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Abstract: Underwater images are frequently subject to color distortion and loss of details. However,
previous enhancement methods did not tackle these mixed degradations by dividing them into sub-
problems that could be effectively addressed. Moreover, the parameters and computations required
for these methods are usually costly for underwater equipment, which has limited power supply,
processing capabilities, and memory capacity. To address these challenges, this work proposes a
Lightweight Parallel Strategy Network (LPS-Net). Firstly, a Dual-Attention Enhancement Block and
a Mirror Large Receptiveness Block are introduced to, respectively, enhance the color and restore
details in degraded images. Secondly, we employed these blocks on parallel branches at each stage
of LPS-Net, with the goal of achieving effective image color and detail rendering simultaneously.
Thirdly, a Gated Fusion Unit is proposed to merge features from different branches at each stage.
Finally, the network utilizes four stages of parallel enhancement, achieving a balanced trade-off
between performance and parameters. Extensive experiments demonstrated that LPS-Net achieves
optimal color enhancement and superior detail restoration in terms of visual quality. Furthermore, it
attains state-of-the-art underwater image enhancement performance on the evaluation metrics, while
using only 80.12 k parameters.

Keywords: Dual-Attention Enhancement Block; Mirror Large Receptiveness Block; underwater
image enhancement

1. Introduction

Underwater images have broad application value in the marine field, playing an essen-
tial role in marine scientific research [1,2] and protection and environmental monitoring [3].
However, underwater image quality is typically limited by the absorption, scattering, and
attenuation of light, resulting in the loss of contrast, blurring, and color distortion. With the
rapid development of computer vision, many scholars have conducted extensive research
on Underwater Image Enhancement (UIE) and have made significant advancements in the
field [4–6].

According to the Jaffe–McGlamery imaging model [7,8], underwater imaging consists
of a linear superposition of direct, back-scattered, and forward-scattered components. In
general, the effects of forward scattering are negligible; thus, the imaging model can be
simplified as:

Ic(x) = Jc(x)tc(x) + Bc(1− tc(x)), c ∈ {R, G, B} (1)

where Ic(x) is the observed intensity in the color channel c of the input image at the pixel x,
Jc(x) represents the radiation of the scene at x, Bc represents the background light, tc(x)
is the transmission map, and c represents the red, green, and blue channels. UIE aims to
recover the radiation J(x) of the scene from the observed image I(x), which is an ill-posed
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problem. Thus, in one line of traditional UIE methods, physical priors [9,10] were utilized
to estimate the unknown transmission map and background light. However, these physical
priors might not always hold true in complex underwater scenes, resulting in poor per-
formance when physical priors are violated. Another line of traditional methods [11–13]
directly modifies image pixel values to improve visual quality, regardless of the physical
model. These methods usually rely on hand-crafted features, thus exhibiting poor gener-
alization ability. In recent years, UIE methods based on Convolutional Neural Networks
(CNNs) have achieved promising results [14–18]. For example, Li et al. [14] presented
an underwater image enhancement network via medium transmission-guided multicolor
space embedding, called Ucolor. Huo et al. [15] used wavelet-enhanced learning units to
build a UIE framework. However, these methods usually require complex module designs
in order to remove mixed degradations directly, resulting in a large number of parameters.
Furthermore, these methods often have high computational complexity. For example, it
takes the Ucolor [14] method 443.85 GFLOPs to process a 720P image. The considerable
number of computational operations and parameters associated with these methods pose
challenges for their deployment in underwater equipment with limited power supply,
processing capabilities, and memory capacity. Therefore, designing a lightweight and
effective underwater image enhancement model has become a challenge.

To address the above issues, we propose a Lightweight Parallel Strategy Network
(LPS-Net) for underwater image enhancement. As shown in Figure 1, LPS-Net achieves
state-of-the-art underwater image enhancement performance with very few parameters.
Specifically, a Dual-Attention Enhancement Block (DAEB) and a Mirror Large Receptiveness
Block (MLB) are proposed to, respectively, enhance color and restore detail in degraded
images. Problem splitting can avoid the use of complex modules, as well as reduce the
amount of computation and parameters. With the aim of achieving remarkable image
color and detail rendering, we repeatedly employed these blocks on parallel branches at
each stage of LPS-Net and designed a Gated Fusion Unit (GFU) to combine features from
different branches.

Figure 1. Left: Compared with existing state-of-the-art methods, our method achieves the best
performance on the T90 dataset using only 80.12 k parameters (1/35 of that of MFEF [19], 1/80 of the
parameter number of PRW-Net [15], and 1/2000 of that of Ucolor [14]). The size of the stars represents
the number of trainable parameters. Right: A sample image from the T90 dataset and its enhanced
results produced by different methods including our LPS-Net.

In water, different wavelengths of light have varying rates of attenuation, with red
light attenuating the fastest and blue–green light attenuating the slowest. As a result, there
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are different degrees of degradation among the three channels of RGB images, but previous
methods [20–22] have not adequately addressed the hidden visual hazards caused by such
differences. To deal with such degradation differences in the R, G, and B channels, the
network should capture the distribution of color features across different channels. To this
end, the incoming features are divided into three bands in the proposed DAEB. Each band
passes through an Instance Normalization (IN) module, which will reduce the differences
among different bands. Equipped with subsequent Channel Attention (CA) [23] and Spatial
Attention (SA) [24], DAEB is bestowed with the ability to enhance the color of different
color channels adaptively and separately.

