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Abstract: Interleukin-10 (IL-10) has anti-inflammatory properties and is a crucial cytokine in reg-
ulating immunity. The identification of IL-10 through wet laboratory experiments is costly and
time-intensive. Therefore, a new IL-10-induced peptide recognition method, IL10-Stack, was intro-
duced in this research, which was based on unified deep representation learning and a stacking
algorithm. Two approaches were employed to extract features from peptide sequences: Amino Acid
Index (AAindex) and sequence-based unified representation (UniRep). After feature fusion and
optimized feature selection, we selected a 1900-dimensional UniRep feature vector and constructed
the IL10-Stack model using stacking. IL10-Stack exhibited excellent performance in IL-10-induced
peptide recognition (accuracy (ACC) = 0.910, Matthews correlation coefficient (MCC) = 0.820). Rela-
tive to the existing methods, IL-10Pred and ILeukin10Pred, the approach increased in ACC by 12.1%
and 2.4%, respectively. The IL10-Stack method can identify IL-10-induced peptides, which aids in the
development of immunosuppressive drugs.

Keywords: unified representation learning; interleukin-10; machine learning; bioinformatics

1. Introduction

Interleukin-10 (IL-10), a pleiotropic cell-signaling cytokine, contributes to immune
modulation and inflammation [1]. Its production occurs in various lymphocyte subtypes,
including macrophages, B cells, granulocytes, dendritic cells, and multiple T cell sub-
sets [2,3]. IL-10 was initially discovered by Mossman and Coffman through cloning of
T helper (Th) 2 cells, and was shown to inhibit cytokines produced by Th1 cells [4]. As
an immunosuppressive molecule, IL-10 can restrict immune responses against pathogens
and microbial communities, which is a key mechanism underlying its anti-inflammatory
properties. Evidence suggests that IL-10 is expressed not only in bone marrow and lym-
phoid lineage cells but also in tumor-associated macrophages [5], epithelial cells [6], and
innate immune cells of the central nervous system [7]. This broad anti-inflammatory profile
has significant effects in preventing autoimmune diseases [8], balancing neuroimmune
responses [7], and cancer therapy [9].

Identifying IL-10 target proteins through wet laboratory experiments is time-consuming
and costly. Additionally, the complexity of the immune system and the workload involved
in prediction are high. With the rapid development of immunoinformatics tools and im-
mune epitope databases, combining machine learning (ML) with massive epitope data
to construct direct or indirect peptide prediction models has become an area of increased
focus [10–16]. Some methods to predict IL-10-induced epitopes have been developed based
on ML and the largest immune epitope database, IEDB (Immune Epitope Database) [17,18].
Nagpal et al. first developed a computational model, IL-10Pred, in 2017 to predict peptides
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that can induce IL-10 production. IL-10Pred is a cytokine-specific prediction method [19]
that extracts features of IL-10-induced peptides using singular amino acid sequences to
construct models using support vector machines (SVM). A model based on random for-
est developed using DPC achieved the best performance, with accuracy (ACC) = 0.812.
Subsequently, in 2021, Singh et al. proposed ILeukin10Pred, another prediction model
for IL-10-induced peptides developed based on amino acid sequence features [20]. Inde-
pendent testing and five-fold cross-validation both indicated that ILeukin10Pred showed
improved predictive performance compared to IL-10Pred. Although significant progress
has been made in the prediction of IL-10-induced peptides, the performance of ML-based
models utilizing sequence information still requires further improvement. Many research
methods have made it feasible. In other fields, such as image processing, certain algorithmic
models can offer assistance for biomedical issues. For instance, generative adversarial
networks [21], deformation models [22], gated recurrent units [23], and dual-level represen-
tation enhancement networks [24] exhibit strengths in data handling, feature representation,
and model optimization. As considered by ILeukin10Pred, it is essential to extract and en-
code features based on a wider range of amino acid characteristics for accurately predicting
amino acids. However, the key to enhancing model performance lies in effectively fusing
different types of data [25,26]. Additionally, Singh et al. mentioned in their study that using
ensemble models may improve predictive performance [20]. To address these issues, this
research proposes a novel IL-10-induced peptide recognition method, IL10-Stack, based on
unified deep representation learning and the stacking algorithm. Unified deep representa-
tion learning can harmonize diverse data types, facilitating comprehensive analysis after
data fusion [27]. Meanwhile, stacking, through integrating different models, demonstrates
outstanding performance in improving prediction accuracy and generalization [28,29].

