
Citation: Xu, Y.; Zhong, J.; Zhang, S.;

Li, C.; Li, P.; Guo, Y.; Li, Y.; Liang, H.;

Zhang, Y. A Domain-Oriented Entity

Alignment Approach Based on

Filtering Multi-Type Graph Neural

Networks. Appl. Sci. 2023, 13, 9237.

https://doi.org/10.3390/

app13169237

Academic Editors: Reza Shahbazian

and Irina Trubitsyna

Received: 2 July 2023

Revised: 4 August 2023

Accepted: 6 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Domain-Oriented Entity Alignment Approach Based on
Filtering Multi-Type Graph Neural Networks
Yaoli Xu * , Jinjun Zhong, Suzhi Zhang *, Chenglin Li, Pu Li, Yanbu Guo , Yuhua Li, Hui Liang and Yazhou Zhang

School of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
* Correspondence: yaolixu@zzuli.edu.cn (Y.X.); zhangsuzhi@zzuli.edu.cn (S.Z.)

Abstract: Owing to the heterogeneity and incomplete information present in various domain knowl-
edge graphs, the alignment of distinct source entities that represent an identical real-world entity
becomes imperative. Existing methods focus on cross-lingual knowledge graph alignment, and
assume that the entities of knowledge graphs in the same language are unique. However, due to the
ambiguity of language, heterogeneous knowledge graphs in the same language are often duplicated,
and relationship triples are far less than those of cross-lingual knowledge graphs. Moreover, existing
methods rarely exclude noisy entities in the process of alignment. These make it impossible for
existing methods to deal effectively with the entity alignment of domain knowledge graphs. In order
to address these issues, we propose a novel entity alignment approach based on domain-oriented
embedded representation (DomainEA). Firstly, a filtering mechanism employs the language model
to extract the semantic features of entities and to exclude noisy entities for each entity. Secondly, a
Structural Aggregator (SA) incorporates multiple hidden layers to generate high-order neighborhood-
aware embeddings of entities that have few relationship connections. An Attribute Aggregator
(AA) introduces self-attention to dynamically calculate weights that represent the importance of the
attribute values of the entities. Finally, the approach calculates a transformation matrix to map the
embeddings of distinct domain knowledge graphs onto a unified space, and matches entities via the
joint embeddings of the SA and AA. Compared to six state-of-the-art methods, our experimental
results on multiple food datasets show the following: (i) Our approach achieves an average improve-
ment of 6.9% on MRR. (ii) The size of the dataset has a subtle influence on our approach; there is a
positive correlation between the expansion of the dataset size and an improvement in most of the
metrics. (iii) We can achieve a significant improvement in the level of recall by employing a filtering
mechanism that is limited to the top-100 nearest entities as the candidate pairs.

Keywords: domain knowledge graph; entity alignment; embedded representation; filtering mechanism

1. Introduction

A knowledge graph (KG) is a structured semantic network knowledge base that stores
knowledge in the form of triples, and has powerful semantic expression capabilities in
the fields of natural language processing, intelligent question answering, and intelligent
recommendation [1]. Driven by the rapid development of the Internet, a wealth of domain
knowledge graphs have been established, e.g., recipe knowledge graphs.

However, because most of the existing knowledge graphs have been established
by independent institutions with different design concepts and requirements, there are
differences in the described methods and descriptive focuses for the same object, resulting in
the diversity and heterogeneity of data in the same domain knowledge graph [2]. However,
different knowledge graphs also contain much complementary information. For instance,
there are two recipe KGs, recipe 1 and recipe 2; both recipes include the dish named “braised
pork”, which is described with regard to ingredients, cuisine, and cooking techniques.
However, recipe 1 emphasizes the selection and preparation of ingredients, while recipe 2
emphasizes the cooking technique. When fusing the two recipes into a unified KG, it is

Appl. Sci. 2023, 13, 9237. https://doi.org/10.3390/app13169237 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169237
https://doi.org/10.3390/app13169237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-1219-1130
https://orcid.org/0000-0001-9532-2309
https://doi.org/10.3390/app13169237
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169237?type=check_update&version=1

Appl. Sci. 2023, 13, 9237 2 of 18

imperative to streamline and reorganize redundant information to optimize the structure
of the KG. Additionally, the incorporation of complementary information can enhance
the description of the “braised pork” and improve the overall quality and accuracy of the
knowledge representation. Therefore, it is of great practical significance to study how to
align the entities of heterogeneous knowledge graphs, in order to eliminate redundancy
and integrate the knowledge graphs.

As an important research topic within natural language processing, entity alignment
aims to discover the heterogeneous representations of the same real-world object among
heterogeneous knowledge graphs, and to establish the equivalent-link relationships among
them, so as to connect multi-source knowledge graphs to form a larger and richer knowl-
edge base [3,4]. It is also known as entity resolution or entity matching [5,6]. In the process
of integrating recipe KGs, we have to handle the following problems:

• Existing methods have to compute the embeddings of all the entities and relationships,
but it is unnecessary to compute some entities which represent different real-world
objects. Excluding these noisy entities can reduce the number of calculations and bring
significant improvement to the accuracy of entity alignment.

• Existing works focus on embedding structural information; however, if there are few
relationship connections between entities, this results in the sparse state of the entity
neighborhood structure in domain KGs, especially for recipes.

• The traditional methods generally aggregate and propagate the attribute names of
entities, but ignore attribute values. However, attribute value plays a significant role
in enhancing entity alignment, and each attribute value has a different influence on an
entity. It is non-trivial to utilize attribute values in order to enhance entity embedding.

However, existing methods cannot handle these problems, because these methods
focus on enriching cross-lingual links [7–11], and assume that the descriptions of entities in
knowledge graphs are consistent within the same language. In response to this, a novel en-
tity alignment approach based on domain-oriented embedded representation (DomainEA)
is proposed. DomainEA works as follows. In order to address the first problem, a filtering
mechanism based on entity attributes first excludes the noisy entities that are impossible to
align, and then selects the candidate set. For the second and third problems, a Structural Ag-
gregator (SA) composed of Graph Convolutional Networks (GCNs) [12] employs attribute
values to generate high-order neighborhood-aware embeddings for the entity structures.
We introduce Graph Attention Networks (GAT) [13] into an Attribute Aggregator (AA)
to effectively assign weights for attribute values according to their importance. Finally,
a transformation matrix maps the embeddings of distinct KGs onto a unified space, and
entity pairs that represent a real-world object are linked by calculating the similarity of
their embeddings.

The main contributions of this paper are as follows:

• Considering that few relationship connections exist in domain-oriented embedded
representation and the underuse of attribute values information, we employed a SA to
generate high-order neighborhood-aware embeddings of entities through attribute
values. Moreover, an AA utilizes the self-attention mechanism to dynamically calculate
the weights between entities and attribute values and generates the attribute-aware
embedding of entities. In addition, Multi-type Graph Neural Networks can enhance
the aggregation of entity features.

• In order to exclude unnecessary computations and improve the accuracy of the entity
alignment, we designed the filtering mechanism with entity attributes (e.g., taste or
cooking technique) on domain KGs, which select the candidate set by the blocker. The
experiments show that this can achieve expectations.

• Our approach only needs a few pre-aligned entities, and does not require any pre-
aligned relationships or attributes between the KGs, which reduces the cost of manu-
ally annotating data in the early stages.

• The experimental results on a real-world dataset show that compared to the six state-
of-the-art methods, our approach has higher accuracy and better stability.

Appl. Sci. 2023, 13, 9237 3 of 18

2. Related Work

The existing entity alignment methods can be divided into three categories, namely
statistics methods, classifier methods, and representation learning methods.

The core idea of the statistical methods is to find equivalent entities by comparing the
similarity of entity names, entity attributes, and attribute values. In order to resolve the
problems of a large amount of calculations and the method being limited to the calculation
of the concept in ontology mapping, an improved mapping method of comprehensive
ontology similarity [14] was proposed. This divides the large size of the original ontology
into some smaller ontologies, and then computes the ontology conceptual similarity by
combing three weighted similarities, which are derived from ontology concepts based
on the How Net, semantics, and structure. Similar methods include PARIS [15] and
RiMOM-IM [16]. Some methods [17] first calculate the similarity of each attribute via
a variety of similarity measures, and then select the attribute similarity with the best
performance to construct an integrated statistical model. The literature [18] uses the
clustering model to train an adaptive distance function through the sample dataset, and
through this function, the entities that may be aligned are clustered together. However,
in heterogenous knowledge bases it is difficult for the accuracy of statistical methods to
reach a sufficient value, and such methods need to manually define some hyperparameters
that quantify the degree of similarity between entities. It is clear that this kind of method
requires the involvement of domain experts, incurring additional labor costs.

The core idea of the classifier methods [19,20] is to model the similarity of each attribute
of the entity as a feature value, and then to transform the alignment problem into a two-
classification or three-classification problem, and finally to complete the alignment task
through the decision results obtained by the classifier model. These kinds of methods
are decision trees, Support Vector Machines (SVM), ensemble learning algorithms, and so
on. Some researchers [19] have proposed a decision model based on cost optimization,
which produces a cost-optimal decision rule with the overall cost formula and Bayesian
formula, and implements entity alignment according to the rule. The literature [20] employs
machine learning techniques to analyze the semantic features of the associated dataset, and
proposes an approach for aligning entities founded on the semantic features of the textual
attributes related to the associated dataset. Compared to statistical methods, the classifier
methods achieve a significant improvement in accuracy. However, such methods need to
deliberately design different feature engineering strategies for different knowledge bases,
so that the applicability of these classifier methods is limited and the portability is poor.

