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Abstract: Membrane computing is a natural computing branch inspired by the structure of biological
cells. The mathematical abstract model of a membrane computing system is called a P System,
which is one of the main topics in membrane computing research for the design and verification
of a P System. Integer factorization is still a world-class problem and a very important research
direction. If a fast method can be found to solve the integer factorization problem, several important
cryptographic systems including the RSA public key algorithm will be broken. The aim of this paper
is to design a P System capable of implementing integer decomposition, taking advantage of the
characteristics of parallelism of P Systems. We construct a process with a main goal to study the
modal exponential function f (x) = ax mod N and explore the possible periodic behavior for different
values of a. We attempt to compute nontrivial prime factors by the period found and constrain the
operation of the P System in polynomial time.

Keywords: natural computing; P system; integer factorization; periodic problems

1. Introduction

Membrane computing is a computational model abstracted from the function and
structure of biological cells and is formally defined as a P system, first proposed by Păun in
1998 [1]. It is a novel and efficient parallel computing model based on the observation and
abstraction of biological cell properties and their internal biochemical reactions. Membrane
computation models are divided into three categories: the cell-like P system [2,3], the tissue
P system [4], and the neural P system [5].

Cell-like P systems are the most fundamental membrane systems and the first P
systems to be proposed. The Cell-like P system is a computational model that simulates
the structure and function of cells with parallel and non-deterministic characteristics and it
is widely used in the research of computational theory and related fields.

The tissue-type P system is a computational model inspired by protein channels that
have intercellular communication, which processes symbols in a network of cells in a
multiset rewriting fashion. Each cell has a finite state memory, handles multiple sets of
symbolic pulses, and can send pulses (“excitation”) to neighboring cells. This network of
cells proved to be quite powerful; even when using a small number of cells, they could
simulate a Turing machine.

Neural P systems are a class of pulsatile neural P systems (referred to as SN P systems)
based on the idea of spiking neurons in neurobiology, in which time (when a neuron fires
and/or spikes) plays an important role. For example, the result of the calculation is the
time between the moments when the specified neuron discharges spikes.

Membrane computing has been shown to be theoretically Turing-complete [6], i.e.,
it can be used to solve any Turing-computable problem. The advantage of membrane
computing is that it is highly parallel, fault-tolerant, and scalable [7] and can be applied
to various fields such as biology, mathematics, and computer science. In the paper [8],
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a membrane computing framework based on biological systems was proposed, and the
proposed framework was simulated and evaluated to verify the superiority of membrane
computing methods. The literature [9] combined cell-like P Systems with particle swarm
optimization algorithms and used them for solving Sudoku problems.

Integer factorization, also known as prime factorization, is a classical mathematical
problem that aims to represent a positive integer as a product of prime factors. Given
two large prime factors, it is easy to find their product, but it is hard to get a result in
the opposite task. This is one of the key problems of modern cryptographic systems. If
a fast solution to the integer decomposition problem could be found, several important
cryptosystems would be broken, including the RSA Public-Key Cryptosystems [10] and
the Blum Blum Shub random number generator. Researchers have been making related
attempts, such as GNFS [11] and Fermat factorization [12].

The use of a P system for integer decomposition was studied by Alberto Leporati [13] et al.,
who proposed three P systems for arithmetic operations. The first P system implements
the addition operation to compute two m-bit binary numbers in O(m) steps, and the
second P system completes the multiplication operation to compute two m-bit binary
numbers in O(mlog m) steps. The third P system implements the first two P systems as
subsystems to complete the factorization of m-bit natural numbers in O(mlog m) steps.
Takayuki [14] et al. considered asynchronous parallelism in membrane computation and
proposed an asynchronous P system that performs two basic arithmetic operations and
factorization. Obtułowicz [15] proposed a P system with an active membrane that is capable
of polynomial time to solve integer factorization problems. In addition, Zhang [16] et al.
provided a linear time P system for the prime factorization problem in the framework of a
tissue P system with cell division. Liu [17] et al. proposed an unconstrained time model for
solving integer factorization problems with SNP systems.

In 1994, Shor proposed a quantum computer-based polynomial-time factorization
algorithm called Shor’s algorithm [18]. Shor’s algorithm is centered on transforming
the factorization of large numbers into the period of the solver function. The running
time of Shor’s algorithm consists of O((log n)2 × log log n), a quantum computer, and
on an electronic computer O(log n), it still has better performance than the excellent

algorithm on an electronic computer (GNFS, time complexity O(ec(log n)1/3×(log log n)2/3
).

The superiority of the shor algorithm comes not only from its parallel computing capability
during function cycle computation, but it also stems from the properties of quantum
measurements. Based on the maximal parallelism of evolutionary rule execution in the
membrane computation model, our research attempts to design a cell-like P system for
solving factorization problems, the core of which lies in designing a P system for solving
period problems.

The remainder of this study is structured as follows: In Section 2, we give a brief description
of the cell-like P system and an introduction to the theory related to integer factorization. In
Section 3, we introduce algorithms for integer factorization. In Sections 4 and 5, we propose
the design of P systems for integer factorization and provide examples. Finally, Section 6
provides a summary and outlook for further research.

