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Abstract: Most existing recommendation models only consider single user–item interaction infor-
mation, which leads to serious cold-start or data sparsity problems. In practical applications, a
user’s behavior is multi-type, and different types of user behavior show different semantic infor-
mation. To achieve more accurate recommendations, a major challenge comes from being able to
handle heterogeneous behavior data from users more finely. To address this problem, this paper
proposes a multi-behavior recommendation framework based on a graph neural network, which
captures personalized semantics of specific behavior and thus distinguishes the importance of dif-
ferent behaviors for predicting the target behavior. Meanwhile, this model establishes dependency
relationships among different types of interaction behaviors under the graph-based information
transfer network, and the graph convolutional network is further used to capture the high-order
complexity of interaction graphs. The experimental results of three benchmark datasets show that the
proposed graph-based multi-behavior recommendation model displays significant improvements in
recommendation accuracy compared to the baseline method.

Keywords: multi-behavior recommendation; graph convolutional network; higher-order complexity;
graph information transfer network

1. Introduction

Personalized recommendations function to provide users with appropriate products
according to user preferences. Determining how to accurately capture user preferences
from user behaviors is the core issue of personalized recommendations. Traditional rec-
ommendation models [1] usually only rely on a single behavior for a recommendation,
which makes them insufficient when extracting complex cooperative signals from users’
multi-type behaviors [2]. Meanwhile, there are serious data sparsity [3,4] and cold-start
problems [5,6], especially for certain high-cost and low-frequency behaviors. In the real
world, users usually have different types of interactive behaviors. In the face of diversified
user behaviors, a big challenge to achieve more accurate recommendations is whether
users’ heterostructure behavior data can be processed more finely. The multi-behavior
recommendation model jointly considers different types of behavioral semantics, which is
of great help to predict the possibility of users adopting target behaviors [7]. For example,
on an e-commerce platform, users’ page browsing, shopping-cart additions, and collection
behaviors for different items can be used as auxiliary information to help predict users’
purchase intent (target behavior) tasks. Therefore, considering the complex dependencies
between multiple behaviors is crucial to accurately predict user preferences.

In order to make full use of dynamic interaction information to better predict user
preferences, several multi-behavioral recommendation models have emerged in recent
years [2,8]. LightGCN [9] learns user/commodity embeddings via an interaction graph by
propagating linearly over the interaction graph, using the weighted sum of the embeddings
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learned at each layer as the final embedding. This simple, linear, and neat model is easier
to implement and train but does not take into account the variability between behaviors.
To distinguish the semantics of different behavior types, the KHGT [10] model assigns
different learnable weights to different edges in the user–goods heterogeneous graph and
clearly distinguishes which type of user–goods interaction is more important to assist
in the task of predicting the target behavior. Nowadays, recommendations based on a
graph neural network have been used in many real-world scenarios. The NetEase Cloud
Music App introduces the graph model architecture, takes a variety of different types
of songs as nodes, and constructs a graph relationship network through the multi-type
behavior relationship between users and songs. Jingdong Mall also adopts the model
based on a graph neural network proposed by the Jingdong platform, and more accurate
recommendation results bring huge benefits to the platform.

Despite the success of these approaches in multi-behavior recommendation tasks,
there are some limitations:

(1) Different types of behaviors can characterize user preferences from different dimensions
and complement each other for better learning of user preferences. User/commodity
embedding is at the core of recommendation systems. Most current user/commodity
embedding representations are a fusion of static features and lack the explicit encoding
of a synergistic signal, which is hidden in the user–commodity interaction. Therefore, it
is challenging and valuable to capture the behavioral diversity and potential dependen-
cies in recommendations. To address this challenge, existing work models behavioral
dependencies by generating specific types of behavioral embeddings through differ-
ent aggregation approaches to enhance the user/goods representation. For example,
MATH [11] uses self-attentiveness to encode pairwise correlations between different
types of behaviors and make predictions about the target behavior.

