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Abstract: The food service industry must ensure that service facilities are free of foodborne pathogens
hosted by organic residues and biofilms. Foodborne diseases put customers at risk and compromise
the reputations of service providers. Fluorescence imaging, empowered by state-of-the-art artificial
intelligence (AI) algorithms, can detect invisible residues. However, using AI requires large datasets
that are most effective when collected from actual users, raising concerns about data privacy and
possible leakage of sensitive information. In this study, we employed a decentralized privacy-
preserving technology to address client data privacy issues. When federated learning (FL) is used,
there is no need for data sharing across clients or data centralization on a server. We used FL
and a new fluorescence imaging technology and applied two deep learning models, MobileNetv3
and DeepLabv3+, to identify and segment invisible residues on food preparation equipment and
surfaces. We used FedML as our FL framework and Fedavg as the aggregation algorithm. The model
achieved training and testing accuracies of 95.83% and 94.94% for classification between clean and
contamination frames, respectively, and resulted in intersection over union (IoU) scores of 91.23%
and 89.45% for training and testing, respectively, of segmentation of the contaminated areas. The
results demonstrated that using federated learning combined with fluorescence imaging and deep
learning algorithms can improve the performance of cleanliness auditing systems while assuring
client data privacy.

Keywords: federated learning; deep learning; FedML; CSI-D; contamination detection; food service

1. Introduction

Foodborne illness contributes significantly to morbidity and mortality as a public
health issue. In 2010, contaminated food caused around 600 million cases of foodborne
disease and 420 thousand fatalities worldwide [1]. According to the US Centers for Disease
Control and Prevention (CDC), approximately 48 million Americans are sickened each
year, 128,000 are hospitalized, and 3000 are killed by foodborne illnesses [2]. According
to the CDC, restaurants and institutional kitchens are the places with the most foodborne
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disease-associated outbreaks [3]. Since restaurants usually handle a broad range of raw
foods, the risk of cross-contamination leading to outbreaks of foodborne disease grows
significantly. Cross-contamination in restaurants during food preparation phases can be
caused by inadequate hygiene and sanitization methods and contaminated equipment
and surfaces.

Bacteria can adhere to food contact surfaces, facilitated by the formation of protective
film coatings from organic components and nutrients that can impede the sanitization of
these surfaces [4,5]. Contamination detection in restaurants and institutional kitchens is
primarily limited to visual examination during the inspection. Another way of testing is
swabbing food contact surfaces for adenosine triphosphate (ATP) testing or for laboratory
culture [6]. In many cases, the visual inspection method is insufficient because the contami-
nated areas are invisible to the naked eye. When it comes to testing large surfaces, swabs
are not the best option. They can be time-consuming and costly since they can only contact
a tiny fraction of the surface, even if swabbed back and forth.

Newer developments in imaging technology and machine learning (ML), especially
deep learning algorithms, have been proposed to improve food safety and surface cleanli-
ness. The authors of [7] proposed a system for the early detection of apple bruises using
hyperspectral imaging (HSI) with shortwave infrared (SWIR) illumination and a line-scan
camera combined with a partial least squares discriminant analysis (PLS-DA) classifier.
In [8], real-time detection of parasites in shell-off cooked clams using transillumination
imaging and binary decision trees was proposed. A method for detecting the neurotoxin
acrylamide in potato chips was suggested by [9], using an SVM classifier on spatial domain
statistical features extracted from images. The authors of [10] proposed foreign object
detection (FOD) in meat products using a sequential deep learning framework. In [11],
a three-level classification of cleanliness in restrooms as dirty, average, and clean using
deep convolutional neural networks (CNN) was proposed. In a previous research project,
our group combined two deep learning algorithms (EfficientNet-B0 and U-Net) with flu-
orescence imaging to automatically identify and segment fecal contamination on meat
carcasses [12]. In another work, we used Xception and DeepLabV3+ deep learning algo-
rithms with multiwavelength fluorescence imaging to identify and segment contaminated
areas in images of equipment and surfaces in the food-service industry [13]. Moreover, our
research group has continued to innovate and expand the field with numerous studies that
leverage this technology to a variety of cleanliness and sanitization contexts [14–16].

ML models generally and deep learning algorithms specifically need vast and diver-
sified sets of training data to achieve accurate and reliable performance. These datasets
are usually collected from multiple devices, such as cameras, sensors, cell phones, etc.,
at the interface or edge between the real world and the abstract world of data. The data
from these “edge” devices are then brought together on a central server or storage system.
The ML models use this data to train themselves and eventually predict outcomes with
new data. However, these centralized methods can be troublesome if the collected data
contain sensitive information or the centralization is too costly. Centralized data collection
may create privacy issues for people and liability problems for corporations if data is not
handled correctly. Since people are increasingly concerned about data privacy and security,
governments and organizations have begun enforcing legislation to safeguard personal
information [17–19].

