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Abstract: Harnessing commonsense knowledge poses a significant challenge for machine compre-
hension systems. This paper primarily focuses on incorporating a specific subset of commonsense
knowledge, namely, script knowledge. Script knowledge is about sequences of actions that are
typically performed by individuals in everyday life. Our experiments were centered around the
MCScript dataset, which was the basis of the SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge. As a baseline, we utilized our Three-Way Attentive Networks (TriANs)
framework to model the interactions among passages, questions, and answers. Building upon the
TriAN, we proposed to: (1) integrate a pre-trained language model to capture script knowledge; (2)
introduce multi-layer attention to facilitate multi-hop reasoning; and (3) incorporate positional em-
beddings to enhance the model’s capacity for event-ordering reasoning. In this paper, we present our
proposed methods and prove their efficacy in improving script knowledge integration and reasoning.

Keywords: machine comprehension; multi-hop reasoning; script knowledge; commonsense knowledge

1. Introduction

In recent years, the rapid development of natural language processing (NLP) technolo-
gies has taken place. They have been widely applied into numerous everyday products
such as search engines, smart assistants, mobile devices, and more. Very recently, large
language models such as ChatGPT and Bard have ushered in a new era of NLP research
and application, thereby showcasing their unprecedented performance results across many
tasks and heir gaining extensive adoption by users worldwide.

Despite the significant achievements, the journey towards developing an NLP system
with human-level cognitive abilities is far from over. One of the pressing challenges is the
integration of commonsense knowledge into machine comprehension systems—an area
which has seen growing attention [1]. Commonsense knowledge refers to an extensive
array of “everyday wisdom”, which is considered to be universally known to humans.
For instance, in the sentence, “He hit the window with a bat,” it is obvious to a human reader
that the “bat” refers to a sporting equipment rather than the animal. However, for machines,
leveraging such knowledge poses considerable challenges, primarily because it is rarely
explicitly stated in human communication, which comes in addition to its vast scope and
diversity. By combining NLP systems with this “everyday wisdom”, we can significantly
enhance their capabilities, thus leading to smoother and more human-like interactions.

In this paper, we aim to enhance the integration of a particularly nuanced form of
commonsense knowledge: script knowledge. The term “script” refers to typical sequences
of activities that describe well-known situations. To illustrate, consider a “someone opening
the door” scenario: an individual reaches for his key, and, if it is not found, he rings the
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doorbell with the hope that someone inside will open the door. This narrative seems
intuitive to a human; so, when given the sentence “He must ring the doorbell”, it is a logical
inference that “he forgot his key”. However, a machine lacking this knowledge would
struggle to form this connection. Improving script knowledge integration would enable
NLP systems to produce better responses to everyday human activities, thus enhancing
their practical applicability.

We investigated techniques to augment the script knowledge understanding of an
established baseline system known as the TriAN [2]. Our experiments leveraged the MC-
Script [3] dataset, which is a machine question-answering (QA) dataset that is specifically
designed to assess a model’s script knowledge comprehension. We delved deeper into the
dataset and the baseline method in subsequent sections. Our main contributions are the
following:

• We trained a generative LSTM language model on “scripts” of everyday human
activity and used it as a feature encoder.

• We used multiple layers of attention interactions to enable multi-hop reasoning.
• We added positional embeddings to the intermediate features to enhance the temporal

sequential reasoning.

2. Background and Related Work
2.1. Machine Reading and Question-Answering Datasets

How can we measure the effectiveness of an NLP system in comprehending a text?
Machine reading and question-answering (QA) tasks have become a popular benchmark.
Here, a passage of text is provided to the NLP system, which then must answer a series of
questions about the text and often given multiple choices for the answer. The accuracy of
the system’s responses reflects its text comprehension and reasoning capabilities. A prime
example is the Stanford Question Answering Dataset (SQuAD) [4]. It includes ∼23 k
paragraphs that have been excerpted from top-ranking Wikipedia articles, with over 100 k
associated question–answer pairs that span a broad range of topics. The SQuAD data
was collected through crowdsourcing. More recent and larger datasets have also been
released, with some applying search engines to partially automate the data collection
and increase the scale. For instance, the SearchQA dataset [5] contains over 6.9 million
snippets for its 140 k questions, while MS MARCO [6] boasts of over 1 million questions
and 8.8 million passages.