The Amino Acid Index (AAindex) is a numerical index database that provides infor-
mation on the physicochemical and biological properties of the 20 amino acids [30]. It
provides three categories of lists for delineating amino acid properties. These lists delve
into the biological and chemical attributes of single or paired amino acids, encompassing
aspects like charge, polarity, mutability, and contact potential. Indexing amino acid features
based on the amino acid index list has become a common method in bioinformatics [30].
Unified representation (UniRep) is a method that transforms any protein sequence into
a fixed-length vector representation, addressing the scarcity of protein informatics data
by leveraging full utilization of the original sequence [31,32]. A key feature of UniRep is
the numerical encoding of oligonucleotides, allowing for comparison and analysis of all
oligonucleotide pairs occurring in the sequence (including overlaps). UniRep can learn the
buried features of amino acids and incorporate the physicochemical properties of amino
acid residue clusters in the protein. Using UniRep to predict amino acid features has
significantly improved the performance of models and the method has been widely applied
in protein engineering informatics.

In this study, we developed the IL10-Stack model based on stacking using UniRep
feature encoding. A non-stacking IL10-Fuse model was also constructed for comparison.
Both models were used for IL-10-induced peptide identification. We also compared the
performance of AAIndex and UniRep single and fusion feature extraction methods using
different ML algorithms, and found that the UniRep single-feature stacking model had
the highest accuracy. Notably, IL10-Stack outperformed existing prediction techniques in
terms of five-fold cross-validation (MCC = 0.796 and ACC = 0.897) and independent testing
(MCC = 0.820 and ACC = 0.910). Relative to IL-10Pred and ILeukin10Pred, the independent
testing accuracy of IL10-Stack was improved by 12.1% and 4.0%, respectively. Overall, the
IL10-Stack model developed in this study demonstrated higher accuracy and exhibited
good robustness and generalization performance.
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Our main contributions are summarized as follows:

• To address IL-10-induced peptide recognition from sequences, we transformed arbi-
trary protein sequences into fixed-length vector representations using sequence-based
unified representation (UniRep).

• We employed the powerful ensemble learning algorithm, stacking, to construct an
IL-10-induced peptide prediction model, effectively enhancing the predictive accuracy.

• After modeling single or fused sequence features using various machine learning
algorithms, we observed that the stacking model based on UniRep encoding yielded
the best results. Therefore, we proposed a novel IL-10-induced peptide recognition
method, IL10-Stack, with significantly superior performance compared to existing
methods.

2. Materials and Methods
2.1. Computational Framework

Figure 1 depicts the computational workflow framework used to build the
IL-10-induced peptide prediction model. The analysis workflow involved multiple phases,
such as data retrieval from the IL10Pred server [33], feature extraction, handling of imbal-
anced data, feature fusion, feature selection, utilization of ML algorithms, model assessment,
and IL10-Stack server construction.

Initially, an IL-10 dataset was obtained from the IL10Pred method. Next, protein
sequence features were extracted using AAIndex and UniRep. Additionally, we adopted
the SMOTE method to rectify the data imbalance in the dataset. After feature fusion, the
process of feature selection was performed utilizing LGBM.

We proceeded to split the data into training and testing sets, maintaining a ratio of 4:1.
The methodology employed for training and validating the model incorporated both 5-fold
cross-validation and independent testing. Two new methods for IL-10-induced peptide
prediction were proposed, namely the non-stacking model, IL10-Fuse, and the stacking
model, IL10-Stack. In the construction of IL10-Stack, we first trained individual models
using SVM and LGBM separately. Subsequently, we made predictions on the test and
validation sets using these two models, obtaining the test set predictions and validation
set predictions. Next, we used the predictions from both models to create new test and
validation sets, and then trained a new SVM model. Through this process, we developed a
stacking algorithm based on amino acid sequence features for predicting IL-10-induced
peptides. To facilitate better understanding and usage of our new algorithm by other
scientists, we also established a web server in which users simply need to input a peptide
sequence for prediction, and they will receive results indicating whether the peptide is an
IL-10-induced peptide, along with corresponding confidence levels.