Since the most frequent sites of foodborne illness outbreaks are restaurants and insti-
tutional kitchens, sanitization and infection prevention in these facilities are vital. New
technologies such as the SafetySpect sanitization inspection device [20] can help restau-
rants and institutional kitchens keep their environment safer and improve their level of
cleanliness. However, companies and institutions are concerned that using new technolo-
gies can increase privacy risks, and leaks of sensitive information (e.g., the presence of
contamination in the kitchen or dining area) could jeopardize their reputation. There is a
need to convince such organizations and facilities that their sensitive information and data
will be safe and secure when participating in shared-data projects.
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New avenues of ML research have opened up with the advent of federated learning
(FL) [21]. FL allows ML algorithms to learn from data without transferring data to a
centralized server. FL lets the training data remain distributed on multiple clients’ devices
while the ML models are downloaded and the models trained on the decentralized local
data. The updated model parameters are then returned to the centralized server without
transferring any of the client’s raw data. FL allows several clients to work together to train
an ML model without sharing any private data or sensitive information. In order to train
the FL model, it is necessary to have a coordinating agent that is responsible for handling
the information exchange [22]. FL spreads the computational power requirements across
all clients while preserving client privacy and eliminating the cost of data transfer and
storage needed with centralized processing. Each client’s computational power is used to
analyze their own data.

The application of FL has recently gained attention in various “edge” device applica-
tions, such as in mobile devices for text prediction on virtual keyboards [23], improving
the quality of search suggestions [24], and emoji suggestions based on the text typed on
a keyboard [25]. Another notable application of FL is in the medical field, where data
typically includes private and sensitive patient information that cannot be shared outside
of an organization, limiting its use in public research. For example, in [26], the authors pro-
posed a framework to investigate changes in the subcortical brain caused by neurological
disorders. In [27], a heterogeneous FL method was proposed for training ML models for
electroencephalography data classification, and the effectiveness of FL for the identification
of COVID-19 using chest X-ray images was investigated in [28]. FL has also been investi-
gated in many other areas [29], but to our knowledge, there are no publications focusing
on using FL in food safety and cleanliness assessments in the food service industry. In this
study, we use a fluorescence-imaging technology combined with an FL-based deep learning
model for the detection of contamination and image segmentation of contamination in
fluorescence images of a variety of food-handling surfaces. Combining FL-based deep
learning models with fluorescence imaging for contamination detection could improve
the level of safety and cleanliness in institutional kitchens and restaurants while assuring
safety and privacy of client data.

In this paper, the data collection technology and process are explained in Section 2. The
FL framework and deep learning algorithms used for the classification and segmentation
of contamination are described in Section 3. The results and performance evaluation of this
study are shown in Section 4. Section 5 concludes with the main achievements of this study.

2. Material
2.1. Data Collection Technology

A portable automated imaging inspection system for “contamination, sanitization
inspection, and disinfection” (CSI-D) has been developed (SafetySpect Inc., Grand Forks,
ND, USA). This handheld system provides mobility and flexibility for fluorescence-based
detection of organic residue, bacterial biofilms, saliva, and respiratory droplets on a va-
riety of surfaces [20]. CSI-D is able to detect, disinfect, and document the presence of
contamination on food preparation surfaces that might potentially harbor pathogens or
disease organisms. The illumination methods of the CSI-D includes 270 nm and 405 nm
light-emitting diode (LED) arrays, programmed to rapidly turn on and off to allow image
capture and removal of ambient light reflectance from fluorescence images of the surface.
CSI-D uses two cameras for fluorescence imaging: an RGB camera to capture images of
various organic residues and a UV camera to capture saliva and respiratory droplets as
well as aromatic amino acids such as tryptophan and other residues.

2.2. Data Collection

We collected data from seven Edgewood LTCF kitchens in North Dakota, a kitchen
facility that prepares meals and snacks for multiple public schools in Grand Forks, ND, and
two restaurants in Los Angeles, CA. We discussed cleaning procedures, high-touch and
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high-risk locations, and any perceived sanitization problems with each facility manager
prior to data collection. We used CSI-D to record videos from a variety of high-risk regions,
including doorknobs, garbage cans, oven and refrigerator door handles, chopping boards,
and preparation tables. All videos were recorded at a resolution of 1024× 768 and a capture
rate of 24 frames per second (FPS). We analyzed 1 h and 58 min of video.

