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Abstract: Liquid-based cytology (LBC) plays a crucial role in the effective early detection of cervical
cancer, contributing to substantially decreasing mortality rates. However, the visual examination of
microscopic slides is a challenging, time-consuming, and ambiguous task. Shortages of specialized
staff and equipment are increasing the interest in developing artificial intelligence (AI)-powered
portable solutions to support screening programs. This paper presents a novel approach based on a
RetinaNet model with a ResNet50 backbone to detect the nuclei of cervical lesions on mobile-acquired
microscopic images of cytology samples, stratifying the lesions according to The Bethesda System
(TBS) guidelines. This work was supported by a new dataset of images from LBC samples digitalized
with a portable smartphone-based microscope, encompassing nucleus annotations of 31,698 normal
squamous cells and 1395 lesions. Several experiments were conducted to optimize the model’s
detection performance, namely hyperparameter tuning, transfer learning, detected class adjustments,
and per-class score threshold optimization. The proposed nucleus-based methodology improved the
best baseline reported in the literature for detecting cervical lesions on microscopic images exclusively
acquired with mobile devices coupled to the µSmartScope prototype, with per-class average precision,
recall, and F1 scores up to 17.6%, 22.9%, and 16.0%, respectively. Performance improvements were
obtained by transferring knowledge from networks pre-trained on a smaller dataset closer to the
target application domain, as well as including normal squamous nuclei as a class detected by the
model. Per-class tuning of the score threshold also allowed us to obtain a model more suitable to
support screening procedures, achieving F1 score improvements in most TBS classes. While further
improvements are still required to use the proposed approach in a clinical context, this work reinforces
the potential of using AI-powered mobile-based solutions to support cervical cancer screening. Such
solutions can significantly impact screening programs worldwide, particularly in areas with limited
access and restricted healthcare resources.

Keywords: artificial intelligence; machine learning; deep learning; cervical cancer; cervical cytology;
nucleus detection; lesion detection; computer-aided diagnosis; mobile devices

1. Introduction

Cervical cancer has been responsible for registering 605,000 new cases in 2020, result-
ing in approximately 342,000 deaths worldwide. It is the fourth most frequently diagnosed
cancer and the fourth leading cause of cancer death in women [1,2]. Over the past years, cy-
tology screening tests have enabled a strong decrease in cervical cancer deaths, contributing
to reducing its incidence by 60–90% and the death rate by 90% [3]. Nevertheless, difficul-
ties experienced by health facilities due to a shortage of specialized staff and equipment
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are increasing the interest in developing computer-aided diagnosis (CADx) systems for
cervical screening.

A recent review article [4] analyzed the approaches used for the tasks associated
with examining microscopic images from cervical cytology smears, namely focus and
adequacy assessment, region of interest segmentation, and lesion classification. Regarding
segmentation and classification tasks, the authors point out that, despite the relatively good
performance exhibited by binary or low-class classification approaches, the slow processing
times and the considerable quantity of misclassifications or false positives reported for
multi-class problems can make the algorithms unusable in a clinical environment. Addi-
tionally, the authors concluded that most works disregard adequacy assessment, while
others only implement some techniques to detect and remove unwanted objects such as
inflammatory cells or blood, with this topic being scarcely addressed in the literature.

Considering the limitations identified in the existing literature, the authors of the
current work proposed a nucleus-based approach for the automated adequacy assessment
of cervical cytology smears [5]. In this work, major focus was given to the cellularity
evaluation of the cytological samples since low squamous cellularity is the most common
cause for the identification of specimens as unsatisfactory. In particular, the proposed
approach automatically detects, counts, and calculates the average number of squamous
nuclei in images from liquid-based cytology (LBC) samples and consequently classifies it
as adequate or inadequate based on the cellularity threshold established in The Bethesda
System (TBS)—a minimum of 5000 well-preserved squamous nuclei (3.8 per microscopic
field at 40× magnification) to consider a specimen as adequate for diagnosis [5].

Therefore, this paper aims to study the impact and feasibility of using a nucleus-based
deep learning approach to detect different TBS classes of cervical lesions in mobile-acquired
microscopic images of LBC samples. In particular, this work starts by contributing with a
new annotated dataset of images from LBC samples digitalized with a portable smartphone-
based microscope, which supported the development of a novel approach to detect the
nuclei of cervical lesions on mobile-acquired microscopic images of cytology samples.
Several experiments were conducted to optimize the performance of the developed lesion
detection network, namely (i) hyperparameter optimizations, namely learning rate (LR)
and batch size (BS); (ii) transfer learning optimizations through weight initialization from
networks pre-trained on closer and distant application domains; (iii) detected class op-
timizations through the inclusion of normal squamous nuclei as a class detected by the
model; and (iv) per-class tuning of post-processing parameters, like score threshold. A com-
parison between the performance achieved by the proposed nucleus-based methodology
and a previous region-based work (which considered entire cells and cell aggregates as
regions to detect) [6] that used the same dataset for cervical lesion detection is provided,
thus supporting the contributions of this work.

