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Abstract: In recent years, advances in deep learning (DL) techniques for video analysis have de-
veloped to solve the problem of real-time processing. Automated face recognition in the runtime
environment has become necessary in video surveillance systems for urban security. This is a difficult
task due to face occlusion, which makes it hard to capture effective features. Existing work focuses
on improving performance while ignoring issues like a small dataset, high computational complexity,
and a lack of lightweight and efficient feature descriptors. In this paper, face recognition (FR) using
a Convolutional mixer (AFR-Conv) algorithm is developed to handle face occlusion problems. A
novel AFR-Conv architecture is designed by assigning priority-based weight to the different face
patches along with residual connections and an AdaBoost classifier for automatically recognizing
human faces. The AFR-Conv also leverages the strengths of pre-trained CNNs by extracting features
using ResNet-50, Inception-v3, and DenseNet-161. The AdaBoost classifier combines these features’
weighted votes to predict labels for testing images. To develop this system, we use the data augmen-
tation method to enhance the number of datasets using human face images. The AFR-Conv method
is then used to extract robust features from images. Finally, to recognize human identity, an AdaBoost
classifier is utilized. For the training and evaluation of the AFR-Conv model, a set of face images is
collected from online data sources. The experimental results of the AFR-Conv approach are presented
in terms of precision (PR), recall (RE), detection accuracy (DA), and F1-score metrics. Particularly,
the proposed approach attains 95.5% PR, 97.6% RE, 97.5% DA, and 98.5% of F1-score on 8500 face
images. The experimental results show that our proposed scheme outperforms advanced methods
for face classification.

Keywords: intelligent systems; Internet of Things; COVID-19; face mask; computer vision; video
analysis; face occlusion; deep learning; transfer learning; Convolutional Neural Network; Con-
vMixer model

1. Introduction

The current epidemic of COVID-19 spreads all over the world, forcing people to cover
most of their faces with masks to contain the pandemic. Despite significant progress in
facial detection and recognition research during the previous decade [1], present facial
recognition systems (FRS) need to be more precise and robust to be fully implemented
in high-security contexts. FR has been a significant topic in science for the past three
decades, with numerous vital activities related to identity verification, recognizing criminal
activities, surveillance, and scientific study. Face recognition integrated with Internet of
Things (IoT) devices is a cutting-edge application of artificial intelligence. These intelligent
systems enhance security, convenience, and personalization by capturing and analyzing
facial features. The potential applications are diverse, from smart doorbells granting access
to authorized individuals to personalized experiences delivered by intelligent mirrors.
However, as with any technology, responsible implementation is critical. Striking the right
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balance between innovation and privacy protection is vital to ensuring these systems benefit
society without compromising individual rights. However, traditional face detection and
recognition algorithms require improved intelligence. Hence, there is an urgent need for
modern face detection and recognition methods that effectively deal with occluded faces
and result in higher detection and recognition accuracies. Masked Face Recognition (MFR)
is a unique occlusion-based FR application. In contrast to regular occlusion FR, MFR has
three significant challenges [2]. To begin with, there is a need for larger face datasets with
masks. Second, masks completely occlude the mouth and nasal characteristics, reducing
the effectiveness of facial feature extraction, so it is challenging to identify an individual
when an object covers the face. At the same time, two unique instances are difficult to
tackle using existing deep learning (DL) methods, such as face masks used for training and
non-face covers for testing, and vice versa. Yet, under some unique circumstances, the two
scenarios are critical. During the COVID-19 outbreak, for example, standard FR systems
could not distinguish faces wearing masks. The authorities have many occluded images of
suspects, but they do not have any clear face images.