In addition to the generic ones, there exist machine QA datasets that are designed
to assess specific aspects of performance. Our work is centered on enhancing reasoning
based on script knowledge, so we used the MCScript [3] dataset as our benchmark. The
MCScript, which is a machine QA dataset that has been specifically engineered to evaluate
an NLP system’s comprehension of script knowledge, comprises ∼140 k questions and
2119 narrative texts that depict 110 everyday activity scenarios. The data was gathered
via crowdsourcing. Notably, ∼27% of the questions cannot be answered directly from the
provided text, thus necessitating the application of script knowledge about the scenarios.
This sets the MCScript apart from counterparts such as the SQuAD, which mandates the
answers to be present within the given text, thereby potentially allowing the system to
generate an answer by simply scanning the text without deeper reasoning. The MCScript
dataset has served as the foundation for a script knowledge benchmark [7] at SemEval 2018.
An example passage, along with its questions and answer choices, is shown in Figure 1.
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T: This past weekend, my family made so much food that there was still 
plenty of it going into the week. Knowing this, we chose not to make any new 
food, because we could still eat the leftover food from the weekend. All we 
would need to do was warm it up on the stove top. The stove is a gas stove, 
which produces a flame that, in my opinion, cooks food much better than an 
electric stove. On Monday after getting home from work, rather than making a 
new meal, my mom took some of the food that we had saved from the 
weekend and put it into a pan, and put that pan on the stove. She turned the 
gas on until the burner ignited, and left the heat on until she felt that the food 
was warm enough. When she ate it, she swore it was as good as it was when it 
was freshly made. 

Q1: Where were they heating the food?
a. On an electric stove.
b. On a gas stove.

Q2: How many people were making the food?
a. Just one.
b. About 5.

Figure 1. An example passage from the SemEval 2018 dataset, and two corresponding questions.

2.2. Integrating Commonsense Knowledge
2.2.1. Using Knowledge Graphs

Knowledge graphs are broadly used [8–11] as a source of commonsense knowledge.
These large graphs consist of nodes representing concepts and edges describing the rela-
tionships between them. A representative example is ConceptNet [12], which is a freely
available, multi-lingual semantic network. ConceptNet comprises triplets of (subject, re-
lation, object), e.g., (“apple”, “IsA”, “fruit”), (“plane”, “CapableOf”, “fly”), and (“car”,
“Causes”, “pollution”). The subject and object are multi-word phrases, and the relation
is one of the relation types. ConceptNet contains ∼630 k of such triplets and 39 types of
relationships. An overview is shown in Figure 2.

Figure 2. An overview of ConceptNet [12].



Appl. Sci. 2023, 13, 9461 4 of 14

ConceptNet is one of the most extensively used commonsense knowledge graphs.
For example, ref. [8] generated knowledge embeddings from ConceptNet to enhance the
context features for cloze-style QA tasks. Ref. [9] used ConceptNet data to train a network
that predicts the relevance score of concepts, thereby assessing the relevance of a candidate
answer to a given question in context. Ref. [11] devised two auxiliary training tasks to
improve machine reading comprehension, thereby predicting the existence and type of
relationships between concepts in provided texts. The ground truth for these sub-tasks has
been sourced from ConceptNet.

We also applied ConceptNet in our experiments to acquire the relationship information
of concepts, thereby serving as an input for our model. Larger and richer knowledge graphs
may bring further improvements, e.g., the Google Knowledge Graph, which is a proprietary
knowledge base developed by Google to enhance its search results and other services. It
can connect more complex information to answer questions, such as “Who is the president
of the country where the White House is located”. Our method is fully compatible with
more advanced knowledge graphs, which we leave for future work.