To restore image details, a large receptive field in the UIE network is desired, since in-
creasing the receptive field allows for more contextual information to be obtained. Inspired
by the long-range modeling ability of ViTs [25,26], we adopted large-kernel convolutions to
expand the receptive field for improving model performance, as exemplified by the remark-
able ConvNet [27], which employs 7× 7 depthwise convolutions. Specifically, the proposed
MLB uses four large-kernel convolutions with different kernel sizes. We conduct a series of
ablation studies in Section 5.2 and empirically set the kernel sizes in the MLB as 7× 7 and
9× 9, respectively. Additionally, we constructed parallel branches using the DAEB and
MLB as primary components, then applied the GFU to integrate features from different
branches. Extensive experiments demonstrated that LPS-Net achieves state-of-the-art UIE
performance while using only 80.12 k parameters.

Our main contributions in this paper are summarized as follows:

• We propose the DAEB to capture the distribution of color features across the R, G, and
B channels. IN can reduce the difference between channels, and by employing CA and
SA, the network is able to enhance the color of degraded images at different levels.

• We introduce a novel block named the MLB to focus on texture information in de-
graded images. With the large receptive field of the mirror-designed convolutional
kernel, we were able to obtain more contextual information to restore fine details.

• Our LPS-Net needs only 80.12 k parameters, making it well-suited for underwater
devices with limited memory capacity. Extensive experiments demonstrated that
LPS-Net achieves state-of-the-art UIE performance in terms of visual quality and
evaluative metrics.

The remaining sections of this paper are organized as follows: Section 2 reviews the
traditional and deep-learning-based UIE methods. Subsequently, in Section 3, we introduce
the proposed LPS-Net. Section 4 presents comprehensive qualitative and quantitative
evaluations, aiming at comparing the efficacy of the proposed method against state-of-the-
art approaches. Section 5 provides ablation studies of each module within the network,
while Section 6 sheds light on the identified limitations and drawbacks. Finally, Section 7
encompasses a concise summary of our work as well as expounds upon future avenues of
research and broader implications.

2. Related Works

In recent years, there has been a growing interest in underwater image enhancement [28–31].
In general, there are mainly two types of methods: traditional methods [9,11–13,19,32–36] and
deep-learning-based methods [14–18,37–40].

2.1. Traditional Methods

The traditional methods employed for enhancing underwater images, such as his-
togram equalization [11], wavelet transforms [12], and the Retinex algorithm [13], exhibit
certain drawbacks. AbuNase et al. [32] utilized Particle Swarm Optimization (PSO) to
mitigate the effects of light absorption and scattering, but this approach may be suscep-
tible to noise and demands meticulous parameter tuning. Ghani et al. [33] proposed a
Rayleigh distribution histogram stretching method that enhances contrast; however, it
can lead to excessive enhancement and loss of image details. Fu et al. [34] presented a
variational Retinex-based method for underwater image enhancement, which may result in
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oversmoothing and the loss of fine details. Zhuang et al. [35] developed a Bayesian Retinex
method incorporating multi-order gradient priors, but its iterative optimization process can
impose a significant computational burden. The UDCP algorithm [9], based on the dark
channel prior, offers simplicity in implementation; however, it may yield inaccurate results
in the presence of complex underwater color interference. Furthermore, Zhang et al. [36]
introduced MLLE, an efficient and robust approach, but it may still exhibit limitations in
handling certain challenging underwater scenarios. The depth estimation model proposed
by Song et al. [10] based on the Underwater Light Attenuation Prior (ULAP) suffers from
performance degradation in complex underwater environments due to the presence of
color interference factors. These conventional methods often lack the flexibility required for
implementation, necessitating accurate parameter estimation and valid underwater optical
properties to achieve satisfactory results. Additionally, the computational complexity and
multi-step processing of these algorithms can result in significant time overhead.

2.2. Deep-Learning-Based Methods

With the successful applications of deep learning in some high-level computer vision
tasks (such as image classification [41] and recognition [42]), more and more researchers
began to explore low-level computer vision tasks such as image enhancement, which has
achieved outstanding results in terms of performance indicators and visual effects.