In Figures 1 and 2, we have examples of kitchen equipment and other high-touch
areas showing clean surfaces (Figure 1) and surfaces with contamination (Figure 2). Many
materials both fluoresce and reflect ambient light that can be detected by the CSI-D scanner.
It is important to consider both the fluorescence and the differences between irregular
fluorescence on a surface and regular fluorescence on that surface. The irregular patterns
of fluorescence are more consistently associated with contamination. By looking for differ-
ences between patterns on a surface and patterns on a surface, we can identify the presence
of contamination.
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3. Methodology

A standard FL system comprises a central server and multiple individual clients
with their own raw datasets that are stored locally. The central server is responsible
for coordinating the training by selecting a random set of clients, randomly initializing
the model’s global weights, broadcasting it to the clients, collecting and aggregating the
updated weights received from the clients after training the model (local weights), and
finally, sending the updated global model back to the clients for the next round of training.
This process will be repeated until the model meets the criteria defined by the system owner.
From the client viewpoint, they receive the global model broadcast by the server and train
this model over several epochs using locally stored data, then send the updated model back
to the server for aggregation. Clients then wait to receive the updated global model for
the next round of training. It is worth emphasizing that the clients only share the updated
model weights with the server and that the server has no access to the client’s private data.
Figure 3 shows a concise illustration of an FL system. To implement an FL system, several
algorithms and open-source frameworks have been proposed [30–37]. In this study, we
use the Federated Averaging (FedAvg) algorithm and FedML framework to implement
our FL system. We also considered other aggregation algorithms. Most of the models we
considered are based on FedAvg with slight modifications that help address particular
data problems, such as unfavorable convergence behavior or objective inconsistency. Some
models required actual distributed learning and so could not be tested in our simulation
environment. We had a good convergence with FedAvg, so we did not expect the modified
models to improve our performance. We did try FedProx as an aggregation algorithm, but
for our data, it did not perform as well as FedAvg, and because FedAvg is a well-known
and accepted model, we decided not to proceed further with other models.

MobileNetV3 is used for the classification of the clean and contamination frames and
DeepLabv3+ for the precise segmentation of contaminated areas in each video frame.
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3.1. Federated Averaging (FedAvg)

FedAvg [21] is the most common and well-known method used in the implementation
of FL to aggregate local weights coming from clients and to update the global model on
the server. Generally, FedAvg comprises four steps. In the first step, the global model is
sent synchronously from the server to a randomly chosen subset of clients. Then each
client, in parallel, performs the gradient descent steps during training on their local data
and then updates the model with a determined learning rate, epoch number, and batch
size, as shown in (1). After that, each client returns the updated model weights to the
server. Finally, the server aggregates the client model weights (2) and updates the global
model, sending it back to the clients for the next round. These four steps make one round
of communication and are repeated several times until the global model converges. In
each communication round, the FedAvg takes a weighted average of the weights from the
local models based on the size of each client’s local dataset. This means clients with more
training data contribute more to the global model update.

w← w− η∇l(w; b) (1)

wt+1 ←∑K
k=1

nk
n

wk
t+1 (2)

In (1), η is the local learning rate, w is the model weights, b is the local batch size, and
l() is the local loss function. In (2), K is the total number of selected clients, k shows each
client, n denotes the total number of data samples, and nk is the sample size of each client.
Despite the simplicity of FedAvg, this algorithm has proven to be not only robust enough to
cope with unbalanced data that is not “independent and identically distributed” (non-IID)
but also able to decrease the frequency and the amount of data transferred to that server
that is normally required for training a deep neural network model [21].

3.2. FedML

Any problem being framed in terms of a federated machine learning scenario will have
several aspects in common. This characteristic allows developers to adopt an open-source
model to expand the capabilities of machine learning. One of the frameworks that enable
deployments and research using FL is FedML [34]. FedML aims to address challenges in the
space of algorithmic development by offering APIs for secure aggregation, communication,
and benchmarking tools.

FedML is designed with two layers of high-level and low-level APIs. Low-level APIs
handle the establishment of secure communication between servers and clients. High-level
APIs enable the developer to handle model type and data manipulations. FedML’s main
goal is to provide an adequate platform that supports algorithm and development and has
standard benchmarking tools. These benchmarking tools can serve as models for setting
up benchmarking with additional model types. The FedML platform currently provides
FedAvg, FedOpt, FedNova, and FedNAS as FL algorithms. However, the authors have
built-in mechanisms to allow outside developers to add their own optimization algorithm
and run standard tests on it.

