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Abstract: To address the issues of fuzzy scene details, reduced definition, and poor visibility in images
captured under non-uniform lighting conditions, this paper presents an algorithm for effectively
enhancing such images. Firstly, an adaptive color balance method is employed to address the color
differences in low-light images, ensuring a more uniform color distribution and yielding a low-
light image with improved color consistency. Subsequently, the image obtained is transformed
from the RGB space to the HSV space, wherein the multi-scale Gaussian function is utilized in
conjunction with the Retinex theory to accurately extract the lighting components and reflection
components. To further enhance the image quality, the lighting components are categorized into
high-light areas and low-light areas based on their pixel mean values. The low-light areas undergo
improvement through an enhanced adaptive gamma correction algorithm, while the high-light
areas are enhanced using the Weber—Fechner law for optimal results. Then, each block area of the
image is weighted and fused, leading to its conversion back to the RGB space. And a multi-scale
detail enhancement algorithm is utilized to further enhance image details. Through comprehensive
experiments comparing various methods based on subjective visual perception and objective quality
metrics, the algorithm proposed in this paper convincingly demonstrates its ability to effectively
enhance the brightness of non-uniformly illuminated areas. Moreover, the algorithm successfully
retains details in high-light regions while minimizing the impact of non-uniform illumination on the
overall image quality.

Keywords: low-light images; light component; gamma correction; weighted fusion

1. Introduction

Digital image-capture devices may capture images with uneven illumination or low
light, resulting in issues such as excessive enhancement in bright areas, insufficient bright-
ness in dark areas and insufficient detail resolution. These problems significantly impact
the usability of the images captured [1]. Therefore, it becomes essential to apply image
enhancement techniques to improve brightness or contrast.

Currently, image enhancement algorithms remain a thriving area of research, employ-
ing various approaches like spatial domain, Retinex theory, frequency domain, etc. These
algorithms mainly focus on denoising or enhancing brightness and contrast to make low-
light images appear brighter and more natural [2,3], such as histogram equalization and
grayscale transformation, which can unify the histogram to achieve higher contrast. How-
ever, these methods tend to over-enhance certain areas, making them less ideal. Rrivera
et al. [4] introduced an adaptive mapping function for image enhancement, showing
promising results in enhancing the dynamic range of light intensity. Jmal et al. [5] proposed
a method that optimizes the combination of a homomorphic filter and mapping curve,
which strikes a balance between improving image contrast and preserving naturalness. Shi
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et al. [6] presented an enhancement method for a single low-light image at night, obtaining
the initial transmission value of the brightness channel and correcting it using the darkness
channel. Lu et al. [7] developed a method using depth estimation and deep convolutional
neural networks (CNN) for solving underwater images in low-light conditions, along with
an improved spectral correction method for image color restoration. Alismail et al. [8]
proposed an adaptive least squares method to address video surveillance problems under
poor and rapidly changing lighting conditions. Zhi et al. [9] introduced a non-uniform
image enhancement algorithm combining a filtering method and an “S-curve” function,
applying it in a coal mining environment. Additionally, swarm intelligence algorithms [10]
and deep learning methods [11,12] have been extensively employed in image enhancement,
yielding favorable outcomes. However, deep learning-based algorithms often necessitate a
large amount of training data, making them challenging to apply in specific environments.

While the above studies made strides in adaptive image enhancement, both traditional
algorithms and deep learning-based methods still have room for improvement. Challenges
persist, such as the over-enhancement or under-enhancement in certain image areas, low
image quality after processing, and the presence of noise. To address these shortcomings,
this paper introduces an image block enhancement method based on the Retinex theory.
Experimental results demonstrate the effectiveness of the proposed method in enhancing
illumination and improving image details.