Li et al. [5] proposed the WaterNet model, which employed adaptive filters and deep
convolutional neural networks for image enhancement and noise reduction. However, this
method did not incorporate dedicated modules to address the color shift and texture loss
commonly observed in degraded images. Jiang et al. [37] designed a domain adaptation
framework based on transfer learning to transform aerial image deblurring into realistic
underwater image enhancement. While it achieved notable performance indicators, it
lacks dedicated modules to handle color shifts and texture loss. Naik et al. [38] introduced
Shallownet, a lightweight underwater enhancement framework that sacrifices accuracy
for reduced model size and faster processing. Although it offers fast processing, the re-
duced accuracy may limit its applicability. Islam [43] presented FUNIE-GAN, a conditional
generative-adversarial-network-based model for real-time underwater image enhancement.
Despite its excellent visual effects, it suffers from extensive network parameters and high
computational requirements, which make it unsuitable for existing underwater devices.
Huo et al. [15] utilized wavelet-enhanced learning units to decompose hierarchical features
into high-frequency and low-frequency components, enhancing them through normaliza-
tion and attention mechanisms. However, it does not explicitly address the color shift
and texture loss associated with degraded images. Li et al. [14] proposed Ucolor, which
incorporates medium transmission-guided multicolor space embedding to enhance the
network’s response towards quality-degraded regions. Despite its excellent visual effects, it
exhibits extensive network parameters and high computational complexity, rendering it un-
suitable for existing underwater devices. Wei et al. [18] introduced UHD-SFNet, an efficient
two-path model that recovers color and texture in underwater blurred images through
frequency and spatial domain processing. However, the specific limitations or drawbacks
of this method were not explicitly mentioned. Fu et al. [16] addressed underwater image
enhancement by estimating the distribution and employing a consensus process using
a novel probabilistic network. While it provides a unique approach, specific limitations
or drawbacks were not explicitly discussed. A Hierarchical Attention Aggregation with
Multi-resolution feature learning for GAN-based underwater image enhancement (HAAM-
GAN) [40] was proposed to tackle color bias, underexposure, and blurring in underwater
images.

3. Proposed Method

The overall structure of the proposed LPS-Net is constituted by four recurring enhance-
ment stages, as shown in Figure 2. At each stage, a pair of intricately designed components,
i.e., the Dual-Attention Enhancement Block and the Mirror Large Receptiveness Block, is
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utilized to, respectively, augment color and restore image details. Specifically, the incoming
features are fed into these two blocks on parallel branches. Then, at the end of each stage,
the Gated Fusion Unit adaptively merges features from the DAEB and MLB, forming a
unified representation. Throughout this procedure, the DAEB alleviates color distortion
resulting from different degrees of light attenuation in different color channels. Concur-
rently, the MLB, with its large field of view, gradually reinstates image details at every
stage, leveraging its ability to garner more contextual data to correct Gaussian blur caused
by light scattering and other texture distortions. Feature maps from these two branches
are then fused by the GFU in order to achieve effective image color and detail rendering
simultaneously.

Figure 2. The overall structure of LPS-Net. The degraded image is fed into an end-to-end network
that goes through a four-stage enhancement and correction process. The 3× 3 convolution on the
branch in the top left corner is used for channel expansion.

3.1. Dual-Attention Enhancement Block

Since the absorption coefficients of different channels in RGB images are different, the
distribution of pixels from the R, G, and B channels of images always appears unbalanced,
resulting in serious color deviations. Previous methods did not pay attention to the hidden
visual dangers caused by the differences among the three channels. To address this issue,
we present the DAEB to better capture the distribution of color features in the R, G, and
B channels. As shown in Figure 2b, the block has three small branches, and weights are
not shared between branches. Specifically, in different branches, we used IN to reduce
the differences among different channels, and both CA and SA can enhance the color of
degraded images from different levels. Then, the augmented results are summed. This
block can accurately weigh color channels and extract color feature information. Since
the attenuation of the red channel is larger than that of the blue and green channels, the
DAEB is applied to assign different learning weights to different color channels, which
compensates for the feature map of the red channel and improves the overall color features.

3.2. Mirror Large Receptiveness Block

Inspired by ConvNet [27], we found that, when four deep convolutional layers in
series are replaced by a parallel connection of deep convolutional layers with the same
configuration in preliminary experiments, superior results can be achieved. Under certain
constraints, the receptive field’s size increases with the convolutional kernel’s increase.
A large receptive field can capture more contextual information. Therefore, we kept the
parallel settings unchanged and selected the optimal configuration by changing the sizes
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of the kernels. Our four parallel large-kernel convolutions are centrally symmetrical, so
it is called the Mirror Large Receptiveness Block, shown in Figure 2c. Detailed ablation
experiments showed that the network’s performance is superior when the convolutional
kernel sizes are set as 7× 7 and 9× 9, respectively.

Given the feature F ∈ RC×H×W , the key operations of the MLB can be expressed as
follows:

F′i = Chunk(Conv1×1(F), dim = 1), i = 1, 2, 3, 4
Fout1 = Conv7×7(F′1)
Fout2 = Conv9×9(F′2)
Fout3 = Conv9×9(F′3)
Fout4 = Conv7×7(F′4)

(2)

where Chunk(·) means the cutting operation in dimension one. Conv1×1(·), Conv7×7(·),
Conv9×9(·) refer to the convolution with kernel sizes of 1× 1, 7× 7, and 9× 9, respectively.

3.3. Gated Fusion Unit

In CNNs, the gating mechanism is usually implemented by some particular neu-
rons. These neurons can decide whether information can pass through them. If gating
neurons fire less, they can block the flow of information, preventing some information
from being passed on to the next layer. Inspired by the Gated Linear Unit (GLU) [44]
and self-attention [45], the GFU was designed for underwater enhancement, as shown in
Figure 2d. The Gated Fusion Unit further extracts the input color information and texture
features through a 3× 3 convolutional layer and depthwise separable convolution. Next, it
fuses the weighted features with the original features and controls the weights of different
features through a gating mechanism. Finally, the Gated Fusion Unit takes the processed
feature vector as the output. It is worth mentioning that the function of the Gated Fusion
Unit is to enhance the quality and clarity of the feature maps at different stages and to
filter the noise and irrelevant information so that the details of helpful information can be
highlighted.