2. Foundation
2.1. Cell-like P System

In this section, we briefly introduce a basic model of a cell-like P system. The cell-like P
system consists of membranes, intra-membrane objects, and intra-membrane evolutionary
rules. Membranes labeled by different labels form the basic structure of the cell-like P
system through nested structures. The outermost membrane, called the skin membrane,
serves to delineate the entire membrane system from the external environment. When the
membrane contains no other membrane, it is called an elementary membrane, otherwise,
it is called a non-elementary membrane. In this paper, we do not strictly distinguish
between elementary and non-elementary membranes, and we refer to them collectively as
membranes. The data are represented by the number of objects inside the membrane and
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the objects are evolved by evolutionary rules. The evolutionary rules can not only change the
number and type of objects, but also transport the objects between different membranes and
make the membrane divide and dissolve. For example, in Figure 1, a structure consisting of
four membranes is shown. Among them, Skin represents the skin membrane. In addition to
the Skin membrane, we refer to the membranes numbered 2 and 3 as elementary membranes,
while the membrane numbered 1 is a non-elementary membrane. The non-elementary
membrane 1 contains two objects a and membrane 3, while membrane 3 contains object b,
while membrane 2 does not contain any object.
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The computation of cell-like P systems is performed by evolutionary rules, which are
defined as rewrite rules for membranes and objects. All objects and membranes can evolve
according to the evolution rules. If there are no evolutionary rules applicable to any object,
the system stops computation. A cell-like P system of the degree m can be defined formally
as follows:

Π = (O, µ, ω1, . . . , ωm, R1, . . . , Rm, ρ1, ..., ρm, io) (1)

where O is the alphabet of the system, representing the set of so objects used in the system.
O∗ is the set of strings that can be constructed using the symbols in O. Each multiset can be
represented by a string, where λ denotes the empty string and O+ = O∗ − {λ};

µ is the membrane structure composed of m membranes, where each membrane is
assigned a label to refer to itself;

ωi(1 ≤ i ≤ m) denotes the multiset of objects in membrane i in the initial state. The
statement that ωi = λ means that there is no object in membrane i. For instance, in Figure 1,
ωEnv = λ, ω1 = a2, ω2 = λ, ω3 = b;

Ri(1 ≤ i ≤ m) is the set of evolution rules in membrane i. The representation of the
intramembrane rule is u→ v or u→ vδ , where u ∈ O+, v ∈ (O× Tar), Tar = {here,
inj|1 ≤ j ≤ m, out}. Tar indicates the membrane to which the target object v will be sent;
here means to stay in the current membrane, inj means that v will be sent to membrane
j, and out means that v will be sent to the outside of membrane i (the father membrane
of membrane i). The symbol δ represents the membrane dissolution operation. After
the membrane is dissolved, the objects in the membrane automatically flow into their
parent membrane. It should be noted that the δ operation cannot be performed on the
skin membrane;

ρi(1 ≤ i ≤ m) defines the partial order relationship of the rules in Ri. In this paper, the
partial order relationship is shown in the form of priority; that is, the number after the rule
is the priority of rule execution, and the smaller the number, the higher the priority, and
0 is the highest priority. For example, the priorities of rules a → b, 1 and c → d, 2 are one
and two, respectively.

io is the label of the membrane that holds the system output results.
In the P system, the rules are implemented according to the following conventions:

1. The system has a global clock to coordinate the synchronized execution of evolutionary
rules, and the timing unit is the time slice;

2. Non-deterministic. Suppose n rules compete for objects that can only support k
(k < n) rules, then the choice of these k rules is uncertain;
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3. Maximum Parallelism. At any moment, all executable rules must be executed.
In other words, all executable rules are executed in parallel in each time slice of
the computation;

4. The execution of any rule requires and takes only one time slice. In particular, in a time
slice when a rule can be repeatedly executed multiple times, the multiple executions
of the rule are also completed in one time slice, i.e., the multiple executions of the rule
are parallel.

For convenience, the remainder of this paper will refer to the cell-like P system as
simply the P system.

2.2. Integer Factorization

Integer decomposition, as a classical mathematical problem, has applications in math-
ematics, cryptography, and computer science. Finding efficient algorithms has been the
goal of research pursuits. Examples are the GNFS, Fermat method, and Shor algorithm.

Let the greatest common factor of the integers m and n be gcd(m, n). Evidently, gcd(m, n) is
a factor of n. For a given positive integer N, the number of integers that are mutually prime
with N and less than N is written as ϕ(N) (called the Euler function). We can obtain

Theorem 1. (Euler’s theorem). Suppose 0 < a < N, a and N are mutually prime, then:
aϕ(N)≡1(mod N). i.e., aϕ(N)% N = 1.

Let f (x) = axmod N. By Theorem 1 we have: f (ϕ(N)) ≡ 1 (mod N). If there exists an
even number r such that f (r) = 1, then we have

(a
r
2 )2 − 1 ≡ 0 mod N, (2)

i.e.,
(a

r
2 + 1) (a

r
2 − 1) ≡ 0 mod N, (3)

when a
r
2 6= 1, gcd(a

r
2 − 1,N) and gcd(a

r
2 + 1,N) cannot both be 1, from which a factoriza-

tion of N can be obtained. From this we can achieve

Theorem 2. Suppose 0 < a < N, a and N are relatively prime, f(x) = ax mod N. If there is an even
number r > 0 such that f(r) ≡ 1 (mod N), then nontrivial factors of N can be obtained by computing
gcd(a

r
2 + 1, N) and gcd(a

r
2 − 1, N).