2. Proposed Method

The framework of the algorithm in this paper is shown in Figure 1. First, an adaptive
color balance method is employed to address the color differences in low-light images,
ensuring a more uniform color distribution and yielding a low-light image with improved
color consistency. Second, the image obtained is transformed from the RGB space to the
HSV space, wherein the multi-scale Gaussian function is utilized in conjunction with the
Retinex theory to accurately extract the lighting components and reflection components.
Then, the obtained light components are divided into high-light areas and low-light areas
and enhance them separately. Each block area of the image is weighted and fused, leading
to its conversion back to the RGB space. And a multi-scale detail enhancement algorithm is
then utilized to further enhance image details.

Detail enhancement
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Figure 1. The algorithmic framework of this paper.

2.1. Color Balance Correction

Images captured by digital image equipment may exhibit color imbalances due to
defects in the equipment or adverse weather conditions [13]. In particular, in challenging
weather like sandy weather, the acquired images often display significant color dispari-
ties [14]. This not only hampers image enhancement but also impacts its suitability for
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computer vision tasks such as image stitching [15]. To solve these problems, it is necessary
to perform color balancing on the acquired image to eliminate or reduce the change in an
object’s color due to the acquisition process, so as to enhance the original characteristics
of the image. Firstly, the dynamic range values of each channel are normalized, then the
green channel is used to compensate for the loss of the blue channel of the acquired image,
and the red channel values are attenuated to some extent. The blue channel I is expressed
as [16]:

Ip(x) = Ir(x) + A(1 = Tr(x))-(Ic(x) — Tr(x))-Ig(x) 1)
_o(Ir(x))
M= o) @

where I and I represent the average of the red and green channels of the original image
I, respectively. A represents the ratio of the red channel to the green channel, and is used to
adjust the color distribution of each channel. Finally, the traditional gray world algorithm
is utilized to compensate the color cast of the light source.

2.2. HSV Space Conversion

After applying color balance, the issue of color cast is effectively resolved, laying the
groundwork for brightness adjustment. When dealing with RGB images, direct brightness
enhancement in the red channel (R), green channel (G) and blue channel (B) will result in
image distortion due to excessive color enhancement. To address this concern, the HSV
color space proves to be beneficial [17]. It separates the chroma (H), saturation (S) and
brightness (V) into three independent channels within the color space, which ensures the
balance of each color channel. As a result, the enhancement of the brightness component
V only changes the brightness and darkness of the image. In this paper, the RGB space is
converted to the HSV space by the following method [18], specifically expressed as follows:

y_ (R+G+B)

3 ®3)
V- MIN(R,G,B)
S = v 4)
60 x (G — B)/(V — MIN(R, G, B)) (if V.= R)
H:{ 120+ 60 x (B—R)/(V — MIN(R,G,B)) (if V =R) ®)
240+ 60 x (R — G)/(V — MIN(R,G,B)) (if V=R)

where H, § and V correspond to hue, saturation and brightness; R, G and B represent red,
green and blue channels, respectively.

2.3. Estimation of the Illumination Components

The Retinex theoretical model means that the image is composed of two parts: the
light image and the reflection image, which is expressed as follows:

F(x,y) = V(x,y) x R(x,y) (6)

where V(x,y) represents the incident light component of the image, R(x, y) represents the
reflection component of the object surface and F(x, y) is the luminance of the current (x,y)
coordinate point of the image. This formula demonstrates that accurate enhancement of
the illumination component can lead to reduced impact on the reflection component after
enhancement, consequently minimizing the impact on the color. As a result, this paper
primarily focuses on image brightness adjustment through gamma correction applied to
the illumination component. The resulting illumination component image can be observed
in the flow chart depicted in Figure 2.
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Figure 2. Image decomposition model.