3.4. Loss Function

We introduce the Charbonnier Loss [46] as our basic reconstruction loss:

Lrec = Lc(I(X),Jgt) (3)

where I is our LPS-Net and X and Jgt stand for the input and ground-truth. Lc denotes
the Charbonnier Loss, which can be express as:

Lc =
1
N

N

∑
i=1

√∥∥Xi −Yi
∥∥2

+ ε2 (4)

where constant ε was empirically set to 1× 10−3 for all experiments. In addition, the
perceptual level of the restored image is also critical. We applied the perceptual loss to
improve the restoration performance. The perceptual loss can be formulated as follows:

Lperceptual =
2

∑
j=1

1
Cj HjWj

||φj(I(x))− φj(Y)||1 (5)

where φj represents the 1-st and the 3-rd layers of VGG19 [47]. Cj, Hj, and Wj represent the
channel number, height, and width of the feature map, respectively.

In order to better reflect the human visual system’s perception of image quality, we
adopted the negative SSIM loss to focus on luminance, contrast, and structure. The negative
SSIM loss is:

Lssim = −SSIM(I(X),Jgt) (6)
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where I(·) is LPS-Net and X and Jgt stand for the input and the corresponding ground-
truth, respectively.

The overall loss function can be expressed as:

L = λ1Lc + λ2Lperceptual + λ3Lssim (7)

where the λ1, λ2 and λ3 are set to 1, 0.2 and 0.5, respectively.

4. Experiments and Analysis

This section firstly introduces the datasets used in the experiments: Underwater Im-
age Enhancement Benchmark (UIEB) dataset [5], non-reference underwater image dataset
U45 [48], and Enhancement of Underwater Visual Perception (EUVP) dataset [43]. Secondly,
we describe the experimental setup and implementation details. To demonstrate the feasibil-
ity and superiority of the proposed method, we compared LPS-Net with traditional meth-
ods [9,36,49] and state-of-the-art deep learning underwater methods [5,14–19,22,38,40,43,50].
Finally, we conducted an analysis of the objective data presented in the tables and provide
detailed visualizations to demonstrate the advanced and effective nature of our method.

4.1. Datasets

The UIEB dataset contains 890 high-resolution raw underwater images, corresponding
high-quality reference images, and 60 challenge images (C60) for which no corresponding
reference images were obtained. UIEB covers a variety of underwater scenes, and the
image content covers a wide range of areas, such as marine life, divers, submarine corals,
and coral reefs. The quality of underwater images is significantly lower. The creators of
the dataset devised a method for generating high-quality reference images. Firstly, they
applied twelve popular image-enhancement methods to generate enhanced results. Then,
fifty volunteers were recruited to evaluate the quality of the enhanced results. The reference
image for each original underwater image was determined by majority voting based on
pairwise comparisons.

The U45 dataset consists of 45 degraded small images without reference images.
Considering that the underwater enhancement task does not have publicly available
datasets for a test like the single-image super-resolution task, Li et al. carefully selected 45
authentic underwater images, named U45. It is divided into three subsets of green, blue,
and haze, where the subsets correspond to the color cast of underwater degradation, low
contrast, and blur effects.

The EUVP dataset contains separate sets of paired and unpaired image samples of
poor and good perceptual quality. The creators employed seven distinct camera models,
including multiple GoPros, uEye cameras integrated into the Aqua AUV, low-light USB
cameras, and high-definition cameras mounted on the Trident ROV, to capture the image
data. The data acquisition occurred at diverse locations and under various conditions
during marine exploration and robot navigation. In our experiments, two paired sets were
used: Underwater Dark (5550 pairs) and Underwater ImageNet (3700 pairs).

4.2. Experimental Setup and Implementation Details
4.2.1. Experiment Details

All experiments were implemented under the Pytorch [51] framework and accelerated
on the NVIDIA RTX A100GPU (40GB). During training, the training epochs were set to 400,
and the batch size was 30. We used the ADAM optimizer as the optimization algorithm.
The learning rate was set to 4× 10−4 first, and the default values of β1 and β2 were 0.5 and
0.999, respectively. We used CyclicLR to adjust the learning rate, with an initial momentum
of 0.9 and 0.999. Data augmentation included horizontal flipping, random cropping, and
randomly rotating the image to 90, 180, and 270◦ .

Throughout the training process, we standardized the resolution of both the input and
output to 256× 256. From the UIEB dataset, we randomly selected 800 pairs of original
images and their corresponding clear images to compose the training set for our model.
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During the training validation phase, we employed the remaining 90 images from the UIEB
dataset (referred to as T90) to evaluate our method’s performance on degraded images.
For the formal testing stage, we continued to use the T90 dataset; however, in contrast
to the training phase, we refrained from making any alterations to the format and size of
the images, aiming to restore the model’s capability to enhance real underwater images.
Furthermore, to assess the generalization capacity, we conducted evaluations using the
C60 and U45 datasets with various methods. To assess the generalization capability of our
model, some comparative experiments were conducted on the EUVP dataset. We used the
ImageNet sub-dataset under the EUVP dataset to contain 3700 pairs of images for training
and randomly sampled 1000 pairs of images from the Dark sub-dataset for testing.