2.2. Dataset Acquisition and Preprocessing

IEDB [17] serves as a repository of immunological epitope-related details, presenting
extensive antibody and T-cell epitope data for disease investigations. In our study, we
utilized the foundational database mentioned in the IL-10Pred publication to formulate
the IL-10-induced peptide prediction model [19]. In building the dataset, we designated
MHC class II binders as IL-10-induced peptides based on the results of whether they
can induce the release of the cytokine IL-10, and vice versa. After removing duplicate
peptides, the dataset ultimately employed comprised 848 non-IL-10-induced peptides and
394 IL-10-induced peptides. We utilized the Synthetic Minority Over-sampling Technique,
commonly known as SMOTE, to balance the positive and negative instances [34].
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2.3. Feature Encoding

Amino acid sequence encoding is the process of converting an amino acid sequence
into a numerical or discrete encoded representation for ML analysis and processing [35]; it
is the first step in ML prediction. To examine how different features affect the recognition of
IL-10-induced peptides, two feature representation methods, AAIndex and UniRep, were
employed; single and fused feature encoding using these two methods were compared, to
construct a broader and more complete predictive model.

2.3.1. AAIndex Embedding Model

The AAIndex database [36] consists of three sections: AAIndex1, AAIndex2, and
AAIndex3. Since the latter two lists involve the relationship between two proteins and did
not apply to this study, 566 amino acid indices were selected from AAIndex1, where each
index contained 20 amino acid values.

2.3.2. Pre-Trained UniRep Embedding Model

UniRef50 contains 240,000 amino acid sequences, which UniRep utilizes for training.
UniRep learns how to represent proteins by minimizing cross-entropy loss in predicting
the next amino acid [37]. After training, the model can encode input sequences into a single
fixed-length vector using an mLSTM encoder [38]. The best-performing machine learning
model is obtained by training to predict output vectors. Supervised learning in various
bioinformatics assignments can be achieved by utilizing the input sequences as features.

First, encode sequences featuring L amino acid residues using one-hot encoding and
then embed the outcomes into an RL×10 matrix. Then, the matrix was passed through
the mLSTM encoder to generate the hidden state outputs of size R1900×L, serving as the
embedding matrix. Ultimately, the 1900-dimensional (1900D) UniRep feature vector was
derived through the process of average pooling.

The mLSTM encoder computation is expressed by the following Formulas (1)–(7):

mt = (XtWxm)⊗ (ht−1Whm) (1)

ĥt = tan h(XtWxh + mtWmh) (2)

ft = σ
(

XtWx f + mtWm f

)
(3)

it = σ(XtWxi + mtWmi) (4)

ot = σ(XtWxo + mtWmo) (5)

Ct = it ⊗ ĥt + Ct−1 ⊗ ft (6)

ht = ot ⊗ tan h(Ct) (7)

where ⊗ represents element-wise multiplication; mt, the current modulation state; Xt, the
current input; ht−1, the previous hidden state; it, the input gate; ĥt, the input before the
hidden state; ft, the forgotten gate; Ct, the current cell state; Ct−1, the previous cell state;
ht, the output hidden state; and ot, the output gate. Both σ and tan h are functions repre-
senting the sigmoid and tangent functions, respectively.

2.3.3. Feature Fusion

In pursuit of enhancing the model’s predictive capabilities and robustness, the fusion
of the 566D AAIndex feature vector with the 1900D UniRep feature vector results in the
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2466D AAIndex + UniRep fused feature vector, referred to as AAIndex + UniRep fusion
eigenvector.