2.2.2. Using Additional Text Corpus

The extra text corpus is also a valuable source of commonsense knowledge. For exam-
ple, ref. [13] mined object semantic knowledge from Wikipedia articles to generate more
plausible text completions. Ref. [14] drew prior statistics from the ProPara [15] dataset
(a text corpus focused on scientific procedures, such as photosynthesis) to improve the
model’s understanding of entity state changes in scientific processes. In addition, ref. [16]
created a new dataset named Common Sense Explanations (CoS-E), which resembles a
QA dataset but accompanies each question with a sentence of explanation for its correct
answer. A language model (LM) is trained to generate an explanation when given a
question–answer pair, with the produced explanation then offered as additional input to
the downstream classification model.

Our approach also employs additional text data to acquire commonsense knowledge,
especially script knowledge. We trained a generative LM with a story dataset, which we
then utilized as a script-knowledge-aware feature encoder. The text in the story dataset
combines the ∼2100 passages from the MCScript and an additional 500 passages from the
MCTest [17] dataset, both being narrative texts, which contains typical sequences of daily
activities, a.k.a script knowledge. Compared to the aforementioned related works, our
solution is straightforward and can be trained end-to-end.

3. Method
3.1. Baseline Model

The baseline model we re-implemented is called Three-Way Attentive Networks (Tri-
ANs) [2]. It models the interactions between the passage and the question, the question and
the answer, and the passage and the answer by using a three-way attention mechanism.
An overview of the model framework is shown in Figure 3. It consists of an input layer,
an attention layer, and an output layer.
Input Layer: A training example consists of a passage {Pi}

|P|
i=1, a question {Qi}

|Q|
i=1, an an-

swer {Ai}
|A|
i=1, and a label y∗ ∈ {0, 1} as input. Pi is the representation of the i-th word in

the passage, which is the same for the question and the answer. For the representation, we
used the GloVe word vector [18] for the passage, the question, and the answer (EGLOVE

Pi
,

EGLOVE
Qi

, and EGLOVE
Ai

), as well as used the following features:

• POS Embeddings (EPOS
Pi

and EPOS
Qi

): Randomly initialized 12-dimensional vectors
trained to encode pre-labeled part-of-speech tags (whether the word is a noun, verb,
etc.) for passage and question texts.

• NER Embeddings (ENER
Pi

): Randomly initialized 8-dimensional vectors trained to en-
code pre-labeled name–entity recognition tags (whether the word belongs to categories
such as people, company, date, etc) for the passage texts.



Appl. Sci. 2023, 13, 9461 5 of 14

• REL Embeddings (EREL
Pi

): Randomly initialized 10-dimenstional vectors trained to
encode a relationship between a word in the passage and any word in the ques-
tion/answer. Such relationship comes from querying ConceptNet for an edge between
the words. If multiple relationships exist, a random one is chosen.

• Handcrafted Features: Handcrafted features include logarithmic term frequency (ETF
Pi

)
and co-occurrence features (ECO

Pi
). Logarithmic term frequency features come from

English Wikipedia. Co-occurence features are binary, thus being true if a passage word
is found in the question/answer.

WPi = [EGLOVE
Pi

; EPOS
Pi

; ENER
Pi

; EREL
Pi

; ECO
Pi

; ETF
Pi
] (1)

WQi = [EGLOVE
Qi

; EPOS
Qi

] (2)

WAi = [EGLOVE
Ai

] (3)

Attention Layer: We used word-level attention to model interactions between the passage,
the question, and the answer. The model first calculates context vectors for the passage by
attending to the question. Then, it calculates context vectors for the answer by attending to
the question and the passage. The attention function is represented in (4) and (5). f is a non-
linear activation function and is set to ReLU. From the attention function, we can compute
question-aware passage representations Wq

Pi
, passage-aware answer representations Wp

Ai
,

and question-aware answer representations Wq
Ai

in (6)–(8).