This paper is structured as follows: Section 1 summarizes the motivation and objectives
of the work; Section 2 outlines the relevant related work present in the literature; in Section 3,
the datasets used are described; Section 4 presents the methodology, including the system
overview and the proposed approach to expand its capabilities from sample adequacy
assessment to nucleus-based detection and classification of cervical lesions; and throughout
Section 5, results are drawn alongside the discussion. Finally, Section 6 summarizes the
developed work, followed by a conclusion and future work.

2. Related Work

Cell detection, segmentation, and counting are computer vision tasks well addressed in
the literature. While all these tasks allow us to obtain the number of cells, the most suitable
approach for a specific problem depends on the target goal. In particular, the detection
task provides the localization in the form of a bounding box and the respective class, while
density estimation only gives the final number of objects. Alternatively, segmentation
approaches allow for obtaining the mask and respective class of the detected objects.
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For such tasks, the state-of-the-art approaches proposed in the literature mostly rely
on machine learning and deep learning methods. Works such as [7–9] propose approaches
based on deep learning, such as U-Net and feature pyramid network (FPN) networks,
to perform cell detection and segmentation. A single-shot detector (SSD) in pair with
a convolutional neural network (CNN) to localize and count different blood cell types
was addressed in [10]. Furthermore, microscopy cell counting based on density esti-
mation employing fully convolutional regression networks was proposed in [11]. In all
approaches mentioned above, the authors reported results with performances comparable
with human specialists.

Until [5], a less explored field in the literature was related to automated smear ade-
quacy assessment, i.e., the development of computational methods to ensure that cervical
samples are adequate for further analysis. In [12], the authors describe an AI-assistive
diagnostic solution to improve cervical liquid-based thin-layer cell-smear diagnosis accord-
ing to clinical TBS criteria. The developed system consists of five AI models which are
employed to detect and classify the lesions. A You-Only-Look-Once (YOLO)v3 model was
used for target detection, Xception, and patch-based models to cope with the high number
of false positives detected and U-net for nucleus segmentation. The final classification was
performed via two ensembled XGboost models, being developed and evaluated using a
dataset of 80,000 LBC samples collected from five medical institutes. Regarding quality
assessment, the procedure is applied to the entire sample and comprises focus, contrast,
and quantitative cell evaluations. For this task, a simpler approach was followed: the Otsu
thresholding method is initially used to separate the cells from the background, and the
cell-to-overall-area ratio is then used to obtain a rough number of cells in the sample.
The average accuracy of 99.11% was reported on the task of sample classification as satis-
factory or unsatisfactory. However, it must be noted that TBS guidelines were not strictly
followed since this method estimates the total number of cells in the sample, including
other types of nuclei, aside from squamous nuclei, that should not be considered to assess
sample cellularity.

Still on the topic of using deep-learning-based approaches to detect and classify cervi-
cal lesions, several recent works proved its feasibility to support cervical cancer screening,
with proposed approaches that explored the usage of different deep convolutional neural
networks ([13,14]) and architectures, such as MobileNet [15,16], EfficientNet [15,17], as well
as newly proposed networks, like the series-parallel fusion network (SPFNet) [18], Cervi-
cal Ensemble Network (CEENET) [19], or EfficientNet Fuzzy Extreme-Learning Machine
(EN-FELM) [20]. Despite the promising results of these previous works, it should be noted
that the vast majority do not take into account limitations like restricted computational
resources to run the models. Additionally, most of them require the usage of high-end
digital pathology whole-slide imaging (WSI) scanners, which are equipment not generally
accessible in areas with limited access and restricted financial resources. As an alternative to
regular microscopes and WSI scanners, the development of low-cost, portable microscopes
that enable microscopy-based diagnosis has also emerged in the literature. In particular,
and leveraged by the impressive evolution in the quality of the cameras, processing power,
and memory, smartphone-based solutions are being explored to implement cost-effective
platforms for microscopic inspection of samples [21]. A wide range of applications has also
been used to test the feasibility of affordable approaches based on smartphones, including
the screening of blood smears [22] or the detection of parasites [23–25] and viruses [26].

Regarding the cervical cytology use case, a device called µSmartScope [27,28] was
adapted for the digitalization of cervical cytology samples [29,30], (Figure 1). This device
is a fully automated, 3D-printed smartphone microscope tailored to support microscopy-
based diagnosis in areas with limited access. The device aims to decrease the burden of
manual microscopy examination by being fully powered and controlled by a smartphone,
in addition to the motorized stage.
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Figure 1. Mobile-based framework for automated cervical cytology screening: (A) µSmartScope with
smartphone attached and LBC sample inserted; (B) smartphone application screenshots (from [6]).