The representation learning methods mainly utilize the Knowledge Graph Embedding
(KGE) technology, which learns the low-dimensional vector representations of the entities
that capture their implicit features, and aligns the different entities which represent the same
real-world object via these semantic embeddings. Such methods can automatically obtain
entity pairs from heterogeneous knowledge graphs without a large number of artificial
features, so that they can achieve a wider range of applications [5]. Representation-based
learning methods can be subdivided into two categories. One is a semantic matching
model, which assumes that a relationship between two entities can be translated as a vector
in the bedding space. Based on the above hypothesis, TransE [21] is a translation mode
which represents entity relationships in the knowledge base as translation operations of
head and tail entities on low-dimensional vectors. Since then, various improved models,
such as TransH [22], TransG [23], PTransE [24], and PTransR [25] have been proposed,
which embed entities and relationships into different vector spaces, and can express more
complex semantic relationships. Although this kind of method performs well in cross-
language translation alignment problems, for domain knowledge graphs, the available
structural information is frequently limited, which ultimately leads to sparsity in the vector
representation, and which poses a challenge for the methods that heavily rely on this
information.

The other is the Graph Neural Network (GNN), which learns the representation of
the target entity by recursively aggregating the representation of adjacent entities. Graph

Appl. Sci. 2023, 13, 9237 4 of 18

embedding methods mostly focus on the structural information and attribute information
of the knowledge graphs. MuGNN [26] employs GNN to embed the structural information
of the knowledge graph into multiple channels, then assigns weights to the relationships
between the entities through the attention mechanism, and finally calculates the similar-
ity of the embedding features to achieve alignment. HGCN [27] is an entity alignment
method for jointly learning entity and relationship representations, and iteratively learns
the embedding representations of entities and relationships. In addition, other methods,
such as R-GCN [28] and FuAlign [29], embed the structural information of the entity and
infer alignment relationships. In addition to using the structural information of entities for
embedding, many scholars use the attribute information of entities to construct the feature
vectors of entities. The literature [30] transforms the alignment task into a two-classification
problem, then connects the attribute values of the entities to form a sequence of attribute
values and, finally, uses the BERT classifier to make the final label prediction. However,
it is difficult to completely learn the characteristics of entities by only using the struc-
tural information or attribute information of the knowledge base, so some methods which
comprehensively utilize both structural and attribute information have been proposed.
GCN-Align [31] utilizes GCNs to capture the structural and attribute information of entities
and to generate high-quality embedding vectors. This method calculates the similarity of
the structural feature vectors and attribute feature vectors of entities, and integrates these
vectors through a weighted summation, which ultimately serves as the criterion for entity
similarity assessment. AttrGNN [32] utilizes GNN to co-encode the structural and attribute
information of entities, and assigns weights to different attributes of the entity using an
attention mechanism. The representation learning methods have stronger robustness and
better generalization performance.

In summary, compared to statistical and classifier methods, the entity alignment
methods based on representation learning have the characteristics of needing less manual
annotation, higher execution efficiency, and better knowledge expression ability. For the
entity alignment task, learning the structural and attribute information of the entity at the
same time is conducive to enhancing the feature representation of the embedded entity and
improving the effect of entity alignment. However, in the process of attribute embedding,
the traditional representation learning method only utilizes a single attribute or assigns
all attributes with the same weight, and ignores important attribute information, which is
non-trivial for entity alignment problems and is sensitive to irrelevant attribute information.

3. Problem Formalization

Let a knowledge graph be represented as KG = (E, V, A, T), where E represents
the collection of entities, V represents the collection of attribute values, A represents the
collection of attributes, and T represents the collection of attribute triples. Each triple,
t = (h, a, v) in T, is represented as T = {(h, a, v)|h ∈ E, a ∈ A, v ∈ V}. Assume that
two heterogeneous knowledge graphs are represented as KG1 = (E1, V1, A1, T1) and
KG2 = (E2, V2, A2, T2). The goal of the entity alignment task is to infer the equivalent
relationship S = {(ei1, ei2)|ei1 ∈ E1, ei2 ∈ E2, ei1 ≡ ei2}, where ≡ indicates equivalence
and i represents the i-th aligned entity pair. For example, in heterogeneous knowledge
graphs KG1 and KG2, the entity alignment problem is to infer whether the equivalent
relationship between ei1 and ei2 exists or not, as shown in Figure 1. In the recipe field, the
relationships between dishes are missing; therefore, we indirectly establish the associations
of the dishes through the attribute values of the dishes. The green nodes represent entities
and the white nodes represent attribute values.

Appl. Sci. 2023, 13, 9237 5 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 19

between 𝑒𝑖1 and 𝑒𝑖2 exists or not, as shown in Figure 1. In the recipe field, the relation-

ships between dishes are missing; therefore, we indirectly establish the associations of the

dishes through the attribute values of the dishes. The green nodes represent entities and

the white nodes represent attribute values.

Predict entity pairs

ei1

KG1

ei2

KG2

Figure 1. An entity alignment example.

4. The Filtering Multi-Type Graph Neural Networks

Throughout the alignment process for the recipes, we encountered issues because the

different dishes have common ingredients, but the importance of identical ingredients

varies among the different dishes, and there is no correlation between the dishes. The ex-

isting methods are not designed to address the aforementioned issues, and the utilization

of these methods directly may not accurately and effectively identify all the entities of the

same object. Given this, this approach proposes a novel domain-oriented entity alignment

approach based on Filtering Multi-type Graph Neural Networks (DomainEA), which can

effectively solve the above problems. DomainEA employs a filtering mechanism to filter

confusing and unrelated entities to reduce unnecessary computations, and learns a more

sophisticated embedded representation of both the structural level and attributive level in

the recipe data through Multi-type Graph Neural Networks. As shown in Figure 2, the

approach consists of a filtering module, embedding module, and alignment module.

It works as follows. Firstly, considering that there are confusing entities and obvi-

ously misaligned entities, the filtering module employs pre-trained embeddings that con-

sist of attributes and are trained on Wikipedia, in order to exclude noisy entities and to

generate the candidate set of entities. The number of entities that are the input of embed-

ding decreased dramatically. Secondly, in a certain domain, relationships between entities

do not exist. For example, in the recipe, there is a lack of semantic relationships among the

different dishes. The embedding module utilizes a SA to learn the structural-level embed-

dings via the attribute values, which can model the indirect relationships between entities.

In addition, the same attribute value may play an important role in one entity, but play a

trivial role in other entities. For example, garlic plays a crucial role in certain dishes where

it is the main ingredient, while in the majority of dishes garlic merely serves as a season-

ing. We employ an AA to calculate the importance of attribute values in the form of

weights, and to quantify these weights into the entity embeddings. According to the

pooled embedding vectors of the pre-aligned entities, a space-mapping mechanism is de-

signed to calculate a transformation matrix, which can transform two embedding vectors

of different dimensions into a consistent vector. Finally, an alignment module is proposed

to calculate the similarity of the embedding vectors using the Euclidean norm for entity

alignment, and to align the different entities which represent the same real-world object.

Figure 1. An entity alignment example.

4. The Filtering Multi-Type Graph Neural Networks

Throughout the alignment process for the recipes, we encountered issues because
the different dishes have common ingredients, but the importance of identical ingredients
varies among the different dishes, and there is no correlation between the dishes. The
existing methods are not designed to address the aforementioned issues, and the utilization
of these methods directly may not accurately and effectively identify all the entities of the
same object. Given this, this approach proposes a novel domain-oriented entity alignment
approach based on Filtering Multi-type Graph Neural Networks (DomainEA), which can
effectively solve the above problems. DomainEA employs a filtering mechanism to filter
confusing and unrelated entities to reduce unnecessary computations, and learns a more
sophisticated embedded representation of both the structural level and attributive level
in the recipe data through Multi-type Graph Neural Networks. As shown in Figure 2, the
approach consists of a filtering module, embedding module, and alignment module.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19

KG Embedding

KGi1

KGi2

Space Mapping

Entity Alignment

Output
Pre-aligned entity pairs

KG1

KG2

KG12

Filtering Mechanism

KG11

KGm1

KGm2

SA

AA

U1

U2

V1

V2
0.20

0.11

0.07
0.13

0.15

0.10

0.24

AvgPooling

x1 x2

Z1
Z2

0.15

0.24

0.09

0.30

0.22

AA

Y1
Y2

0.15

0.23

0.09

0.30

0.13

SA

X1
X2

AvgPooling

U1

U2

W1

W2
0.20

0.11

0.07

0.13

0.15

0.10

0.24

S1
S2

S3

S4

...

Figure 2. Filtering Multi-type Graph Neural Networks. We use a straight line with an arrow to rep-

resent the relationship between entities (blue nodes) and attribute values (orange or green nodes),

with the arrow pointing from the entity to the attribute values. In 𝐾𝐺𝑖1 and 𝐾𝐺𝑖2, 𝑖 represents the

candidate set for the 𝑖-th entity.