2.3. Extended P System

In this subsection, we present further extensions of the P system: membrane per-
meability [19], promoters, and inhibitors [20]. Indeed, the further expansion does not
consider adding further features to the symbol–object membrane system, but rather adding
some constraints.

There are other ways to control the passage of an object across a membrane, such
as controlling the permeability of the membrane. Indeed, the permeability of biological
membranes is variable. In membrane systems, permeability is controlled by using a
τ behavior that is the opposite of the δ behavior. The rules associated with this behavior
have the same form as δ; the rule is shaped like u→ vτ, where u and v are strings denoting
a multiset of objects, and the objects in v are associated with various target commands so
that δ and τ cannot be associated with the same rule. The effect of such rules is to increase
the “thickness” of the membrane so that it cannot be penetrated.

Assume that all membranes have a thickness of 1 in the initial grid (the rest of the
paper also defaults to a membrane thickness of 1). If a rule is used in one of the membranes
and produces the symbol τ, then the thickness of the membrane becomes 2. A membrane
of thickness 2 can no longer be increased in thickness by another rule that produces the
symbol τ and, furthermore, no object can pass through it. If the rule that produces the
character δ occurs in a membrane of thickness 2, then the thickness of that membrane
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becomes 1, therefore, the membrane is permeable in the next step. If the rule produces both
δ and τ in the same membrane and in the same step, then the thickness of the membrane
remains unchanged. The cumulative effect of δ and τ is shown in Figure 2 (the numbers in
the two circles indicate the thickness of the membrane).
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Biochemical reactions in organisms occur collaboratively, so many reactions in cells
are enhanced by enzymes. The role of enzymes and the role of catalysts can be realized by
the rules of catalysis. The presence of a chemical that makes it possible (or makes it more
likely) for a biochemical reaction to occur is not a catalyst; it can evolve separately and
evolution can proceed in parallel with the reaction it facilitates. The same can be said about
inhibitors, which are chemicals that block certain reactions (they bear no resemblance to
catalysts and have a negative effect on the reaction).

Formalize this idea by considering the use of facilitators or inhibitors at each rule level,
i.e., consider rules of the form u→v|a and u→v|
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a large number N into two prime factors.

3.1. Periodic Function

In order to efficiently obtain an even r in Section 2.2, we first discuss the properties of
the function f (x).

Theorem 3. For integers a, N (N > a > 0), if gcd(a, N) = 1, then f(x) = ax mod N is a periodic
function on the domain of positive integers.

f (x) is a periodic function with period ϕ(N). Since f (0) = 1, we have

Theorem 4. Suppose f (x) = ax mod N, x≥ 0, if the integer r > 0, f(r) = 1, and f (u) 6= 1 for any
integer u < r and u > 0, then r is a minimum period of f(x).

For N > 4, although the minimum period r of f (x) cannot be guaranteed to be even, we have

Theorem 5. For N > 4, gcd(a, N) = 1, f (x) = ax mod N, x ≥ 0, then f(x) must have an
even period.

In summary, there must be an even number of periods of f (x).

3.2. Parallel Algorithm for Integer Factorization

Based on the calculation of even periods of f (x), we obtain an integer factorization
algorithm PFLN such as Algorithm 1. When a satisfies gcd(a, N) = 1 (the gcd algorithm for
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solving the greatest common divisor uses the Euclidean algorithm [21]), call the algorithm
FMEP&PF (Algorithm 2) to find the period of f (x) and the factorization of N. When p 6= 1
(Line 4), it means to find the factorization of N, output p and q (line 5), and end the loop of
Line 2~8 (line 6). Line 9 is used to end the whole process of finding the factorization (all
parallel computation processes). When p = 1, increase the value of a and continue the loop
line 2~8. In Section 4, we will design the P system to implement different values of a so that
FMEP&PF(a, N, p, q) are executed in parallel in different membranes. When any FMEP&PF
call in the parallel execution and has a return value, it will make p 6= 1, thereby outputting
a factorization of N and ending the whole solving process.

Algorithm 2 provides the procedure for computing the factorization for a determined
value of a. From Theorem 5, it is clear that the while loop started by line 2 always ends
at some r value by the instruction of line 10. On the other hand, the initial value of r is
2 (line 1), and the value of r is increased by 2 for each loop to ensure that the minimum
even number of periods can be obtained. Thus, by Theorems 2–5, we prove the correctness
of Algorithm 2.

In Algorithm 2, we find the minimum even period r of f (x) when the condition in
line 3 is satisfied. Lines 4 to 9 provide the procedure for factoring p and q by computing
gcd(a

r
2 − 1,N) or gcd(a

r
2 +1,N). Line 10 returns p and q and ends the algorithm run.