A federated learning environment has two aspects: infrastructure and training/aggregation.
The infrastructure establishes secure communication across the nodes and handles the
initiation of the training. The training and aggregation aspect is the part that usually
requires more fine-tuning compared to the infrastructure. This is what motivated the
development of FedML, where the design principle allows the developers to standardize
benchmarking. A key feature of FedML is its support for a diverse set of topologies dictating
how nodes can communicate with one another. The current version of FedML supports
standalone simulation, distributed computation, topology customization, flexible and
customizable message passing, and custom algorithm implementation. In this study, we
deployed the standalone simulation capabilities of FedML to study the training capabilities
on fluorescence images of 10 clients.
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3.3. Contamination Classification

To classify CSI-D recorded video frames into clean and contamination categories, we
first selected video excerpts and converted them to frames that were labeled clean and con-
tamination. We then fed the labeled frames to a CNN model, MobileNetV3 [38], developed
by Google, which is the next generation of the MobileNet family [39–41]. MobileNetV3
uses a novel architecture and a mix of complementary search methods to provide high
accuracy and a computationally efficient model for mobile computer vision tasks. There
are two models of MobileNetV3, MobileNetV3-Small and MobileNetV3-Large, designed
for low or high resource usage needs, respectively. The architecture of these two models
differs in terms of the number of blocks, expansion sizes, activation functions, etc.

Classification Model Architecture

MobileNetV3 depends on AutoML to identify the best architecture feasible in a search
space for the given tasks. MnasNet [41] and NetAdapt [42] are used sequentially to exploit
the search space more efficiently and discover and optimize the network architecture. Mnas-
Net first uses reinforcement learning to identify the optimum global network structure
by optimizing each network block, and then the NetAdapt algorithm tries to fine-tune
the architecture by adjusting the number of filters per layer. Combining these two tech-
niques can determine the best model for a specific hardware platform. MobileNetV3 also
incorporates a squeeze-and-excitation block [43] into its core architecture to improve the
network representational ability (emphasizing informative features and suppressing less
helpful features) via adaptive channel-wise feature recalibration by explicitly modeling
between the channels’ interdependencies. MobileNetV3 uses an activation function called
hard-swish, a modified version of the swish [44] activation function. Swish nonlinearity
uses a sigmoid function, which is not computationally efficient. Hard-swish replaces the
sigmoid with its piece-wise linear hard analog, as shown in (3):

hard-swish[x] = x
ReLU6(x + 3)

6
(3)

This replacement not only eliminates any numerical precision loss caused by var-
ious implementations of the approximate sigmoid but can also significantly minimize
latency cost by reducing the number of memory accesses. In addition to the modifications
mentioned above, some computationally expensive layers at the beginning and end of
MobileNetV3 were redesigned to reduce the cost of feature generation while maintain-
ing accuracy.

To train the MobileNetV3 for classification between clean and contamination frames,
we needed to choose a suitable loss function and optimizer. Since we are dealing with a
binary classification task, binary cross-entropy (BCE) [45] was chosen as the model loss
function. Comparing predicted probability to actual class labels using BCE yields a result
that is either 0 or 1. It then creates a score that penalizes the probability, depending on the
difference between the predicted and actual values. If the predicted value is far from the
actual value, the BCE loss will be increased. Equation (4) shows the definition of BCE.

Loss = − 1
N ∑N

i=1 yi × log(p(yi))+(1− yi)× log(1− p(yi)) (4)

where N shows the training sample size, yi is the assigned label, p(yi) shows the predicted
probability of class 1 (Contamination), and 1− p(yi) represents the predicted probability of
class 0 (Clean).
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After the loss function is defined, the model requires an optimization algorithm to
minimize the loss by changing the model weights and learning rate. We used the Adam
(Adaptive Moment Estimation) optimizer [46] as a straightforward and computationally
efficient approach for first-order gradient-based stochastic optimization. Adam estimates
the first- and second-order moments to calculate individual adaptive learning rates for
different parameters. Adam’s mathematical expressions include:

vt ← β1vt−1 + (1− β1)gt (5)

st ← β2st−1 + (1− β2)g2
t (6)

gt ← ∇θ ft(θt−1) (7)

v̂t ←
vt

1− βt
1

, ŝt ←
st

1− βt
2

(8)

θt ← θt−1 −
ηv̂t√
ŝt + ε

(9)

where gt is the gradient and step t, vt and st denote the exponential moving average of gt
and g2

t , respectively. β1 and β2 are smoothing parameters for the first and second-order
moments, f () is the loss function to minimize, θ represents the parameter (weights), η
shows the learning rate, and ε is a small number.

3.4. Contamination Segmentation

The precise segmentation of contaminated regions on a variety of surfaces is critical,
since identifying contamination video frames using a classification model does not neces-
sarily lead to detecting all contaminated areas. There might be many tiny contaminated
spots strewn across a surface, making it difficult to recognize them all during a live in-
spection. Restaurants and kitchens usually contain many surfaces and objects that may
create background fluorescence or reflection artifacts, making it more likely that inspectors
could overlook some regions of contamination during an inspection. Segmenting and
pseudo-coloring contaminated regions can make it easier for inspectors to identify and not
miss any contamination. This is why we focused on the segmentation of contaminated
regions in video frames already classified as contamination for the second goal of this study.