4.1. The Filtering Module

The filtering module first employs a blocking mechanism to filter mismatched enti-

ties which are not deduplicated, and then utilizes a sub-knowledge graph generator to

generate a set of sub-knowledge graphs. Figure 3 illustrates the filtering module in Do-

mainEA. The blocking mechanism has shown a remarkable, outstanding performance in

relational datasets [33] before the use of Multi-type Graph Neural Networks. The blocking

mechanism designs a blocker to exclude the noisy entities, and to generate a candidate set

for each entity in the original KGs. The sub-knowledge graph generator reconstructs the

candidate sets of the entities into sub-knowledge graphs, which are the input of the em-

bedding module.

Recently, as representation learning has become popular, many works have applied

it to entity alignment [34–36] in KGs. In contrast, the blocking step has received far less

attention; only a few recent works have applied it to generate candidate sets [37–40]. If we

embed two heterogeneous knowledge graphs directly without a blocker in our approach,

there are a large amount of entities that would need to be matched and would result in

introducing noise. Moreover, directly computing all the entity embeddings of two heter-

ogeneous knowledge graphs could take a lot of time in the subsequent calculation process;

a considerable amount of the time spent would be unnecessary, which could reduce the

efficiency of the entire model. Although the composition of the same entity in heterogene-

ous KGs is not identical, the same attributes may still exist for the same entity. In our work,

we divide the attributes of an entity into single-value attributes and multi-values attrib-

utes. In addition to multi-values, such as the ingredients, each dish also has some single-

value attributes, such as cooking techniques and taste. However, these single-value attrib-

utes are unsuitable for the embedding of a SA and an AA, but they can construct a well-

performing blocking mechanism that excludes noisy entities and generates candidate sets

for the embedding module. The blocking mechanism not only simplifies the calculation

process, but also eliminates mismatched entities in advance, and enhances the final entity

alignment.

For the recipe, we build the blocking mechanism with attribute-specific semantics of

the entities in the KGs. These attribute-specific semantics are derived by analyzing the

single-value attributes of the entities, such as cooking techniques, taste, and cooking diffi-

culty. We first concatenate all the single-value attribute values of each entity in the KGs

into a string. For example, in Figure 3, all the single-value attribute values of 𝑒11 consist

Figure 2. Filtering Multi-type Graph Neural Networks. We use a straight line with an arrow to
represent the relationship between entities (blue nodes) and attribute values (orange or green nodes),
with the arrow pointing from the entity to the attribute values. In KGi1 and KGi2, i represents the
candidate set for the i-th entity.

It works as follows. Firstly, considering that there are confusing entities and obviously
misaligned entities, the filtering module employs pre-trained embeddings that consist of
attributes and are trained on Wikipedia, in order to exclude noisy entities and to generate
the candidate set of entities. The number of entities that are the input of embedding
decreased dramatically. Secondly, in a certain domain, relationships between entities do
not exist. For example, in the recipe, there is a lack of semantic relationships among
the different dishes. The embedding module utilizes a SA to learn the structural-level
embeddings via the attribute values, which can model the indirect relationships between
entities. In addition, the same attribute value may play an important role in one entity,

Appl. Sci. 2023, 13, 9237 6 of 18

but play a trivial role in other entities. For example, garlic plays a crucial role in certain
dishes where it is the main ingredient, while in the majority of dishes garlic merely serves
as a seasoning. We employ an AA to calculate the importance of attribute values in the
form of weights, and to quantify these weights into the entity embeddings. According to
the pooled embedding vectors of the pre-aligned entities, a space-mapping mechanism is
designed to calculate a transformation matrix, which can transform two embedding vectors
of different dimensions into a consistent vector. Finally, an alignment module is proposed
to calculate the similarity of the embedding vectors using the Euclidean norm for entity
alignment, and to align the different entities which represent the same real-world object.

4.1. The Filtering Module

The filtering module first employs a blocking mechanism to filter mismatched entities
which are not deduplicated, and then utilizes a sub-knowledge graph generator to generate
a set of sub-knowledge graphs. Figure 3 illustrates the filtering module in DomainEA.
The blocking mechanism has shown a remarkable, outstanding performance in relational
datasets [33] before the use of Multi-type Graph Neural Networks. The blocking mechanism
designs a blocker to exclude the noisy entities, and to generate a candidate set for each entity
in the original KGs. The sub-knowledge graph generator reconstructs the candidate sets of
the entities into sub-knowledge graphs, which are the input of the embedding module.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19

of 𝐴11, 𝐴21, and 𝐴31. We contact 𝐴11, 𝐴21, and 𝐴31 into a concatenated string, which is

fed into the pre-trained word embedding. The blocking mechanism consists of the pre-

trained word embedding, the tuple embedding, and the cosine pairing, as shown in Figure

3. The pre-trained word embedding employs fastText to generate a high-dimensional vec-

tor representation of each word in the concatenated string. Subsequently, the tuple em-

bedding aggregates these vectors into two vector sets, denoted as 𝑺 and 𝑻, in which each

embedding has the same dimension and represents the concatenated string. The cosine-

pairing module selects the top-K nearest neighbors by calculating the similarity 𝑄(𝑺, 𝑻),

and generates candidate sets, C, for the embedding module.

Pre-trained word

embedding
Tuple embedding Cosine pairing

S

T Q（S,T）

Concatenation

e12

e22

KG2

e11

e21

KG1

A11

A31

A21

A41

A51

A12

A22
A32

A42

A52

A62

A72

e11 : A11 A21 A31

e21 : A31 A41 A51

Concatenation
e12 : A12 A22 A32 A42

e22 : A42 A52 A62 A72

Blocking mechanism

e11

A11

A31

A21

e12

A12

A22
A32

A42

e21

A31

A41

A51

e22

A42

A52

A62

A72

Sub-KG generator

.

.

.

Attribute values concatenation

KG11 KG12

KGm1 KGm2

C

C1

Cm

Figure 3. An example of the filtering module. 𝐶𝑚 represents the candidate set for the 𝑚-th entity.

𝐾𝐺𝑚1 represents the sub-KG reconstructed by entities from the original 𝐾𝐺1 in the 𝑚-th candidate

set.

4.2. The Embedding Module

The embedding module mainly performs one hot encoding and learns the embed-

ding of features for the entities. Our approach incorporates a SA and an AA into the em-

bedding module. Firstly, the SA captures the structural information of the knowledge

graph by employing three hidden layers, which is effective in addressing the limited con-

nectivity between entities in the domain KGs. Secondly, the AA assigns different weights

according to the importance of the attribute values through the attention mechanism,

which can enrich the representation of entities. Finally, jointly embedding both structural

and attributive information can capture more complex and diverse relationships among

the entities and improve the accuracy of our approach. Table 1 outlines the parts of the

parameters of our approach.

Table 1. The parts of the parameters of the SA and AA.

Notation Description

σ The nonlinear activation function

A The adjacency matrix

I The identity matrix

𝑫 The degree matrix corresponding to the adjacency matrix

𝑾(𝑙) The weight coefficient matrix of the 𝑙-th layer

𝑨̂ = 𝑨 + 𝑰 The adjacency matrix with self-connection

𝑁𝑖 The collection of neighboring entities of the 𝑖-th entity in KGs

𝑯 The embedding of domain KGs

𝑏(𝑙) The bias term of the 𝑙-th layer

Figure 3. An example of the filtering module. Cm represents the candidate set for the m-th entity.
KGm1 represents the sub-KG reconstructed by entities from the original KG1 in the m-th candidate set.

Recently, as representation learning has become popular, many works have applied
it to entity alignment [34–36] in KGs. In contrast, the blocking step has received far less
attention; only a few recent works have applied it to generate candidate sets [37–40]. If we
embed two heterogeneous knowledge graphs directly without a blocker in our approach,
there are a large amount of entities that would need to be matched and would result
in introducing noise. Moreover, directly computing all the entity embeddings of two
heterogeneous knowledge graphs could take a lot of time in the subsequent calculation
process; a considerable amount of the time spent would be unnecessary, which could
reduce the efficiency of the entire model. Although the composition of the same entity
in heterogeneous KGs is not identical, the same attributes may still exist for the same
entity. In our work, we divide the attributes of an entity into single-value attributes and
multi-values attributes. In addition to multi-values, such as the ingredients, each dish also
has some single-value attributes, such as cooking techniques and taste. However, these
single-value attributes are unsuitable for the embedding of a SA and an AA, but they can
construct a well-performing blocking mechanism that excludes noisy entities and generates
candidate sets for the embedding module. The blocking mechanism not only simplifies the
calculation process, but also eliminates mismatched entities in advance, and enhances the
final entity alignment.