The concept of deep learning (DL) [3–7] is widely utilized in many applications. How-
ever, because of the long time required for network training, using DL in a real-time
environment was challenging at first. Since then, the recent advances in DL approaches
proposed in [4–7] have motivated other authors to use the advancement of software and
hardware in a parallel computing environment. Convolutional Neural Networks (CNN),
Deep Belief Networks (DBN), Restricted Boltzmann Machines (RBM), Recursive Neural
Networks (RNN), and Stack-Based Auto-Encoders (SAE) are examples of deep learning
architectures that are effectively used in a variety of applications such as natural lan-
guage processing (NLP), bioinformatics, and computer vision [8,9]. Deep learning-based
techniques have benefited face detection, recognition, and forecasting applications [10,11].

Several existing FAR systems used the classic computer vision techniques highlighted
in Section 2. Regarding their feature extraction approaches, these strategies have limitations.
All of these works use feature extractors that were handcrafted. As a result, the extracted
image features reflect the variations between the natural and occluded face images in the
spatial and frequency domains. In a few research studies, we noticed that deep learning
(DL) methods are used to construct FRS systems. These FRS systems used AlexNet and
VGG networks in previous DL-based ways to extract features and recognize human images.
The AlexNet model, on the other hand, has only eight layers, making it a shallow model.
As a result of facial occlusion, extracting robust characteristics from human face images
could be more effective. Furthermore, achieving reasonable accuracy is time-consuming
and needs to be more efficient for instantaneous FRS applications. Compared with the
newer DL model, the VGG network model has a vanishing gradient problem and is also
extremely slow. The current DL-based Convolutional Neural Network (CNN) model
includes many parameters and calculations requiring complex hardware. A learning-based
technique called a ConvMixer was recently introduced that uses image patches along with
a convolution-based architecture instead of a transformer-based architecture. The authors
use depthwise convolution followed by pointwise convolution as their main ConvMixer
layer, which is repeated a number of times according to the model depth. In practice, the
ConvMixer architecture gives better validation accuracy than a basic CNN model with
four times fewer parameters. The ConvMixer has been successfully used to extract features
from image-based recognition systems. These ConvMixer models outperform several
earlier transfer learning (TL) models and classic handcrafted feature extraction methods.
Accordingly, this paper proposes a new FAR method for FR systems based on a residual
connection in the ConvMixer architecture with AdaBoost.

This study provides a novel technique for dealing with challenges caused by facial
occlusions and variations in facial expression. These limitations exist in recognizing human
faces [10,11]. From past studies, it noticed that it is very difficult to recognize human
faces automatically due to mask. This paper proposes a deep learning methodology
(ENSEMBLE-FRO) for video analysis and surveillance systems, especially in partially
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occluded environments. The proposed ENSEMBLE-FRO comprises three pre-trained
DL architectures: ResNeXt-50, Inception-v3, and DenseNet-161. Using an augmentation
method, the authors create a synthetic face mask evaluation dataset using many prominent
public verification datasets, including LFW, CALFW, CPLFW, and CFP. The Real-World
Masked Face Dataset (RMFD) is used in addition to the synthesized versions of typical FR
testing datasets. Several performance metrics are used to assess the performance of the
proposed technique, such as precision, recall, accuracy, and F1-score.

1.1. Research Motivations

The problem addressed in this work is developing an efficient and accurate face
recognition system to overcome challenges posed by face occlusion and improve recognition
performance in real-world scenarios. Face occlusion, such as partial face coverage due to
accessories, obstructions, or poor lighting conditions, is typical in video surveillance and
urban security applications. Existing face recognition algorithms often struggle to handle
these challenging conditions, leading to reduced accuracy and reliability due to wearing
face masks. The motivations for developing a facial recognition system for people with and
without face masks during the COVID-19 pandemic are as follows:

(1) The COVID-19 pandemic has underscored the importance of minimizing physical
contact and maintaining hygiene. Implementing a contactless identification system
like facial recognition can help reduce the risk of virus transmission through shared
touchpoints, such as fingerprint scanners.