3.4.1. Semantic Segmentation and Pixel-Level Annotation

Instead of relying on threshold-based techniques, which are prone to error, we em-
ployed a semantic segmentation approach to perform accurate pixel-level classification in
each frame classified as contamination. To categorize every pixel of a frame into a specific
class (in our case, green fluorescence, red fluorescence, and background), pixel-level anno-
tation is required. The annotated data is used to train a deep CNN to classify pixels, and
the trained model can then be used to predict the probable class of pixels in unseen video
frames (test set).

We used MATLAB R2021b image labeler for annotating when building the semantic
segmentation training and testing datasets. Images can be annotated quickly and easily by
sketching shapes that can be assigned region of interest (ROI) labels. In MATLAB image
labeler, a rectangle, line, polygon, and projected cuboid can be used to construct a ground
truth annotation for a single image or a series of images. As mentioned above, we have
three different classes, and all pixels need to be annotated accordingly. Four image labelers
annotated a total of 17,859 frames, supervised by two experts present throughout the data
collection and another expert who provided review and training remotely.
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3.4.2. Semantic Segmentation Model Architecture

To accomplish the semantic segmentation task, we used DeepLabv3+, a state-of-the-art
semantic segmentation algorithm developed by Google researchers [47]. The DeepLabv3+
architecture comprises an encoder and a decoder. Multi-scale contextual information from
the image is encoded, and object boundaries are precisely and accurately recovered by
the decoder module. The encoder comprises three essential components: ResNet, atrous
convolution, and atrous spatial pyramid pooling. In this study, we employed ResNet50
as the network backbone to extract features. Atrous convolution is a helpful technique
that enables the model to directly modify the resolution of features generated by deep
convolutional neural networks and alter the filter’s field of view to collect multi-scale
information. The mathematical expression of atrous convolution is as follows:

y[i] = ∑k x[i + r·k]w[k] (10)

where r is the atrous rate (by changing it, the field of view of the filters can be modified
adaptively), w depicts the convolution filter, and i and k show the pixel locations.

Atrous spatial pyramid pooling (ASPP), the other main module of DeepLabv3+, is
used to resample the features extracted from the model backbone at several rates before
convolution. This is equivalent to scanning the original image with several filters, each
with a complimentary effective field of view, in order to capture objects and valuable
visual context at different scales. We chose the default DeepLabv3+ dilation rate of 6 since
contamination might occur in a very small or very large region. The outputs of the ASPP are
concatenated and pass through a 1 × 1 convolution layer with 256 filters that can generate
rich semantic information.

A bilinear upsampling factor of four is then applied to the encoder’s features be-
fore passing them to the decoder section and concatenating them with low-level features
from the backbone. The low-level features from the backbone network are subjected to a
1 × 1 convolution layer that limits the number of channels to prevent the encoder features’
importance from being outweighed and complicating the training process. Once the low-
level features and the encoder’s rich features are combined, a few 3 × 3 convolution layers
are used to improve the generated features, and finally, a bilinear upsampling by a factor of
four is applied to generate the segmentation output.

4. Experimental Settings

To implement federated learning for the classification of clean and contamination frames,
we used PyTorch v1.11.0. We resized all the images to (300, 300) for training and testing
purposes. To implement FL for semantic segmentation, we used Tensorflow v2.2.0. Because
semantic segmentation is computationally more expensive than classification, we resized all
the images to (256, 256). Since the real-world implementation of the resulting FL models on
our scanning systems is an important goal, we need to be able to develop models that can
be deployed on the GPUs or TPUs that will be built into device processor systems. Some of
the systems work well with Tensorflow, and some models work better in PyTorch when
multi-GPU processors are used. We decided to ensure that we had experience deploying
our models based on both frameworks. We have previously used PyTorch and Tensorflow
in both our semantic segmentation and our classification research. In this FL project, we
decided to use Pytorch for classification and Tensorflow for semantic segmentation. We did
not have any intrinsic reason to select one over the other for these tasks since we have not
finalized our system processor selection for our scanners. The FL framework was trained
and tested using eight NVIDIA Tesla V100 GPUs with 32 GB RAM on a Red Hat Enterprise
Linux Server 7.9 operating system.
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5. Results and Discussion
5.1. Federated Learning Classification Model Performance