Appl. Sci. 2023, 13, 9237 7 of 18

For the recipe, we build the blocking mechanism with attribute-specific semantics
of the entities in the KGs. These attribute-specific semantics are derived by analyzing
the single-value attributes of the entities, such as cooking techniques, taste, and cooking
difficulty. We first concatenate all the single-value attribute values of each entity in the KGs
into a string. For example, in Figure 3, all the single-value attribute values of e11 consist of
A11, A21, and A31. We contact A11, A21, and A31 into a concatenated string, which is fed
into the pre-trained word embedding. The blocking mechanism consists of the pre-trained
word embedding, the tuple embedding, and the cosine pairing, as shown in Figure 3.
The pre-trained word embedding employs fastText to generate a high-dimensional vector
representation of each word in the concatenated string. Subsequently, the tuple embedding
aggregates these vectors into two vector sets, denoted as S and T, in which each embedding
has the same dimension and represents the concatenated string. The cosine- pairing module
selects the top-K nearest neighbors by calculating the similarity Q(S, T), and generates
candidate sets, C, for the embedding module.

4.2. The Embedding Module

The embedding module mainly performs one hot encoding and learns the embedding
of features for the entities. Our approach incorporates a SA and an AA into the embedding
module. Firstly, the SA captures the structural information of the knowledge graph by
employing three hidden layers, which is effective in addressing the limited connectivity
between entities in the domain KGs. Secondly, the AA assigns different weights according
to the importance of the attribute values through the attention mechanism, which can enrich
the representation of entities. Finally, jointly embedding both structural and attributive
information can capture more complex and diverse relationships among the entities and
improve the accuracy of our approach. Table 1 outlines the parts of the parameters of
our approach.

Table 1. The parts of the parameters of the SA and AA.

Notation Description

σ The nonlinear activation function
A The adjacency matrix
I The identity matrix
D The degree matrix corresponding to the adjacency matrix

W(l) The weight coefficient matrix of the l-th layer
Â = A + I The adjacency matrix with self-connection

Ni The collection of neighboring entities of the i-th entity in KGs
H The embedding of domain KGs

b(l) The bias term of the l-th layer

4.2.1. The Structure-Aware Entity Embedding

There is a lack of relationships between the entities in the domain KGs. To address
this issue, we utilize the attribute values (represented by white dots) as the bridges and
conduct iterative computations to progressively learn the multi-hop structural features of
the entities through the multiple hidden layers of the SA. We first construct the input of
the SA according to the attribute triples. Subsequently, we employ the SA with multiple
hidden layers to learn the high-dimensional representation vectors for each entity and
attribute value. These representation vectors can capture the semantic information between
entities and attribute values, and the relevant information between the entities gradually
spreads to the representation vectors of the other entities through the virtual relationship of
attribute values. Finally, the indirect relationship (represented by a dotted green line with
an arrow) between the entities can be captured through these representation vectors. The
aggregation process of the SA is shown in Figure 4.

Appl. Sci. 2023, 13, 9237 8 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 19

4.2.1. The Structure-Aware Entity Embedding

There is a lack of relationships between the entities in the domain KGs. To address

this issue, we utilize the attribute values (represented by white dots) as the bridges and

conduct iterative computations to progressively learn the multi-hop structural features of

the entities through the multiple hidden layers of the SA. We first construct the input of

the SA according to the attribute triples. Subsequently, we employ the SA with multiple

hidden layers to learn the high-dimensional representation vectors for each entity and

attribute value. These representation vectors can capture the semantic information be-

tween entities and attribute values, and the relevant information between the entities

gradually spreads to the representation vectors of the other entities through the virtual

relationship of attribute values. Finally, the indirect relationship (represented by a dotted

green line with an arrow) between the entities can be captured through these representa-

tion vectors. The aggregation process of the SA is shown in Figure 4.

Two-hop

One-hop

Figure 4. The diagram of the structural aggregator. The black line with an arrow represent the rela-

tionships between entities and attribute values, and the dotted green line with an arrow represent

the indirect relationships between the entities.

The computation of the hidden layer plays a crucial role in the aggregation process

of the SA. Due to the sparsity or even absence of relationship triplets in the domain

knowledge graphs, we utilize attribute triplets as a substitute for relationship triplets for

feature embedding. Multiple layers of the SA are employed to indirectly establish associ-

ations between entities by learning multi-hop neighborhood information. The neighbor-

hood information can be quantified in the form of multiple hidden layers. Equation (1)

encapsulates a comprehensive formulation for the update of the 𝑙-th hidden layer, 𝑯(𝑙),

within the SA. The function, 𝑓(∙), is denoted as the update mechanism that utilizes the

input from the previous layer, 𝑯(𝑙−1), and the adjacency matrix, 𝑨.

𝑯(𝑙) = 𝑓(𝑯(𝑙−1), 𝑨) (1)

In Equation (1), the parameters of the feature matrix, 𝑯(0), and the adjacency matrix,

𝑨, in the SA are initialized according to the information about the dishes and related in-

gredients. Equation (2) presents a specific instantiation of the update mechanism, where

an activation function, σ(∙), is applied and the propagation of information from the pre-

vious layer, denoted as 𝑨𝑯(𝑙−1)𝑾(𝑙−1), is incorporated. In addition, our approach selects

LeakyReLu as the specific activation function to mitigate gradient vanishing.

𝑯(𝑙) = 𝜎(𝑨𝑯(𝑙−1)𝑾(𝑙−1) + 𝑏(𝑙−1)) (2)

In the equation above, 𝑏(𝑙−1) represents the bias, which is a parameter adjusted

through back-propagation. To effectively capture the bidirectional relationships among

the entities and the inherent features of the entities during the process of feature learning,

we perform symmetric normalization and self-connection processing on the adjacency

matrix, 𝑨, as indicated by Equation (3):

Figure 4. The diagram of the structural aggregator. The black line with an arrow represent the
relationships between entities and attribute values, and the dotted green line with an arrow represent
the indirect relationships between the entities.

The computation of the hidden layer plays a crucial role in the aggregation process of
the SA. Due to the sparsity or even absence of relationship triplets in the domain knowl-
edge graphs, we utilize attribute triplets as a substitute for relationship triplets for feature
embedding. Multiple layers of the SA are employed to indirectly establish associations
between entities by learning multi-hop neighborhood information. The neighborhood
information can be quantified in the form of multiple hidden layers. Equation (1) encapsu-
lates a comprehensive formulation for the update of the l-th hidden layer, H(l), within the
SA. The function, f (·), is denoted as the update mechanism that utilizes the input from the
previous layer, H(l−1), and the adjacency matrix, A.

H(l) = f
(

H(l−1), A
)

(1)

In Equation (1), the parameters of the feature matrix, H(0), and the adjacency matrix,
A, in the SA are initialized according to the information about the dishes and related in-
gredients. Equation (2) presents a specific instantiation of the update mechanism, where
an activation function, σ(·), is applied and the propagation of information from the pre-
vious layer, denoted as AH(l−1)W(l−1), is incorporated. In addition, our approach selects
LeakyReLu as the specific activation function to mitigate gradient vanishing.

H(l) = σ
(

AH(l−1)W(l−1) + b(l−1)
)

(2)

In the equation above, b(l−1) represents the bias, which is a parameter adjusted through
back-propagation. To effectively capture the bidirectional relationships among the entities
and the inherent features of the entities during the process of feature learning, we perform
symmetric normalization and self-connection processing on the adjacency matrix, A, as
indicated by Equation (3):

Â = D−
1
2 AD−

1
2 + I (3)

Equation (4) is a variation of Equation (2). The update mechanism in Equation (4)
captures more structural information of the KGs through incorporating the normalized

Laplacian D̂
− 1

2 ÂD̂
− 1

2 , where D̂ is the diagonal matrix of node degrees. To accomplish
this, the propagation of information from the preceding layer is rescaled by employing

the diagonal matrix, D̂
− 1

2 . This rescaling strategy ensures a balanced influence among
neighboring entities in the knowledge graphs. By iteratively solving Equation (4), the
model is able to learn the higher-order features of the entities.

H(l) = σ

(
D̂
− 1

2 ÂD̂
− 1

2 H(l−1)W(l−1) + b(l−1)
)

(4)

Appl. Sci. 2023, 13, 9237 9 of 18

Through Equation (4), the embedding features of entity h(l)i in the l-th layer can be
derived as Equation (5), which illustrates the relationship between the embedding features
of entity h(l)i and its adjacent entities.

h(l)i = σ

(
∑

j∈Ni

D̂
− 1

2 ÂD̂
− 1

2 h(l−1)
j W(l−1) + b(l−1)

)
(5)

4.2.2. The Attribute-Aware Entity Embedding

The existing methods only employ attribute names in attribute embedding, but over-
look attribute values and the weights of the attribute values. Domain knowledge graphs,
especially of recipes, encompass a large number of attribute values that describe entities
with rich details. In addition, some attributes play a non-trivial role among the attributes of
entities. For example, the dish “tomato scrambled eggs” is mainly composed of tomatoes
and eggs, not salt. An AA is proposed to generate attribute-aware embeddings of the
entities via their attribute values and attribute weights. The AA employs the attention
mechanism and assigns appropriate weights to entity relationships based on the influ-
ence of adjacent entity features on the current entity. The AA requires paired adjacent
entities during training, and we utilize a multi-headed AA to improve the generalization
expression ability.

The computational process of the AA can be decomposed into two parts. The first part
is to calculate the normalized attention coefficient of the entities. To obtain the normalized
attention coefficient of the j-th neighboring entity, we first compute the attention coefficient
according to Equation (6). Subsequently, we employ softmax to normalize the result, as
shown in Equation (7).