(2) The widespread adoption of face masks as a preventive measure presents a challenge
for traditional facial recognition systems designed for unmasked faces. Developing a
system that can accurately recognize individuals both with and without face masks
addresses this compliance monitoring need.

(3) The pandemic has accelerated the adoption of face masks as a new societal norm.
A facial recognition system capable of functioning effectively in the presence of
face masks aligns with these evolving norms and ensures seamless integration into
daily activities.

(4) Surveillance and security applications benefit from accurate facial recognition, es-
pecially in crowded places like airports, public transportation, and essential service
facilities. A system that can recognize faces despite masks contributes to enhanced
public safety.

(5) Traditional face recognition systems face accuracy and reliability issues when dealing
with partial face coverage due to masks. This motivates the development of innovative
solutions that can mitigate the negative impact of covers on recognition performance.

(6) The pandemic has generated much data regarding masked and unmasked faces.
Leveraging these datasets for research and development purposes offers a unique
opportunity to create more robust and effective facial recognition systems.

(7) Addressing the challenges posed by face masks in facial recognition requires innova-
tion. Developing a system that can accurately recognize faces under diverse conditions
reflects advancements in computer vision and deep learning techniques.

The motivation stems from the need to adapt facial recognition technology to the
current global context, ensuring safety, accuracy, and seamless integration with public
health measures during and beyond the COVID-19 pandemic. The objective of this research
is to propose a solution that leverages the ConvMixer architecture specifically designed
for face recognition, along with the integration of an AdaBoost classifier, to handle face
occlusion effectively, enhance feature representation, and achieve superior recognition
accuracy compared with other state-of-the-art deep learning algorithms. The study aims to
evaluate the proposed system’s performance using benchmark datasets and validate its
generalizability and efficiency for real-time deployment in face recognition applications.
The goal is to provide a robust and practical face recognition solution that recognizes
human faces even under challenging real-world conditions, contributing to advancing
urban security and video surveillance technologies.
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1.2. Major Contributions

The major contribution of this work lies in the development of a novel ConvMixer and
AdaBoost-based face recognition system that effectively addresses face occlusion challenges
and outperforms existing deep learning algorithms. Its potential for transfer learning and
real-world applicability make it a valuable solution for enhancing face recognition accuracy
and reliability in critical surveillance applications. The proposed FAR-Conv approach
differs from previous methodologies in the following four aspects.

1. A new face recognition system (AFR) method to handle issues of face occlusion based
on a residual connection and ConvMixer with AdaBoost is developed in this study
to addresses data limitations, computational cost, and the lack of a lightweight and
efficient feature descriptor.

2. We address the challenges of AFR in two different scenarios: utilizing masked faces
to train to recognize faces without a mask, and using faces without mask to train to
detect masked faces.

3. The AFR-Conv algorithm integrated into the ConvMixer model is a novel approach for
handling face occlusion. By assigning priority-based weights to different face patches
and using residual connections, the algorithm can effectively focus on relevant facial
regions, even when faces are partially occluded, leading to improved recognition
accuracy in challenging real-world scenarios.

4. The introduction of the ConvMixer architecture specifically tailored for face recogni-
tion tasks is a significant contribution. ConvMixer’s ability to capture complex spatial
patterns in face images efficiently makes it a powerful feature extractor, enhancing
the model’s discrimination and recognition capabilities.

5. The ConvMixer and AdaBoost approach offers lightweight and efficient feature de-
scriptors. This characteristic is vital for real-time processing in video surveillance
systems, where computational complexity is a significant concern.

6. The experimental results demonstrate that the proposed ConvMixer and AdaBoost-
based face recognition system outperforms advanced methods for face classification.
This superiority showcases the system’s competitiveness and effectiveness compared
with other existing deep learning algorithms.

1.3. Paper Organization

The remainder of the paper is structured as follows: Section 2 presents a recent
survey of past studies in the field of occluded face recognition, especially using DL tech-
niques. Section 3 demonstrates the data acquisition process and the proposed methodol-
ogy. Section 4 presents the experimental results and comparisons with other techniques.
Section 5 discusses the results attained. Finally, Section 6 summarizes the main conclusions
of this paper.