The multi-scale Gaussian function offers a significant advantage by effectively captur-
ing more precise lighting components through dynamic range compression of the image.
The method in this paper constructs a multi-scale Gaussian function to extract the light
components, and the decomposition model of the image using the Gaussian function is
shown in Figure 2. The Gaussian function is expressed as follows:

xz +y2

Glxy) =ae™ 2 %

Convolving the image with a Gaussian function can estimate the value of the illumina-
tion component, which is expressed as follows:

V(x,y) = F(x,y)G(x,y) ®)

where ¢ denotes the scale factor and is inversely related to the dynamic range of the image;
the smaller the J, the clearer the image. « is the parameter that satisfies the Gaussian
function [[ G(x,y)dxdy = 1. Convolving the image with a Gaussian function provides an
estimate of the value of the illumination component.

To balance the integrity and difference of the extracted illumination components, an
N-dimensional Gaussian function with weighted functions is employed to extract the
illumination components of the image, and finally, the estimated value of the illumination
components is obtained. The expression is as follows:

Z| =
=

I
—

Iy(x,y) = F(x,y)G(x,y) 9
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where § denotes the weight coefficient for extracting the illumination component under
the N-dimensional scale, N denotes the dimension number of the Gaussian function, and
c denotes the balance parameter. To achieve a dynamic balance between the amount of
calculation and the acquisition of illumination components, the values taken in this paper
are N=4,c=1.

2.4. Improved Adaptive Region Correction

The gamma function is widely used for correcting the differences between bright and
dark images, proving effective in various image enhancement algorithms. However, in
traditional non-uniform-illumination image enhancement research, the exponent of the
gamma function is often set as a constant based on the specific image scene. The drawback
of this fixed setting is its limited capability to enhance only one or a certain type of image
scene, lacking adaptability to multiple scenarios [19]. Given that the pixel mean value of a
uniformly illuminated image should be about 1/2 after normalization [20], the correction
algorithm in this paper introduces an idea of processing illumination components in blocks
to realize image low-light enhancement and high-light suppression.

In this section, a quantitative analysis of the pixel average value of the illumination
images obtained in Section 2.3 is carried out first, and the specific steps are as follows:
firstly, the luminance component map is divided into areas [21] with the size of MxN on the
right side in Figure 3; then, the segmented areas are classified into medium-high luminance
area and low-luminance area on the basis of pixel mean values.

\

Figure 3. Blocking of light component maps.

The coordinate model for the segmented area image is as follows:

As shown in the coordinate model in Figure 4, the square ABCD is the location of
the image segmentation area, and (a) and (b) in Figure 4 are the corresponding grayscale
histograms of these areas, respectively. It is evident that the majority of the pixel intensities
in area (a) are clustered in a narrow area, resulting in a darker image visually. On the other
hand, the histogram distribution in area (b) is relatively uniform, leading to a brighter
image perceived by the human eye. In Figure 4, the center point (xg, o) in the area is used
to calculate the average pixel value of each block area [22]. The formula for calculating the
average brightness value of the block area is expressed as:

L,
a+1)x (a+1)

- 10
V( (10)
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Figure 4. Histogram corresponding to block areas: (a) the dark area of the image; (b) the bright area
of the image.

The implementation steps of the regional enhancement algorithm for non-uniform-
illumination images studied in this section are shown in Figure 5:

Original image
MXN image
area

Pixel mean p = 0.5

High-light areas Low- light areas

Set Y using the
exponential
function

Weber-Fechner
law constructor

Define the
variable

parameter c

v

Adjusting the
input image
using Y and ¢

Output images

Figure 5. Flow chart of region-based enhancement algorithm in this section.

2.4.1. Low-Light Area Enhancement

Based on the classification depicted in the flow chart in Figure 5, the pixel gray value
should be spread over a larger range in the histogram for areas of low brightness in the
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image (1 < 0.5). Therefore, the details in the bright areas can be acquired by increasing the
brightness appropriately.
The gamma correction expression is as follows:

Vout = CV,Z (11)

where V,,;; denotes the intensity of the output image, V;,, denotes the intensity of the input
image, and the overall brightness of the image is adjusted by using the gamma index
number y and the variable parameter c.