Supported by such devices for cervical cytology, a recent work [6] proposed a region-
based approach for the mobile detection of cervical lesions. This work used the public
dataset SIPAKMED and a new private dataset acquired with the uSmartScope (hereinafter
referred as Region-Based Cervical Lesion Dataset), depicted in Figure 1. Promising re-
sults for cervical cancer screening have been achieved using a Faster R-CNN model with
a ResNet50 backbone while also focusing on being a cost-effective Internet of Things
(IoT)-based solution. Nevertheless, the authors identified the low data volume and high
structure variability of the region-based dataset as the major bottlenecks of the study. Thus,
this work follows this research stream and explores the development of a nucleus-based
approach for automated adequacy assessment and cervical lesion detection using LBC
samples digitalized with the µSmartScope device that strictly follows the TBS guidelines
on both tasks.

3. Dataset

Although there are some publicly available datasets with cervical cell annotations,
such as Herlev [31], SIPaKMeD [32], Cervix93 [33], and ISBI Challenges [34,35], they are
not adequate for the tasks of nucleus and lesion detection. On the one hand, Herlev only
contains isolated images of cells, with annotations by abnormality of the cell. Some datasets,
such as the Cervix93, the ISBI Challenges, and the SipakMeD databases, comprise images
of microscopic fields with information regarding the nucleus regions but do not provide
annotations regarding the cervical lesions in those fields. In contrast, the more recent
CRIC [36] dataset includes images of microscopic fields with annotated cervical lesions, yet
with no information concerning the nuclei structures.

In view of the shortcomings of the existing public datasets, recent works presented
two additional datasets acquired with the µSmartScope device: (i) the Adequacy Assess-
ment Dataset [5], which consists of 41 samples with 42,387 manually annotated nuclei in
terms of cell type, and (ii) the Region-Based Cervical Lesion Dataset [6], which consists on
21 samples with 927 manually annotated regions in terms of cervical lesions (single cells
and cell aggregates). Given that this work aims to develop a nucleus-based approach for
cervical lesion detection, none of these datasets entirely fulfilled that purpose. Thus, a new
dataset was created, hereinafter referred to as the Nucleus-Based Cervical Lesion Dataset.

3.1. Nucleus-Based Cervical Lesion Dataset

To create a new dataset annotated in terms of nuclei with cervical lesions, the following
TBS classes were considered: atypical squamous cell of undetermined significance (ASC-
US); low-grade squamous intraepithelial lesion (LSIL); atypical squamous cell, cannot rule
out high-grade lesion (ASC-H); high-grade squamous intraepithelial lesion (HSIL); and
squamous cell carcinoma (SCC). It should be noted that the Region-Based Cervical Lesion
Dataset already provides annotations for these same classes, although not for nuclei but
for entire cells and cell aggregates. Contrarily, the Adequacy Assessment Dataset provides
nucleusi annotations but in terms of cell types, not cervical lesions.
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Given that around 30% of the images in the Region-Based Cervical Lesion Dataset are
also present in the Adequacy Assessment Dataset, the overlap between the annotation of
these two datasets was explored. Only squamous nucleus annotations from the Adequacy
Assessment Dataset were considered since the previously referred cervical lesion classes
are only present on this type of cells. In the new dataset, the cervical lesion class of each
squamous nucleus annotation inside an annotated cervical lesion region was considered
equal to the class of the region annotation that encompassed it, as shown in Figure 2.

Figure 2. Creation of the Nucleus-Based Cervical Lesion Dataset: green boxes correspond to squa-
mous nucleus annotations present in the Adequacy Assessment Dataset; white box corresponds to
lesion annotations present in the Region-Based Cervical Lesion Dataset; orange box corresponds to
the transformation of a squamous nucleus annotation to an ASC-US nucleus annotation.

To take advantage of the full extent of cervical lesion annotations from the Region-
Based Cervical Lesion Dataset, an automatic annotation strategy was applied to the subset
of images without overlap with the Adequacy Assessment Dataset. In particular, the best-
performing model for squamous nucleus detection proposed in [5] was used to detect the
squamous nuclei on that subset, with the same process mentioned above being further
applied to attribute the cervical lesion label to all nucleus detections inside annotated
cervical lesion regions. Figure 3 provides examples of nucleus and region annotations for
each TBS class.

Table 1 depicts the final number of region and nucleus annotations per TBS lesion class
for the Nucleus-Based Cervical Lesion Dataset. The higher number of nucleus annotations is
justified by annotated regions in the Region-Based Cervical Lesion Dataset that encompass
more than one cell, leading to several nucleus lesion annotations per region. Nevertheless,
it can be observed that this dataset suffers from class imbalance for both nucleus and
region annotations.

Table 1. Per-class distribution of nuclei and regions annotations of Nucleus-Based Cervical
Lesion Dataset.

Class Annotations
Regions Nuclei

Squamous cells

ASC-US 477 768
LSIL 96 144
ASC-H 109 132
HSIL 232 329
SCC 13 22
Normal 31,698
Total 927 33,093
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(a)

(b)

(c)

(d)

(e)
Figure 3. Illustrative examples of nucleus and region annotations for each TBS class in the Nucleus-
Based Cervical Lesion Dataset: (a) ASC-US; (b) LSIL; (c) ASC-H; (d) HSIL; and (e) SCC.