Algorithm 1 Prime Factorization Algorithm for Large Numbers (PFLN)

Input: N; // An integer N > 4
Output: p, q; // (p×q = N)
procedure PFLN (Number N)

1. p← 1, q← 1;
2. for a← 2 to N do // For a different a, perform the following operations in parallel.
3. If gcd(a, N) == 1 then FMEP&PF(a, N, p, q); // Perform factorization on a

different a in parallel.
4. if p 6= 1 than // Factorization of N found
5. print(p, q);
6. break;
7. end if
8. end for
9. exit // End all parallel factorization processes
10. end procedure

Algorithm 2 FMEP&PF // Finding the minimum even period and the prime factor

Input: a, N;
Output: p, q;

1. r ← 2 ;
2. while(1) do
3. if (ar– 1) % N == 0 than

4. p← gcd
(

a
r
2 + 1, N

)
;

5. if p 6= 1 than q = N / p;
6. else

7. p← gcd
(

a
r
2 − 1, N

)
;

8. q = N / p;
9. return p and q;
10. end if
11. r ← r + 2;
12. end procedure
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4. P System Design of Integer Factorization
4.1. Definition of P System for Integer Factorization

We give the definition of the P system ΠIF that can complete the factorization
as follows:

ΠIF = {O, µ, ωSkin, ωCom, ωGCD, RSkin, RCom, RGCD, ρSkin, ρCom, ρGCD, io} (4)

where:

• O = {ξN, a, b, c, d, e, f, g, h, i, k, ξ1, ξ2, p, q, q1, q2, r, v, w, w’, y1, y2, y3, y4, z, z1, z2}, where
N refers to the size of the number to be decomposed;

• µ = [[[ ]GCD1 [ ]GCD2]Com]Skin;
• ωSkin = λ, ωCom = { a, d2, ξN }, ωGCD = λ;
• RSkin = λ; RCom = { a→ [b]Com

[
c r2]

Com; d → q; b→ a d; q→ z|c r; z→ z1 z2|c; c→
d; z1 → z z1|z2; d z2 → d; d→ e|¬z2; z1 → y y2|e; z→ v z2|e; e→ c; v c→ p f, 1; vn →
λ, 2; v→ i f, 3; f→ z1|i; p→ g h|i; y→ y1|i; i→ λ; z1 → z z1|z2; g z2 → g q1, 1; y1→
y y1|y2; h y2→ h q2, 1; g→ w r2, 2; h→ λ, 2; z→ v|w; q1→ z2|w; z1→ λ|w; q2→ y2|w;
y1→ λ|w; w→ c; p→ τ w’(k, out)|¬i; y→ y3 y4|
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• The priority of the rules in ρComputer, . . ., ρA can be seen in the rules in RCompute, . . ., RA.

The execution of the system can be divided into two main phases: the first phase
is the splitting of the sub-task membranes for computing different a (2 ≤ a < N), and
the second phase is the execution flow for computing the membranes corresponding to a
certain a, as shown in Figure 3. In the first stage, a new submembrane is generated every
two-time slice, and in this submembrane, a certain object corresponds to a different value of
a (e.g., in Figure 3a, d3 represents the membrane corresponding to a = 3 in this membrane).
The second stage is to find a period r corresponding to a by splitting the computational
membrane in the membranes corresponding to the different values of a generated in the
first stage. When a matching period r is found, a

r
2 − 1 and a

r
2 +1 are calculated and the

two sets of maximum conventions are also calculated by creating new GCD membranes,
respectively, and the result obtained is the final decomposition. It is important to note that
the execution of the rules in the membranes corresponding to the different values of a do
not interfere with each other (only when the final result is computed in the membrane
corresponding to a certain a does the membrane release an abort signal and, thus, the whole
system stops working). In other words, the execution of the system is parallel. We will
show this process in detail next.

4.2. Rules and Procedures for Integer Factorization of P Systems
4.2.1. Main Process

We realize this process through the stacking of compounds and splitting of membranes
in the theory of membrane computation and divide the phases of the execution of the
P system into two main parts: the splitting process and the computational process. We
first construct a modulo exponential function f (x) = ax mod N. The split process consists
of the initial membrane continuously splitting out submembranes dealing with specific
values of a (arithmetic iteration of a) to take care of the specific computation, which we
refer to as the computational membrane, and the split process is shown in Figure 3a. Inside
the computational membrane, i.e., to the computational stage, as shown in Figure 3b, the
computation of multiplication and modulo (arithmetic iteration over x) is accomplished by
adding value to and reducing specific objects. Inside the computational membrane, the final
stage of the computation is determined by an arithmetic determination of f (0) = f (x1) = 1 by
the presence or absence of a flagged object, and if it is true, then the system stops and
sends a given number of objects y (representing a1

r1/2, |y| = a1
r1/2) and objects ξ (N in

ξN stands for the number being factorized) into the two GCD membranes to complete the
computation of the prime factors.
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Figure 3. Flow chart of the system execution. (a): The first stage splits the process of computing
the sub-task membranes of the different values of a; (b): The second stage shows the execution
flow of calculating the membrane corresponding to a certain a. The value of N in ξN is the number
to decompose, not the exponential order. The value of a in za−1 will not be greater than N itself
(the number of digits to be decomposed N). The * in the figure represents a random sample of the
generated Com membranes.

The system performs according to the rules in Figure 4.

4.2.2. Flag Objects and Their Life Cycle

The computation of the number of theoretic problems also has a specific linear process,
but biological computation possesses a parallel mechanism, so we have achieved the
realization of rules at specific steps by distinguishing between multiple iconic objects as
triggering objects for the rules. For example, if object c is the one we set at the membrane
splitting stage, if object c does not appear within the membrane, then the rule responsible
for the computation will not be used. The modal exponential function requires multiple
rounds of arithmetic iterations for the values of the exponent (e.g., 32, 34, 36), so in the
process we have designed, there is a corresponding set of rules that are responsible for
consuming and generating the object c. In each round of iterative computation of the modal
exponential, the computation of the object c destroys once and then generates once, thus,
realizing the loop of one iteration and starting the next one.
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We refer to this process as the life cycle of the flag object during the loop. The flag
object’s lifecycle approximates the structure of the loop in the algorithm’s design. We
use this feature cautiously to ensure that no more than one layer of nested loops occurs,
introducing a new exponential time consumption.