To increase the brightness of such low-light areas, the value of v is used to adjust
the image brightness. Based on the principle that the lower the value of y, the lower the
brightness of the image, an enhancement method is designed to use the mean value of y to
assess the image brightness level for regional blocks, and a variance ¢ is introduced into
the calculation of gamma factor 7y to adjust the enhanced regional brightness. First, the
normalized value of y is utilized to classify the areas after division. Then, the area in which
u < 0.5 is enhanced according to the method in Section 2.4.1. The normalization function
G(p) is defined as:

{0 u>05
Clw) = { 1L, p<05 12)

After experiments, the parameter c in this paper is set as:

c=G(u) (13)

Y = exp L (14)
I3
By Equations (11)—(14), the final transformation function is obtained as:

H—o
H

exp

Vout =V

m

(15)

The method described above yields a notably favorable enhancement effect for the
low-light areas.

2.4.2. High-Light Area Enhancement

In cases where the brightness of the block area falls within the medium-to-high
light range, it indicates that the pixel gray levels are more widely spread throughout
the histogram. As illustrated in Figure 4, the highlight area exhibit a relatively uniform
distribution of the gray histogram, and the enhancement method in Section 2.4.1 cannot
achieve a satisfactory enhancement effect. To address this situation, this section proposes a
combination of the Weber-Fechner law, which leverages the logarithmic linear relationship
between subjective luminance and target image luminance and introduces a coefficient K
into the calculation of V,;. By fully considering the pixel distribution in the enhanced area,
a suitable correction function is proposed, which can both enhance the highlighted areas
and retains detail. The formula is expressed as follows:

Vour = Clg(vm) + co (16)

where ¢ and ¢( are both constants. To reduce the amount of calculation in Formula (16)
and improve the adaptability of the enhancement algorithm, Formula (17) is used to fit the
curve characteristics of Formula (16):

Vi (255 + K)

Vv =
out Vin-i-K

(17)



Appl. Sci. 2023,13, 9535 8 of 17

K=—Y I (18)

The value 255 is the gray level of the image, and K is the adaptive adjustment parame-
ter. Substituting K into the final transformation function obtains:

Vout = =1 (19)

where I, is the pixel value in the area and W is the total number of pixels in the area.

2.5. Weighted Fusion and Saturation Improvement

After performing brightness compensation on each block area of the original image
for enhancement, slight differences in brightness may still exist between the blocks. While
the overall image brightness is improved and uniform, differences may be noticeable at the
junctions of each area, and the overall image can appear “fragmented”, requiring image
fusion for a seamless result. In this regard, a weighted algorithm is used to carry out
weighted fusion processing on the image, and the steps are as follows:

1.  Brightness compensation processing is performed on different blocks in Section 2.4
to obtain the enhancement results of different block regions, which are defined as

2. The weighted fusion formula calculates the image result after fusion processing, which
is expressed as follows:

2i
SRS @
F(x,y) = YV KiF, 1)

where n denotes the number of image blocks, i denotes the number after block
(i =1,23,...,n), F; denotes the result after brightness compensation enhancement of
each different block as described in step (1), k; denotes the weighting coefficient value, and
F(x,y) is the result of the fusion process.

After the image has been weighted and fused, it is transferred back to the RGB space.
While the brightness of the image has been improved through this process, there is a
potential loss of saturation information. To address this problem, a multi-scale detail
enhancement method of Gaussian difference [23] is used to increase details, as shown in
Formula (22):

D* = (1—7,{)1 xsgn(Dl)) X D1+ wy X Dy + w3 X D3 (22)

The multi-scale detail enhancement method primarily involves obtaining blurred
images through the application of a Gaussian kernel to the original image, extracting
different levels of image details D;, D, and D3, and merging the three-level images into an
overall image, where wq, wp and w3 take the value of 0.3, 0.3 and 0.4, respectively, to obtain
the final enhanced image.