(2) Traditional multi-behavior recommendation models are implemented based on se-
quential models, which tend to focus more on the local perspective of multiple se-
quential behaviors of users. In contrast, graph-based multi-behavior recommendation
models focus more on the global perspective of all user behaviors. In a heterogeneous
graph constructed using multiple types of behavioral data, users/products are rep-
resented as nodes and different types of behaviors are represented as edges of the
graph. Graph neural networks are also used to explore higher-order complexity in
behavioral heterogeneous graphs due to their powerful learning capabilities. A new
graph structure-based model for the novel recommender system NGCF [12] models
higher-order connectivity representation in user–commodity interaction graphs by
inserting collaborative signals explicitly into the embedding process of users (goods).
The user–commodity correlation is well-represented in the embedding space.

In summary, this paper proposes multi-behavior recommendations based on the
graph information transfer network method, in which a heterogeneous graph composed of
users/commodities first obtains the user/commodity information of a specific type from
the graph. The first-order neighborhood information of a particular type of user/goods is
obtained from the graph, and the graph information transfer network is used to ensure the
interaction behaviors of a particular type have their own semantic information. The above
process learns the higher-order neighborhood information in the graph for user/product
representation. In the target behavior prediction stage, the above process learns specific
types of behavioral representations, which not only provide useful external knowledge but
also serve as supervised signals for model optimization.

2. Related Work

Most previous recommendation models [13–16] have been designed for a single
type of behavior, and in most cases, behaviors directly related to platform profits were
selected for modeling, such as purchase behavior in e-commerce platforms. In practice,
however, user behavior is inherently multi-typical (e.g., browsing, favoriting, purchasing,
etc.). Different types of user behaviors may exhibit different semantic information to
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characterize the diverse user–goods interactions. The existing user–commodity interactions
are thus coding functions and are not sufficient to comprehensively learn complex user
preferences. Moreover, using only a single behavior may lead to severe cold-start or data
sparsity problems. For example, on an e-commerce website, it is difficult to construct a
recommendation model based on purchase behavior alone to provide a comprehensive
learning model for users without historical purchases, and new users with a purchase
history can be aptly recommended.

While realizing the importance of leveraging different types of user behavior at the
same time, encoding multiple types of behavioral patterns poses a significant challenge.
These different types of interaction behaviors may interrelate in complex ways, providing
complementary information for learning about user interests. In addition, although several
multi-behavioral user modeling techniques have emerged in recent years, some multi-
behavioral user modeling techniques [8,11] have emerged for recommendation, but they
fail to capture higher-order information in different user–goods relationships. Inspired by
this, applying graph neural networks to recommendations [17,18] is beneficial to consider
user–goods interactions in the embedding space higher-order relationships between user-
goods interactions are considered in the embedding space.

Recently, graph neural networks have achieved promising results in learning depen-
dencies from graph-structured data [17]. Typically, the core of graph neural networks
is to aggregate feature information of neighboring nodes on the graph under a message
propagation mechanism [18]. This information dissemination mechanism aggregates the
information of higher-order neighbors through nodes, which can further capture higher-
order interrelationships and achieve representation learning effectively. In other words,
graph neural networks can better solve relationship inference problems as an interpretable
model. The most representative of these was the Graph Convolutional Network (GCN),
which obtains the representation of the current node by combining the weighted values of
neighboring nodes’ egress and ingress. Inspired by the effectiveness of graph convolutional
networks, recent studies, such as PTGCN [19] and GraphSage [20], utilize graph convolu-
tional networks to explore the user–item interaction graph and aggregate the embeddings
of neighboring nodes. These works propagate information among nodes to mine relation-
ships between users and items. Then, graph convolutional networks became a popular
research direction, and researchers have conducted a lot of work to study heterogeneous
graphs. BiHGH [21] is a new bidirectional heterogeneous graph hashing method. First, it
uses heterogeneous graph nodes to initialize then design an Ambigram convolution algo-
rithm to sequentially transfer information, and finally uses Bayesian personalized sorting
loss combined with dual similarity preserving regularization to achieve user preference
learning. PFCM [22] created a heterogeneous graph that unifies users, items, and attributes
and designed a user embedding module based on multimodal content representation to
learn user representations. Finally, heterogeneous graph learning was implemented by
executing meta path guidance.