Performance testing of classification between the clean and contamination frames
using FL was carried out on data from ten clients (facilities), including 44,185 clean frames
and 46,882 contamination frames. The dataset description is shown in Table 1. As can be
seen in Table 1., the establishments range from small restaurants to institutional kitchens.
They also vary in the types of surfaces to be scanned and the relative cleanliness, as well as
measurement issues discussed above. That is why the number of frames selected for model
development varies between clients. We used data from eight initial clients (35,858 clean
frames and 36,523 contamination frames) for training and validation of the model and data
from two new clients (8327 clean frames and 10,359 contamination frames) for final testing.
Data from the eight clients were randomly assigned to training (70%) and validation (30%)
sets. The FedAvg algorithm requires that in each round, a subset of clients be selected for
training the model and then evaluated on all clients before starting the next round. In this
study, for each round of communication, four out of eight clients were randomly chosen
for the training subset for each of the 150 rounds. We then validated the updated model on
the validation data sets of eight clients. For each client, the training data and validation
data were separate, so we could see how well the new model was generalized.

In each round, clients download the global model and train it on their local dataset
over 100 epochs, with a local batch size of 32, using binary cross-entropy as the model
loss function. We used Adam as the model optimizer with a learning rate of 1 × 10−5 and
weight decay of 1 × 10−6. Each client then returns the locally trained model to the server
and the local models are aggregated using the FedAvg algorithm, and an updated global
model is sent back to all clients. The updated global model is validated using each client’s
validation dataset before starting the next training round.

Table 1. Description of datasets.

No. of
Clients

No. of
“Clean” Frames

No. of
“Contamination”

Frames

Total No.
of Frames

Training/
Validation

1 708 3242 3950
2 1585 7207 8792
3 2740 1815 4555
4 3893 2574 6467
5 2679 2320 4999
6 11,897 8629 20,526
7 11,041 6486 17,527
8 1315 4250 5565

External
Testing

9 6354 7606 13,960
10 1973 2753 4726

The FL classification model was evaluated using the six metrics of accuracy, precision,
recall, specificity, F-score, and area under the curve (AUC). The first five metrics are defined
as follows:

Accuracy = (TP+TN)
(TP+TN+FP+FN)

, Precision = TP
TP+FP ,

Recall = TP
TP+FN

(11)

Specificity =
TN

TN + FP
, Fscore = 2× Precision× Recall

Precision + Recall
(12)

where TP, TN, FP, and FN show true positive, true negative, false positive, and false
negative, respectively. In our case, TP shows correctly identified contamination frames, and
TN shows clean frames. FP denotes the clean frame wrongly classified as contamination, and
FN shows the contamination frame misclassified as clean.
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We trained and validated the FL classification model over 150 rounds, and the updated
global model was validated using the clients’ validation dataset. Figure 4 shows the model
accuracy and loss for each round of communication. The accuracy and loss of each round
are the average accuracies and average losses of all eight clients.
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After the model was trained and validated over 150 rounds, we tested it on two new
clients. The FL model could identify clean and contamination frames with accuracies of
95.84% (precision of 96.88%, recall of 95.44%, specificity of 96.32%, F-score of 96.15%), and
94.92% (precision of 96.11%, recall of 95.13%, specificity of 96.63%, F-score of 95.62%) for
clients 9 and 10, respectively. Figure 5 shows the FL model confusion matrix on the two
new client data sets. The rows show the true label of clean and contamination frames, and
the columns show the predicted labels.
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5.2. Federated Learning Semantic Segmentation Model Performance

We employed DeepLabv3+ to perform FL semantic segmentation to precisely identify
contamination areas on various surfaces. We used 12,000 annotated contamination frames
from eight clients to train and validate the model and 5859 (3770 and 2089) annotated frames
from two clients for testing to evaluate how effectively the FL model could generalize when
confronted with a new client’s data. We randomly split the data from the eight clients to
train (70%) and validate (30%) the FL model. Similar to the frame classification, we trained
the model on four randomly chosen clients in each round and validated it on all eight
clients after model aggregation and before moving on to the next round.

We trained and validated the FL semantic segmentation model over 150 rounds. For
each round, after downloading the global model, each client trains it on its local data
for over 100 epochs with a local batch size of 16. For each client, we used categorical
cross-entropy as the model loss function and Adam as the model optimizer with a learning
rate of 1 × 10−5. The locally trained models are sent to the server and aggregated using the
FedAvg method, and a new global model is sent back to all clients to validate the model on
the validation set and then start the next round.

To evaluate the FL semantic segmentation model performance, we used five metrics:
intersection over union (IoU), precision, recall, specificity, and F-score. IoU is a common
metric in semantic segmentation problems that measures the overlap between the ground
truth (regions annotated by a human expert) and the model prediction. The following
equation shows the IoU definition.