3. Results

To verity the effectiveness of the algorithm proposed in this paper, both subjective
and objective experimental comparisons were conducted. All algorithms used in this
study were implemented uniformly under the Python 3.7 software platform. The computer
hardware configuration included an Intel Core i7 processor with 16GB RAM, operating on
the Windows 7 operating system.
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3.1. Nlumination Components

In this section, we conduct a comprehensive evaluation and analysis of the algorithms
presented in Section 2 based on subjective visual perception. To lay the groundwork for
subsequent processing, we implement color correction as a preliminary step on the input
image, which significantly reduces distortion introduced during image enhancement due
to color deviation. Figure 6 illustrates the result of color balance correction on the original
image (a), represented by (b). This preliminary adjustment significantly contributes to the
precise extraction of illumination components in the subsequent images, rendering the
entire process more refined and accurate.

b

e T "4 T 4
\“l‘ 6 s "%
¢ S A

b,

5
-— !

(@ (b)

Figure 6. Color cast correction: (a) original image; (b) image after color correction.

Figure 7b,c are the illumination component maps under different values of the Gaus-
sian function scale factor ¢ (i.e., 6 = 80, 6 = 200), and Figure 7d illustrates the illumination
component extracted by the improved Gaussian function method proposed in Section 2.

o

(0 (d)

Figure 7. Extraction of light components at different scales: (a) input original grayscale; (b) the
original Gaussian formula sets the illumination component image when the Gaussian scale factor is
80; (c) the original Gaussian formula sets the illumination component image when the Gaussian scale
factor is 200; (d) the precise light component map solved by the algorithm in this paper.
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Figure 7 demonstrates that the multi-scale Gaussian function employed in this paper
adeptly preserves the essential illumination information of the image, which meets the
requirements of extracting illumination components.

3.2. Regional Enhancement Effect

After obtaining the precise light components, the algorithm presented in this paper
performs distinct enhancements on both high- and low-light regions, as illustrated in
Figure 8.
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Figure 8. Comparison of regional enhancements: (a) original low-light area; (b) low-light areas
enhanced by the algorithm in this paper; (c) original highlight area; (d) the highlight area enhanced
by the algorithm of this paper.

The image on the left showcases the original state before enhancement, while the
image on the right demonstrates the improvements after the algorithm’s application. The
grayscale histogram illustrates that the grayscale peak in the low-light area decreases and
spans a broader range after enhancement by the algorithm in this paper. Meanwhile, the
high-light area retains its original histogram distribution characteristics and accentuates
the finer details within the image.

3.3. Image Fusion

Figure 9 displays a contrast between the illumination component before and after
enhancement via the algorithm in this paper, as well as the visual effect of the RGB image
after improvement through the application of multi-scale method, which effectively caters
to the adaptive enhancement of image brightness and darkness.
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() (d)
Figure 9. Comparison of image details before and after weighted fusion: (a) raw light component;

(b) illumination component enhancement fusion image; (c) raw RGB image; (d) image processed by
multi-scale method.

This paper selects some LIME dataset images as experimental materials, mainly those
containing both low-light areas and high-light areas, which can more effectively verify the
feasibility of the algorithm in this paper. The specific enhancement effects are presented in
Figure 10, in which the first line contains the original images, and the second line contains
the images enhanced by the algorithm in this paper.

In this paper, a subjective visual analysis was performed to compare the enhancement
effects of this paper’s algorithm and other typical algorithms using two representative
images, Lamp and Street. The comparison results are shown in Figures 11 and 12.

As illustrated in Figure 13, a comparison between the gray histograms before and after
the enhancement of the Street image is presented.
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Original

Ours

Original

Ours

Figure 10. Image enhancement effect of the algorithm in this paper: (a) plate; (b) bird; (c) candle;
(d) streetlight; (e) sky; (f) tower.

