 1260 0 m 2 s 786 ms

U.S. power grid [67] 4941 6594 2427 1 m 20 s 793 ms

Pretty good privacy [65] 10,680 24,314 5040 3 m 5 s 853 ms

Cora citation [68] 23,166 91,500 12,306 10 m 15 s 903 ms

Online social network
epinions [69] 75,879 508,837 25,498 1 h 48 m 25 s 941 ms

The focal nodes identified by the fuzzy cognitive map were given as input to the
genetic algorithm. The proposed GA identified the community structure in the network
by maximizing the modularity (Equation (4)) values. To assess the performance of the
proposed model in detecting the community structure of the network, a comparison of the
execution times of the distributed GA with a parallel FCM and other genetic algorithms in
the literature for community detection is depicted in Figure 6.
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The results show that the use of a distributed genetic algorithm with parallel FCM
significantly reduced the execution time. It is visible that while there was not much
improvement in the execution times when smaller networks were considered, as the
network size increased, there was a massive difference between the execution times. In
the case of community detection, when the size of the network was small, the use of the
distributed algorithm did not yield a considerable difference in the execution time because,
in smaller networks, the overhead of distributing the network across the nodes outweighed
the processing time. In larger networks, the time necessary to disseminate the data was
trivial in comparison to the time required for processing. It can be observed that while
the time taken by other algorithms increased exponentially as the scale of the network
expanded, the time taken by the distributed GA with a parallel FCM increased linearly
with the size of the network. Additionally, the comparison study demonstrated that when
compared to alternative techniques for calculating chromosomal fitness in a GA, such as
the community score, NED index, and so on, using modularity as the fitness function
produced the best outcome. Furthermore, in all the cases, we observed that the adoption of
a parallel fuzzy cognitive map to determine the initial community composition, along with
a distributed genetic algorithm, considerably reduced the program’s overall computational
time and helped it to converge faster.

5.2. Synthetic Benchmark Network Datasets

In order to assess the effectiveness of our algorithm, we also utilised the benchmark
network introduced by Lancichinetti and Fortunato in 2009 [70]. In Table 2, synthetic
benchmark networks with a range of nodes from 110 to 10,000 are shown. As in the case of
real-world networks, the model did not show much performance improvement in the case
of smaller networks due to the distribution overhead being more than the performance
improvement. But as the size of the network increased, the performance of the model
also increased.

Table 2. Execution time obtained for the synthetic benchmark dataset of varying community size and
network size.

Input Network (LFR(N, k,
maxk, mu, min_c, max_c)) No. of Nodes No. of Edges No. of Focal Nodes Execution Time

(128, 10, 10, 0.1, 32, 32) 110 1024 73 370 ms
(333, 10, 16, 0.2, 10, 30) 333 2359 183 698 ms

(1500, 15, 15, 0.1, 20, 50) 1500 10,473 1764 772 ms
(5000, 20, 40, 0.1, 30, 60) 5000 25,784 2140 789 ms

(10,000, 20, 30, 0.2, 100, 200) 10,000 54,396 5647 867 ms

5.3. Accuracy Analysis of the Communities Detected

To determine the quality of the communities formed, two methods were used, nor-
malised mutual information (NMI) and modularity. Tables 3 and 4 represent the normalized
mutual information results obtained when evaluated on networks with the ground truth
available, and Table 5 depicts the modularity obtained for the networks without the ground
truth available.

Table 3. Normalized mutual information (NMI) obtained for real-world network datasets with the
ground truth available.

Network Proposed Method GA with NED Index GA with Community Score

Karate club network [62] 0.7324 0.5513 0.5426
Dolphin social network [63] 0.6507 0.5673 0.6201
Books about U.S. politics [64] 0.8311 0.7512 0.7937
American college football [28] 0.5520 0.6725 0.5844
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Table 4. Normalized mutual information (NMI) obtained for the synthetic benchmark datasets with
the ground truth available.