IoU =
TP

(TP + FP + FN)
(13)

The reason for not using accuracy as a semantic segmentation evaluation metric is that
contamination usually affects a tiny fraction of the frames, and accuracy would always be
more than 99%, making it inappropriate for evaluating the model’s performance. The FL
semantic segmentation model achieved a mean IoU of 91.23% and 89.45% for segmenting
frames into the background, green fluorescence, and red fluorescence classes for clients 9
and 10, respectively.

In Figure 6, we show six image frames from a range of kitchen surfaces in the two
new client datasets and the corresponding ground truth and model outputs to show how
accurately the FL semantic segmentation algorithm was able to segment the red and green
fluorescence contamination. The first row is the raw image captured via CSI-D, the second
row depicts the FL model segmentation results, and the last row shows the human expert
annotation (ground truth). When comparing FL model output to ground truth, it can be
shown that the model successfully distinguishes and segments green and red fluorescence
on various surfaces, including (Figure 6, left to right) under-sink plumbing, kitchen wall,
kitchen countertop, a microwave door inner side, toaster, and refrigerator door handle.
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This comparison shows the model’s ability to recognize either red fluorescence or green
fluorescence contamination, or a mixture of these two types of contamination, that takes
the shape of minute drops, sprays, and splashes and larger regions such as spills or stains.
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5.3. Privacy and Performance Trade-Off

As already discussed, the primary goal of using FL is to improve clients’ data privacy.
However, there would be a privacy and model performance trade-off. We considered two
scenarios to evaluate at what cost we can have more privacy compared to a centralized
approach. In the first scenario (S1), we combined data from eight clients and used it for
training and evaluation of the model (81,961 frames) and tested the trained model on
clients 9 and 10 (the two most recent data we collected, 9106 frames). The first scenario was
performed for both classification and segmentation tasks. For the classification task, we
achieved 96.36% accuracy, 97.32% precision, 95.96% recall, 96.84% specificity, and 96.64%
F-score for testing the model on client 9. By testing the model on client 10, we could achieve
an accuracy of 95.68%, a precision of 96.63%, a recall of 95.93%, a specificity of 95.34%,
and an F-score of 96.28%. For the segmentation task, we could also achieve a mean IoU of
93.21% for client 9 and a mean IoU of 91.73% for client 10.

In the second scenario (S2), we combined data from all ten clients (91,067 frames) and
used 70% of it for training, 20% for validation, and 10% for testing. We believe this scenario
could result in the highest performance because the data from all the clients could be part
of training, validation, and testing. For the classification task, the model had an accuracy of
97.81%, precision of 98.03%, recall of 97.71%, specificity of 97.91%, and F-score of 97.87%.
For the segmentation task, the model had a mean IoU of 95.87. For more clarification,
the comparison between the model performance for the FL and centralized (S1 and S2)
approach is shown in Figures 7 and 8. If we consider client 9 in Figure 7, by testing the
model trained using the FL approach, we could achieve an accuracy of 95.84, which is 0.52%
less than the S1 and 1.97% less than S2. This comparison shows that by losing a negligible
amount of performance, we can preserve the privacy of the client’s data. Similarly, for
the segmentation task, in Figure 8, by comparing the result for client 10 we can see the
difference between the FL approach, S1, and S2 is 2.28% and 6.42%, respectively, which is
reasonably acceptable performance.
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Sanitization and infection prevention is of the utmost importance in food service
establishments such as restaurants and institutional kitchens, since they are the most
common places where outbreaks of foodborne illnesses occur. They must prevent food
contamination and also must deal with potential infection spread among workers and
customers. Beyond zero tolerance legal requirements and damage to institutional, brand, or
restaurant reputation, loss of trust between workers and customers can be very costly [48].
Restaurants and other institutional kitchens may benefit from new technology such as the
SafetySpect sanitization inspection technology, which can assist these establishments in
maintaining a safer environment and a higher level of cleanliness. However, there might
be doubts and concerns between companies and institutions that using new technologies
such as CSI-D could raise privacy issues, and the leak of sensitive information could harm
their reputations. To clear such doubts and concerns, this paper focuses on incorporating
a data safety approach into the sanitization monitoring technology. We used federated
learning, a new paradigm in machine learning that trains a model on client devices so that
no private data is shared with other parties. FL can play a crucial role in designing scalable
artificial intelligence (AI) technology when it is challenging to build up data-sharing
agreements across clients or organizations. Recently, FL has been shown to be useful in
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several areas [29,49]. We believe this is the first study where the main focus is on using FL
in the food service industry, or for identification and segmentation of contamination.