Regarding dataset split, the train/test division will be equal to the previously reported
for the Region-Based Cervical Lesion Dataset [6], including the usage of a patch-slicing
operation (i.e., images are sliced into patches of fixed dimensions). Similarly to that previous
work, the SCC and HSIL types of lesions were merged in a single class (HSIL-SCC) due to
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the demarcated under-representation of the SCC class and similar clinical diagnosis flow
for both classes. The number of empty patches (i.e., the patches with no annotations or
only normal annotations) used for training was balanced through the downsampling of
these patches in the training data, and Table 2 shows the final data distribution for the
nucleus annotations. Even though the annotation type was refactored from regions to
nuclei, the test set images are exactly the same, which allows us to make a fair comparison
between the performance of the region-based approach from that previous work [6] and
the nucleus-based approach proposed in this work.

Table 2. Distribution of nucleus annotations per TBS class for the training and test sets of the
Nucleus-Based Cervical Lesion Dataset (after patch slicing).

ASC-US LSIL ASC-H HSIL-SCC Normal

Train

Annotations 596 82 101 315 897

Patches with annotations 669

Empty patches 1165

Test

Annotations 169 61 31 35 12,739

Patches with annotations 182

Empty patches 19,886

4. Methodology

This work aims to contribute to the development of a cost-effective mobile-based
solution for cervical lesion screening, building upon previous work that addressed nucleus
detection for automated adequacy assessment of cytological samples [5] and region de-
tection for the identification of cervical lesions [6]. A new nucleus-based deep learning
approach is proposed to detect cervical lesions in images from LBC samples digitalized
with the portable microscope µSmartScope [28].

4.1. Mobile-Based Framework for Cervical Cytology Screening: Pipeline Overview

Figure 4 depicts the general pipeline of the mobile-based solution for automated
cervical cytology screening, in which the nucleus-based cervical lesion detection module
proposed in this work can be integrated. The proposed pipeline starts with a pre-processing
module to ensure that the input images meet the demands presented by the detection
models in terms of input standardization and computational limitations, which includes
the following image processing steps: (i) optical disk segmentation (according to the
approach proposed in [24]); (ii) cropping the region of interest in accordance with the
optic disk segmentation mask; and (iii) patch slicing (320 × 320 pixels) with adjustable
patch overlap percentage. As shown in Figure 4, the pipeline can comprise different object
detection and classification modules that can be coupled together in the same framework to
serve different purposes; e.g., the nucleus-based model previously proposed can be used for
automated adequacy assessment of cytological samples [5], while the nucleus-based deep
learning approach proposed in this work can be used to detect cervical lesions in images
of LBC samples digitalized with the portable microscope µSmartScope [28]. Since this
device uses an objective magnification of 40×, several images of different microscopic fields
must be acquired for each slide to cover a representative sample area. Finally, the pipeline
also includes a post-processing module responsible for the harmonization of the model’s
outputs, namely to merge the patches of each microscopic field into a single image, which
allows defining the following parameters: (i) NMS threshold and (ii) score threshold for
each detected class.
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Figure 4. General pipeline of the mobile-based solution for automated cervical cytology screening.

As shown in Figure 4, the pre-processing module is responsible for slicing the images
into patches of fixed dimensions, with the possibility of overlap. Patches are then fed to the
object detection model, and outputs are collected. Since each patch will pass individually
through the model, the outputs (bounding boxes and respective classifications) will be in
reference to the patch. Therefore, to obtain the compiled results for each microscopic field,
they must be transferred to a global reference by combining into a single image the outputs
of the associated patches. For scenarios with overlapped patches, the detected objects with
two or more overlapped predictions are handled using a non-maximum suppression (NMS)
algorithm to eliminate the duplicates. In the end, the image-level information of all images
that belong to the same slide is then aggregated to provide an overall report regarding the
detected cervical lesions for each sample.

4.2. Nucleus-Based Cervical Lesion Detection Model

The recognition of cervical lesions in cytological samples is performed by searching
for cellular structures with abnormal morphological properties, typically associated with
specific lesion levels [37]. Given the promising results obtained in [5] by a nucleus-based
approach for automated adequacy assessment, that work was used as a reference starting
point. In particular, this previous work provided a comparative analysis between three dif-
ferent meta-architecture/backbone combinations for the detection model: (i) SSD with a
Mobilenet v2 backbone; (ii) RetinaNet with a Resnet50 backbone; and (iii) EfficientNet
D0. The best-performing model for automatically detecting squamous nuclei was the
RetinaNet Resnet50. This object detection model uses a ResNet50 backbone and a feature
pyramid network (FPN) to capture multi-scale features, predicts object presence and class
labels using anchor boxes at different feature map levels, and employs a focal loss to
address class imbalance, giving more weight to challenging examples. Given this model’s
promising results and suitability for our target scenario, it was selected as the basis for the
approach proposed in the present work. It should be noted that we aim to deploy and
execute the model locally on the smartphone, so this model selection also took into account
the lightness of the RetinaNet/ResNet50 architecture (i.e., it needs to be suitable for the
computational power available on regular Android devices) and the availability of the
model in the Tensorflow Object Detection API (to ensure model compatibility to run on
Android devices by converting to TensorFlow Lite). Additionally, and similarly to [5], the
momentum optimizer, the Huber localization loss, and the focal cross-entropy classification
loss were also used to train the model in the new dataset of lesion nuclei described in
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Section 3.1. Details regarding the remaining training settings optimized in this work are
provided in Sections 4.2.1 and 4.2.2.