4.2.3. Splitting and Calculation Process

As shown in Figure 4, in the initial stage of the system, there is only one initial Com
membrane in the Skin membrane that serves as the basis for membrane division. The
Com membrane holds the objects a, d2, and ξN, where the object a can control the splitting
process, the object d is responsible for counting, and the count of the object ξ is used as
the number to be factored (e.g., if the number to be factored is 25, the number represented
by N in ξN is 25). The initial Com membrane holds the object a as the flag object of the
splitting process (i.e., it has the ability to split), and subsequently splits into two daughter
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membranes by rule a→[b]Com[c r2]Com, where the former will be reduced to an initial
membrane with the ability to split by rule b→ a d, and will achieve an additional object
d than its parent. The latter will be transformed into a computational membrane by rule
d→ z into a computational membrane, where the count |z| of the object z is the value of
a taken in the current modal index ax mod N. This means that each time a computational
submembrane is split out, the initial membrane is restored and receives an increase in
count, which is reflected in the object size of the computational submembrane produced at
the next split.

Take for example the computational submembrane responsible for computing the
modal index 3xmod 25 (i.e., N = 25, a = 3). After the appearance of object c in the compu-
tational submembrane, it proceeds to the next process to compute the value associated
with the modal index, which is split by the initial membrane holding objects c, r2, z3, and
N25. Objects c and r have a fixed number (i.e., 1 object c and 2 objects r), and they are the
flagged objects controlling the computational process. The number of objects z |z| is used
to indicate the bottom number in the current arithmetic. In the current calculation, the
base number is 3, for which 3 objects z produce equal copies under the rule z→z1 z2|c;c→d,
that is, 3 objects z1 and 3 objects z2, as well as 1 additional object d. To implement the
exponential calculation, we use some tricks; that is, the rule z1→z z1|z2; d z2→d; which,
under the action of this rule, will produce |z2| rounds of computation based on the number
of objects z2, the object d produced in the previous rule is used to ensure that each round of
computation will consume 1 and only 1 object z2 and produce |z1| object z. That is, after
all, the objects z2 are consumed, the submembrane will be computed to obtain |z1| × |z2|
object z; that is, a multiplicative computation is completed, and the number is indicated
by the newly produced object z’s count |z| denoted by the number of newly generated
objects z. In this example, |z| = 32 = 9.

Since the final exponent used to compute the greatest common divisor is ar/2 instead
of ar, there are two additional rules: d→ e|
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Rules a2×1(32) a1(31) a2×2(34) a2(32) 
 c r2 z3    
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z1 → z z1|z2; d z2 → d; r2 z9 z13 d    

d → e|¬z2; r2 z9 z13 e    
z1 → y y2|e; z → v z2|e; e → c r2 c v9 z29 y3 y23   

v c → p f, 1; r2 p f v8 z29 y3 y23 r4, p, f, v80, z29 y9, y23 
vn → λ, 2; r2 p f v8 z29 y3 y23 r4, p, f, v5, z29 y9, y23 
v → i f, 3; r2 p f9 i8 z29 y3 y23 r4, p, f6, i5, z29 y9, y23 

; and z1→ y y2|e; z→ v z2|e;e→ c; which are
used to obtain ar along with ar/2, avoiding the need to do additional root operations in
future phases of the submembrane. Moreover, it will transform the object z all into the
object v, thus, serving as the flag object for the next stage.

Once we have obtained the iconic object c and object v, we can perform the first modulo
determination operation, which is accomplished by three rules, rule v c→p f,1 and rule
vn→λ,2, and rule v→i f,3. In the 3x mod 25 arithmetic of this example, this set of rules
performs an integer multiples |N| divisor computation of 3x − 1, with the final remainder
represented by object i. The final remainder is denoted by object i.

If the count of object i is 0, it means that 3xmod 25 = 1, which satisfies the determination
of f (0) = f (x1) = 1, and it can be submitted to the GCD membrane for calculating prime
factors. If the count of object i is not 0, it means that the arithmetic is not satisfied and it
goes to the next round of exponential iteration. The new round of exponential iteration is jointly
accomplished by six rules, namely rules f→z1|i; p→g h|i; y→y1|i; i→λ; rules z1→z z1|z2;
g z2→g q1, 1; and rules y1→y y1|y2; h y2→h q2, 1; rules g→w r2, 2; h→λ, 2; rules z→v|w;
q1→ z2|w; z1→λ|w; and rules q2→y2|w; y1→λ|w; w→c are composed. These six rules
continue to iterate over the object |z| = 32 and the object |y| = 31, creating 32+2 new objects
z and 31 new objects y. At the end of this set of rules, we obtained the flag object c and the
flag object v again, and then performed a modulo judgment.

For this reason, we made the complete process of splitting the membrane and comput-
ing the submembrane under the standard execution process into a calculation table based
on timing and rounds. For more information, refer to Tables 1 and 2.
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Table 1. Timing table of main objects during split.