2. Literature Review

For law enforcement, FR is an appealing area of research and development. Surveil-
lance cameras are used in conjunction with intelligence techniques worldwide to detect
criminal activity. Currently, as the epidemic of COVID-19 spreads all over the world, people
are forced to cover most of their faces with masks to contain the pandemic, requiring much
more accurate face recognition algorithms for identity verification. Factors associated with
biometric sample capture and presentation, such as facial occlusions, have a significant
impact on the precision of FR algorithms [10,11].

Past studies showed different problems exist in recognizing human faces in real-time:
(1) Face pose: Computerized systems are highly sensitive to pose variations. When a
person’s head and viewing angle vary, so does his or her facial position. (2) Illumination
condition: The variation in lighting conditions has a significant impact on the quality of an
image. (3) Face occlusion: The biggest challenge for computer vision systems is recognizing
human faces when they are covered with masks. (4) Expressions: Varied conditions cause
multiple human moods, which lead to the display of various emotions and, subsequently,
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changes in facial expressions. (5) Aging: The appearance of a person’s face varies over time
and reflects their age, which is a new problem for facial recognition algorithms. Researchers
have presented techniques for occluded face recognition [12]. These authors developed an
automatic facial recognition solution. The settings involved masked probes, unmasked
pairs, masked pairs, and unmasked references with actual and synthetic masks.

In [13], the author developed an end-to-end FR network that is insensitive to face
masks and invariant to face images. First, face mask synthesized datasets were created
by accurately matching the face mask to images in publicly available datasets, namely
LFW, CASIA-Web Face, CFP, CPLFW, and CALFW. Afterward, datasets were used to
generate training and testing datasets. Second, they introduced a model consisting of two
components: an alignment component and a feature extraction component using DCNN
to generate a 512-feature vector. The network is invariant to face images with a face mask
since these modules are trained end-to-end. Their experimental work showed significant
improvement compared with state-of-the-art systems. The authors of [14] proposed a
CNN model for face detection based on facial features. They developed a new method
for detecting faces based on the spatial structure and arrangement of facial components’
responses. The grading system is data-driven, and it was carefully crafted to account for
difficult circumstances where faces are only partially visible. Faces with extreme occlusion
and unrestricted pose fluctuations are detected by their CNN architecture. On well-known
benchmarks, namely, AFW, PASCAL Faces, WIDER FACE, and FDDB, their technique
performs admirably.

In [15], the authors proposed a set of repurposed datasets as well as a standard
for researchers to employ. They also presented a pre-training method based on visual
representation learning tailored to unmasked vs. masked face matching. Their research
discovered robust traits that might be used to distinguish people in a variety of data
collection circumstances. This was accomplished by training on a variety of datasets and
confirming the results using a variety of holdout datasets. When it came to masked-to-
unmasked face matching, their method’s specific weights outperformed conventional face
recognition features. The authors introduced a mask-aware FR system in [16] that can
distinguish between people wearing and not wearing facial masks. They evaluated three
traditional descriptors, such as local binary pattern (LBP), local directional order pattern
(LDOP), and histogram of oriented gradients (HOG), along with support vector machine
(SVM) for face mask recognition. In addition, they created a mask-aware dynamic model
based on deep learning that can distinguish faces in the presence and absence of facial
masks. A real-world masked face recognition dataset was used in the evaluation. LDOP-
based descriptors achieved a maximum accuracy of 99.60% in facial mask detection. In the
presence of a facial mask, their proposed dynamic ensemble model has 99.53% accuracy.