Moreover, considering the high impact of the model-centric optimizations that led
to the best-performing model in [5], an analogous analysis was conducted for the trained
nucleus-based lesion detection model, further explained in Sections 4.2.3 and 4.2.5.

4.2.1. Training Optimizations

For training and evaluation purposes, the Nucleus-Based Cervical Lesion Dataset was
split at the sample-level, with an 80% to 20% ratio for training and testing, respectively.
The selected split ratio balances enough data for training and a representative subset for
evaluating model performance. Three-fold cross-validation with random split at the image-
level was used for hyperparameter tuning, with a number of folds particularly suitable for
smaller datasets (like the one created in this work) allowing us to obtain stable performance
estimates while balancing computational efficiency and variance reduction. This process
involved a random search process to optimize the batch size (8 and 16) and the learning rate
(from 1 × 10−1 to 1 × 10−5), which allowed us to explore a wide range of values through a
low number of experiments [38]. The randomly generated combinations of batch sizes and
learning rate values explored in this work are presented in Table 3.

Table 3. Combinations of learning rate and batch size values considered for hyperparameter tuning.

Index Learning Rate Batch Size

1 5.462 × 10−4 16

2 1.149 × 10−3 8

3 4.229 × 10−3 16

4 1.291 × 10−2 8

5 4.862 × 10−5 16

All experiments were conducted on NVIDIA® A16 GPU (virtualized with 8 GB of
VRAM) and an AMD EPYC 7302 CPU, being adapted the training steps in each experiment
to ensure a similar number of training epochs (around 100).

4.2.2. Transfer Learning Optimizations

To accelerate network convergence and the learning process, the usage of transfer
learning techniques was explored through weight initialization by fine-tuning the network
pre-trained on two distinct settings: (i) using the large-scale (Common Objects in Context)
COCO public dataset [39] for object detection of categories distant from the target appli-
cation domain and (ii) using the Adequacy Assessment Dataset [5] for the nucleus-based
detection of squamous nuclei, i.e., a similar cervical cytology context. The motivation
behind the selection of these two scenarios is two-fold: first, to assess the impact of trans-
ferring knowledge from distant and closer application domains, and second, to avoid
vanishing or exploding gradient problems caused by random weight initialization, which
can lead to improperly initialized weights that might negatively affect the training.

4.2.3. Detected Classes Optimization

The impact of including and excluding the normal squamous nuclei as a class detected
by the model was studied. This study was motivated by the visual similarities between
normal and abnormal squamous nuclei, aiming to assess if detecting normal nuclei could
eventually help the learning process toward more robust discrimination of lesions’ nuclei.
Nevertheless, as depicted in Table 1, including the normal squamous nuclei as a class, even
when performed only on patches that already contain other abnormal class on the train
subset, turns the dataset highly imbalanced, which may hinder the model training process.
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4.2.4. Model Evaluation

The evaluation of the models was performed in two stages: during the training
process and for the assessment of the final system. The first, focused on finding the
optimal hyperparameters and training settings, was carried out at the patch level using
the validation sets. Two object detection metrics were used—the mean average precision
(mAP@0.50IoU) per class and the average recall (AR@10), averaged over the three cross-
validation folds of the dataset. In contrast, the latter evaluation stage aimed to assess the
overall performance of the final system. It was conducted on the test set at the image
level, after combining the detection results for all the patches of each image. To support
the critical analysis of the results, additional information was considered, namely false
negatives (FN), false positives (FP), true positives (TP), and the respective confusion matrix.
This allowed us to inspect supplementary performance metrics, such as accuracy, specificity,
F1 score, and Youden’s index.

4.2.5. Post-Processing Optimizations

After finding the optimal hyperparameter values and model settings based on the
average cross-validation performance, the best-performing model was re-trained on the
whole training set and further optimized in terms of post-processing parameters. With the
goal of improving the model’s image-level performance on the test set, the impact of the
prediction score threshold and optimizing it separately for each class was explored. In this
process, score threshold values between 0.05 and 0.95 with 0.01 steps were tested. The F1
score was used as the main criterion for selecting the optimal score threshold of each
class since it considers the trade-off between precision and recall. It should be noted that
other relevant post-processing parameters could also be tuned, namely the percentage of
overlap of sliced patches, the minimum intersection over union (IoU) applied to suppress
overlapping boxes in the non-maximum suppression (NMS) stage, and the minimum IOU
between the predicted and ground truth objects to consider a true positive prediction.
Nevertheless, given the similar context of the previous adequacy assessment work where
these parameters were already optimized [5], the same values of the best-performing model
reported were used, namely a patch overlap of 29%, NMS threshold of 0.97, and IoU
threshold of 0.1.