4.2.2. Evaluation Metrics

For quantitative evaluations, several objective evaluation metrics were employed to
assess the performance of the proposed underwater image enhancement method. These
metrics served as references for measuring image quality in a comprehensive manner.

The first metric used was the Peak-Signal-to-Noise Ratio (PSNR) [52], which is a well-
established full-reference image quality evaluation metric. It quantifies the errors between
corresponding pixels in the enhanced image and the reference image. A higher PSNR score
indicates better image quality in terms of minimizing pixelwise errors.

To evaluate the visual quality of the enhanced images, the Structural Similarity Index
(SSIM) [53] was employed. The SSIM measures the similarity between the enhanced image
and the reference image in terms of three key features: brightness, contrast, and structure.
A higher SSIM value implies a higher perceptual similarity between the enhanced and
reference images.

The Mean-Squared Error (MSE) [54] was another metric used, which calculates the
average squared difference between the pixels of the enhanced image and the reference
image. A lower MSE value indicates better image quality, as it quantifies the overall
distortion in the enhanced image compared to the reference image.

For a comprehensive evaluation of underwater image quality, two additional metrics
were employed. The Underwater Color Image Quality Evaluation (UCIQE) [55] metric
primarily measures the degree of detail and color recovery in distorted images. It is
considered one of the most-comprehensive image-evaluation standards for underwater
images. The Underwater Image Quality Metric (UIQM) [56] is specifically designed to
assess color, sharpness, and contrast in underwater images. By considering both local and
global image features, the UIQM offers a holistic evaluation of underwater image quality.

By utilizing these objective evaluation metrics, the proposed method aims to provide
a quantitative assessment of its performance in terms of fidelity, perceptual similarity, color
reproduction, detail recovery, and overall image quality. These metrics serve as valuable
references to measure and compare the effectiveness of the proposed underwater image
enhancement technique.

4.3. Compared Methods

We compared LPS-Net with state-of-the-art methods, including traditional methods
and deep learning methods. Traditional methods included UDCP [9], IBLA [49], and
MLLE [36], and deep learning methods included UWCNN [22], Water-Net [5], PRW-
Net [15], Shallownet [38], Ucolor [14], UIEC^2-Net [50], PUIE-Net [16], FUNIE-GAN [43],
UHD-SFNet [18], HAAM-GAN [40], MFEF [19], and the latest NU2Net [17] for underwater
image enhancement.

4.4. Quantitative Comparisons

We firstly performed a quantitative comparison on 90 images from T90, 60 images
from C60, and 45 images from U45. Table 1 gives the quantitative results of different
methods. The PSNR, SSIM, and MSE were used as full-reference evaluation metrics and
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provided only the T90 test set, since T90 has ground-truth images. UCIQE and UIQM were
used as non-reference evaluation metrics and provided for all test sets.

Table 1. Experimental results on the T90 [5], C60 [5], and U45 [48] datasets. The training set of
UIEB was used for training. The best results are underlined. The second-best results are in bold. ↑
represents that higher is better, and ↓ represents that lower is better.

T90 [5] C60 [5] U45 [48]

Method PSNR↑ SSIM↑ MSE↓ UCIQE↑ UIQM↑ UCIQE↑ UIQM↑ UCIQE↑ UIQM↑
UDCP(ICCVW’13) [9] 13.415 0.749 0.228 0.572 2.755 0.560 1.859 0.574 2.275
IBLA(TIP’17) [49] 18.054 0.808 0.142 0.582 2.557 0.584 1.662 0.565 2.387
WaterNet(TIP’19) [5] 16.305 0.797 0.161 0.564 2.916 0.550 2.113 0.576 2.957
UWCNN(PR’20) [22] 17.949 0.847 0.221 0.517 3.011 0.492 2.222 0.527 3.063
FUNIE-GAN(RAL’20) [43] 17.114 0.701 0.216 0.564 3.092 0.556 2.867 0.545 2.495
PRW-Net(ICCVW’21) [15] 20.787 0.823 0.099 0.603 3.062 0.572 2.717 0.621 3.026
Shallownet(AAAI’21) [38] 18.278 0.855 0.131 0.544 2.942 0.521 2.212 0.545 3.109
Ucolor(TIP’21) [14] 21.093 0.872 0.096 0.555 3.049 0.530 2.167 0.554 3.148
UIEC^2-Net(SPIC’21) [50] 22.958 0.907 0.078 0.599 2.999 0.580 2.228 0.604 3.125
MLLE(TIP’22) [36] 19.561 0.845 0.115 0.592 2.624 0.581 1.977 0.597 2.454
PUIE-Net(ECCV’22) [16] 21.382 0.882 0.093 0.566 3.021 0.543 2.155 0.563 3.192
UHD-SFNet(ACCV’22) [18] 18.877 0.810 0.144 0.559 2.551 0.528 1.741 0.585 2.826
NU2Net(AAAI’23,Oral) [17] 22.419 0.923 0.086 0.587 2.936 0.555 2.222 0.593 3.185
MFEF(EAAI’23) [19] 23.352 0.910 0.076 0.602 1.333 - - - -
HAAM-GAN(EAAI’23) [40] 22.947 0.889 0.081 0.602 3.164 0.569 2.867 0.606 3.161

Ours 23.905 0.915 0.071 0.620 2.833 0.585 2.242 0.625 3.142

From Table 1, it can be seen that our method achieved the best results in terms of the
PSNR and MSE metrics on the T90 test set and the best results in terms of the UCIQE metric
on all three test sets. Specifically, on the T90 test set with reference images, the proposed
LPS-Net scored the best PSNR and MSE metrics and obtained the second-best SSIM metric,
proving that the proposed network has achieved state-of-the-art UIE performance, and its
network architecture is able to restore color and recover image details. Compared with
the recently developed MFEF method, which roughly ranked second-best, LPS-Net led by
0.553 dB, 0.005, and 0.005 in terms of the PSNR, SSIM, and MSE.