3. Methodology
3.1. Problem Statement

Let U and V denote the set of users and goods, respectively, U = {u1, u2, · · · , ui, · · · , uI},
V =

{
v1, v2, · · · , vj, · · · , vJ

}
, where I and J denote the number of users and goods. Con-

sidering multiple types of interactions, this paper defines a three-dimensional tensor
X ∈ RI×J×K to represent multiple types of interactions (e.g., clicks, favorites, adds, etc.)
where K denotes the number of interaction behavior types. A single element xk

i,j ε X with
a value of 1 indicates that the kth behavior category is used to interact with user ui and
product vj, otherwise xk

i,j = 0. In a multi-behavior recommendation scenario, the interaction
category most associated with the platform benefits will be considered the target behavior
(e.g., purchase). Other behaviors will be considered contextual behaviors (e.g., click, favorite,
add to cart) and used to provide knowledge that aids the target behavior for prediction.
Based on the above definitions, the problem studied in this paper is defined as follows:
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Input: Multi-behavior interaction tensors X ∈ RI×J×K between user set U and item
set V under K interaction behavior types.

Output: A prediction function that estimates the likelihood that user ui will adopt
target behavior k to interact with good vj is possible.

3.2. Model Architecture

In realistic scenarios, often users’ behaviors are complex and diverse, and the model
first proposes a meta knowledge learner to encode behavioral embeddings considering
users’ personalized feature attributes. Based on this, the graphical volume was combined
with an attention mechanism to capture multiple behavioral patterns with high-order
connectivity on the user–goods interaction graph. Finally, complex cross-type behavioral
dependencies are captured by a prediction layer. Multiple types of user behavior can be
used not only to tune the parameters of the graph neural network model but also to guide
the prediction phase by injecting monitoring signals. The model architecture is shown
in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

(e.g., purchase). Other behaviors will be considered contextual behaviors (e.g., click, fa-

vorite, add to cart) and used to provide knowledge that aids the target behavior for pre-

diction. Based on the above definitions, the problem studied in this paper is defined as 

follows: 

Input: Multi-behavior interaction tensors � ∈ ℝ�×�×� between user set � and item 

set � under � interaction behavior types. 

Output: A prediction function that estimates the likelihood that user �� will adopt 

target behavior � to interact with good �� is possible. 

3.2. Model Architecture 

In realistic scenarios, often users’ behaviors are complex and diverse, and the model 

first proposes a meta knowledge learner to encode behavioral embeddings considering us-

ers’ personalized feature attributes. Based on this, the graphical volume was combined with 

an attention mechanism to capture multiple behavioral patterns with high-order connectiv-

ity on the user–goods interaction graph. Finally, complex cross-type behavioral dependen-

cies are captured by a prediction layer. Multiple types of user behavior can be used not only 

to tune the parameters of the graph neural network model but also to guide the prediction 

phase by injecting monitoring signals. The model architecture is shown in Figure 1. 

 

Figure 1. Model architecture diagram of multi-behavior perception. 

3.3. Embedding Module Incorporating First-Order Neighborhood Information 

In a realistic scenario, the behavior habits of different users are very different. For 

example, User A is used to collect most of the products in the process of browsing, while 

User B only collects the products he is most interested in, which shows that the collection 

behavior has li�le reference value for User A, while for User B, the collection behavior has 

li�le reference value for user A, but has great influence on the products collected by user 

B. Therefore, the design goal of this module is to capture the first-order neighborhood 

information of entities in the interaction graph under different behavior categories and 

inject their corresponding weights into the initial embedding of goods and users, so as to 

generate a feature representation incorporating the first-order neighborhood information. 