Network (LFR(N, k, maxk,
mu, min_c, max_c)) Proposed Method GA with NED Index GA with Community Score

(128, 16, 16, 0.1, 32, 32) 1.0000 1.0000 0.9901
(333, 10, 16, 0.2, 10, 30) 0.8836 0.8532 0.8701

(1500, 15, 15, 0.1, 20, 50) 0.7530 0.7980 0.7461
(5000, 20, 40, 0.1, 30, 60) 0.7594 0.7422 0.7321

(10,000, 20, 30, 0.2, 100, 200) 0.7236 0.7254 0.7198

Table 5. Modularity obtained for real-world network datasets without the ground truth.

Network Proposed Method GA with NED Index GA with Community Score

Les Miserables [34] 0.5547 0.4721 0.5211
C. Elegans metabolic network [65] 0.4724 0.4473 0.4562
Human protein (Figeys) [66] 0.6182 0.5820 0.5831
U.S. power grid [67] 0.4901 0.4546 0.4777
Pretty good privacy [65] 0.5213 0.4912 0.4623
Cora citation [68] 0.6420 0.5997 0.6232
Online social network epinions [69] 0.5604 0.5031 0.4987

5.4. Evaluation of the Time Complexity Estimates versus the Parallel Execution Time

The goal of parallelization is to execute processes in parallel by distributing the
computing workload across numerous processors or computers. This makes it possible
to perform multiple tasks at the same time. It has the potential to cut down on the total
amount of time required for the algorithm’s execution and to improve its adaptability to
larger networks. However, this does not have a direct effect on the algorithm’s asymptotic
complexity. The complexity analysis typically considers the sequential execution of the
algorithm, without accounting for parallelization. So, the theoretical complexity of the
algorithm remains the same. However, parallelization can offer a practical performance
improvement by exploiting the available parallel processing resources. This improvement
is often reflected in reduced execution time, which is valuable for large-scale networks.
Figures 7 and 8 represent the comparison of the derived time complexity and the actual
running time for Lancichinetti–Fortunato–Radicchi (LFR) datasets [70] of varying sizes.
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It can be observed that when parallel execution was introduced to the proposed model,
there was a considerable reduction in the execution time for each of the networks. This
observation highlights the positive impact of parallelization on the overall performance of
the algorithm.

6. Conclusions

This article discussed a parallel fuzzy cognitive map method for identifying the net-
work’s focal nodes. Using a distributed genetic algorithm, these focal nodes are employed
to determine a community structure in the network. When finding focal nodes, the fuzzy
cognitive map takes the network’s centrality traits into consideration. A distributed genetic
algorithm is used to discover the communities within the network that optimize the mod-
ularity of the network in order to achieve optimal solutions. On 11 different benchmark
networks, the method was evaluated. The proposed model was compared to existing
genetic algorithm-based community detection models to assess its performance. Also, it
was evaluated on five synthetic benchmark datasets. It was discovered that combining a
distributed genetic algorithm with a parallel fuzzy cognitive map considerably reduced the
time required to find communities in a network. The quality of the communities produced
was also evaluated using NMI and modularity measures. The results obtained are on par
with the values obtained by different community detection algorithms in the literature.

Future work is oriented toward adopting the proposed parallel fuzzy cognitive map
model, which is much more efficient and faster than the normal FCM, to be used by decision
makers to perform various prediction and classification tasks in the cases where the size of
the dataset is considerably large. Also, the possibility of adopting a genetic algorithm with
a fuzzy cognitive map to tackle various problems associated with community detection
in large networks such as biological networks, social networks, disease spread networks,
and other weighted networks can be explored. Also, the proposed algorithm can be
extended to detect overlapping communities in the network. The different possibilities
where the focal nodes identified by the fuzzy cognitive map model can be used need to be
inspected. Another potential avenue for future research involves enhancing the efficiency of
community detection in large graphs through the parallelization of established high-quality
algorithms, such as Infomap and IGLP-DP.

Author Contributions: Conceptualization, H.K. and J.M.V.; methodology, H.K., J.M.V., K.P. and E.P.;
formal analysis and investigation, H.K., K.P. and J.M.V.; validation, H.K., K.P. and E.P.; writing—original
draft preparation, H.K.; writing—review and editing, H.K., J.M.V., K.P. and E.P.; visualization,
K.P.; supervision, J.M.V. and E.P. All authors have read and agreed to the published version of
the manuscript.



Appl. Sci. 2023, 13, 8735 16 of 18

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors affirm that there are no conflict of interest.