Attseq(u, {vi}n
i=1) =

n

∑
i=1

αivi (4)

αi = so f tmaxi( f (W1u)T f (W1vi)) (5)

Wq
Pi
= Attseq(WPi , {WQi}

|Q|
i=1) (6)

Wp
Ai

= Attseq(WAi , {WPi}
|P|
i=1) (7)

Wq
Ai

= Attseq(WAi , {WQi}
|Q|
i=1) (8)

After that process, three groups of context embeddings are appended to the origi-
nal embeddings to form the final embeddings. Then, three BiLSTMs are applied to the
concatenated embeddings to model the temporal dependency, as shown in (9)–(11).

hp = BiLSTM([WPi ; Wq
Pi
]
|P|
i=1) (9)

hq = BiLSTM([WQi ]
|Q|
i=1) (10)

ha = BiLSTM([WAi ; Wp
Ai

; Wq
Ai
]
|A|
i=1) (11)

Output Layer: The question sequence and answer sequence representation—hq and ha,
respectively, are summarized into fixed-length vectors q and a with self-attention. The
self-attention function is defined as in (12) and (13). To represent the passage, we used the
sequence attention function defined before to summarize out the passage representation p
by attending q to hp. These operations are shown in (14)–(16).

Attsel f ({ui}n
i=1) =

n

∑
i=1

αiui (12)

αi = so f tmaxi(WT
2 ui) (13)



Appl. Sci. 2023, 13, 9461 6 of 14

q = Attsel f ({h
q
i }
|Q|
i=1) (14)

a = Attsel f ({ha
i }
|A|
i=1) (15)

p = Attseq(q, {hp
i }
|P|
i=1) (16)

Then, the question and answer vectors are summarized to single vectors using self
attention. The passage vectors are summarized to a single vector via bi-linear attention on
the question vectors. Finally, we used a bi-linear function to summarize the 3 sequence
representations and applied a sigmoid activation function to obtain the final probability
score on whether the choice was the correct answer for the question with respect to the
passage, which is shown in (17).

y = σ(pTW3a + qTW4a) (17)

GloVe POS NER CO TF

ConceptNet

GloVe POS GloVe

Query

REL

BiLSTM BiLSTM BiLSTM

p q a

y

Seq attn

Seq attn

Seq attn

Seq attn

Self attn Self attn

Input Layer

Attention Layer

Output Layer

Passage Question Answer

Figure 3. Baseline model framework [2].

3.2. Error Analysis

In order to improve upon the TriANs, it is important to understand its limitations.
In this section, we performed error analysis on the original TriANs model.

3.2.1. Qualitative Analysis

We inspected all the errors made by machine and grouped common problems into the
following categories. The main problem clusters are the following:

• Failure to build temporal sequence: From a human perspective, temporal sequences
often imply causal relationships. For instance, if event A happens before event B, it is
possible that A caused B. This implication becomes stronger if A occurs immediately
before B, thereby suggesting that A is the direct cause of B. However, the model
frequently identified only indirect causes, thus indicating its struggle to interpret these
direct temporal–causal links accurately. This can be mitigated via the better integration
of script knowledge.
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• Failure to choose based on elimination: This term refers to instances where the in-
correct options are explicitly contradicted by evidence in the passage, even though
there is no clear evidence supporting the correct choice. In these cases, it might be
challenging to identify the correct answer directly. However, the correct response
should still have been deduced by a process of elimination.

• Lack of commonsense knowledge: Despite the model leveraging ConceptNet to incor-
porate commonsense knowledge, it appears this approach is not sufficient. The model
could still make non-sensical mistakes.

• Lack of quantification ability: Sometimes to answer the question, it is required to per-
form some simple computation or estimation on the value. The model was observed
to struggle with these operations.

• Weakness in co-reference resolution: The system struggled with a co-reference resolu-
tion when the reference was ambiguous. Resolving these ambiguities often requires
simple reasoning, which is grounded in both the context and commonsense knowledge.
This can also be improved by better commonsense integration.