In the bipartite graph composed of user entities and commodity entities, this module 

Figure 1. Model architecture diagram of multi-behavior perception.

3.3. Embedding Module Incorporating First-Order Neighborhood Information

In a realistic scenario, the behavior habits of different users are very different. For
example, User A is used to collect most of the products in the process of browsing, while
User B only collects the products he is most interested in, which shows that the collection
behavior has little reference value for User A, while for User B, the collection behavior
has little reference value for user A, but has great influence on the products collected by
user B. Therefore, the design goal of this module is to capture the first-order neighborhood
information of entities in the interaction graph under different behavior categories and
inject their corresponding weights into the initial embedding of goods and users, so as to
generate a feature representation incorporating the first-order neighborhood information.
In the bipartite graph composed of user entities and commodity entities, this module learns
the representations of commodity entities and user entities under different behavioral
categories, respectively, by combining the initialized IDs of user ui and vj by aggregating
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the initialized ID embedding representations Ei and Ej of user ui and commodity vj with
the first-order neighborhood information to obtain the fused contextual feature vector.

Given the ID embedding representation Ei of the initialized user ui, the following
formula is used to learn personalized specific behavior embedding.

Pi,k =
Ei‖∑j∈Nk

i
Ej√

|Nk
i ‖Nk

j |

Wj,k = M·Pj,k + Z
∼
Ej = Wj,kEj

(1)

where Nk
i denotes the set of goods that user ui interacts with under k behavior types, and

Nk
j denotes the set of users that interact with good vj under k behavior types. ‖ denotes the

splicing operation of the vector. Here,
√
| Nk

i ‖ Nk
j | is the normalization factor. Pi,k is the

interaction pattern of user ui under a specific behavior type k. Wi,k is the learned parameter
matrix of user ui. Wi,k is the parameter matrix of the learned personalization of user ui,
which injects a specific type of behavioral context into the user ui representation, and M
and Z are transformation parameters. i is the personalized representation of the user ui
that incorporates the contexts.

Given the ID embedding representation Ej of the initialized good vj, the personalized
representation Ej of the good vj of the fused context is obtained using the same method of
learning as above. The specific formula is as follows:

Pj,k =
Ej‖∑i∈Nk

j
Ei√

|Nk
i ‖Nk

j |

Wj,k = M·Pj,k + Z
∼
Ej = Wj,kEj

(2)

where Pj,k holds information about the users who interact with commodity vj for a spe-
cific type of behavior. Wj,k is the learned parameter matrix of the personalization of the
commodity vj, which injects a specific type of behavioral context into the representation

of the commodity vj, and M and Z are transformation parameters.
∼
Ej is the personalized

representation of the commodity vj incorporating the contexts.

3.4. Representation of Users and Products Based on Single Behavior

In a multi-behavior recommendation scenario, each interaction has its own features
and semantic representation. For example, in an e-commerce commerce platform, users’
browsing behavior is more likely to occur than purchasing behavior, and adding to cart
and purchasing behavior may occur simultaneously with high probability. Therefore, the
proposed module aims to capture personalized behavioral semantic signals. Based on the

representation
∼
Ei of each user ui and the representation

∼
Ej of each good vj learned by the

embedding module, this module designs a messaging strategy to capture the user–goods
interaction graph Gk = {V, εk} under a single behavior, where V denotes the set of user and
goods nodes, εk denotes the set of interaction edges in V, and all the interactions are of type
k at this point. The goal of this module is to learn different behavior-specific embedding
vectors. The specific formula is as follows:

Ei,k =
∼
Ei + σ

(
∑jεNk

i
αi,j,k

∼
Ej

)
Ej,k =

∼
Ej + σ

(
∑iεNk

j
αi,j,k

∼
Ei

) (3)
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where Ei,k and Ej,k are the embeddings of user ui and item vj at behavior type k. Define

αi,j,k as standardization factor
√
| Nk

i ‖ Nk
j | where Nk

i denotes the set of goods that user ui

interacts with under k behavior types, and Nk
j denotes the set of users interacting with item

vj under behavior type k.