References
1. Hou, B.; Yao, Y.; Liao, D. Identifying all-around nodes for spreading dynamics in complex networks. Phys. A Stat. Mech. Its Appl.

2012, 391, 4012–4017. [CrossRef]
2. Lü, L.; Zhang, Y.C.; Yeung, C.H.; Zhou, T. Leaders in social networks, the delicious case. PLoS ONE 2011, 6, e21202. [CrossRef]

[PubMed]
3. Zhou, Y.-B.; Lü, L.; Li, M. Quantifying the influence of scientists and their publications: Distinguishing between prestige and

popularity. New J. Phys. 2012, 14, 033033. [CrossRef]
4. Lü, L.; Chen, D.-B.; Zhou, T. The small world yields the most effective information spreading. New J. Phys. 2011, 13, 123005.

[CrossRef]
5. Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [CrossRef]
6. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1. [CrossRef]
7. Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [CrossRef]
8. Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117.

[CrossRef]
9. Li, Q.; Zhou, T.; Lü, L.; Chen, D. Identifying influential spreaders by weighted LeaderRank. Phys. A Stat. Mech. Its Appl. 2014, 404,

47–55. [CrossRef]
10. Kosko, B. Cognitive fuzzy maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [CrossRef]
11. Axelrod, R. Structure of Decisions: The Cognitive Maps of Political Elites; Princeton University Press: Princeton, NJ, USA, 1976.
12. Papageorgiou, E.; Stylios, C.; Groumpos, P. An integrated two-level hierarchical system for decision making in radiation therapy

based on fuzzy cognitive maps. IEEE Trans. Biomed. Eng. 2003, 50, 1326–1339. [CrossRef] [PubMed]
13. Papakostas, G.A.; Boutalis, Y.S.; Koulouriotis, D.E.; Mertzios, B.G. Fuzzy cognitive maps for pattern recognition applications.

Int. J. Pattern Recognit. Artif. Intell. 2008, 22, 1461–1486. [CrossRef]
14. Zhou, X.; Zhang, H. An algorithm of text categorization based on similar rough set and fuzzy cognitive map. In Proceedings of

the 5th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, Jinan, China, 18–20 October 2008.
15. Iakovidis, D.K.; Papageorgiou, E. Intuitionistic Fuzzy Cognitive Maps for Medical Decision Making. IEEE Trans. Inf. Technol.

Biomed. 2011, 15, 100–107. [CrossRef] [PubMed]
16. Papageorgiou, E.I.; Kannappan, A. Fuzzy cognitive map ensemble learning paradigm to solve classification problems: Application

to autism identification. Appl. Soft Comput. 2012, 12, 3798–3809. [CrossRef]
17. Salmeron, J.L. Modelling grey uncertainty with Fuzzy Grey Cognitive Maps. Expert Syst. Appl. 2010, 37, 7581–7588. [CrossRef]
18. Aguilar, J. Dynamic Random Fuzzy Cognitive Maps. Comput. Y Sist. 2004, 7, 260–271.
19. Oikonomou, P.; Papageorgiou, E.I. Particle Swarm Optimization Approach for Fuzzy Cognitive Maps Applied to Autism

Classification. In IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 516–526. [CrossRef]

20. Nápoles, G.; Grau, I.; Bello, R.; Grau, R. Two-Steps learning of Fuzzy Cognitive Maps for prediction and knowledge discovery on
the HIV-1 drug resistance. Expert Syst. Appl. 2014, 41, 821–830. [CrossRef]

21. Bourgani, E.; Stylios, C.D.; Manis, G.; Georgopoulos, V.C. Time dependent fuzzy cognitive maps for medical diagnosis. In
Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Ioannina, Greece, 15–17 May 2014.

22. Ruan, D.; Mkrtchyan, L. Using belief degree-distributed fuzzy cognitive maps for safety culture assessment. In Advances in
Intelligent and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2011.

23. Judy, M.V.; Soman, G. Parallel Fuzzy Cognitive Map Using Evolutionary Feature Reduction for Big Data Classification Problem.
In Communications in Computer and Information Science; Springer: Singapore, 2018; pp. 226–239. [CrossRef]

24. Youngseok, C.; Habin, L.; Zahir, I. Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector.
Ann. Oper. Res. 2018, 270, 75–104.