5. Results and Discussion

The results obtained during model training at the patch level on the validation set
are depicted in Figure 5. This figure merges the results achieved through three-fold cross-
validation for the different optimization steps, namely hyperparameter tuning, transfer
learning strategy, and detected classes adjustments. The results for each optimization step
are separately discussed in the following sub-sections.

5.1. Training Optimizations

Considering the five different LR-BS combinations tested (see Table 3), the hyperpa-
rameter combinations with indexes 1, 2, and 5 clearly provided the best results, with minor
mAP@0.50IoU differences between them. Nevertheless, it was considered that the best
and most consistent performance was achieved by combination 5 (LR = 4.862 × 10−5 and
BS = 16).

5.2. Transfer Learning Optimizations

Regarding the results of the transfer learning experiments through weight initializa-
tion, the fine-tuning of the network pre-trained on the Adequacy Assessment Dataset
(NUCLEI) yielded better results when compared to the COCO experiments. With these
experiments, it was concluded that transferring knowledge from a smaller dataset of a
closer applications domain (i.e., a similar cervical cytology context) brought more benefits
than using large-scale public dataset with categories distant from the target application
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domain. It should be noted that the COCO Dataset, despite its myriad object classes, does
not include any microscopy images or cellular structures.

Figure 5. mAP@0.50IoU results for the different optimization steps. (i) Hyperparameter tuning:
each color represents a different combination, according to the indexes used in Table 3. (ii) Transfer
learning: weight initialization using models pre-trained on the Adequacy Assessment (NUCLEI)
and COCO Datasets. (iii) Detected class adjustments: exclusion and inclusion of normal squamous
nucleus class (+Sqm.).

5.3. Detected Class Optimizations

To assess the impact of including and excluding normal squamous nuclei as a detected
class, the per-class mAP@0.50IoU results were also examined (see Figure 6), given the
demarcated data imbalance imposed by the inclusion of this class (see Table 1).

The experiments with the normal squamous nucleus class (+Sqm.) achieved slightly
better mAP@0.50IoU for the ASC-US and ASC-H classes while simultaneously providing a
lower overall standard deviation between cross-validation folds. Thus, the inclusion of the
normal squamous nucleus class, which seems to help the learning process toward more
robust discrimination of lesions’ nuclei, was selected

5.4. Data Augmentation

As depicted in Table 2, the Nucleus-Based Cervical Lesion Dataset is highly imbal-
anced, with a positive correlation between the number of annotations for each class and
the respective detection performance (see Figure 6) being observable. Therefore, the un-
derrepresented classes were augmented via random basic image transformations, such as
90-degree rotation, horizontal and vertical flips, blur, and sharpening. Table 4 shows the
number of annotations before and after the data augmentation procedure.

Table 4. Number of annotation and patches before and after data augmentation.

ASC-US LSIL ASC-H HSIL Normal Patches w/ Ann. Empty Patches

Original

Train 596 82 101 315 897 669 1094
Fold 1 384 44 50 215 561 432 724
Fold 2 412 64 83 210 620 462 728
Fold 3 396 56 69 205 613 444 736

Augmented

Train 708 572 681 654 1803 1561 1094
Fold 1 463 307 375 441 1011 988 724
Fold 2 497 446 548 438 1335 1113 728
Fold 3 457 391 439 429 1260 1021 736



Appl. Sci. 2023, 13, 9850 12 of 18

Figure 6. Per-class mAP@0.50IoU results for the best hyperparameter combination.

Using the augmented version of the dataset, a new set of experiments was performed
by using the best transfer learning approach previously found (NUCLEI pre-trained model)
and training with the five different LR-BS combinations detailed in Table 3. The results
depicted in Figure 7 indicate that the data augmentation strategy did not improve detec-
tion performance.

Figure 7. mAP@0.50IoU results for each LR-BS combination, with and without data augmentation.

One possible cause for this outcome might be the large volume of instances generated
through basic image manipulation that was added to the highly underrepresented classes,
which probably provided mostly redundant information. This leads us to conclude that the
usage of data augmentation via basic image manipulations in the target scenario negatively
affects the model’s generalization capability by potentially infusing bias during model
training. Nevertheless, alternative data augmentation approaches that promote higher and
more reliable per-class variability should be explored in the future, for instance, generative
deep learning, such as generative adversarial networks (GANs) or latent diffusion models.