In Equation (6), we first employ the weight matrix, W, to perform a linear transfor-
mation on the features of entities hi and hj, and then concatenate the transformed result.
This process can map the original features onto a higher-dimensional feature space, which
facilitates the capture of intricate inter-entity relationships. Next, we utilize the attention
weight vector, aT, to assign the adaptive weight for different features via computing the
scalar product with the concatenated result. Finally, we apply the LeakyReLu activation
function to the computed result to obtain the final attention score, eij.

eij = LeakyReLu
(

aT[Whi
∣∣∣∣Whj

])
(6)

aij = so f tmaxj
(
eij
)
=

exp
(
eij
)

∑kεNi
exp(eik)

, j, kεNi (7)

The second part aggregates the attention and characteristics of neighboring entities,
and achieves the comprehensive attribute-aware embeddings of the entities. The com-
prehensive attribute-aware embedding of the i-th entity denoted as h′i, is calculated as
Equation (8).

h′i = σ
(
∑j∈Ni

aijWhj

)
(8)

In order to comprehensively and diversely capture the representation of KGs, our
approach utilizes a multi-headed AA to capture the features of the entities from various
subspaces. In particular, each attention head independently learns its own attention weights
and generates corresponding feature vectors. K represents the number of heads of the AA
in Equation (9).

h′i(K) = σ

(
1
K

K

∑
k=1

∑j∈Ni
ak

ijW
khj

)
(9)

Appl. Sci. 2023, 13, 9237 10 of 18

4.2.3. The Jointly Embedding

In order to mitigate overfitting and enhance the accuracy and efficiency of DomainEA,
it is imperative to reduce and aggregate the embedding spaces generated by the SA and AA
in the jointly embedding phase. A global average pooling strategy is proposed to merge the
embedded spaces of the SA and AA. This strategy can not only capture spatial information
effectively, but also exhibits greater resilience to input space variations. Specifically, the
global average pooling strategy consolidates spatial information by summing it up and is
thus less sensitive to changes in the input space. Figure 5 illustrates the schematic diagram
of the jointly embedding phase.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19

ℎ𝑖
′ = σ(∑ 𝑎𝑖𝑗

𝑗∈𝑁𝑖

𝐖ℎ𝑗) (8)

In order to comprehensively and diversely capture the representation of KGs, our

approach utilizes a multi-headed AA to capture the features of the entities from various

subspaces. In particular, each attention head independently learns its own attention

weights and generates corresponding feature vectors. K represents the number of heads

of the AA in Equation (9).

h𝑖
′(𝐾) = σ(

1

𝐾
∑∑ 𝑎𝑖𝑗

𝑘

𝑗∈𝑁𝑖

𝐖𝑘ℎ𝑗

𝐾

𝑘=1

) (9)

4.2.3. The Jointly Embedding

In order to mitigate overfitting and enhance the accuracy and efficiency of Do-

mainEA, it is imperative to reduce and aggregate the embedding spaces generated by the

SA and AA in the jointly embedding phase. A global average pooling strategy is proposed

to merge the embedded spaces of the SA and AA. This strategy can not only capture spa-

tial information effectively, but also exhibits greater resilience to input space variations.

Specifically, the global average pooling strategy consolidates spatial information by sum-

ming it up and is thus less sensitive to changes in the input space. Figure 5 illustrates the

schematic diagram of the jointly embedding phase.

SA AA

AvgPoolingSA AvgPoolingAAContact

Figure 5. A schematic diagram of the jointly embedding phase.

The purpose of the jointly embedding phase is to contact the comprehensive embed-

dings of the KGs, which is computed according to Equation (10). In Equation (10), we

employ the average pooling to extract the salient features from the output of aggregation

of 𝑯𝑆𝐴
(𝑙)

 and 𝑯𝐴𝐴
(𝑙)

 , and contact them to generate the jointly embedding. 𝑯𝑆𝐴
(𝑙)

 and 𝑯𝐴𝐴
(𝑙)

 , re-

spectively, represent the 𝑙-th output of the SA and AA embedding mechanisms.

𝑯(𝑙) = 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑯𝑆𝐴
(𝑙)
), 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑯𝐴𝐴

(𝑙)
)) (10)

4.2.4. The Spatial Mapping

After the jointly embedding phase, the entity embeddings of the distinct knowledge

graphs may have different dimensions, since the entities from distinct knowledge graphs

have different numbers of attribute values. The spatial mapping phase is tasked with map-

ping the embedding spaces of two distinct knowledge graphs onto a unified space. There

are some pre-aligned entity pairs, which are selected before learning, and have embed-

ding vectors after the above-mentioned embedding phases. Through the embedding vec-

tors of the pre-aligned entity pairs from different KGs, we can achieve the transformation

matrix, 𝑻, calculated by Equation (11). ℎ𝐺1
𝑛 and ℎ𝐺2

𝑛 , respectively, represent the embed-

ding eigenvectors of the 𝑛-th pair of matching entities between 𝐾𝐺1 and 𝐾𝐺2. 𝑻 repre-

sents the transformation matrix of the two embedding vector spaces.

Figure 5. A schematic diagram of the jointly embedding phase.

The purpose of the jointly embedding phase is to contact the comprehensive embed-
dings of the KGs, which is computed according to Equation (10). In Equation (10), we
employ the average pooling to extract the salient features from the output of aggregation
of H(l)

SA and H(l)
AA, and contact them to generate the jointly embedding. H(l)

SA and H(l)
AA,

respectively, represent the l-th output of the SA and AA embedding mechanisms.

H(l) = Contact
(

AvgPooling
(

H(l)
SA

)
, AvgPooling

(
H(l)

AA

))
(10)

4.2.4. The Spatial Mapping

After the jointly embedding phase, the entity embeddings of the distinct knowledge
graphs may have different dimensions, since the entities from distinct knowledge graphs
have different numbers of attribute values. The spatial mapping phase is tasked with
mapping the embedding spaces of two distinct knowledge graphs onto a unified space.
There are some pre-aligned entity pairs, which are selected before learning, and have
embedding vectors after the above-mentioned embedding phases. Through the embedding
vectors of the pre-aligned entity pairs from different KGs, we can achieve the transformation
matrix, T, calculated by Equation (11). hn

G1
and hn

G2
, respectively, represent the embedding

eigenvectors of the n-th pair of matching entities between KG1 and KG2. T represents the
transformation matrix of the two embedding vector spaces.

h1
G1

= Th1
G2

h2
G1

= Th2
G2

·
·
·

hn
G1

= Thn
G2

(11)

4.3. The Alignment Module

After the embedding module, the entity embeddings of the heterogeneous graphs have
a uniform vector space. The alignment module realizes the alignment task by calculating

Appl. Sci. 2023, 13, 9237 11 of 18

the similarity metric between the embedding features. Our approach utilizes the L2 norm to
calculate the distance between pairs of candidate entities, which is depicted in Equation (12):

D
(
ei, ej

)
=
∥∥h(ei)− h

(
ej
)∥∥

2 (12)

The variables ei and ej, respectively, represent pairs of candidate entities in two hetero-
geneous graphs, while D

(
ei, ej

)
signifies the distance of the candidate entities between ei

and ej. Respectively, h(ei) and h
(
ej
)

represent the eigenvectors of the embedded entities, ei
and ej.

Our approach falls under the category of an unsupervised entity alignment method,
so we introduce an unsupervised alignment consistency loss for the approach. Firstly,
we extract the set of all neighboring entities, ej, connected to ei in KG1, as Ni. Similarly,
we identify the corresponding entity e′i in KG2, and collect its neighbouring entities ek, to
form N′i . Subsequently, by evaluating the difference term for each entity pair

(
ei, e′i

)
using

Equation (13) and aggregating the results, we obtain the alignment discrepancy.

L = ∑ei∈KG1

∥∥∥∥∥ 1
|Ni|∑ej∈Ni

D
(
ei, ej

)
− 1∣∣N′i ∣∣∑ek∈N′i

D
(
e′i , ek

)∥∥∥∥∥ (13)

According to Equation (13), it encourages similar entities to possess similar neighbor-
ing entities in both knowledge graphs while maintaining consistency in their alignments.
Ultimately, by minimizing the consistency loss, our approach can learn a consistent align-
ment pattern and facilitate the alignment of entity pairs.

5. Experiments and Results
5.1. The Experimental Settings
5.1.1. Datasets

Most existing works evaluate their methods on DBP15K, which can only be used
for the cross-lingual KG alignment task and is not suitable for our research. DomainEA
is proposed for aligning entities of different sources to improve the quality of domain
knowledge graphs, so we conducted experiments on two heterogeneous datasets, e.g., ZH-
MSJ and ZH-ZHYSW, from Chinese recipe websites. Notably, the dataset has been released
on GitHub https://github.com/ZhongJinjun/DomainEA (accessed on 31 December 2022)
to facilitate access for scholars who may wish to employ it for research purposes. ZH-MSJ
consists of 8156 entities, 18 attributes, and 95,145 attribute triples. ZH-ZHYSW includes
6083 entities, 11 attributes, and 46,652 attribute triples, as shown in Table 2. The original
knowledge graphs are constructed according to ZH-MSJ and ZH-ZHYSW.

Table 2. Statistics of datasets.