25. Puerto, E.; Aguilar, J.; López, C.; Chávez, D. Using Multilayer Fuzzy Cognitive Maps to diagnose Autism Spectrum Disorder.
Appl. Soft Comput. 2019, 75, 58–71. [CrossRef]

26. Ramirez-Bautista, J.A.; Huerta-Ruelas, J.A.; Kóczy, L.T.; Hatwágner, M.F.; Chaparro-Cárdenas, S.L.; Hernández-Zavala, A.
Classification of plantar foot alterations by fuzzy cognitive maps against multi-layer perceptron neural network. Biocybern.
Biomed. Eng. 2020, 40, 404–414.

27. Gao, Y.; Yu, X.; Zhang, H. Overlapping community detection by constrained personalized PageRank. Expert Syst. Appl. 2021,
173, 114682. [CrossRef]

https://doi.org/10.1016/j.physa.2012.02.033
https://doi.org/10.1371/journal.pone.0021202
https://www.ncbi.nlm.nih.gov/pubmed/21738620
https://doi.org/10.1088/1367-2630/14/3/033033
https://doi.org/10.1088/1367-2630/13/12/123005
https://doi.org/10.1007/BF02289527
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/j.socnet.2007.04.002
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/j.physa.2014.02.041
https://doi.org/10.1016/S0020-7373(86)80040-2
https://doi.org/10.1109/TBME.2003.819845
https://www.ncbi.nlm.nih.gov/pubmed/14656062
https://doi.org/10.1142/S0218001408006910
https://doi.org/10.1109/TITB.2010.2093603
https://www.ncbi.nlm.nih.gov/pubmed/21095874
https://doi.org/10.1016/j.asoc.2012.03.064
https://doi.org/10.1016/j.eswa.2010.04.085
https://doi.org/10.1007/978-3-642-41142-7_52
https://doi.org/10.1016/j.eswa.2013.08.012
https://doi.org/10.1007/978-981-13-1343-1_22
https://doi.org/10.1016/j.asoc.2018.10.034
https://doi.org/10.1016/j.eswa.2021.114682


Appl. Sci. 2023, 13, 8735 17 of 18

28. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99,
7821–7826. [CrossRef] [PubMed]

29. Bedi, P.; Sharma, C. Community detection in social networks. WIREs Data Min. Knowl. Discov. 2016, 6, 115–135. [CrossRef]
30. Jia, G.; Cai, Z.; Musolesi, M.; Wang, Y.; Tennant, D.A.; Weber, R.J.M.; Heath, J.K.; He, S. Community Detection in Social and

Biological Networks Using Differential Evolution. In Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany,
2012; pp. 71–85. [CrossRef]

31. Chan-Lau, J.A. Systemic centrality and systemic communities in financial networks. Quant. Finance Econ. 2018, 2, 468–496.
[CrossRef]

32. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, 2008, P10008. [CrossRef]

33. Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. Lect. Notes Comput. Sci. (Incl. Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinform.) 2005, 3733, 284–293.

34. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]
[PubMed]

35. He, J.; Chen, D.; Sun, C. A fast simulated annealing strategy for community detection in complex networks. In Proceedings of
the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016;
pp. 2380–2384.

36. Lai, D.; Lu, H.; Nardini, C. Enhanced modularity-based community detection by random walk network preprocessing. Phys. Rev.
E 2010, 81, 066118. [CrossRef]

37. Wang, W.; Street, W.N. Finding Hierarchical Communities in Complex Networks Using Influence-Guided Label Propagation.
In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17
November 2015; pp. 547–556. [CrossRef]

38. Tasgin, M.; Herdagdelen, A.; Bingol, H. Community Detection in Complex Networks Using Genetic Algorithms. arXiv 2007,
arXiv:0711.0491.