Number of Rounds Time Slip Objects in the Membranes

Round 1 (calculate
the case of |z| = 2)

T0 a d2

T1 b d2 c r2 d2

T2 b z2 c r2 z2

T3 a b z2 c r2 z2

Round 2 (calculate
the case of |z| = 3)

T0 a b d2

T1 b d z2 c r2 d z2

T2 b z3 c r2 z3

T3 a d z3 c r2 z3

Round 3 (calculate
the case of |z| = 4)

T0 a d z3

T1 b d z3 c r2 d z3

T2 b z4 c r2 z4

T3 a d z4 c r2 z4

Table 2. The timing diagram of the calculation phase (taking N = 25 as an example, processing the
timing diagram when a = 3).

Rules a2×1(32) a1(31) a2×2(34) a2(32)

c r2 z3

z→ z1z2|c; c→ d; d r2z1
3z2

3

z1 → z z1|z2; d z2 → d; r2z9z1
3d

d→ e|¬z2; r2z9z1
3e

z1→ y y2|e; z→ v z2|e; e→ c r2c v9z2
9 y3 y2

3

v c→ p f, 1; r2p f v8z2
9 y3 y2

3 r4, p, f, v80, z2
9 y9, y2

3

vn → λ, 2; r2p f v8z2
9 y3 y2

3 r4, p, f, v5, z2
9 y9, y2

3

v→ i f, 3; r2p f 9i8z2
9 y3 y2

3 r4, p, f 6, i5, z2
9 y9, y2

3

f→ z1|i; p→ g h|i; y→ y1|i;
i→ λ; r2g z1

9z2
9 h y1

3 y2
3 r4, g, z1

6, z2
9 h, y1

9, y2
3

z1 → z z1|z2; g z2→ g q1, 1;
y1→ y y1|y2; h y2→ h q2, 1; r2g z81z1

9q1
9 h y9y1

3q2
3 r4, g, z54, z1

6, q1
9 h, y27, y1

9, q2
3

g→ w r2, 2; h→ λ, 2; r4w z81z1
9q1

9 y9y1
3q2

3 r6, w, z54, z1
6, q1

9 y27, y1
9, q2

3

z→ v|w; q1→ z2|w; z1→ λ|w;
q2→ y2|w; y1→ λ|w; w→ c r4c v81z2

9 y9y2
3 r6, c, v54, z2

9 y27, y2
3

5. Cases and Experiments
5.1. Instance of UPLanguage

The UP Simulator [22] simulator uses a new universal P system description language,
UPLanguage, which is a superset of the standard P system rules. Based on UPLanguage,
we developed a complete experimental code for integer decomposition P systems and
wrote a set of UPLanguage rules for handling the highest common divisors. UPLanguage
provides some very useful mechanisms, and when writing the experimental code, without
destroying the integrity of the partitioning process, we adapted some of the rules, confusing
object naming and the design for optimization and compatibility purposes.

The rules adopted in this section are described using UPLanguage, which is specially
used for the implementation of simulation. You can find this complete usage case at
https://github.com/CqNatural/p-system-integer-factorization (accessed on 20 July 2023).

5.2. Cases

To better understand the rules in Section 4, we rewrite our rules using UPLanguage
and simulate them using UPSimulator. Next, we show the process of integer factorization
in detail using N = 15 as an example.

At T0, as shown in Figure 5a, the only objects in the membrane are a d2 ReleaseFlag N15.
At the moment of T1, the execution of the rules a→ [b] [c,r2] and d→ q cause the membrane

https://github.com/CqNatural/p-system-integer-factorization
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to split a new membrane as shown in Figure 5b. At the moment T2, the rules b→ a d and
q→ z|c r are executed and the objects in the membrane are shown in Figure 5c. Then, at the
moment T3, the rules d→ q, a→ [b] [c,r2], c z→ c x j Delegate:delegate{s} are executed and
a new membrane is split, while a new delegate membrane containing the object s is created
in the first split membrane as shown in Figure 5d. At the moment T4, b→ a d, q→ z|c r,
c z → c x j Delegate:delegate{s} is executed again, and the result is shown in Figure 5e.
Then, at the moment T5, the execution of rules a→ [b] [c,r2], d→ q makes a new membrane
split again, and the rule x→ (y, in all)|!z is executed in the first split membrane, as shown
in Figure 5f.
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Figure 5. Membrane structure diagram at T0 to T5 (in the figure, the label names of some membranes
are abbreviated, such as how Computer is abbreviated as Com, the same applies below).

At the next time slice T6, as shown in Figure 6a, the rules b → a d, ReleaseFlag →
(DissolveFlag, in all)|!z !x j, c z→ c x j Delegate:delegate{s}, q→ z|c r, and the rule s y→ s
SubCompute:subComputee{} in the delegate membrane class are executed.

Since each computer membrane is operating in parallel, in order to save space, in the
following pages we only show the computer membranes that were split for the first time,
that is, the membrane corresponding to a = 2, as shown in Figure 6b. It shows that at time
T7, the execution of the rule s y→ s SubCompute:subComputee{} causes a subComputee
submembrane to be generated again. At time T8, the rule s DissolveFlag→ (t, in all)δ|!y
in the delegate membrane class executes the generated object t into the submembrane and
dissolves the delegate membrane. At the same time, the four submembranes (subComputee
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membrane) enter their parent membrane (Computer membrane), as shown in Figure 6c. At
time T9, the rule t→ (v, out) in the subComputer membrane class is executed, as shown in
Figure 6d. Then at time T10, the rules v c→ p f, 1 and v→ i f, 3 are executed, as shown in
Figure 6e. At time T11, the rules p→ r2 c|i, 1, f → (t, in all) |i, 1 and i→ λ are executed,
as shown in Figure 6f. Then, at time T12, as shown in Figure 6g, the rule t→ (v, out) in
the SubComputer membrane class is executed, and the object t4 in the four submembranes
enters the parent membrane, and the obtained v16 is realized computes the value of (a2)2.
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Next, at time T13, as shown in Figure 6h, the rules v c→ p f, 1 and v15 → (f 15, here),
2 are executed and the former has a higher priority. As there is an object c, it will be
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executed first and execute only once, first implementing the operation of calculating ax−1,
and then implementing the calculation of the value of ax−1mod N, the number of v retained
after the execution is ax−1mod N value, while f is used to restore v to enter the next cycle.