Dataset Entity Attribute Attribute Triple

ZH-MSJ 8156 18 95,145
ZH-ZHYSW 6083 11 46,652

5.1.2. Experimental Environment

This section describes the experimental environment for DomainEA, including the
hardware and software tools, shown in Table 3, and the hyperparameters of the approach,
shown in Table 4. We ultimately set the dimensional embeddings of the SA and AA at 128.

5.1.3. Evaluation Metrics

The state-of-the-art methods were evaluated in terms of Hits@n and Mean Reciprocal
Rank (MRR). For a fair comparison, we employed Hits@n and MRR to evaluate all the
experimental results. Hits@n indicates the proportion of the target entities which are ranked
in the top-n positions, as shown in Equation (14). MRR indicates the average reciprocal

https://github.com/ZhongJinjun/DomainEA

Appl. Sci. 2023, 13, 9237 12 of 18

rank of the target entity in the alignment ranking, as shown in Equation (15). For all the
evaluation metrics, a higher score indicates better performance. We report Hits@1, Hits@10,
Hits@50, and MRR for the approach on each dataset.

Hits@n =
1
N

N

∑
i=1

I(Ranki ≤ n) (14)

MRR =
1
N

N

∑
i=1

1
Ranki

(15)

Table 3. Hardware and software tools.

Tools Value

CPU Intel Core i7-12700H
RAM 32 GB
HDD 2 TB

PyTorch 1.10.2
Python 3.6.2
Scipy 1.5.4

Numpy 1.16.2

Table 4. Hyperparameters of DomainEA.

Hyperparameters Description Value

Keep-prob The keep probability of neuron 0.9
Learning rate The step size for model parameter updates 0.001

Alpha The slope of LeakyReLu 0.2
Max epoch The maximum number of training epochs 100

In the filtering module, we excluded noisy entities and generated candidate sets, C,
on Tables 1 and 2. We evaluated three blocking solutions in terms of Recall and CSSR on
ZH-MSJ and ZH-ZHYSW. A higher Recall and lower CSSR indicate a better performance.
The Recall and CSSR, respectively, are shown in Equations (16) and (17). G represents the
set of true matches between A and B.

Recall =
|G ∩ C|
|C| (16)

CSSR =
|C|
|A× B| (17)

5.1.4. Baseline Methods

We compared our approach (DomainEA) to the following baselines:

• GCN-Align: GCN-Align [31] employs GCN to effectively encode both the structural
and attribute information of the entities and to generate high-quality embedding
vectors. The method calculates the similarity of the structural and attribute feature
vectors of the entities, and subsequently integrates them via a weighted summation,
which provides a criterion for the entity similarity assessment.

• MuGNN: MuGNN [26] employs GNN to embed the structural information of the
knowledge graph into multiple channels. Additionally, it utilizes an attention mecha-
nism to assign weights to the relationships between entities, ultimately facilitating the
calculation of the similarity of embedding features for achieving alignment.

• HGCN: HGCN [27] is an entity alignment method for employing GCN to capture the
implicit features of entities and relationships via jointly learning, and to iteratively
learn the embedding representations of entities and relationships.

Appl. Sci. 2023, 13, 9237 13 of 18

• FGWEA: FGWEA [41] is an unsupervised entity alignment framework with Gromov–
Wasserstein distance. The method can make full use of the structural information of
the knowledge graph to realize a comprehensive comparison of the corresponding
entities in different knowledge graphs through optimizing entity semantics and the
knowledge graph structure.

• PEEA: PEEA [42] belongs to a weakly supervised learning framework. In addition
to absorbing structural and relational information, PEEA is designed to enhance the
connections between distant entities and labeled entities by integrating positional
information into the representation learning process through a Position Attention
Layer (PAL).

• SDEA: SDEA [43] consists of attribute embedding and relation embedding. SDEA
first employs the pre-trained language model transformer to extract the semantic
information of attribute values, and then utilizes GRU equipped with an attention
mechanism to aggregate the structural information of neighbor entities.

5.2. The Experimental Results
5.2.1. The Comparison of Six Baseline Methods

We conducted comparative experiments on ZH-MSJ and ZH-ZHYSW. The experimen-
tal results of all the metrics are shown in Table 5. Most of the existing methods assume that
the knowledge graph has abundant relationships among the entities. However, the absence
of relationships between entities in the domain knowledge graph undermines the efficacy
of the baselines and the accomplishment of the alignment task properly. Consequently,
we utilized attribute triples to replace relationship triples in the learning process of the
baselines, and denoted them with the symbol, “+”. “↑” and “↓” indicates an increment or
decrement in the baselines, which utilized attribute triples to replace relationship triples
compared to themselves in Table 5. We could not execute MuGNN and HGCN directly,
for they mainly utilize relationship triples for embedding, so we utilized “—” to represent
their values in the metrics. Moreover, GCN-Align employs GCN to embed structural
and attribute information for the entities, so GCN-Align+ is similar to GCN-Align in all
the metrics.

Table 5. Comparative experiments.

Method Hits@1 (%) Hits@10 (%) Hits@50 (%) MRR (%)

GCN-Align 46.25 86.74 92.21 60.07
MuGNN —— —— —— ——
HGCN —— —— —— ——

FGWEA 55.94 88.79 92.36 69.45
PEEA 53.59 88.61 90.16 67.98
SDEA 55.18 89.26 91.65 70.94

GCN-Align+ 47.03 (0.78↑) 86.13 (0.61↓) 92.73 (0.52↑) 60.41 (0.34↑)
MuGNN+ 53.71 92.48 96.74 69.09
HGCN+ 59.02 95.38 97.19 73.23

FGWEA+ 62.14 (6.2↑) 97.24 (8.45↑) 99.02 (6.66↑) 76.61 (7.16↑)
PEEA+ 60.39 (6.8↑) 93.87 (5.26↑) 98.71 (8.55↑) 74.63 (6.65↑)
SDEA+ 62.98 (7.8↑) 97.45 (8.19↑) 98.15 (6.5↑) 78.77 (6.83↑)

DomainEA 64.66 98.07 98.91 79.02

Table 5 suggests that the performance of DomainEA outperforms the baselines of
almost all the metrics. The reasoning for that is, in the filtering module, DomainEA can
effectively exclude noisy entities and select a few candidate entities before KG embedding.
In the embedding module, we employed the SA to generate the high-order local features,
and introduce attention to the dynamically calculated weights between the entities and
attribute values in the AA. These strategies enhanced the efficacy of entity alignment. How-
ever, in comparison to the other baselines, MuGNN+ and HGCN+ only rely on structural
information for embedding, while ignoring the significance of entity attribute values on

Appl. Sci. 2023, 13, 9237 14 of 18

the alignment tasks, which results in the loss of semantic information about the entities.
Although GCN-Align+ jointly embeds both the structural and attribute information of
the KGs, as domain-specific KGs contain abundant interference information, GCN-Align+
cannot effectively address this problem, which leads to a suboptimal alignment perfor-
mance. PEEA+ relies on a limited number of anchor links for training, but it is a challenge
to obtain high-quality anchored links in recipes, so the performance of PEEA+ may be
limited. FGWEA+ mainly utilizes structural information to optimize entity semantics and
knowledge graph structure. However, in domain knowledge graphs, the lack of structural
information makes us have to utilize attribute triples to replace the relationship triples,
which limits the effectiveness of FGWEA+. SDEA+ demonstrates sub-optimal performance
across all the metrics. A thorough analysis of its limitations reveals that it employs a
transformer to extract semantic information from the entity attributes, and utilizes a GRU
with an attention mechanism to capture the structural information of entities. While this
design yields satisfactory results for the entity alignment task of the domain knowledge
graph, it falls short in effectively filtering out noisy entities. As a consequence, SDEA+
slightly underperforms compared to DomainEA.

Moreover, the results reveal a substantial enhancement in the performance of the
baselines when we employed attribute triples to replace relationship triples for entity
embedding in the entity alignment task of the domain knowledge graph. Specifically,
FGWEA+, PEEA+, and SDEA+ achieved a 5.26–8.55% improvement in all metrics. In
particular, FGWEA+, respectively, achieved improvements of 6.2%, 8.45%, 6.66%, and
7.16% in Hits@1, Hits@10, Hits@50, and MRR. PEEA+ achieved an average improvement
of 6.8% across all metrics, with a particularly substantial improvement of 8.55% observed in
Hits@50. SDEA+, respectively, achieved improvements of 7.8%, 8.19%, 6.5%, and 6.83% in
Hits@1, Hits@10, Hits@50, and MRR. This improvement substantiates the indispensability
of integrating attribute triples into the process of embedding.

5.2.2. Ablation Experiments

For a comprehensive evaluation of our approach, we conducted three comparative
experiments. Respectively, the first experiment was to compare the three deep-learning
blocking methods. These methods have different tuple embedding solutions in the filtering
module, and these solutions, respectively, are autoencoder, CTT, and hybrid. The second
experiment was to evaluate DomainEA and DomainEA-f; DomainEA-f refers to an entity
alignment method which does not have a filtering module compared to DomainEA. The
third experiment was to evaluate the effect of DomainEA with various hidden layers in
the SA. The primary objective was to verify the necessity of implementing the filtering
module and to investigate the influence of the number of hidden layers in the SA on the
experimental outcomes.