In [17], a hybrid face mask detection model was proposed that combined deep and
traditional machine learning. There were two phases to the proposed framework. The
first component was created to extract features using Resnet 50. The second component
was created to help with the classification of face masks utilizing SVM, decision trees, and
an ensemble approach. The investigation focused on three face-masked datasets. The
Simulated Masked Face Dataset (SMFD), Labeled Faces in the Wild (LFW), and RMFD are
the three datasets that were used, and accuracies of 99.49%, 100%, and 99.64%, respectively,
were achieved on the test datasets. The authors proposed a complete training pipeline
based on the loss function [18] and ArcFace model [19], with numerous changes to the
backbone and loss function. They used the ResNet-50 model as a backbone. For MS1MV2,
they achieved a mask-usage detection accuracy of 99.78%. They presented experimental
results for 10 different face recognition benchmarks. Their findings showed that their
strategy regularly exceeded the state of the art in extensive tests.

The COVID-19 outbreak led to masked face recognition (MFR) development [20],
but overemphasizing it harms standard face recognition. MFR should be treated as a
mask bias, not a separate task. The study examined how face masks influenced emotion
recognition in first- and fifth-graders, along with young adults [21], considering mask



Appl. Sci. 2023, 13, 9880 6 of 31

presence, color, and emotion type. The results showed masks affected recognizing fear and
sadness, but not anger or neutrality. This study [22] aims to create an attendance system
using face recognition and mask detection, accessible online via a browser interface. No
special software installation is needed; users can access it through any terminal. The system
records attendance data centrally in an online database, utilizing biometric face signatures.
Users’ profiles are loaded with face-image samples. Initial steps involve SVM-based model
training for face recognition and synthetic data for identifying masked users. The goal
is an efficient system for attendance management, even with face masks. In response to
widespread mask-wearing during COVID-19 [23], conventional face recognition struggles.
This article proposes an eyebrow-focused network for masked face recognition, using local
features like eyebrows due to limited visible cues. The approach includes feature extraction,
eyebrow pooling, and fusion using a graph convolutional network. Tested on real-world
and synthetic datasets, the method outperforms existing techniques, effectively addressing
masked face recognition challenges.

DeepMasknet [24] was introduced to deal with mask-wearing issue. They also created
a new diverse dataset, MDMFR, for evaluation. DeepMasknet outperforms existing models
across datasets, providing a solution for COVID-19 challenges. COVID-19 challenges tradi-
tional face recognition due to increased mask-wearing [25]. Limited facial data hampers
recognition, prompting experiments with CNN architectures and altered methods. The
study evaluates existing CNN-based systems using entirely masked-face datasets, showing
the importance of network depth and suggesting adjusted parameters. Empirical analysis
guides new parameter values for masked face recognition.

Another paper introducing a method to improve face recognition with masks [26]
employs mask transfer for data augmentation and presents Attention-Aware Masked Face
Recognition (AMaskNet) consisting of a feature extractor and a contribution estimator.
Amid COVID-19, mandatory mask use prompted the development [27] of a system recog-
nizing people wearing masks from photos. Using MobileNetV2 and OpenCv’s face detector,
the model detects faces and identifies mask presence. FaceNet extracts features, and a
multilayer perceptron performs recognition. Training on 13,359 images (52.9% masked,
47.1% unmasked), the system achieves 99.65% accuracy in mask detection (99.52% in recog-
nizing masked individuals, and 99.96% for unmasked recognition). The research addresses
mask-related challenges in facial recognition, yielding high accuracy in both mask detection
and recognition tasks.