3.5. Representation of Users and Items Integrated with Multiple Behaviors

In e-commerce platforms, different types of interactions are intertwined, and they
are related to each other in a complex way, which is a great challenge for modeling multi-
behavioral interaction patterns of users. In order to model the potential relationships
between different behavior types, this module designs a multi-behavior relationship learn-
ing function, which obtains a more accurate representation of a specific behavior type by
injecting information about the interrelationships between different behaviors. The rela-
tionship learning function is based on the attention network and is represented as follows:

α̂h
k,k′ =

(QhEi,k)
T
(KhEi,k′)√

d/H

αh
k,k′ = so f tmax

(
α̂h

k,k′

)
=

exp α̂h
k,k′

∑K
k′=1 expα̂h

k,k′

Bi,k = ||Hh=1

K
∑

k′=1
αh

k,k′V
h·Ei,k′

Ei,K+1 =
K
∑

k=1
Bi,k

(4)

The module uses multiple potential spaces (h ∈ H) to perform the embedding projec-
tion process, thereby mining the interaction behavior from different hidden dimensions
to mine the degree of association between interactions k and k′ from different hidden
dimensions, where Ei,K+1 denotes the global user representation considering all behavior
types. Bi,k redefines a particular type of behavioral embedding by connecting feature
representations from different learning subspaces, which encodes the degree of influence of
other interaction behaviors on the behavior, considering the correlation between interaction
behaviors. α̂h

k,k′ is the computed correlation between the interaction behavior k and k′ is
the degree of correlation between the computed interaction behavior k and k′. Wh is the
transformation matrix that transforms the vectors into h projection space, which realizes
the transformation of Q, K vector dimensions in the attention mechanism.

During the training process, to alleviate overfitting, Ei,k′ is partitioned into H feature
vectors of the size d/H dimension, corresponding to the H head, and the multi-head
attention mechanism processes these segments in parallel before applying the splicing

operation. Eh
i,k′ denotes the h-th slice of Ei,k′ .

3.6. User and Item Representations Infused with Higher-Order Neighborhood Information

In order to capture the higher-order complexity of the interaction graph and study the
higher-order interactions between user interaction behaviors, this module integrates the
vector representation obtained from the behavioral semantic learning module to learn the
higher-order embedding propagation paradigm. The higher-order information is injected
into the user ui embedding by the following equation:

E(l+1)
i,k =

 GCN
(

E(l)
i,k

)
, k = 1, 2, · · · , K

Att
(

E(l+1)
i,1 , · · · , E(l+1)

i,K+1

)
, k = K + 1

(5)

The higher-order feature representation of the commodity vj is processed using the
same network as the user representation above, where GCN is the graph convolutional
network that defines the behavioral semantic learner. Att denotes the interconnected
learning function between behaviors. By L operations, the model learns the connection
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relations between nodes for L-hops. To obtain a higher-order information representation,
the feature vectors of the L + 1 layer network are stitched to obtain the final user and
commodity representations.

Ê∗,k = E(1)
k

⊕
E(2)

k

⊕
· · ·

⊕
E(L+1)

k k = 1, 2, · · · , K + 1 (6)

where ∗ denotes the final user embedding when ∗ is i and ∗ is j denotes the final
product embedding.