In the filtering module, we employed self-supervision deep-learning blocking to
exclude noisy entities and generate the candidate sets for each entity. Blocking consisted
of pre-trained word embedding, tuple embedding, and cosine pairing. We selected three
representative solutions in the tuple embedding: autoencoder, CTT, and hybrid, which
achieve higher recall and smaller candidate sets on the various datasets. These tuple
embedding solutions are shown as follows:

• Autoencoder: The autoencoder model consists of an aggregator, encoder, and decoder.
The aggregator can dispose of the various sequences of word embedding, which the
feed-forward NN cannot accept. The encoder and decoder utilize two-layer feed-
forward NNs with the Tanh activation function to reconstruct the feature of the entity.

• CTT: The CTT model consists of an aggregator, Siamese summarizer, and classifier.
CTT exploits information in multiple tuples. It perturbs the tuples in Tables 1 and 2,
and generates synthetic labeled data, which can train a deep-learning model to produce
embeddings for each tuple.

Appl. Sci. 2023, 13, 9237 15 of 18

• Hybrid: The hybrid model consists of an autoencoder and CTT, which are stacked by
training the autoencoder first and then the CTT. This method employs the trained en-
coder of the autoencoder as the aggregator for CTT to generate the tuple embeddings.

We conducted an evaluation of the recall of the three methods above on various
candidate set sizes. The results, presented in Table 6, indicate that the autoencoder almost
always achieved the highest recall on multiple candidate sets, compared to the CTT and
hybrid. Moreover, the hybrid model, respectively, achieved the highest recall on 1.41 and
2.53, and both autoencoder and CTT achieved the highest recall on 5.62. In general, all three
methods had high recall on small candidate set sizes. Therefore, our approach selected
autoencoder as the tuple embedding for the filtering module.

Table 6. The recall of solutions on various CSSR.

CSSR (%) Autoencoder CTT Hybrid

1.41 81.03 78.41 83.26
1.69 84.74 81.69 84.39
1.97 87.16 84.69 86.40
2.25 92.63 87.49 89.92
2.53 94.25 93.82 96.20
2.81 98.03 96.62 97.05
5.62 99.90 99.90 99.57

We conducted a comparative experiment on DomainEA-f and DomainEA. Through
this experiment, we could evaluate the effectiveness of the filtering module.

Table 7 reveals that DomainEA outperformed DomainEA-f on all the evaluation met-
rics and has superior runtime efficiency. Specifically, DomainEA, respectively, achieved
improvements of 6.27%, 2.34%, 1.25%, and 7.88% in Hits@1, Hits@10, Hits@50, and MRR,
while reducing the runtime by 43.04 s when compared to DomainEA-f. The result shows
that DomainEA can effectively exclude noisy entities and greatly simplify the calcula-
tion process.

Table 7. Entity alignment results with a change of filtering module.

Method Hits@1 (%) Hits@10 (%) Hits@50 (%) MRR (%) Time (s)

DomainEA-f 58.39 95.73 97.66 71.14 49.47
DomainEA 64.66 98.07 98.91 79.02 6.43

We conducted an experiment with various numbers of hidden layers of the SA and
investigated the impact of the number of hidden layers on our approach. The experiment
results are shown in Table 8.

Table 8. Entity alignment results with various numbers of hidden layers of the SA.

#Layers Hits@1 (%) Hits@10 (%) Hits@50 (%) MRR (%)

1 53.88 93.98 97.74 71.91
2 64.32 97.24 98.16 77.72
3 64.66 98.07 98.91 79.02
4 64.41 97.91 98.93 78.86
5 62.32 97.15 98.33 76.35

We can infer from the experimental results in Table 8 that increasing the number
of hidden layers in the SA has a positive impact on all the evaluation metrics, but does
not mean better performance will be achieved. In particular, the 1-layer SA received the
lowest scores on all the metrics compared to the others. Except for the 4-layer SA, which
recorded the highest score in Hits@50, the 3-layer SA achieved the highest scores on the

Appl. Sci. 2023, 13, 9237 16 of 18

other performance metrics. However, for the metric Hits@n, for the same score, the smaller
the value of n was the more superior the method. Moreover, when the number of layers of
the SA exceeded three, the performance of DomainEA declined. Overall, these findings
suggest that increasing the SA layer can capture the higher-order entity features, but the
model will incur an overfitting problem as the number of SA layers increases. It is important
to select the appropriate number of hidden layers of the SA for the specific application.

5.2.3. Results on Various-Scale Datasets

We conducted an experiment with various sizes of datasets to evaluate the stability of
our approach. We randomly selected 1000, 2000, and 3000 entities from the original KGs
to construct three sub-KGs, noted as KG_1K, KG_2K, and KG_3K, in order to evaluate
DomainEA and observe the trend of the change in metrics. The experimental results are
depicted in Table 9. We can observe the trends of variation for all the metrics. Firstly,
Hits@1 exhibits fluctuations with the increasing size of the dataset. From KG_1K to KG_2K,
Hits@1 decreases by 0.35 percentage points. However, Hits@1 and MRR achieve significant
improvement on KG_3K, reaching 60.48% and 75.22%. Secondly, in relation to Hits@10
and Hits@50, there is a positive correlation between the expansion of the dataset size and
the improvement in these metrics. For instance, Hits@10 rises from 95.37% to 95.98%,
and Hits@50 escalates from 97.48% to 98.16%. In summary, as the size of the dataset
changes, the fluctuations of all the evaluation metrics are small. It implies that the various
sizes of datasets have a subtle influence on the evaluation metrics and our approach has
favorable stability.

Table 9. Entity alignment results with various numbers of hidden layers of GCNs.

Dataset Hits@1 (%) Hits@10 (%) Hits@50 (%) MRR (%)

KG_1K 57.24 95.37 97.48 74.35
KG_2K 56.89 95.48 97.66 73.81
KG_3K 60.48 95.98 98.16 75.22

6. Summary

In this work, we focus on the domain problem of entity alignment. We propose a novel
approach (DomainEA) that can be effectively implemented on domain-oriented knowledge
graphs. Existing methods are aimed at enhancing cross-lingual links, but when applied to
the domain-oriented task of entity alignment, they have difficulty effectively solving the
aforementioned problems in the introduction. In response to the issue that domain KGs
have few relationships between entities, our approach integrates attribute triples instead of
relationship triples to achieve the task of entity alignment. Specifically, we first employed
a filtering module consisting of attribute values to exclude noisy entities, and selected a
candidate set for each entity to reconstruct the sub-KGs. Then, we employed a SA and
an AA to integrate the implicit features of the entities, and to map the heterogeneous
KGs onto a unified space. Finally, the alignment module realized the alignment task by
calculating the similarity among the entity embeddings. Compared to the five baselines,
our approach consistently performed better on real datasets, and comparisons from the
ablation experiments also demonstrate the usefulness of the filtering module and SA.

DomainEA achieves some advancements in the task of domain-oriented entity align-
ment. However, it also has some limitations to its applications. We will pay more attention
to investigating two aspects of our approach in future work:

Firstly, DomainEA only performed well on two Chinese-recipe datasets, which limits
its universality. So we will evaluate DomainEA on multilingual datasets, e.g., English and
French, and on domain-oriented datasets, e.g., biomedical science and social media.

Secondly, we utilized attribute values to capture the features of entities, but entities
also have other useful features, such as entity descriptions and entity names. Therefore, we
will enhance DomainEA by combining these characteristics in future work.

Appl. Sci. 2023, 13, 9237 17 of 18

Author Contributions: Conceptualization, J.Z.; methodology, J.Z. and Y.X.; software, Y.G., H.L. and
Y.L.; validation, P.L.; data curation, C.L., Y.L., H.L. and Y.Z.; writing—original draft preparation, Y.X.;
writing—review and editing, Y.L., J.Z. and S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant Nos. 62102372, 62072414, and 62006212; The Program for Young Key Teachers of Henan
Province under Grant No. 2021GGJS095; The Project of Science and Technology in Henan Province
under Grant Nos: 222102210317, 232102210078, 232102240072, 232102210023, and 232102211051; The
Project of Collaborative Innovation in Zhengzhou under Grant Nos. 2021ZDPY0208; The Doctor
Scientific Research Fund of Zhengzhou University of Light Industry under Grant No. 2021BSJJ029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Notably, the dataset has been released on GitHub https://github.com/
ZhongJinjun/DomainEA (accessed on 31 December 2022) to facilitate access for scholars who may
wish to employ it for research purposes.

Acknowledgments: We sincerely thank the editors and reviewers for their valuable comments in
improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeng, K.; Li, C.; Hou, L.; Li, J.; Feng, L. A comprehensive survey of entity alignment for knowledge graphs. AI Open 2021, 2, 1–13.

[CrossRef]
2. Shen, L.; He, R.; Huang, S. Entity alignment with adaptive margin learning knowledge graph embedding. Data Knowl. Eng. 2022,

139, 101987. [CrossRef]
3. Huang, H.; Li, C.; Peng, X.; He, L.; Guo, S.; Peng, H.; Wang, L.; Li, J. Cross-knowledge-graph entity alignment via relation

prediction. Knowl. Based Syst. 2022, 240, 107813. [CrossRef]
4. Xu, Y.; Li, Z.; Chen, Q.; Wang, Y.; Fan, F. An Approach for Reconciling Inconsistent Pairs Based on Factor Graph. J. Comput. Res.