An improved solution [28] for masked face recognition is proposed which involves
merging a cropping-based method with the convolutional block attention module (CBAM).
The approach optimizes cropping and employs CBAM to emphasize eye regions. Unique
scenarios using unmasked faces to train for masked recognition and vice versa are explored.
Extensive experiments on various datasets demonstrate the approach’s superiority over
other methods, notably in enhancing masked face recognition performance. In [29], a
robust face recognition method called FROM (Face Recognition with Occlusion Masks) to
handle occlusions is introduced. It employs a single end-to-end deep neural network to
identify and correct corrupted features using dynamically learned masks. A vast dataset
of occluded face images is used for effective training. Unlike other methods relying on
external detectors or shallow models, FROM is both simple and powerful. Experiments
on various datasets confirm that FROM significantly enhances accuracy under occlusions
and performs well in general face recognition scenarios. In response to the global need, a
straightforward solution is offered in [30] using TensorFlow, Keras, OpenCV, and Scikit-
Learn for face mask detection. The approach efficiently identifies faces in images/videos
and determines mask presence. It handles faces with masks in motion and videos for
surveillance purposes, achieving high accuracy. The study fine-tunes optimal parameters
for Convolutional Neural Network (CNN) models to accurately detect masks without
overfitting. Table 1 compares the existing approaches for detecting and recognizing faces
in obstructed environments in the presence of COVID-19 masks.
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Table 1. Comparison of affective states-related work.

Cited Description Techniques Dataset Results

[13]
End-to-end FR network that is not
directly impacted by face masking DCNN

ACC:75.50% (CASIA)
CASIA, 98.41% (LFW)
Masked LFW, 86.15% (CALFW)
CALFW, CPLFW, 79.42% (CPLFW)
Masked CFP-FF 94.44% (CFP-FF)

[14]
DL model for face detection under
severe occlusion and unconstrained
pose variations

CNN
FDDB, PASCAL Faces,
AFW, and WIDER
FACE

Recall:
92.84% (for FDDB)

[16] Proposed a mask-aware face
recognition system

SVM
ResNet-50 RMFRD ACC:

99.53%

[17]
A face mask detection model that
combines deep and traditional
machine learning.

ResNet-50
SVM

ACC:
RMFD 99.64%
SMFD 99.49%
LFW 100%

[18]

A entire training framework for
ArcFace-based facial recognition models,
allowing them to be adapted to function
with masked faces.

LResNet-50

ACC:
MS1MV2 99.78%
Masked LFW 98.92%
Masked CFP-FF 98.33%
Masked CFP-FP 88.43%

[19]

The Additive Angular Margin Loss
function can improve the discriminative
power of feature embeddings learned
with DCNNs for FR.

ResNet-100

ACC:
IJB-B 94.2%
LFW 99.82%
CALFW 95.45%
CPLFW 92.08%

3. Materials and Methods

Overall steps of the proposed automatic face recognition (AFR-Conv) system are
described in the subsequent paragraphs. Also, the steps are visually presented in Figure 1.
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Figure 1. A systematic flow diagram of proposed AFR-Conv system to recognize human faces.

The AFR-Conv system is an automated face recognition approach that combines
advanced techniques for accurate recognition of human faces. It begins by initializing
parameters such as ConvMixer blocks and AdaBoost iterations, utilizing pre-trained CNN
models like ResNet-50, Inception-v3, and DenseNet-161 as backbone to the net-work.
The pretrained CNN models are used to allow ConvMixer to extract relevant features.
ConvMixer architecture is established with skip connections, and AdaBoost is employed
with weak classifiers. ConvMixer models are iteratively trained, while AdaBoost refines
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predictions using sample weights. This pre-trained ConvMixer architecture extract features,
and their weighted votes are combined by AdaBoost for label prediction. The algorithm’s
efficacy depends on ConvMixer block and AdaBoost iterations, leveraging pre-trained
CNNs and preprocessing for robust face recognition that addresses occlusion and benefits
from transfer learning.