On the other hand, higher UCIQE and UIQM values indicate better performance in
terms of sharpness, color correction ability, and contrast in images. Among the evaluated
methods, LPS-Net achieved the highest UCIQE values, demonstrating its efficacy in miti-
gating color shifts and enhancing sharpness. Although FUNIE-GAN and HAAM-GAN
slightly outperformed our method in terms of the UIQM, a qualitative comparison revealed
that GAN-based approaches suffered from localized exposure issues, leading to signifi-
cant image distortions. Conversely, the enhanced results obtained by LPS-Net effectively
addressed color biases without introducing additional degradation problems.

Apart from enhancement performance, efficiency is also very important for UIE
methods. Table 2 provides comparison results in terms of various efficiency metrics,
including the number of computational operations measured in GFLOPs, the number of
parameters, and runtime speed. It can be seen that LPS-Net needed only 0.08 M (80.12 k)
parameters, substantially fewer than other methods, which is beneficial for deployment
in equipment with limited memory capacity. In terms of GFLOPs, LPS-Net ranked the
second-best, after UHD-SFNet, whose UIE performance was much worse compared to
LPS-Net, as shown in Table 1. Compared with Shallownet [38], we reduced the parameters
by more than 50% and reduced the time complexity by more than 71%, but the PSNR and
SSIM were 5.627 dB and 0.06 higher, which fully proved the superiority and feasibility
of our method. Although LPS-Net did not have the best runtime metric, taking into
consideration its performance and efficiency overall, it can be concluded that LPS-Net
achieved state-of-the-art underwater image enhancement performance while enjoying
superior model efficiency.
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Table 2. The efficiency evaluation was conducted using 1280× 720 images as the input on an RTX
3090 graphics card. The results are presented below, with the best-performing outcomes indicated
with underlining and the second-best results highlighted in bold. The symbol ↑ denotes that higher
values indicate better performance, while ↓ signifies that lower values are desirable. This evaluation
aimed to assess the computational efficiency of the methods under consideration and provide insights
into their relative performance based on the given criteria.

Efficiency

Method GFLOPs
(G)↓ # of Params (M)↓ Runtime (s)↓ FPS (f/s)↑

WaterNet(TIP’19) [5] 193.70 24.81 0.680 -
FUNIE GAN(RAL’20) [43] - 7.02 - -
PRW-Net(ICCVW’21) [15] 223.40 6.30 0.216 4.624
Shallow-uwnet(AAAI’21) [38] 304.75 0.22 0.031 31.836
Ucolor(TIP’21) [14] 443.85 157.42 2.758 -
UIEC^2-Net(SPIC’21) [50] 367.53 0.53 0.174 5.742
PUIE-Net(ECCV’22) [16] 423.05 1.40 0.071 14.194
UHD-SFNet(ACCV’22) [18] 15.24 37.31 0.059 16.769
NU2Net(AAAI’23,Oral) [17] 146.64 3.15 0.024 42.345
MFEF(EAAI’23) [19] - 2.79 - -

Ours 90.02 0.08 0.070 14.552

Additionally, for the EUVP dataset, we employed the PSNR, SSIM, UCIQE, and UIQM
as quantitative metrics to assess the recovery outcomes for more-extensive research. No-
tably, the results in Table 3 produced by LPS-Net demonstrate excellent performance in
terms of the PSNR, SSIM, and UICIQE, yielding the highest scores. This observation high-
lights the robustness and generalizability of LPS-Net for underwater image enhancement.

Table 3. Experimental results on the EUVP-Dark [43] dataset. Best results are underlined. The
second-best results are in bold. ↑ represents that higher is better.

EUVP-Dark (1000) [43]

Method PSNR↑ SSIM↑ UCIQE↑ UIQM↑
Shallownet(AAAI’21) [38] 19.6058 0.8167 0.5537 2.9411
NU2Net(AAAI’23,Oral) [17] 20.0908 0.8631 0.5536 3.0775

Ours 20.4129 0.8802 0.5610 3.0466

4.5. Visual Comparisons

In the case of the T90 dataset, a subset of images from the UIEB dataset was carefully
chosen for conducting a visual comparison against seven state-of-the-art methods. These
images were meticulously classified into various categories, encompassing yellow-toned,
green-toned, blue-toned, low light, shallow-water areas, and deep-water areas. Figures 3
and 4 showcase the performance of each method. Shallownet succeeded in enhancing
contrast, but fell short in improving the quality of yellow-toned and green-toned underwa-
ter images. UWGAN exhibited notable improvements in yellow-toned images; however,
oversaturation issues arose in many instances. PRW-Net’s applicability was limited across
a wide range of scenarios, as it introduced additional chromatic aberrations or artifacts in
deep-water areas and low-light conditions. UIEC^2-Net employed a multicolor spatial
encoder for natural color processing, but inaccurate transmission map estimation resulted
in contrast and saturation degradation. PUIE-Net and NU2Net encountered challenges
with overall darkness and low contrast in a majority of the processed images. In contrast,
our method effectively combines the strengths of multiple features, resulting in visually
pleasing outcomes in terms of contrast, saturation, and detail processing.
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Figure 3. Visual comparison of enhancement results on the T90 testing set.