2.4. Feature Selection Method

The process of feature selection entails picking the most relevant subset from the
pool of original features [39], reducing dimensionality, eliminating redundant features,
and improving the performance and generalization ability of a model [40]. In this study,
light gradient-boosting machine (LGBM) was employed to optimize the model. LGBM
was used to identify the best features and rank them based on their importance values,
ultimately selecting the features with importance values greater than the threshold, the
‘average feature importance value’ [41].

2.5. Balancing Strategy

To address the issue of the imbalanced dataset, which could lead to bias towards
the majority class (non-IL-10-induced peptides) [33], we employed various methods to
balance the data. Among various methods of over-sampling and under-sampling, the
SMOTE [42] demonstrated the most effective results (please see Supplementary Table S1).
SMOTE is a method for constructing classifiers from imbalanced datasets and is supe-
rior to random oversampling algorithms, as it can effectively improve classification per-
formance; it generates synthetic minority samples by randomly interpolating between
minority sample points and their neighboring points, which are identified using the
k-nearest neighbors algorithm within minority class (IL-10-induced peptides) samples.
The distance between sample points is calculated using the Euclidean distance. This data
balancing strategy not only addresses the issue of class imbalance and improves model
performance but also avoids information loss or sample duplication, thereby enhancing the
model’s generalization ability.

2.6. ML Algorithms

This study utilized four widely used high-performance ML models, including logistic
regression (LR), SVM, LGBM, and stacking.

LR [43] is a ML algorithm suitable for classification problems. It constructs a linear
model, estimates parameters using maximum likelihood estimation, and utilizes a logistic
function for classification. LR is widely used due to its simple data preparation, ease of
implementation, efficiency, and strong interpretability. The parameters of the best model
that we used were as follows: ‘C’: 0.1097, ‘penalty’: ‘l2’.

SVM [44–46] finds the optimal hyperplane by mapping samples into a high-dimensional
feature space; it is a powerful classification algorithm. The parameters of the best model
that we used were as follows: ‘C’: 9.2367, ‘gamma’: 0.0007, ‘kernel’: ‘rbf’.

LGBM [47] is a gradient-boosting framework based on decision tree algorithms; it
offers lower memory usage and faster training speed. The parameters of the best model
that we used were as follows: ‘max depth’: 9, ‘n_estimators’: 750, ‘learning rate’: 0.05.

Stacking [28] is an ensemble learning algorithm that constructs a secondary learner
(also known as a meta-learner) by using the predictions of multiple base learners (also
known as primary learners) as inputs for the final prediction. Through multiple iterations,
stacking achieves good performance and generalization ability. The parameters of the best
model that we used were as follows: ‘learning rate’: 0.05, ‘n estimators’: 800, ‘n jobs’: 60,
‘meta classifier C’: 0.1, ‘meta classifier gamma’: 0.1, ‘svc C’: 10, ‘svc gamma’: 0.001,
‘max depth’: 6.

2.7. Performance Evaluation

Several statistical metrics were employed to appraise the model’s effectiveness [48], in-
cluding area under the receiver operating characteristic curve (AUC), ACC, MCC, Sn, speci-
ficity (Sp), true positive (TP), false positive (FP), true negative (TN), false negative (FN), and
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precision (P). The computation methods for these metrics are as follows (Equations (8)–(12)):

ACC =
TP + TN

FP + FN + TP + TN
(8)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

Sn =
TP

TP + FN
(10)

Sp =
TN

TN + FP
(11)

P =
TP

TP + FP
(12)

where TP and TN correspond to the count of accurate IL-10-induced peptide identifications
and non-IL-10-induced peptide identifications, respectively; FP and FN correspond to the
count of erroneous IL-10-induced peptide identifications and non-IL-10-induced peptide
identifications, respectively. Models were compared using AUC values.

The practice of employing K-fold cross-validation and carrying out independent
testing is a customary way to measure the performance of ML models. Split the raw data
into K equally sized subsets, selecting one of them as the validation set and using the others
as the training set. Execute this operation K times in succession, each time using different
training and validation sets, and the results are evaluated and averaged. In this study,
we employed 5-fold (K = 5) cross-validation. In independent testing, a distinct dataset
is utilized, which is entirely separate from the training set, to assess how well the model
performs and generalizes in real-world scenarios.