3.7. Target Behavior Prediction

Based on the prediction sub-network learned above, the contextual behavioral infor-
mation (page view, favorite, add to cart) not only provides useful external knowledge in
the target behavior (purchase) prediction phase but also serves as a supervisory signal for
model optimization. Based on the above learned feature representations Ê*,k of users and
goods under specific behavior types, the prediction network proposed in this model uses
non-target behaviors as supervisory signals to obtain personalized meta-knowledge based
on the target behavior k′. This process is defined as follows: Pk

i,j = σ
(

W2·∅
(

Êi,k, Êj,k

))
Dk,k′

i,j = σ
(

W1·∅
(

Pk
i,j, Pk′

i,j

)) (7)

Of this, ∅(v1, v2) = v1
⊙

v2 ‖ v1 ‖ v2, where
⊙

denotes the multiplication of the cor-
responding elements of two vectors and ‖ denotes the splicing between the elements. Dk,k′

i,j
encode the meta-knowledge between user ui and commodity vj, that is, the dependency
between target behavior k′ and context behavior k(k ∈ (K + 1), k′ ∈ K). Pk

i,j is the projective
quantity under the behavior k.

Based on the above learned dependencies between interaction behaviors, the parame-
ters of the prediction network are learned by the following equation.

M1 = W1Dk,k′
i,j + m1

p1 = W2Dk,k′
i,j + m2

p2 = W3Dk,k′
i,j + m3

(8)

Ultimately, the model predicts the interaction between user ui and commodity vj
under target behavior k′, using the feature vector of non-target behavior k as a supervised
signal. The specific formula is as follows:η = σ

(
M1·∅

(
Êi,k, Êj,k

)
+ p1

)
X(k)

i,j,k′ = ηᵀp2
(9)

where X(k)
i,j,k′ is the predicted likelihood of user ui interacting with good vj under target

behavior k′. η is the intermediate feature vector.

3.8. Optimization Strategy

The model is optimized by using each pair of non-target and target behaviors for
prediction. For user ui and target behavior k′, the model samples S positive samples and S
negative samples. In the training process, we use the Adam algorithm [23] for optimization,
which is defined by the following equation:

L = ∑N
i=1 ∑K+1

k=1 ∑K
k′=1 ∑S

s=1 max
(

0, 1− X̂(k)
i,ps ,k′ + X̂(k)

i,ns ,k′

)
+ λ‖Θ‖2

F (10)
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where k denotes thenon-target behavior, k′ denotes the target behavior, and ps and ns
denote positive and negative samples, respectively.

In the multi-behavior pattern modeling, the model can learn the personalized seman-
tics of specific behaviors and establish the dependency relationship between different types
of behaviors, thus effectively improving the accuracy of recommendation. The model
adopts lightweight graph convolutional architecture which costs only O (L × K × d × |ε|)
across L layers, K behavior types, d latent factors and |ε| edges. The behavior relation
learning costs extra O (L × K ×d × (K + d) × (N + M)). As O (d × |E|) is comparable
with O ((K + d) × (N + M)) in our case, the complexity does not increase. The prediction
network costs O (S × d2) computations for each user. In conclusion, our model could
achieve comparable time complexity with some graph convolution-based models.

4. Experiments
4.1. Datasets

Taobao, one of the largest e-commerce platforms in China, contains four types of user
interactions, namely, page view, add to cart, favorite, and purchase. Each row of the dataset
represents a user behavior, consisting of user ID, product ID, product category ID, behavior
type, and timestamp, and is separated by commas.

Beibei is one of the largest online retail websites for baby products in China, and it
involves three types of user interaction behaviors, including page browsing, adding to cart,
and purchasing.

The JDATA dataset is from JD.com, a famous e-commerce website in China, and
contains two months of user behavior data from JD.com’s website. The types of actions are
browse, order, follow, comment, and add to cart.

4.2. Evaluation Metrics

To verify the performance of the proposed model, we employ a variety of evalua-
tion metrics, including the Hit Ratio (HR@10) and Normalized Discounted Cumulative
Gain (NDCG@10).

HR@K =
Number o f Hits@K

GT
(11)

where GT is all items in the test set, and the numerator is the sum of the number of items
hit in the given Top-k recommendation list.