Figure 11. Enhancement effects of image Lamp via different methods: (a) dataset raw Lamp image;
(b) algorithm in [24]; (c) algorithm in [25]; (d) algorithm in [26]; (e) our algorithm.
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Figure 12. Enhancement effects of image Street via different methods: (a) dataset raw Street image;
(b) algorithm in [24]; (c) algorithm in [25]; (d) algorithm in [26]; (e) our algorithm.
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Figure 13. Histogram comparison of image Street before and after enhancement: (a) histogram
of the original Street image; (b) algorithm in [24]; (c¢) algorithm in [25]; (d) algorithm in [26];
(e) our algorithm.

3.4. Image Quality Metrics

The enhancement effects on the Street image in Figure 12 are evaluated through three
quality metrics, the Structural Similarity Index (SSIM), the Peak Signal-to-Noise Ratio
(PSNR), and Information Entropy (IE). The SSIM [27] is used to analyze image quality in
terms of image contrast, brightness and structure. A higher SSIM value indicates a greater
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degree of image restoration, signifying improved visual fidelity. The SSIM solution is
expressed as follows:

_ 2uxpyta
Hxy) = 24yt
2
c(x,y) = _20x0yter (23)

) o2 +0y2+co
_ Oxy+C3
(ry) = e

SSIM(x,y) = 1(x,y)-c(x,y)-s(x, y) (24)

where [(x,y) is the luminance component, ¢(x, y) is the contrast component and s(x, y) is
the chrominance component. i, and y, represent the mean values of the original image x
and the enhanced image y, respectively; oy and 0y represent the variance of the two images,
respectively, and oy, represents the covariance.

The PSNR is another vital metric utilized for assessment, which gauges the difference
between the original image and the processed image by calculating the Mean Square
Error (MSE). A higher PSNR value corresponds to a higher quantity of preserved image
information and reduced distortion, leading to enhanced image quality.

B MAX/?
PSNR =10 x lg(MSE) (25)
1 m—1n—1 o N
MSE=—% ) [1(ij) = K@il (26)
M=y i=o

where MSE denotes the mean square error between the enhanced image and the origi-
nal image; m and n denote the length and width of the image, respectively; I(i,j) and
K(i, j) denote the pixel values of the original image, and the pixel values of the enhanced
image, respectively.

Information Entropy (IE) reflects the average amount of information contained within
an image and the complexity of its pixel distribution. The larger the information entropy,
the clearer the image and the higher the quality.

The quality indices of the enhanced Street image using different algorithms are shown
in Table 1.

Table 1. Analysis of the indicators.

Quality Original Literature Literature Literature Method of
Indicators Image [24] [25] [26] This Paper
SSIM 0.629 0.759 0.877 0.915 0.897
PSNR 13.834 15.661 22.117 22.713 23.341
IE 4.742 6.385 7.531 7.793 7.806

The quality indicators enhanced by different algorithms in Figure 10 are shown in
Table 2.

Table 2. Comparison of mean values for metrics.

Quality LIME [28] MSRCP [29] PIRE [30] Our Method
Indicators
SSIM 0.845 0.816 0.779 0.829
PSNR 2717 21.63 22461 23.135
IE 7.602 6.944 7.375 7.79

4. Discussion

In this paper, a subjective visual analysis was performed to discuss the enhancement
effects of this paper’s algorithm and other typical algorithms using two representative
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images, Lamp and Street. The comparison results are shown in Figures 11 and 12. Both
images contain bright and dark areas, which is a test of the algorithms’ ability to suppress
highlights during enhancement. The enhancement results of the Lamp and Street images
using each method are presented in Figures 11 and 12, respectively. In the comparison
shown in Figure 12, the AEIHE algorithm proposed in [24] exhibits limited advantages
in the enhancement effect. Meanwhile, the weighted enhancement algorithm based on
CNN classification in [25] demonstrates effective highlight suppression for the sky in the
Street image, but its handling of low-light details falls slightly short. Regarding the AGC
algorithm based on gamma function improvement from [26], it effectively enhances the
low-light areas in the Lamp image but leads to over-enhancement of the sky in the Street
image, resulting in a significant loss of fine details in that area. Upon comparing the results
displayed in Figures 11 and 12, it becomes apparent that the algorithm in this paper excels
in increasing the brightness of the original image while preserving crucial sky details in
the Street image. The method presented herein achieves a remarkable balance, showcasing
enhanced texture and superior detail clarity across the entire image.