5.5. Nucleus-Based versus Region-Based Approaches

This section provides a comparative analysis between the performance achieved
by the proposed nucleus-based methodology and the previously reported region-based
approach [6]. To allow the benchmarking of these two deep learning strategies for mobile-
based cervical lesion detection, the test set used is the same for both approaches, thus
allowing a fairer comparison. Nevertheless, it should be noted that the patch size and the
number of annotations per class are not the same due to the annotation refactor detailed in
Section 3.1. The results regarding mAP@0.50IoU and AR@10 can be observed in Figure 8.
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(a) (b)
Figure 8. mAP@0.50IoU (a) and AR@10 (b) results for the test set for the proposed nucleus-based
and the previously proposed region-based approaches [6].

Analyzing the relative performance gain for each metric, it is possible to see that
the proposed nucleus-based approach allows an mAP@0.50IoU increase ranging from
53.6% to 1216.2%, except for the HSIL class, with a decrease of 20.6%. Regarding AR@10,
the nucleus-based approach also brought clear performance improvements, from 95.8% to
267.2% for the different classes.

5.6. Post-Processing Optimizations

The results reported in the previous sections allowed us to select the best combination
of optimization steps during model training, which maximized the cervical lesion detection
performance at the patch-level on the validation set. Using the best-performing model
achieved after training, the class-wise optimization of the prediction score threshold was
further explored to improve the model’s image-level performance on the test set. The con-
fusion matrices obtained for the best-performing model before and after the score threshold
optimization are depicted in Figure 9.

Figure 9. Confusion matrices for the best-performing model before (a) and after (b) the score
threshold optimization.

To support the critical analysis of these results, additional performance metrics were
extracted from both confusion matrices, namely accuracy, specificity, F1 score, and Youden’s
index (see Table 5). Due to the class imbalance of the dataset, the F1 score was used as the
primary criterion for selecting the optimal score threshold for each class. This led to F1
score improvements in all classes, except for LSIL, with still no TPs detected. In particular,
the F1 score of ASC-US class increased 47% due to a favorable decrease of 887 FPs, but with
the compromise of losing 22 TPs. On the other hand, the F1 score of normal squamous
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nuclei (Sqm. Normal) increased 5% due to a favorable increase of 1376 TPs, but with the
shortcoming of detecting 871 additional FPs. However, similar behavior was verified in the
ASC-H and HSIL classes, with just residual increases in both TPs and FPs.

Table 5. Performance metrics for the best-performing model before and after the score
threshold optimization.

Score Threshold Class AP Recall Accuracy Specificity F1 Youden TP FP FN

Before Optimization

0.500

ASC-US 0.1073 0.1824 0.9221 0.9314 0.0547 0.1137 31 932 139
LSIL 0 0 0.9953 0.9997 0 −0.0003 0 4 61
ASC-H 0 0 0.9970 0.9993 0 −0.0003 0 10 31
HSIL 0.1524 0.1714 0.9950 0.9972 0.1500 0.1686 6 39 29
Sqm. Normal 0.8023 0.6864 0.6518 0.1990 0.7855 −0.1147 8767 781 4006

After Optimization

0.660 ASC-US 0.1098 0.0529 0.9859 0.9969 0.0804 0.0498 9 45 161
0.500 LSIL 0 0 0.9955 0.9997 0 −0.0003 0 4 61
0.424 ASC-H 0.0600 0.0645 0.9957 0.9977 0.0597 0.0622 2 34 29
0.486 HSIL 0.1758 0.2286 0.9942 0.9961 0.1600 0.2247 8 57 27
0.415 Sqm. Normal 0.8271 0.7943 0.7065 0.0878 0.8258 −0.1180 10,145 1652 2628

From the clinical point of view, the described trade-offs between TPs and FPs seem to
benefit the usage of the model after optimization for screening purposes. First, because Sqm.
Normal detections are not cervical lesions, they do not represent priority findings that
need to be mandatorily reviewed by the screening cytopathologists. For this reason,
the significant increase of FPs for the Sqm. After optimization, the normal class on the
model does not necessarily cause overhead in the clinical flow. And second, the demarcated
decrease in ASC-US FPs on the model after optimization could actually have a relevant
impact on its suitability to support clinical decisions because these are abnormal findings
that need to be reviewed by cytopathologists, forcing them to constantly review large
numbers of FPs, which can lead to an unfeasible overhead in the screening process. Thus,
the performance improvements verified for the lesion classes demonstrated the benefits
of the data and model-centric optimizations applied during training and post-processing
steps, resulting in a more robust lesion detection system with potential to streamline the
clinical workflow of cervical screening processes. Some illustrative examples of correctly
and incorrectly classified images on the test set are shown in Figure 10.