NDCG@K = Zk∑K
i=1

2ri − 1
lg(1 + i)

(12)

where Zk is a normalization factor to ensure the presence of a normalized representation
with a value of 1 in the list; ri indicates the predicted relevance of the ith item, represented
by 0 and 1; and lg (1 + i) is the location decay function. The larger the NDCG and HR values
of the user to be recommended, the more the recommendation list matches the user’s
preference and the better the recommendation effect of the algorithm. In order to compare
the performance of different models fairly, NDCG used the above calculation method in the
experiment. The experimental results obtained are different from those in the references,
but the trend of the experimental results is the same.

4.3. Compared Methods and Implementation Details
4.3.1. Recommendation Model Based on Graph Neural Network

ST-GCN [24]: This method is a convolution-based graph neural network model that
generates user embeddings through an encoder–decoder coder framework to generate
user embeddings.

SR-GNN [25]: A session-based graph neural network model is proposed, which
establishes complex dependencies of the session order between interaction items, which is
difficult to achieve using previous traditional sequential approaches.
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NGCF [12]: This is a message-passing architecture for user commodity interaction
graphs on information aggregation, thus exploiting the higher-order relationships in the
interaction graph.

4.3.2. Recommendation Models for Multi-Behavioral Categories

NMTR [8]: This approach proposes a new solution for learning recommender systems
from user multi-behavior data, and the model considers cascading relationships between
different types of behaviors, while cascading predictions for different types of behaviors
based on a multi-task learning framework.

MATN [11]: This method preserves cross-type behavioral synergy signals and type-
specific behavioral contextual information by explicitly encoding multi-behavioral rela-
tional structures. The model transforms each type of behavioral feature through a designed
memory unit, generating a specific behavioral representation through this type-specific
transformation process.

MBGCN [2]: This approach proposes a multi-behavior graph convolutional network-
based model that learns behavior intensity through the user–goods propagation layer and
captures behavior semantics through the goods–goods propagation layer, which better
addresses the limitations of existing work.

4.4. Experimental Results and Analysis

We evaluate the performance of all baseline methods on different datasets, and the
results are shown in Table 1, which summarizes the following observations: The MK-
GCN model in this article significantly improves the recommendation performance. This
performance gap can be attributed to the effective personalized multi-behavior pattern
modeling and the rich context information of user and item representations obtained under
the meta-learning paradigm. Most studies ignore the different behavior habits of different
users and simply assign different weights to different behaviors. In this paper, we learn
user personalized behavior feature representations from interaction graphs according to
user behavior habits.

Table 1. Overall performance of the model on the Beibei, Taobao, and JDATA datasets.

Taobao Beibei JDATA

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

SR-GNN 0.321 0.181 0.591 0.326 0.432 0.263
ST-GCN 0.347 0.206 0.609 0.343 0.452 0.285
NGCF 0.302 0.185 0.611 0.375 0.461 0.292
NMTR 0.332 0.179 0.613 0.349 0.481 0.304
MATN 0.354 0.209 0.626 0.385 0.489 0.309

MBGCN 0.369 0.222 0.642 0.376 0.463 0.277
MK-GCN 0.472 0.300 0.683 0.405 0.512 0.316

MK-GCN consistently achieves better performance than the baseline models, but these
baseline models have different degrees of limitations. SR-GNN and ST-GCN models do not
consider the specific operation behavior of users, and only model and extract features based
on the products that users interact with. The NMTR model only models the cascading rela-
tionships between multiple types of interaction behaviors and cannot explore the high-order
behavior dependencies in the interaction graph. The MATN model aggregates different
types of behavior patterns by weighted summation, which cannot comprehensively capture
the complex interdependence between different types of interaction behaviors.