Dev. 2020, 57, 175–187.
5. Huang, J.; Wang, J.; Li, Y.; Zhao, W. A Survey of Entity Alignment of Knowledge Graph Based on Embedded Representation.

J. Phys. Conf. Ser. 2022, 2171, 012050. [CrossRef]
6. Xu, Y.; Li, Z.; Chen, Q.; Fan, F. GL-RF: A reconciliation framework for label-free entity resolution. Front. Comput. Sci. 2018, 12,

1035–1037. [CrossRef]
7. Weishan, C.; Yizhao, W.; Shun, M.; Jieyu, Z.; Yuncheng, J. Multi-heterogeneous neighborhood-aware for Knowledge Graphs

alignment. Inf. Process. Manag. 2022, 59, 102790.
8. Usman, A.M.; Liu, J.; Xie, Z.; Liu, X.; Sheeraz, A.; Huang, B. Entity alignment based on relational semantics augmentation for

multilingual knowledge graphs. Knowl. Based Syst. 2022, 252, 109494.
9. Chen, L.; Tian, X.; Tang, X.; Cui, J. Multi-information embedding based entity alignment. Appl. Intell. 2021, 51, 8896–8912.

[CrossRef]
10. Liu, J.; Chai, B.; Shang, Z. A cross-lingual medical knowledge graph entity alignment algorithm based on neural tensor network.

Basic Clin. Pharmacol. Toxicol. 2021, 128, 31–32.
11. Zhu, B.; Bao, T.; Liu, L.; Han, J.; Wang, J.; Peng, T. Cross-lingual knowledge graph entity alignment based on relation awareness

and attribute involvement. Appl. Intell. 2023, 53, 6159–6177. [CrossRef]
12. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
13. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
14. Yao, X.; Xie, Y. An Improved Mapping Method of Comprehensive Ontology Similarity. Comput. Mod. 2014, 61–65.
15. Suchanek, F.M.; Serge, A.; Pierre, S. PARIS: Probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 2011,

5, 157–168. [CrossRef]
16. Shao, C.; Hu, L.; Li, J.; Wang, Z.; Chung, T.; Xia, J. RiMOM-IM: A Novel Iterative Framework for Instance Matching. J. Comput.

Sci. Technol. 2016, 31, 185–197. [CrossRef]
17. Li, Y.; Gao, D. Research on Entities Similarity Calculation in Knowledge Graph. J. Chin. Inf. Process. 2017, 31, 140–146.
18. Cohen, W.W.; Richman, J. Learning to match and cluster large high-dimensional data sets for data integration. In Proceedings

of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Montreal, QC, Canada,
23–26 July 2002; pp. 475–480.

19. Verykios, V.S.; Moustakides, G.V.; Elfeky, M.G. A Bayesian decision model for cost optimal record matching. VLDB J. 2003, 12,
28–40. [CrossRef]

https://github.com/ZhongJinjun/DomainEA
https://github.com/ZhongJinjun/DomainEA
https://doi.org/10.1016/j.aiopen.2021.02.002
https://doi.org/10.1016/j.datak.2022.101987
https://doi.org/10.1016/j.knosys.2021.107813
https://doi.org/10.1088/1742-6596/2171/1/012050
https://doi.org/10.1007/s11704-018-7285-8
https://doi.org/10.1007/s10489-021-02400-8
https://doi.org/10.1007/s10489-022-03797-6
https://doi.org/10.14778/2078331.2078332
https://doi.org/10.1007/s11390-016-1620-z
https://doi.org/10.1007/s00778-002-0072-y

Appl. Sci. 2023, 13, 9237 18 of 18

20. Li, L. Research on Entity Alignment Method for Linked Open Data. Master’s Thesis, Beijing University of Chemical Technology,
Beijing, China, 2017.

21. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.
Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795.

22. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 1544–1550.

23. Xiao, H.; Huang, M.; Hao, Y.; Zhu, X. TransG: A generative mixture model for knowledge graph embedding. arXiv 2015,
arXiv:1509.05488.

24. Lin, Y.; Liu, Z.; Sun, M. Modeling Relation Paths for Representation Learning of Knowledge Bases. arXiv 2015, arXiv:1506.00379.
25. Huang, W.; Li, G.; Jin, Z. Improved knowledge base completion by the path-augmented TransR model. In Proceedings of the

Knowledge Science, Engineering and Management: 10th International Conference, Melbourne, VIC, Australia, 19–20 August 2017;
pp. 149–159.

26. Cao, Y.; Liu, Z.; Li, C.; Liu, Z.; Li, J.; Chua, T.-S. Multi-Channel Graph Neural Network for Entity Alignment. arXiv 2019,
arXiv:1908.09898.

27. Wu, Y.; Liu, X.; Feng, Y.; Wang, Z.; Zhao, D. Jointly Learning Entity and Relation Representations for Entity Alignment. arXiv
2019, arXiv:1909.09317.

28. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional
networks. In Proceedings of the The Semantic Web: 15th International Conference, Heraklion, Greece, 3–7 June 2018; pp. 593–607.

29. Wang, C.; Huang, Z.; Wan, Y.; Wei, J.; Zhao, J.; Wang, P. FuAlign: Cross-lingual entity alignment via multi-view representation
learning of fused knowledge graphs. Inf. Fusion 2023, 89, 41–52. [CrossRef]

30. Teong, K.-S.; Soon, L.-K.; Su, T.T. Schema-agnostic entity matching using pre-trained language models. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, Birmingham, UK, 19–23 October 2020; pp. 2241–2244.

31. Wang, Z.; Lv, Q.; Lan, X.; Zhang, Y. Cross-lingual knowledge graph alignment via graph convolutional networks. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018;
pp. 349–357.

32. Liu, Z.; Cao, Y.; Pan, L.; Li, J.; Chua, T.-S. Exploring and evaluating attributes, values, and structures for entity alignment. arXiv
2020, arXiv:2010.03249.

33. Thirumuruganathan, S.; Li, H.; Tang, N.; Ouzzani, M.; Govind, Y.; Paulsen, D.; Fung, G.; Doan, A. Deep learning for blocking in
entity matching: A design space exploration. Proc. VLDB Endow. 2021, 14, 2459–2472. [CrossRef]

34. Nie, H.; Han, X.; Sun, L.; Wong, C.; Chen, Q.; Wu, S.; Zhang, W. Global structure and local semantics-preserved embeddings for
entity alignment. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial
Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 3658–3664.

35. Xiang, Y.; Zhang, Z.; Chen, J.; Chen, X.; Lin, Z.; Zheng, Y. OntoEA: Ontology-guided entity alignment via joint knowledge graph
embedding. arXiv 2021, arXiv:2105.07688.

36. Liu, F.; Vulić, I.; Korhonen, A.; Collier, N. Learning domain-specialised representations for cross-lingual biomedical entity linking.
arXiv 2021, arXiv:2105.14398.

37. Azzalini, F.; Jin, S.; Renzi, M.; Tanca, L. Blocking Techniques for Entity Linkage: A Semantics-Based Approach. Data Sci. Eng.
2021, 6, 20–38. [CrossRef]

38. Muhammad, E.; Saravanan, T.; Shafiq, J.; Mourad, O.; Nan, T. Distributed representations of tuples for entity resolution. Proc.
VLDB Endow. 2018, 11, 1454–1467.

39. Javdani, D.; Rahmani, H.; Allahgholi, M.; Karimkhani, F. Deepblock: A novel blocking approach for entity resolution using deep
learning. In Proceedings of the 2019 5th International Conference on Web Research (ICWR), Cambridge, UK, 26–28 August 2019;
pp. 41–44.

40. Zhang, W.; Wei, H.; Sisman, B.; Dong, X.L.; Faloutsos, C.; Page, D. Autoblock: A hands-off blocking framework for entity matching.
In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020;
pp. 744–752.

41. Tang, J.; Zhao, K.; Li, J. A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment. arXiv
2023, arXiv:2305.06574.

42. Tang, W.; Su, F.; Sun, H.; Qi, Q.; Wang, J.; Tao, S.; Hao, Y. Weakly Supervised Entity Alignment with Positional Inspiration. In Pro-
ceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March 2023;
pp. 814–822.

43. Zhong, Z.; Zhang, M.; Fan, J.; Dou, C. Semantics driven embedding learning for effective entity alignment. In Proceedings of the
2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 2127–2140.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.inffus.2022.08.002
https://doi.org/10.14778/3476249.3476294
https://doi.org/10.1007/s41019-020-00146-w

	Introduction
	Related Work
	Problem Formalization
	The Filtering Multi-Type Graph Neural Networks
	The Filtering Module
	The Embedding Module
	The Structure-Aware Entity Embedding
	The Attribute-Aware Entity Embedding
	The Jointly Embedding
	The Spatial Mapping

	The Alignment Module

	Experiments and Results
	The Experimental Settings
	Datasets
	Experimental Environment
	Evaluation Metrics
	Baseline Methods

	The Experimental Results
	The Comparison of Six Baseline Methods
	Ablation Experiments
	Results on Various-Scale Datasets

	Summary
	References