3.1. Data Acquition

The data are gathered from a variety of popular datasets available on the Internet,
as described in Table 2. Faces with masks appear in a small number of datasets. As a
result, an augmentation approach is used on multiple common verification datasets to
create the synthesized face mask evaluation dataset. The data augmentation technique is
applied to LFW [31], CALFW [32], CPLFW [33], and CFP [34]. The LFW (Labeled Faces
in the Wild) is a popular public face verification benchmark containing 13K photos and
5.7K IDs. To analyze the performance of the suggested AFR-Conv, 8500 face photos with
masks were employed in total. Cross-Age LFW (CALFW) is a revision of LFW that stresses
the age disparity between positive couples even more to increase intra-class variation.
CPLFW (cross-pose LFW) is a revision of LFW that stresses pose differences to increase
intra-class variation. Frontal-Profile (CFP) is a FR dataset created to aid studies in the
challenge of in-the-wild frontal-to-profile face verification. The CFP’s frontal–profile and
frontal–frontal verification pairings are employed in this paper. Only frontal face pictures
are synthesized using face masks due to the high percentage of unsuccessful landmark
detections in profile photographs. Figure 2a illustrates an example of the LFW dataset’s
generated face mask-enhanced pictures.

Table 2. Different public face datasets statistics and selected images for experiments.

Dataset #Images #Identities Select Images Web Link

CASIA-Webface [30] 494,414 10,575 600
https://paperswithcode.com/
dataset/casia-webface (accessed on
23 February 2022)

LFW [31] 13,233 5749 2000 http://vis-www.cs.umass.edu/lfw/
(accessed on 23 February 2022)

CALFW [32] 12,174 4025 1000
http:
//whdeng.cn/CALFW/index.html
(accessed on 23 February 2022)

CPLFW [33] 12,174 4025 3000
http://www.whdeng.cn/cplfw/
index.html (accessed on 23
February 2022)

CFP [34] 10 per identity
4 profiles/identity 500 400 http://www.cfpw.io/cfp-dataset.zip

(accessed on 23 February 2022)

RMFD [35] 5000 with mask
90,000 without mask 525 500

https://github.com/X-zhangyang/
(accessed on 23 February 2022)
Real-World-Masked-Face-Dataset
(accessed on 23 February 2022)

To avoid overfitting, data augmentation is used. To increase the variance in the
training dataset, the data are augmented by mirroring and cropping the photos. Each
preprocessed face picture in the training set is supplemented into four images after the
preprocessing stage by rotating the input image in four directions: 0◦, 90◦, 180◦, and
270◦. Augmentation aids in boosting data size, producing new data from existing data,
and overcoming the absence of labeled pictures. The Real-World Masked Face Dataset
(RMFD) [35] is used in addition to the synthetic versions of typical face recognition testing
datasets. RMFD is the world’s largest masked face dataset at the time of writing. From
cleaned and annotated photos scraped from the internet, the dataset comprises 5000 masked
faces of 525 individuals and 90,000 normal faces. Figure 2b depicts photos from the RMFD
dataset with and without a face mask.

https://paperswithcode.com/dataset/casia-webface
https://paperswithcode.com/dataset/casia-webface
http://vis-www.cs.umass.edu/lfw/
http://whdeng.cn/CALFW/index.html
http://whdeng.cn/CALFW/index.html
http://www.whdeng.cn/cplfw/index.html
http://www.whdeng.cn/cplfw/index.html
http://www.cfpw.io/cfp-dataset.zip
https://github.com/X-zhangyang/
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Figure 2. Samples of the original face mask and synthesized face mask images. Figure (a) shows the
LFW face dataset images and figure (b) includes samples from the RMFD face dataset.