MK-GCN consistently obtains better performance than the baseline models, which all
have different degrees of the SR-GNN and ST-GCN models and do not consider the specific
operational behavior of the user and only model and extract features based on the goods
that the user interacts with. The NMTR model only models the cascading relationships
between multiple types of interactions and cannot explore the higher-order behavioral
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dependencies in the interaction graph. The MATN model aggregates different types of
behavioral patterns through weighted summation, which cannot fully capture the complex
interdependencies between different types of interactions.

Furthermore, the comparison between MK-GCN and the multi-behavior graph neu-
ral model MBGCN demonstrates the proposed method’s advantages of multi-behavior
dependency modeling. Among the various baseline methods, it can be observed that,
compared to other single-row-for-model recommendation methods that do not distinguish
between intersection types, the injection of multi-behavior information into the recom-
mendation framework (i.e., NMTR, MATN, MBGCN) into multi-behavior information
improves the performance. This result confirms the role of exploring multi-behavioral
patterns for recommendation improvement.

4.5. Ablation Experiments

In order to explore the effect of each module in the model, the variant models shown
in Table 2 were set up for the experiment. The result of the melting experiments is shown
in Table 3. Based on the experimental results, we draw the following conclusions.

Table 2. Description of the model variants.

Model Variants Notes

-relation Remove the multi-behavior relational learning function

-metaEncoder Remove the Meta knowledge encoder

-metaPred No longer rely on the meta-knowledge encoder to learn the
parameters of the prediction layer

Table 3. Results of ablation experiment.

Taobao Beibei JDATA

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

-relation 0.6813 0.4049 0.3878 0.2315 0.4865 0.3138
-metaEncoder 0.6791 0.4046 0.4647 0.2852 0.5026 0.3199

-metaPred 0.6605 0.4036 0.4868 0.2968 0.5302 0.3399
MK-GCN 0.6907 0.4103 0.4906 0.2997 0.5319 0.3447

(1) Behavioral relational learning plays an active role in capturing higher-order informa-
tion during message passing in graph neural networks. This suggests that the model
uses attention layers under multiple representation subspaces to capture the pairwise
correlations between various interaction behavior. It is reasonable that the model uses
the attention layer to capture pairwise correlations between various interaction types
in multiple representation subspaces.

(2) The results demonstrate the necessity of learning the parameters of the prediction
network using the dependencies between interaction behaviors of the network. This
suggests that behavioral relationships can not only provide external knowledge in the
process of multi-behavior aggregation but can also serve as a supervisory signal for
model optimization.

(3) MK-GCN outperforms -metaEncoder and -metaPred because they do not incorporate
a meta knowledge learner, which indicates the importance of user-specific behavior
modeling through the meta-learning paradigm.

5. Conclusions and Future Work

In this paper, a multi-behavior augmented recommendation framework based on
graph neural networks is studied and designed to address the heterogeneity and diversity
of user interaction behaviors. The model first encodes user and product feature vectors
fusing contextual information according to a custom meta-learning paradigm, explores
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the dependencies between multiple behavior types by learning the semantic features of
different behaviors, and uses graph convolutional networks and attention networks to
obtain higher-order association information in the user–commodity interaction graph
through multiple operations learning. Finally, the feature vectors of non-target behaviors
are used as supervised signals to predict the likelihood of user u interacting with product j
using target behavior k. Experimental validation is conducted on three large e-commerce
datasets, and the results show that the model performs better compared to other baseline
models. The drawback of this model is that it cannot deal with real-time user behavior data
stream and can only make recommendations through the collected historical behavior data.
Future work hopes to further investigate time-sensitive models that can leverage newly
arrived user behavior data to facilitate real-time recommendations.

This model can be widely used in multi-behavior scenarios, such as shopping mall
recommendation, music, books, movies, and so on. In a real scenario, we will model the
complex relationship as a heterogeneous graph, which contains multiple types of nodes and
edges. Then this model simulates the user’s behavior pattern by learning the dependencies
between different types of behaviors, so as to obtain more accurate recommendation results,
which is more conducive to the platform to make wise decisions and adjust in time.
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