3. Results and Discussion
3.1. Analysis of Three Different Feature Models Based on Non-Stacking Algorithms

To explore the biological features that can be used to identify IL-10-induced peptides,
we first applied two deep representation learning methods for feature extraction, namely
AAindex and UniRep. For each type of feature, we employed three different ML methods
(LR, SVM, and LGBM) to develop models and perform initial optimization. Next, we
combined these two features to generate fused features, namely AAindex + UniRep, and
the fused feature combination was used as input for LR, SVM, and LGBM to construct
prediction models and refine their performance. The model evaluation results of AAindex
and UniRep in the non-stacking LR, SVM, and LGBM models are visualized in the form of
Figure 2. Overall, the LR model performed worst, while the LGBM model had moderate
performance, and the SVM model performed well. A comparison of the single features
of AAindex (red) and UniRep (blue) with the fused feature (green) demonstrated that the
SVM model using the fused feature exhibited the best performance in the non-stacking
models; it had 2466 feature dimensions, with an ACC of 0.896 (Figure 2(B1)) and an MCC of
0.792 (Figure 2(B2)) in independent testing. Although independent testing showed that
AAindex + UniRep had the highest ACC in the SVM algorithm, the UniRep feature demon-
strated the highest ACC in LR and LGBM (Figure 2(B1)). Further, five-fold cross-validation
results indicated that the UniRep feature achieved the highest ACC in LR and SVM
(Figure (2A1)). Hence, direct fusing of the two features can improve the performance
of certain models, but it is not always effective.
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Figure 2. Performance metrics using different features and a range of algorithms. (A) The results of
5-fold cross-validation; (B) the results of independent testing. Different colors represent different
features used by each algorithm, with red indicating AAindex single feature, blue indicating the
UniRep single feature, and green indicating AAindex + UniRep fused feature. (A1,B1) ACC, accuracy;
(A2,B2) MCC, Matthews correlation coefficient; (A3,B3) AUC, the area under the receiver operating
characteristic curve; (A4,B4) P, precision; (A5,B5) Sp, specificity; (A6,B6) Sn, recall.

3.2. Analysis of Three Different Feature Models Based on Stacking

During the exploratory phase of model development work, we used paired feature
combinations to generate fused features and estimated models using three ML methods [49].
The results showed that fused feature encoding outperformed non-fused feature encoding
in certain models. The single features of AAindex and UniRep had dimensions of 566 and
1900, respectively, while the dimension of the fused feature reached 2466. The risks of model
overfitting and redundancy in information became more prominent as the dimensionality
of features increased. To address this issue, we employed the stacking algorithm to build
models using the three feature input methods separately. Figure 3 presents a comparison
of the performance of models built based on stacking using different dimensions of single
and fused features.
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From the comparison presented in Figure 3, it can be observed that, for models us-
ing the fused feature, AAindex + UniRep (green), stacking models with feature selection
exhibited better performance (Figure 3(A1)), 21.5% improvement in ACC in five-fold cross-
validation (Figure 3(A2)), 44.6% improvement in MCC in five-fold cross-validation; how-
ever, for models using single features, there was no significant effect, and the performance
may even have been worse (Figure 3(A6,B6)). Notably, in contrast to the higher perfor-
mance of the fused feature models mentioned in the previous section, stacking models
using UniRep single feature exhibited the best overall performance (Figure 3(A1–A6,B1–B6)).
In the end, we chose the single UniRep feature to construct a stacking-based IL-10-induced
peptide recognition model. Although the stacking model with a feature-selected 300D
UniRep single feature showed better AUC (1.1% higher), P (1.0% higher), and Sp
(1.7% higher) values in independent testing (Figure 3(B3–B5)), we still considered the
stacking model based on the original dimension of UniRep single feature as the one that
provided the best overall performance.
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3.3. Comparison with Existing Methods

To evaluate the effectiveness of our technique, we compared IL10-Stack with the
non-stacking method, IL10-Fuse, and the existing methods, IL-10Pred and ILeukin10Pred
(Table 1). As shown in Table 1, the IL10-Stack model based on stacking achieved the best
performance in independent testing, with ACC = 0.910 and MCC = 0.820, outperforming
the IL10-Fuse model (ACC = 0.896 and MCC = 0.792).