Additionally, Figures 5–7 verify the generalization performance of LPS-Net, which
can be finely enhanced for underwater degraded images of different qualities. Our method
exhibited quite compatible color and detail recovery, enhancing the entire degraded image
and making its contrast and texture details meet the sensory requirements of the human
eyes. That is beneficial from our well-designed DAEB, MLB, and GFU.
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Figure 4. Visual comparison of enhancement results on the T90 testing set.

Further, we also give an intuitive comparison with two previous SOTA methods on
the EUVP dataset. As seen in Figures 8 and 9, Shallownet was incapable of sufficiently
restoring underwater images due to its straightforward network structure. On the other
hand, NU2Net lacked precise color control, hence leading to visible chromatic deviations
that can be noticed by the human eye. In contrast, our method was better at removing color
casts and handling details.



Appl. Sci. 2023, 13, 9419 13 of 22

Figure 5. Visual comparison of enhancement results on the U45 testing set for generalization ability
evaluation.
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Figure 6. Visual comparison of enhancement results on the U45 testing set for generalization abil-
ity evaluation.



Appl. Sci. 2023, 13, 9419 15 of 22

Figure 7. Visual comparison of enhancement results on the C60 testing set for generalization ability
evaluation.
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Figure 8. Visual comparison of enhancement results on EUVP-Dark.

Figure 9. Visual comparison of enhancement results on EUVP-Dark.

5. Ablation Study

In this section, a series of ablation studies are conducted to validate the role of the
DAEB, MLB, and GFU in the network. For the ablation study, we followed the basic
setup presented above and conducted experiments to demonstrate the effectiveness of the
individual components of our proposed comprehensive approach. We performed different
ablation studies to analyze different components. We first constructed the primary network
as the baseline of the enhanced network, which mainly consisted of six convolutional layers,
two IN layers, and ReLU activation functions.

5.1. Effectiveness of Key Components in the DAEB

We aimed to showcase the effectiveness of the proposed DAEB structure and present
the experimental results in Table 4. Notably, the PSNR gain achieved by the IN layer
was higher than that of the Batch Normalization (BN) layer, which can be attributed to
their distinct normalization methods. While the BN layer does not account for channel
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differences during normalization, the IN layer utilizes unique means and variances for
different layers. Additionally, the exclusion of the SA and CA mechanisms reduced the
performance of the DAEB by restricting its focus to specific layers. To provide a more-
intuitive understanding of the utility of the DAEB, we visualize the channel histogram
before and after enhancement. As illustrated in Figure 10, the DAEB effectively reduced
the differences between the three channels, as anticipated.

Table 4. Ablation study on the Dual-Attention Color Enhancement block. Among them, w/o SA and
w/o CA refer to removing the Spatial Attention and Channel Attention, respectively. ↑ represents
that higher is better, and ↓ represents that lower is better. Underlines indicate the best results.

Setting PSNR↑ SSIM↑ MSE↓
(a) Base 19.412 0.863 0.127
(b) Base+DAEB(IN->BN) 22.110 0.894 0.087
(c) Base+DAEB(w/o SA) 22.338 0.898 0.085
(c) Base+DAEB(w/o CA) 22.558 0.903 0.082

Ours 22.651 0.904 0.072

Figure 10. Color correction results of degenerated underwater image by DAEB.

5.2. Effectiveness with Different Kernel Sizes of the MLB

We performed experiments with different sizes of convolutional kernels in the MLB
and evaluated the performance on the same datasets. As shown in Table 5, the PSNR and
SSIM showed an upward trend for our design as the convolutional kernel became larger.
Such observations are consistent with our assumption that the receptive field increases as
the convolutional kernel increases, capturing more contextual information. As the number
of network parameters increases, the generalization ability also increases. The performance
begins to saturate and decay when the convolutional kernel is further expanded. Therefore,
we considered using kernels of sizes 7× 7 and 9× 9 as the backbone of the MLB. We also
visualize the convergence speed and performance of different sizes of convolutional kernels
during training in Figure 11. We can observe that: compared with other configurations,
when the convolutional kernels were 7× 7 and 9× 9, the convergence speed was faster, and
the performance increase was stable, which shows that the MLB under this configuration
can extract rich attention context features with cross-dimensional interactions to capture
good detail information and restore degraded image details.
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Table 5. The ablation study of the MLB components. ↑ represents that higher is better, and ↓
represents that lower is better. Underlines indicate the best results.