However, implementing federated learning in the food service industry is not without
its challenges. The deployment of FL requires a robust and reliable infrastructure that
supports secure and efficient data communication. A secure and reliable communication
channel is vital to maintain the integrity and privacy of the data during the exchange of
updated model parameters between the central server and client devices. Further, the
client devices must possess adequate computational capabilities to locally train complex
deep learning models. This might be challenging, given that most devices used in the food
service industry may not be equipped with high-end computational resources. Another
hurdle is dealing with the data heterogeneity intrinsic to FL due to diverse, decentralized
data sources. This heterogeneity could influence the model’s performance, necessitating the
development of techniques to mitigate its effects. Lastly, coordinating the training process
among numerous client devices, ensuring synchronization, handling device failures or
dropouts, and integrating new clients into the learning process all require robust protocols.

The main purpose of this research is a proof of concept for using cutting-edge imaging
technology together with state-of-the-art deep learning algorithms and federated learning
to enhance cleanliness assurance in the food service industry, while assuring client data
remains private and within the client’s information technology domain. We have shown
that deep learning-based models trained using the FL approach could achieve results
comparable to those of the centralized methods. In this particular case, training models
using the FL approach can rapidly detect contamination using a portable handheld scanning
device, paving the way for more precise, rapid, reliable, and secure examinations. This
demonstrates how FL can be applied in other sensing and classification technologies.

There are trade-offs between privacy and performance, and it is important to consider
the need for training classification algorithms for deployment on devices with more limited
processing capabilities.

While centralized models can give the best performance, based on our experience
discussing food safety issues with the industry, it is unrealistic to expect that clients would
be willing to share any data that could negatively reflect on their sanitization procedures
and potentially impact business value [50,51]. Our comparison of the benefit of FL vs. a
theoretical scenario where all clients would be willing to share all their data is intended to
illustrate what might be achievable with sufficient participation. While the magnitude of
improvement that we discuss here seems relatively small, the benefit can be significant. An
increase in accuracy means a decrease in false positives and false negatives. If we can reduce
false positives and false negatives from 5% to 2%, that is a 60% reduction in contamination
on food preparation or food production surfaces that can host pathogenic organisms. While
false positives have a small impact in that they require additional cleaning, false negatives
can result in contamination of entire batches of food, which can result in product recalls,
illness, or death of customers and attendant legal consequences, as well as major damage to
brand equity [48]. Thus, there is quite a benefit to a customer that participates in improving
the model if privacy can be maintained. Other privacy preserving schemes such as data
anonymization, differential privacy, or cryptographic methods [52–54] all involve some
transfer of data outside of an organization, so there is potential for reconstruction of original
data. There is also some loss in the utility of models generated by this data. We selected
FL because we felt it had the level of security that clients would find acceptable and the
improvement in model utility that justifies participation.

Many edge computing devices employ chip-based processing units, such as the Google
Coral tensor processing unit (TPU), for high-performance neural net inferencing. Currently,
these require quantized model parameters, and these can limit model classification or
segmentation performance. This creates a trade-off between performance, speed, and
privacy. As edge device processing unit technology improves, it may be possible to reduce
or eliminate quantization, further improving the usefulness of FL. In this study, we show
that using the principle of FL, with a negligible percentage of performance, clients can
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ensure that their private local data is safe while benefiting from an accurate and reliable
contamination detection model.

The impact of the number of clients selected in each round of FL training is also a bit
of a trade-off. Using fewer clients for training on each round usually means many more
rounds of communication to reach the maximal model performance. With more clients, we
might reach maximal model performance sooner, but the generalization may be worse.

6. Conclusions

This study presents a federated learning model for identifying and segmenting organic-
based contamination and biofilms on various surfaces. We captured video frames using
a fluorescence-imaging technology developed by SafetySpect Inc. and used two state-of-
the-art deep learning algorithms, MobileNetV3 and DeepLabv3+, for classification and
semantic segmentation. FL allows a model to be trained without transferring client datasets
to a central server, helping to address client data privacy and confidentiality concerns. In
this study, we used FedML, with some modifications, as our FL framework and FedAvg as
the aggregation algorithm. We collected data from 10 institutional kitchens and restaurants.
We trained and validated the model on eight clients, including 35,858 clean and 36,523
contamination frames, and tested it on two clients (clean: 8327, contamination: 10,359). For
differentiation between clean and contamination frames, the model achieved respective
accuracies of 95.84% and 94.92% for clients 9 and 10. The FL-based semantic segmentation
model was trained and validated on 12,000 annotated contamination frames from eight
clients and tested on 5859 (3770 and 2089) annotated frames from two new clients. The
model resulted in a mean IoU score of 91.23% for client 9 and 89.45% for client 10.

The results demonstrated that using new fluorescence imaging technology combined
with FL-based deep learning models can not only improve the performance of cleanliness
and safety auditing systems for food preparation facilities but also can improve data privacy
assurance for clients in the food-service industry.
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