• Ground truth answers may be wrong: Some ground truth answers seemed to be
wrong from the human perspective, which contributes to a small portion of the errors.

3.2.2. Quantitative Analysis

Besides qualitative analysis, we also performed quantitative analysis. In Figure 4, we
plotted the distribution of confidence of the model on the choice in 4 cases, as explained
in the caption of the figure. From the “pred_t_in_t” and “pred_f_in_f” sub-plots, we can
see that the model was usually confident with its correct predictions. In the other two sub-
plots, where the model made incorrect predictions, the confidence scores were much lower.
This lack of confidence indicates that there was no sufficient information for the model to
make confident choices. The addition of more background knowledge may resolve some
ambiguity and provide improvements.

We then performed some analysis on the distribution of errors for 10 question scenarios,
as shown before in Figure 5. We calculated the error rate of the model for 10 scenarios in
Figure 6. From the figure, the “when” category resulted in being the worst. This indicates
that the current model struggles with reasoning about temporal sequences, thus suggesting
room for improvement through the integration of script knowledge.

Figure 4. Distribution of prediction confidence in 4 cases. “pred_t_in_t” stands for true positives.
“pred_f_in_t” stands for false negatives. “pred_f_in_f” stands for true negatives. “pred_t_in_f” stands for
falser positives. The blue box represents the data points between the lower/upper quartiles. The small
red square is the mean. The red dashed line represents the median. The short black solid line is the
boundary for outliers. The small black crosses are outliers.)
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Figure 5. Distribution of question types in MCScript dataset [3].

Figure 6. Distribution of error cases for 10 question scenarios.

3.3. Proposed Method
3.3.1. Methodology Breakdown

To enhance the script knowledge integration for the baseline model, we proposed
several techniques that are explained below.

A: Integrating a Pre-Trained Language Model
We pre-trained a generative language model (LM) with a dataset of narrative passages.
The LM was an LSTM that predicts the next word when given the predicted words in
an auto-regressive manner. The dataset was made by combining the passages from
the MCScripts and MCTest [17], which totals ∼2600 passages. This forms an extended
script knowledge base that mitigates overfitting. We then used the pre-trained LM
to produce additional feature embeddings for the input text, and we fine-tuned it
jointly with the entire model. The auto-regressive generation task naturally made the
model more aware of “what happens next” in a series of events, which embodies the
script knowledge.

B: Multi-hop Attention
The attention mechanism has been proven to be an effective method to help the model
focus on the most relevant information [19–22]. It serves this purpose in the baseline
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method by enabling the model to give more weights to the most helpful parts of the
passage for answering the question. However, single-hop attention is insufficient to
perform more complex hierarchical reasoning [23,24]. Therefore, we proposed multi-
hop attention. Take another look at the example text in Figure 1. For the first question,
the model should first attend to heating the food in the passage, which is warm it up.
Then, the model should scan up or down to find where the food is heated, which is on
the stove top. This two-step process is an example of multi-hop reasoning. The first
hop is to locate the key word; the second hop is to locate information before or after
the key word, which is closely related depending on the question. Generally, the more
indirect the relation between the questioned item and the true answer, the more hops
of attention are needed.

C: Positional Embedding
The attention operation used in the baseline method is invariant to the order of words.
However, temporal order is an important aspect of script knowledge. To explicitly
represent such sequential information in the process of multi-hop attention, we added
positional embedding for each word, which aimed to enhance the model’s reasoning
regarding event orderings.

3.3.2. Model Architecture

The overall architecture of our model is shown in Figure 7. The framework can be
divided into the following steps.

Step 1: The First Hop
The first hop is the same as with the attention applied before the BiLSTMs in the
baseline model. We denote the input of the first hop as WPi1 , WQi1 , and WAi1 ,
in Equations (18)–(20), respectively. Using the same attention function with that in
the baseline model, we obtain Wq

Pi1
, Wp

Ai1
, and Wq

Ai1
, respectively.