Due to the length of the article, in the following steps, we will only present key step
diagrams. At time T14, as shown in Figure 7a, the rule p → w (k, out) (k, in all), 2 is
executed, and the generated object k enters the parent membrane Skin membrane and all
child membranes, respectively. At T15, the rule k → (k, in all), 1 in the Skin is executed,
and the rule k→ δ, 2 in the SubComputer membrane class can be executed, dissolving all
the SubComputer membranes, as shown in Figure 7b. Then, at time T16, the rule k w→ h,
0 is executed.
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Next, at time T17, the rule r2→ R|h is executed. At time T18, the rule R h→ cFlag|!cFlag
is executed. At time T19, the rule j cFlag→ cFlag SubCompute:subCompute{T} is executed to
generate a new subCompute submembrane. At the same time, an object k will be generated
in other Computer membranes (not shown here) and enter the Skin membrane, as shown
in Figure 7c. At time T20, the rule T → (V, out) is executed, and at the same time the
rule k→ (k, in all) in the Skin membrane, 1 is executed, sending k to all submembranes,
as shown in Figure 7d. At time T21, the rules T → (V, out) and R cFlag → rFlag|!j are
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executed. At time T22, the execution of the rule V→ P (T, in all)|rFlag sends the generated
T2 to all sub-branes. Then, at time T23, the rules P rFlag → cFlag and T → (V, out) are
executed, and the generated V4 is sent to the parent membrane, as shown in Figure 7e.
Then, at time T24, as shown in Figure 7f, the rule cFlag→ GCDFlag CalculateFactor:cf1{I}
CalculateFactor:cf2{D}|!R,!r,1 creates two cf 1 and cf 2 submembranes. At T25, the rules
V→ (V, in all)|GCDFlag,2, N→ (N, in all)|GCDFlag,2 and the rule I→V, 1 in the CalculateFactor
membrane class are executed, as shown in Figure 7g. At T26, the rule GCDFlag→ (GCDFlag,
in all)|!V !N,3 satisfies the execution conditions and enters into all submembranes and the
rule D V→ λ in the CalculateFactor membrane class is executed, as shown in Figure 7h.

Then, at time T27, the execution of the rule GCDFlag → δ, 2 dissolves the SubCom
membrane and the execution of the rule GCDFLag→ Give GCD:g1{}, 2 in the CalculateFactor
membrane class generates a new g1 submembrane, and it should be noted here the object
c t in the generated g1 membrane is the default object in the GCD membrane class, and
the object CreateSunMem in the a1 membrane is also the default object in the A membrane
class, as shown in Figure 8a. At time T28, the rules V→ (m, in all)|Give, N→(n, in all)|Give
are executed in the cf 1 and cf 2 membranes, respectively, and all the objects V5 and N15

are each sent to their submembrane a1 middle. Then, at time T29, the rule m n→ g, 1 is
executed, and n5 is consumed, as shown in Figure 8b. At time T30, the rules g→ a b (a b
Num, in all), 3 and n→ b (a, in all)|g, 2 are executed in cf1 and cf2 membranes, respectively,
as shown in Figure 8c. At time T31, the rules a, b→ x, 1 and CreateSubMem Num→ A:a{}|b,
3 are executed, respectively, generating a type A submembrane a in the a1 membrane, as
shown in Figure 8d. At time T32, the rules c→ y|x, 1, Num→ (Num, in all)|!CreateSubMem
are executed. At time T33, the rule a y→ a d, 2 is executed. At time T34, the rules x→ b|d,
3 and d→ c, 4 are executed, and at the same time, an object k is generated in other Computer
membrane classes and enters the Skin membrane. Then, at time T35, the rule a, b→ x, 1 is
executed, as shown in Figure 8e. At time T36, the executed rule is c→ y|x, 1. At time T37,
the rule a y→ a d, 2 is executed. At time T38, the rule d→ c, 4 is executed, as shown in
Figure 8f. At time T39, the rule a, b→ x, 1 is executed. At time T40, the rule c→ y|x, 1 is
executed. At time T41, as shown in Figure 8g, the rule y→ z e, 3 is executed. At time T42,
the rule x→ (z x, out)|z, 4 is executed. Then, at time T43, the rule x→ (z x, out)|z, 4 is
executed, as shown in Figure 8h.