Table 1. Comparison of independent testing results between IL10-Stack and other existing methods.

Classifier ACC MCC AUC P Sp Sn

IL-10Pred 0.812 0.590 0.880 0.674 0.819 0.797
ILeukin10Pred 0.875 0.755 0.931 0.927 a 0.947 0.804

IL10-Fuse 0.896 0.792 0.948 0.905 0.895 0.897
IL10-Stack 0.910 0.820 0.920 0.901 0.885 0.933

a The best performance values are indicated in bold and underlined.

As shown in Figure 4, we employed multiple metrics to examine model performance
(Figure 4A–F)). Relative to the existing method, IL-10Pred, the ACC of our model was
improved by 12.1% (Figure 4A), MCC improved by 39% (Figure 4B), AUC improved by 4.5%
(Figure 4C), P improved by 33.7% (Figure 4D), Sp improved by 8.1% (Figure 4E), and Sn
improved by 17.1% (Figure 4F). Moreover, relative to the existing method, ILeukin10Pred,
our model showed improvements of 2.4% in ACC (Figure 4A), 4.9% in MCC (Figure 4B),
and 11.6% in Sn (Figure 4F). Our results demonstrate that IL10-Stack is one of the cutting-
edge IL-10-induced peptide prediction techniques based on unified deep representation
learning. Compared with existing non-stacking methods, IL10-Stack provides a more
reliable and stable prediction of IL-10-induced peptides.
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IL10-Fuse, and IL10-Stack methods. (A) ACC, accuracy; (B) MCC, Matthews correlation coefficient;
(C) AUC, the area under the receiver operating characteristic curve; (D) P, precision; (E) Sp, specificity;
(F) Sn, recall.
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3.4. Web Server Development

To enable more researchers to use our IL-10-induced peptide prediction algorithm, we
developed a user-friendly IL10-Stack web server that will be available for free online at
https://servers.aibiochem.net/soft/IL10-Stack/ (accessed on 19 July 2023). The server is
designed to be easy to use; users simply need to input a peptide sequence, and subsequently
await the results [50,51]. The webpage will display whether the peptide sequence is
predicted to be an IL-10-induced peptide, along with a corresponding confidence level. The
output includes the input sequence, the prediction result, and the confidence level. Please
refer to the web server interface on our website for more information.

4. Conclusions

Here, we developed IL10-Stack, a stacking ML approach based on unified deep rep-
resentation learning for IL-10-induced peptide recognition. We first employed SMOTE
to address the imbalanced dataset and then extracted potential IL-10-induced peptide
information using AAIndex, UniRep, and a fusion of both feature extraction methods. We
then compared the predictive performance of three non-stacking ML algorithms (LR, SVM,
and LGBM) and stacking algorithms, with and without feature selection, resulting in two
optimal models: IL10-Fuse and IL10-Stack. After testing and optimization, we found that
utilizing 1900D UniRep features as the feature set and developing the model based on the
stacking algorithm yielded the best performance. Our results demonstrate that IL10-Stack
provides more reliable and accurate predictions of IL-10-induced peptides than the most
recently reported methods (AUC = 0.920, ACC = 0.910, MCC = 0.820). Ultimately, we
established an IL10-Stack web server to make it convenient for scientists to employ this
algorithm.

One advantage of this study is that we used the latest AAIndex and UniRep methods
to extract features, which is an improvement over existing methods like ILeukin10Pred.
Additionally, our model construction using unified deep representation learning and the
stacking algorithm significantly enhanced the accuracy of IL-10-induced peptide prediction.
However, our research also had some limitations, such as a relatively small dataset and the
slower running speed of the web server. In the future, we plan to validate the model with
more data. We envisage that the use of IL10-Stack to predict IL-10-induced peptides can
contribute to the development of immunosuppressive drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13169346/s1, Table S1: Comparison of independent testing
results between IL10-Stack and other existing methods.
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