Model
Setting_kernel_size Metrics

# of Params GFLOPs
1 3 5 7 9 11 PSNR↑ SSIM↑ MSE↓

(a) X X 23.535 0.909 0.0742 78.46 k 92.91 G
(b) X X 23.622 0.910 0.0736 78.53 k 93.18 G
(c) X X 23.771 0.913 0.0725 79.18 k 95.57 G
(d) X X 23.423 0.910 0.0744 81.34 k 103.53 G

Ours X X 23.905 0.915 0.0717 80.12 k 99.02 G

Figure 11. Metric visualization of the ablution study of the MLB during training.

5.3. Effectiveness of the GFU

To showcase the efficacy of the proposed GFU, we conducted an experiment by
removing the GFU, which revealed a decline in both the PSNR and SSIM indicators when
simply adding the output of the two branches. This can be attributed to the fact that the
utility and focus of different modules are distinct, often resulting in significant disparities
between their respective outputs. Directly adding these outputs can exacerbate such
differences, leading to a loss of performance. Subsequently, we substituted the well-
designed GFU with the Attention Feature Fusion (AFF) module proposed by Dai et al. [57].
The results presented in Table 6 demonstrate that, while AFF also led to considerable
gains, its performance fell short when compared to the GFU. These findings reinforce
the superiority of the GFU in effectively addressing feature differences across different
branches.

Table 6. Ablation study on the Gated Fusion Unit. S1 means simply adding the results of the two
branches. ↑ represents that higher is better, and ↓ represents that lower is better. Underlines indicate
the best results.

Setting Model PSNR↑ SSIM↑ MSE↓

(a) S1 23.624 0.910 0.0732
(b) AFF 23.891 0.914 0.0721
(c) GFU 23.905 0.915 0.0717

6. Limitations and Error Cases

Despite demonstrating effectiveness and exceptional performance in underwater
image enhancement tasks through experiments on multiple datasets, LPS-Net is still con-
strained compared to other tasks due to the challenges in collecting underwater datasets,
resulting in insufficient dataset sizes and suboptimal model optimization. Specifically,
LPS-Net may require further model design and optimization to overcome the overfitting
issue caused by small datasets and improve its performance in handling complex under-
water image details. For instance, the utilization of unsupervised training methods could
eliminate the need for collecting a large number of expensive paired data. Additionally,
although the proposed model is expected to exhibit efficiency and flexibility in underwater
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robotics, further experiments are needed to validate its performance and reliability in
practical applications.

Besides, in some uncommon cases, where the degraded images appear to be pink
or orange, the DAEB, which was designed to process individual color channels, cannot
effectively handle these particular colors, leading to unsatisfactory enhancement results. In
the future, we will consider incorporating more color-processing branches to address the
challenges posed by complex and diverse color environments.

7. Conclusions and Future Work

This work proposes a Lightweight Parallel Strategy Network for underwater image
enhancement. By introducing a Dual-Attention Enhancement Block and a Mirror Large
Receptiveness Block, we addressed the mixed degeneracies of color distortion and the loss
of detail in underwater raw images. LPS-Net utilizes these components as the building
blocks of parallel branches and employs Gated Fusion Units to fuse features from different
branches. Extensive experiments demonstrated that LPS-Net achieved state-of-the-art
underwater image enhancement performance in terms of visual quality and evaluative
metrics, while using only 80.12 k parameters. The success of LPS-Net proves that tackling
mixed degradations by dividing them into sub-problems has the potential of avoiding the
use of complex modules and reducing the amount of computation and parameters.

Despite the superiority of LPS-Net, there is still room for improvement. Looking
ahead, we plan to incorporate frequency domain operations into LPS-Net since processing
information in the Fourier space is capable of capturing the global representation in the
frequency domain, while normal convolution focuses on learning local representations in
the spatial domain. Another direction is to take advantage of both visual transformers and
CNNs. It is worth investigating how to bring the merits of transformers while achieving a
good balance between UIE performance and model complexity.

The proposed LPS-Net demonstrated impressive performance in real-world under-
water image enhancement, making it beneficial for other downstream vision applications,
such as underwater photography, underwater archeology, and marine biological survey.
We also plan to investigate whether LPS-Net can be adapted to other image-restoration
tasks [58], such as image dehazing and image deraining. Of course, efforts should be made
to tackle mixed degradations in these tasks by dividing them into sub-problems that could
be effectively addressed.
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Abbreviations
The following abbreviations are used in this manuscript:

AFF Attention Feature Fusion
BN Batch Normalization
CA Channel Attention
CNNs Convolutional Neural Networks
DAEB Dual-Attention Enhancement Block
EUVP Enhancement of Underwater Visual Perception
GLU Gated Linear Unit
GAN Generative Adversarial Network
GFU Gated Fusion Unit
IBLA Image Blurriness and Light Absorption
IN Instance Normalization
LPS-Net Lightweight Parallel Strategy Network
MLB Mirror Large Receptiveness Block
MSE Mean-Squared Error
PSO Particle Swarm Optimization
PSNR Peak-Signal-to-Noise Ratio
SOTA State-Of-The-Art
SSIM Structural Similarity index
SA Spatial Attention
UIE Underwater Image Enhancement
ULAP Underwater Light Attenuation Prior
UDCP Underwater Dark Channel Prior
UCIQE Underwater Color Image Quality Evaluation
UIEB Underwater Image Enhancement Benchmark
UIQM Underwater Image Quality Metric
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