As illustrated in Figure 13, a comparison between the gray histograms before and after
the enhancement of the Street image is presented. Upon inspection, it becomes evident that
the original Street image histogram exhibits a substantial difference between its peak and
valley values. Additionally, the gray values of pixels above 100 gray levels are relatively
sparse and inadequately scattered, resulting in a darker overall appearance of the original
image. Moving on to the histogram of the image enhanced by the AEIHE algorithm
proposed in [24], the main peak position is shifted to the left, resulting in a decreased
pixel distribution within the 100200 gray level interval, ultimately reducing the overall
brightness of the image. In the histogram processed by the algorithm introduced by [25],
the main peaks are located at both ends, with the left-end peak being higher than the right,
resulting in insufficient detail improvement. In the histogram processed by the algorithm
introduced in [26], the main peak at the right end is partly higher than the left end, causing
an over-enhancement of the high-light area. On the other hand, the algorithm presented in
this paper excels in achieving a relatively low pixel gray peak-to-valley difference during
image enhancement, highlighting the detail in the low-light and high-light areas through
effective utilization of the gray space.

In the image metric comparison, Table 1 displays the quality indicators of different
algorithms using the images depicted in Figure 12. The algorithm proposed in this paper
slightly underperforms compared to the one in [26] in terms of SSIM indicators. However, it
outperforms other comparison methods significantly in terms of the PSNR and information
entropy indicators, which suggests that the algorithm in this paper has outstanding com-
prehensive enhancement effect and can retain more image detail. This paper evaluates the
proposed algorithm’s effectiveness by conducting experimental comparisons with several
classic algorithms. The images from Figure 10 are utilized for this verification process,
and the average values of the indicators after applying each algorithm’s enhancement
are recorded in Table 2. The analysis reveals that the algorithm proposed in this paper
surpasses other algorithms in terms of comprehensive enhancement capabilities.

The method proposed in this paper is not perfect and has some shortcomings. As
can be seen from Figure 10, where there is very low light, the saturation of the image
after enhancement still needs to be improved, although it is considered a better choice.
These deficiencies are still the next task to be studied, and with the development of image
enhancement algorithms, creating more perfect methods to solve existing enhancement
problems is the way forward.

5. Conclusions

This paper presents a non-uniform-illumination image enhancement algorithm based
on the Retinex theory, addressing the problems of low brightness and unclear details in non-
uniform-illumination images and shortcomings observed in the application of traditional
methods in enhancing non-uniform-illumination images, such as local over-enhancement
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and insufficient parameter adaptability. The proposed algorithm follows a systematic
approach to achieve comprehensive image enhancement. It begins by employing the
color balance method to address the color differences in the non-uniform-illumination
image. After obtaining a uniformly colored non-uniform-illumination image, the image is
converted from the RGB space to the HSV space. In combination with the Retinex theory,
the multi-scale Gaussian function is utilized to obtain the precise illumination component
and reflection component in the HSV space. The illumination component map is then
divided into distinct blocks, categorizing them into high-light and low-light areas for
independent enhancement. The low-light area is enhanced using an adaptive gamma
correction algorithm, while the high-light area is enhanced by a function based on the
Weber-Fechner law. Furthermore, image fusion and detail improvement are applied to
obtain high-quality enhanced images. Through a comparison experiment with typical
algorithms, the efficacy of the algorithm proposed in this paper is proven. Specifically,
it achieves a better balance of the overall brightness in the image while retaining image
details, avoiding the distortion caused by excessive enhancement. As a result, the enhanced
image retains more information with clearer details.
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