At time T44, the rules x Give→ IsOne and z→ δ (all)|!x, 4 are executed, and the result
is shown in Figure 9a. At time T45, the rule a y→ a d, 2 is executed. At time T46, as shown
in Figure 9b, the rules x→ b|d, 3, d→ c, 4 and f → (DissolveAllCOmpute, out)|EndFlag are
executed. At time T47, the rule a, b→ x, 1 is executed, and at the same time, other Computer
membranes send an object k to the Skin membrane. Then, at time T48, the rules k→ (k, in
all), 1, c→ y|x, 1 and DissolveAllCompute→δ|EndFlag are executed, and all the computer
membranes in the system are dissolved at this time. At time T49, the rule y → z e, 3 is
executed. At time T50, as shown in Figure 9d, the rule x→ (z x, out)|z, 4 is executed. At
time T51, as shown in Figure 9e, the rule x→ (x, out) is executed. At time T52, as shown in
Figure 9f, the rules x Give→ IsOne and z→ δ (all)|!x are executed. Finally, at time T53, the
execution rule is IsOne→ x (EndFlag, out), 2, and the execution is over. At this time, x5 and
x3 in cf 1 and cf 2 represent the decomposition results of five and three, respectively.

5.3. Experimental Results

When N = 15, the result is shown in Figure 10a. The x5 and x3 in the cf1 and cf2 mem-
branes are the decomposition results. When N = 39, the result is shown in Figure 10b, and
x13 and x3 in the cf1 and cf2 membranes are the decomposition results.
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However, we found through experiments that the UPSimulator is prone to overflow
problems when dealing with numbers to be decomposed with N > 39, which affects the
final accuracy. From the simulator’s point of view, we re-audited the source code part of
UPSimulator and found that this is due to a flaw in the initial design of UPSimulator, which
did not consider the support for extra-long integer numbers in the data structure. In the
P system we designed, the number to be decomposed is represented by the count of the
compound object N, which is |N|. This is caused by the fact that the system may produce
intermediate number results with long digits when computing the periodic functions, and
our P system does not create a new exponential order problem.
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We examined some algorithms that already existed and the comparison results are
shown in Table 3. Due to the parallel nature of P systems, the algorithm designed for our
P system can ideally perform the task of periodization of modal exponential functions in
parallel. By theoretical calculations, our algorithm has O(nlog n) in time complexity, O(1)
in the best case, and unknown in the worst case in space complexity. It is important to
note that the polynomial demand of time implies an exponential demand of space, and
the membrane structure in the P system consumes additional space while executing in
parallel. In the current laboratory situation, biocomputing experiments based on P systems
remains impossible, so while we have obtained an exciting result, it will remain a threat to
asymmetric cryptography in its current form for quite some time to come.
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factored into 5 and 3 marked with the red square; (b) experimental results with N = 39, which factored
into 13 and 3 marked with the red square.

Table 3. Comparison of space–time complexity of Factorization algorithm.

Algorithm Time Complexity Space Complexity

General Number Field Sieve
(GNFS) O

(
ec(log n)1/3×(log log n)2/3

)
-.1

Shor’s algorithm O((log n)3loglog n logloglog n) O(log n)
Pollard’s rho algorithm [23] O

(√
n ) O(1)

ours(PFLN) O(nlog n) O(n) 2

1 Relatively complex, readers can refer to the article [24]. 2 When considering the space complexity of P system, it
is often difficult to measure because the number of objects and the number of membranes are constantly changing.
In our P system, the best case in terms of space complexity is found in the first iteration of the first split, and the
space complexity at this time is O(1). But the best case cannot be used as a measure, so we use the number of
membranes as a measure of space complexity, instead of only thinking about it at the algorithmic level. In general,
the number of membranes increases linearly with the splitting process, appearing as O(n). We think that the space
complexity and time efficiency of modulo–exponential periodicization can be discussed more in future work.

6. Conclusions

The factorization problem is not “tricky” because it is neither a decision problem nor
an optimization problem. It seems to be difficult because no one has been able to find
polynomial-time algorithms to solve it so far. That is, no deterministic (or even proba-
bilistic) polynomial-time algorithm is known that can be executed on a Turing machine
to solve every possible case. For this reason, factorization is used in many cryptographic
applications, the most famous of which is, of course, the public-key cryptosystem RSA.

In this research, we propose a cell-like P system solution ΠIF for the factorization
problem. We imitate the periodic processing of the modular exponentiation function
f (x) = ax mod N in the Shor algorithm. Specify a number to be decomposed N = p × q, and
the P system ΠIF will target different values of a in the modular exponentiation function
and divide to a different submembrane. A submembrane will try increasing the value
of x, and see if f (x) achieves a period r. If a submembrane of the system calculates the
period r, then the periodicization of the system is completed, and the process of dividing
the submembrane ends. In the last part of the P system, the greatest common divisor will
be calculated through the confirmed period r, and the obtained two numbers gcd(a

r
2 +1,N)

and gcd(a
r
2 − 1,N) are the final two prime factors p and q for N. However, it is still difficult
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to implement such systems in a biological sense, so it does not affect the security of
existing Cryptography.

We built related codes and experiments in UPSimulator and successfully calculated
multiple prime factorization problems including N = 15. Due to how the numerical value of
the power calculation increases too fast, UPSimulator overflows when calculating a slightly
larger number, making the sample calculation unable to be very large.

Future work can be divided into three parts:

1. The membrane structure can continue to be optimized, and a dedicated simulator can
be established to test on larger data samples;

2. The P system has variants of various biological mechanisms. How to introduce these
variants into the current model to improve its performance is worth considering.

3. Whether the hit rate of the periodic function has a mathematical law is still a question
that can be discussed, which is related to the size of the space when the P system is
executed. In this way, it can be determined whether a stable space complexity can be
found when performing the integer factorization problem.
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