39. Mazur, P.; Zmarzłowski, K.; Orłowski, A. Genetic Algorithms Approach to Community Detection. Acta Phys. Pol. A 2010, 117,
703–705. [CrossRef]

40. Pizzuti, C. GA-Net: A Genetic Algorithm for Community Detection in Social Networks. Lect. Notes Comput. Sci. (Incl. Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinform.) 2008, 5199, 1081–1090. [CrossRef]

41. Guerrero, M.; Montoya, F.G.; Baños, R.; Alcayde, A.; Gil, C. Adaptive community detection in complex networks using genetic
algorithms. Neurocomputing 2017, 266, 101–113. [CrossRef]

42. Pizzuti, C. Evolutionary Computation for Community Detection in Networks: A Review. IEEE Trans. Evol. Comput. 2018, 22,
464–483. [CrossRef]

43. Tasgin, M.; Bingol, H. Community Detection in Complex Networks using Genetic Algorithm. arXiv 2006, arXiv:0711.0491.
44. Gog, A.; Dumitrescu, D.; Hirsbrunner, B. Community Detection in Complex Networks Using Collaborative Evolutionary

Algorithms. In Proceedings of the Advances in Artificial Life: 9th European Conference, ECAL 2007, Lisbon, Portugal, 10–14
September 2007; pp. 886–894. [CrossRef]

45. He, D.; Wang, Z.; Yang, B.; Zhou, C. Genetic algorithm with ensemble learning for detecting community structure in complex
networks. In Proceedings of the ICCIT 2009—4th International Conference on Computer Sciences and Convergence Information
Technology, Seoul, Republic of Korea, 24–26 November 2009; pp. 702–707.

46. Gong, M.; Fu, B.; Jiao, L.; Du, H. Memetic algorithm for community detection in networks. Phys. Rev. E Stat. Nonlinear Soft Matter
Phys. 2011, 84, 056101. [CrossRef] [PubMed]

47. Gong, M.; Cai, Q.; Li, Y.; Ma, J. An improved memetic algorithm for community detection in complex networks. In Proceedings
of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

48. Jia, G.; He, S.; Zhu, Z.; Liu, J.; Tang, K. A Multimodal Optimization and Surprise Based Consensus Community Detection Algo-
rithm. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
Madrid, Spain, 11–15 July 2015. [CrossRef]

49. Shang, R.; Bai, J.; Jiao, L.; Jin, C. Community detection based on modularity and an improved genetic algorithm. Phys. A Stat.
Mech. Its Appl. 2013, 392, 1215–1231. [CrossRef]

50. Shi, C.; Cai, Y.; Fu, D.; Dong, Y.; Wu, B. A link clustering based overlapping community detection algorithm. Data Knowl. Eng.
2013, 87, 394–404. [CrossRef]

51. Pizzuti, C. Overlapped community detection in complex networks. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, Montréal, QC, Canada, 8–12 July 2009; pp. 859–866. [CrossRef]

52. Shi, C.; Wang, Y.; Wu, B.; Zhong, C. A New Genetic Algorithm for Community Detection. In Proceedings of the Complex Sciences:
First International Conference, Complex 2009, Shanghai, China, 23–25 February 2009; pp. 1298–1309. [CrossRef]

53. Jin, D.; He, D.; Liu, D.; Baquero, C. Genetic Algorithm with Local Search for Community Mining in Complex Networks.
In Proceedings of the 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 27–29
October 2010.

54. Liu, D.; Jin, D.; Baquero, C.; He, D.; Yang, B.; Yu, Q. Genetic Algorithm with a Local Search Strategy for Discovering Communities
in Complex Networks. Int. J. Comput. Intell. Syst. 2013, 6, 354–369. [CrossRef]

https://doi.org/10.1073/pnas.122653799
https://www.ncbi.nlm.nih.gov/pubmed/12060727
https://doi.org/10.1002/widm.1178
https://doi.org/10.1007/978-3-642-34413-8_6
https://doi.org/10.3934/QFE.2018.2.468
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.69.026113
https://www.ncbi.nlm.nih.gov/pubmed/14995526
https://doi.org/10.1103/PhysRevE.81.066118
https://doi.org/10.1109/icdmw.2015.58
https://doi.org/10.12693/APhysPolA.117.703
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1016/j.neucom.2017.05.029
https://doi.org/10.1109/TEVC.2017.2737600
https://doi.org/10.1007/978-3-540-74913-4_89
https://doi.org/10.1103/PhysRevE.84.056101
https://www.ncbi.nlm.nih.gov/pubmed/22181467
https://doi.org/10.1109/cec.2012.6252971
https://doi.org/10.1145/2739482.2764656
https://doi.org/10.1016/j.physa.2012.11.003
https://doi.org/10.1016/j.datak.2013.05.004
https://doi.org/10.1145/1569901.1570019
https://doi.org/10.1007/978-3-642-02469-6_11
https://doi.org/10.1080/18756891.2013.773175