WPi1 = [EGLOVE
Pi

] (18)

WQi1 = [EGLOVE
Qi

] (19)

WAi1 = [EGLOVE
Ai

] (20)

Step 2: The Second Hop
The input of the second hop is a concatenation of the input of the first hop, the out-
put embeddings from first hop, and the positional embeddings, as shown in Equa-
tions (21)–(23). Then, we applied the same attention mechanism as in the first hop
and obtained Wq

Pi2
, Wp

Ai2
, and Wq

Ai2
, respectively.

WPi2 = [WPi1 ; Wq
Pi1

; EPE
Pi
] (21)

WQi2 = [WQi1 ; EPE
Qi
] (22)

WAi2 = [WAi1 ; Wp
Ai1

; Wq
Ai1

; EPE
Ai
] (23)

Step 3: The Output Layer
In the third step, we concatenated the output embeddings from the previous step
with additional features, including the embeddings generated from the pre-trained
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language model, as shown in Equations (24)–(26). WPi3 , WQi3 , and WAi3 are the
corresponding inputs of BiLSTMs.

WPi3 = [WPi2 ; Wq
Pi2

; ELMF
Pi

; EPOS
Pi

;

ENER
Pi

; EREL
Pi

; ECO
Pi

; ETF
Pi
]

(24)

WQi3 = [WQi2 ; EPOS
Qi

] (25)

WAi3 = [WAi2 ; Wp
Ai2

; Wq
Ai2

] (26)

Finally, we acquired the prediction through the same operations as in the baseline.

POS NER CO TF

ConceptNet

Query

REL

BiLSTM BiLSTM BiLSTM

p q a

y

Seq attn

Seq attn

Seq attn

Seq attn

Self attn Self attn

Passage Question Answer

GloVeGloVeGloVe

PE PE PE

Seq attn

Seq attn

Seq attn

Concat with Concat with Concat with

LMF

LM

POSConcat withConcat with

The First Hop

The Second Hop

Output Layer

Figure 7. The proposed model architecture.

4. Experiments
4.1. Hyper-Parameters and Training

We followed the same setting of hyper-parameters for the training as was set in [2].
We used GloVe word vectors. We used LSTMs with a hidden size of 96, a dropout rate of
0.4 after the embeddings and LSTM outputs, a clipping gradient of 10, and batch size of
32. We used Adamax as the optimizer and initially set the learning rate to 2× 10−3. We
decayed it by 0.5 after 10 and 15 epochs.
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For the language model pre-training, we used a one-layer LSTM with a hidden size of
256. The maximum sequence length for training was set to 60 words. We used a variational
dropout [25,26] to prevent overfitting. Our setup is a simple proof-of-concept; more
advanced LM architecture implementation and larger text corpus use are fully compatible.

4.2. Experimental Results
4.2.1. Language Model Samples

We demonsrate a few sample text generated by the LM in Figure 8. Our language
model was able to generate plausible consecutive events when given an initial sentence,
thereby suggesting that it is able to learn and carry script knowledge.

I went into my bedroom and flipped the light switch: I took the ladder to 
the light switch. I then cut open the light bulb and turned on the light bulb. I 
then got a little light bulb …

I think it is time to do the laundry: I make sure to clean the floor. I will find 
a nice flat sheet. I put the comforter in the back of the bed. I then put the 
clothes in the washing machine. I put them in the dryer machine …

I was going to visit some friends in Florida: I had to go to the airport. I got 
out my car and started looking in the car. I went to the store and found a seat. 
The next day I decided to go to the airport. I got out and walked in a parking 
lot …

Figure 8. Examples of the generative results of our LSTM language model. The sentences in bold
font are the inputs; the subsequent content was completed by the model.