In summary, this work contributes to the advancement of mobile-based cervical cy-
tology screening by demonstrating the potential of using nucleus-based approaches that
can represent a complementary crucial tool to increase the wide spread of cervical cytol-
ogy screening and the early and accurate diagnosis of cervical dysplasias. By expanding
the coverage of screening programs in underserved areas, these tools can contribute to
decreasing the extension of excisional treatments, which are responsible for adverse effects
like increased risk of preterm delivery, lower birth weight, or preterm premature rupture
of membrane before 37 weeks of pregnancy [40]. These tools can also be coupled to the
analysis of risk factors like HPV persistence and the positivity of surgical resection to
leverage a more widespread early detection of recurrence after surgical treatment [41].
At the same time, the authors acknowledge that future work needs to be carried out to
improve the performance of the proposed method. Currently, the state of the art for mobile-
based solutions for cervical cancer screening is still far from reaching clinical usage due
to the particular limitations of this scenario, like lack of large publicly mobile-acquired
datasets, limited mobile-acquired image quality, and the restricted computational power of
mobile-based solutions for portable microscopic screening. In particular, the requirement
of locally executing the detection models on mobile devices dramatically limits the selec-
tion of suitable meta-architecture/backbone combinations, which must be simultaneously
lightweight and compatible to run on mobile devices. These limitations should be consid-
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ered when comparing the performance and maturity of such mobile-based solutions with
solutions that operate under optimal, well-controlled laboratory conditions, which usually
have access to images acquired with high-end microscopic equipment and unrestricted
computational resources.

(a) (b) (c)

(d) (e) (f)
Figure 10. Illustrative examples of correctly and incorrectly classified images on the test set: (a) True-
positive Normal Sqm. (b) True-positive ASC-US. (c) True-positive HSIL. (d) False-positive HSIL.
(e) False-negative ASC-US and Normal Sqm. (f) Misclassified Normal Sqm.

6. Conclusions and Future Work

In this paper, a new nucleus-based deep learning approach was proposed to detect
different TBS classes of cervical lesions on mobile-acquired microscopic images of LBC
samples. A RetinaNet model with a ResNet50 backbone was used, and several experiments
were conducted to optimize the detection model’s performance, starting by optimizing the
learning rate and batch size hyperparameters. In terms of transfer learning, transferring
knowledge from networks pre-trained on a smaller dataset closer to the target application
domain brought more benefits when compared with an experiment with a large-scale public
dataset with categories distant from the tarobtain application domain. Detected classes
optimizations were also explored by including normal squamous nuclei as a class detected
by the model, which improved the learning process toward more robust discrimination of
lesions’ nuclei. Finally, the per-class tuning of the score threshold in the post-processing step
also allowed us to obtain a model more suitable to support screening procedures, allowing
performance improvements in terms of the F1 score in most of the considered classes.

A comparison between the performance achieved by the proposed nucleus-based
methodology and a region-based approach previously proposed was also provided, achiev-
ing clear performance improvements regarding both mAP@0.50IoU and AR@10 metrics on
the same dataset. Despite the apparent success of the proposed approach, it should be noted
that the Nucleus-Based Cervical Lesion Dataset created in the ambit of this work still has
clear limitations. While the reported experiments regarding data augmentation through ba-
sic image manipulations did not improve the detection performance, alternative strategies
should be explored in the future like state-of-the-art generative deep learning approaches
such as GANs and latent diffusion models to promote higher and more reliable per-class
variability. The authors also aim to experiment with additional meta-architecture/backbone
combinations, such as object detection models from the YOLO series.
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In summary, the proposed nucleus-based strategy for cervical lesion detection presents
a step further in developing a cost-effective mobile framework for cervical cancer screening.
Although further improvements are still required to embed the proposed approach in
a reliable and robust decision support system for cervical cancer screening, this work
reinforces the potential of using AI-powered portable solutions to automatically scan
and analyze LBC samples. Such solutions can significantly impact screening programs
worldwide, particularly in areas with limited access and restricted healthcare resources.
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The following abbreviations are used in this manuscript:

Sqm. Squamous nuclei
Aug. Augmented
LBC Liquid-Based Cytology
AI Artificial Intelligence
TBS. The Bethesda System
CAD Computer-Aided Diagnosis
COCO Common Objects in Context
FPN Feature Pyramid Network
SSD Single-Shot Detector
CNN Convolutional Neural Network
YOLO You Only Look Once
WSI Whole-Slide Imaging
IoT Internet of Things
ASC-US Atypical Squamous Cell of Undetermined Significance
LSIL Low-grade Squamous Intraepithelial Lesion
ASC-H Atypical Squamous Cell, cannot rule out High-grade lesion
HSIL High-grade Squamous Intraepithelial Lesion
SCC Squamous Cell Carcinoma
3D Three Dimensions
NMS Non-Maximum Suppression
CPU Central Processing Unit
GPU Graphics Processing Unit
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VRAM Video Random Access Memory
IoU Intersection over Union
AR Average Recall
AP Average Precision
mAP Mean Average Precision
FN False Negative
FP False Positive
TP True Positive
LR Learning Rate
BS Batch Size
GAN Generative Adversarial Network
SPFNet Series-Parallel Fusion Network
CEENET Cervical Ensemble Network
EN-FELM EfficientNet Fuzzy Extreme-Learning Machine
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