Appl. Sci. 2023, 13, 8735 18 of 18

55. Liu, J.-G.; Ren, Z.-M.; Guo, Q.; Wang, B.-H. Node importance ranking of complex networks. Acta Phys. Sin. 2013, 62, 178901.
56. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of influential spreaders in

complex networks. Nat. Phys. 2010, 6, 888–893. [CrossRef]
57. Kleinberg, J.M. Authoritative sources in a hyperlinked environment. In The Structure and Dynamics of Networks; Princeton

University Press: Princeton, NJ, USA, 1999.
58. Haritha, K.; Judy, M.V. Fuzzy Cognitive Map-Based Genetic Algorithm for Community Detection. In Progress in Advanced

Computing and Intelligent Engineering; Springer: Singapore, 2020; pp. 412–426. [CrossRef]
59. Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
60. Haritha, K.; Judy, M.V.; Papageorgiou, K.; Georgiannis, V.C.; Papageorgiou, E. Distributed Fuzzy Cognitive Maps for Feature

Selection in Big Data Classification. Algorithms 2022, 15, 383. [CrossRef]
61. Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005,

2005, P09008. [CrossRef]
62. Zachary, W.W. An Information Flow Model for Conflict and Fission in Small Groups. Anthropol. Res. 1977, 33, 452–473. [CrossRef]
63. Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of doubtful

sound features a large proportion of long-lasting associations: Can geographic isolation explain this unique trait? Behav. Ecol.
Sociobiol. 2003, 54, 396–405. [CrossRef]

64. Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Physics Plasmas
Fluids Relat. Interdiscip. Top. 2004, 70, 066111. [CrossRef]

65. Duch, J.; Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E Stat. Nonlinear Soft
Matter Phys. 2005, 72, 027104. [CrossRef]

66. Ewing, R.M.; Chu, P.; Elisma, F.; Li, H.; Taylor, P.; Climie, S.; McBroom-Cerajewski, L.; Robinson, M.D.; O’Connor, L.; Li, M.; et al.
Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 2007, 3, 89. [CrossRef]

67. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [CrossRef]
68. Šubelj, L.; Bajec, M. Model of complex networks based on citation dynamics. In Proceedings of the WWW 2013 Companion—

Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013.
69. Richardson, M.; Agrawal, R.; Domingos, P. Trust Management for the Semantic Web. In Proceedings of the International Semantic

Web Conference, Sanibel Island, FL, USA, 20–23 October 2003; pp. 351–368. [CrossRef]
70. Lancichinetti, A.; Fortunato, S. Benchmarks for testing community detection algorithms on directed and weighted graphs with

overlapping communities. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 016118. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nphys1746
https://doi.org/10.1007/978-981-15-6584-7_39
https://doi.org/10.2307/3033543
https://doi.org/10.3390/a15100383
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1038/msb4100134
https://doi.org/10.1038/30918
https://doi.org/10.1007/978-3-540-39718-2_23
https://doi.org/10.1103/PhysRevE.80.016118

	Introduction 
	Literature Review 
	Proposed Methodology 
	Focal Node Identification Using Distributed Fuzzy Cognitive Map 
	Initializing the State Vector and Weight Matrix 
	FCM Learning 
	Parallelization of FCM 

	Parallel Genetic Algorithm to Determine the Community Structure of the Network 
	Initialization of the Population: 
	Parallelizing the Population and Calculating the Fitness Function 
	Selection, Crossovers, and Mutation 
	Evaluation of the Effectiveness of the Detected Communities 

	Time Complexity Analysis 

	Experimental Framework 
	Results and Discussion 
	Real-World Benchmark Network Datasets 
	Synthetic Benchmark Network Datasets 
	Accuracy Analysis of the Communities Detected 
	Evaluation of the Time Complexity Estimates versus the Parallel Execution Time 

	Conclusions 
	References