4.2.2. Question-Answering Accuracy

As the dataset we were using was from the SemEval contest, the test set did not come
with ground truth labels. Therefore, we evaluated our system against the validation set.
As shown in Table 1, our proposed method improved upon the TriANs with respect to the
validation accuracy. The best model, which combined all of the three proposed techniques,
achieved an 84.22% accuracy, which was 0.8% higher than the baseline model. Upon
comparing variants 1, 3, and 4, as well as the proposed model, we notice that all of the
introduced techniques contributed to the performance gain. We also studied the interaction
between the LM feature and the handcrafted features by comparing the baseline, variant 1,
variant 2, and variant 3. While both helped the performance, using the LM features alone
seems better than combining the two.

Table 1. Validation accuracy of model variants for the MCScript dataset. We ablated the effect of
handcrafted features (Handcrafted Feat.), LM features (LM Feat.), multi-hop attention (Multi-hop),
and positional embeddings (PE). We repeated the experiments for 3 times and reported the average
and standard deviation numbers.

Variant Handcrafted Feat. LM Feat. Multi-Hop PE Accuracy

TriAN (baseline) X 83.42% ± 0.03%
Variant 1 82.42% ± 0.04%
Variant 2 X X 83.49% ± 0.04%
Variant 3 X 84.05% ± 0.06%
Variant 4 X X 84.13% ± 0.05%
Ours X X X 84.22% ± 0.04%
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5. Discussion
5.1. Results Analysis

We conducted an ablation study on the components of our method. Comparing the
baseline with variant 2 shows that adding the LM features afforded a +0.07% increase in
accuracy. Completely replacing the handcrafted features with the LM features (variant 2 vs.
3) performed even better, thus showing a +0.63% increase in accuracy over the baseline.
This shows that data-driven features that are learned from a large text corpus are a superior
replacement for the handcrafted ones such as word frequency. Variant 3 vs. 4 showed
that multi-hop attention could afford a +0.08% increase in accuracy, and adding positional
embeddings (variant 4 vs. the proposed method) further afforded a +0.09% increase in
accuracy. The most significant gain came from integrating the LM. Our interpretation is
that training this LM on a corpus of narrative text in an auto-regressive manner effectively
makes it summarize a script knowledge base, which, in return, enables our model to better
comprehend the event sequences. The improvements from multi-hop attention show its
effectiveness at reasoning indirect connections between the concepts. The further gains
from the positional embeddings prove that it is helpful to make word embeddings that are
aware of their positions in the passage, which enhances the model’s awareness of temporal
sequences and causal relationships.

5.2. Future Work

Our framework is compatible with many potential improvements. We list a few here
as the future work.

A language model with a higher capacity: Extending upon our LM integration, we
can obtain pre-trained BERT [27] embeddings and fine-tune the embeddings to our dataset.
As BERT is a more capable model that is trained on a much larger text corpus; the em-
beddings will implicitly carry a large body of commonsense knowledge, including script
knowledge, which are expected to perform better than our current language model features.

A better representation for events: In this study, we encoded the input texts in a per-
word manner. A potential alternative is memory networks [28,29] that encode each event
at the sentence level. With memory networks, each sentence will have a single embedding
so that the attention could be applied at the event level rather than at the word level. That
may allow the model to focus more on semantics rather than syntax. Similarly, we would
also like to explore training the language model at the sentence level by using the hidden
representations to predict which sentence should directly follow the previous sentence.

A stronger knowledge graph: In this study, our REL feature encoded the limited
39 types of relationships from the ConceptNet. It was also bounded by the entities that
exist in the ConceptNet. Our framework is compatible with larger knowledge graphs that
contain more complex relationships, e.g., the Google Knowledge Graph.

6. Conclusions

In this paper, we presented methods to improve script knowledge integration and
reasoning, which included the following: 1. Integrating a generative language model that
learns script knowledge from a large text corpus. 2. Using multi-hop attention to support
multi-hop reasoning. 3. Using positional embeddings to enhance the reasoning about event
sequences and causal relationships. The experiments on the MCScript dataset demonstrate
the effectiveness of our framework.
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