3.2. Extract Facial Features

The ConvMixer architecture is established, incorporating ConvMixer blocks and skip
connections for feature extraction, while leveraging pre-trained CNNs like Res-Net-50,
Inception-v3, and DenseNet-161 as backbone models. Figure 3 shows the overall steps used
to ensemble the features for training the network. We have integrated those TL models to
enhance the algorithm’s capability for robust face recognition by combining the strengths
of both ConvMixer and established CNN architectures. The pre-trained models including
ResNet-50, Inception-v3, and DenseNet-161 are described in Section 3.3 to provide a
backbone to ConvMixer architecture for effectively extracting the relevant features from
human faces. The features extraction steps are defined in the following paragraphs.
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The first and most important step in an automated AFR system is face detection. A
face image is used as an input in the face detection method, and the output is used to
detect the exact individual from the dataset. Face feature extraction extracts geometrically
formed facial features for face identification [36]. To extract the features, first eye detection
considers the face map, which is the output of face detection and cropping. Face edges
are recognized after the face mapping process. Gabor filters are used to create a filtered
face image. Gabor kernels in two dimensions are used. The generic eye detector is given
a filtered face image and uses a Fast Transfer Learning method based on support vector
machines to detect the eye appearance from other facial features (MultiFTLSVM) [37].
The MultiFTLSVM classifier’s fundamental idea is to create a hyperplane that isolates
eye features from other features. It obtains eye, nose, and mouth sub-images based on
geometrical considerations and extracts the fiducial points from the detected eye centers.
Those regions are extracted from each face images and then submitted to transfer learning
based on ResNet-50, DenseNet-161 and Inception-v3 architectures for learning the features.
Afterwards those features are combined in a feature vector, which are then used by Con-
vMixer architecture to finalize the discriminative features. These steps are presented in
Figure 3.

3.3. Pre-Trained Transfer Learning

The proposed face recognition system employs three of the most powerful pre-trained
CNN models: ResNet-50 [38], Inception-v3 [39], and DenseNet-161 [40]. There are also
several disadvantages related to CNN models. The two most significant drawbacks are the
lengthy processing period and the overfitting issue. Because of the processing time needed,
a deep learning model [41] is difficult to implement on a single normal computer system
with few CPUs. Fortunately, graphics processing units (GPU) have solved this problem as
technology has advanced [42]. The deep learning model can be used in real-world settings
by combining numerous CPUs and GPUs. There is also an issue of overfitting with the
CNN model. They are trained on millions of learnable parameters, as previously stated.
Therefore, CNN-based systems usually require a large amount of training data. Although
numerous strategies have been employed to reduce this issue, such as data augmentation
and dropout, the amount of training data in such CNN systems remains enormous. Re-
cently, to deal with this problem, the transfer learning method was adopted [35,43]. The
transfer learning method allows us to apply a CNN that has been trained with enough
training data for one problem to another. This strategy has been found to be useful in
several situations, especially when significant amounts of training data are sparse, such as
in medical imaging [44] or finger vein recognition [45].

Figure 3 shows a comparison of the transfer learning scheme with the conventional ML
method. As shown in this figure, the transfer learning approach learns system information
from two sources: the challenge to be solved (“target task”) and knowledge (a model)
gained from a previous machine learning problem. In a traditional machine learning
system, the system model is only learned for a single job using a single source of data.
CNN can be reused and transferred to a new problem using the transfer learning method.
We modified the DenseNet-161 model for our experimental work and used it to construct
the proposed CNN architecture. The Image-Net dataset was used to pre-train the VGG16
model. Section 3.3 describes the design of the proposed model FAR-Conv. Furthermore,
the fully connected layer was employed as the last layer for classification in the pre-trained
DenseNet-161 model. The AdaBoost classifier is used to distinguish human faces with
occlusions in the proposed improved model. Figure 4 shows a visual example of VGG-16
architecture used for ConvMixer architecture.
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3.4. Proposed ConvMixer Learning Model

The AFR-Conv system is developed in this paper based on the trained ResNet-50
model. The AFR-Conv system architecture is depicted in Figure 1. For object recognition,
a novel architecture based on depthwise separable convolutions was recently proposed.
Tolstikhin et al.’s MLP-Mixer model [44,45] was used as inspiration for the architecture. To
be more specific, a depthwise convolution is used to mix spatial locations before a pointwise
convolution is used to combine channel locations. Figure 5 shows the ConvMixer blocks’
modified version of the original ConvMixer layer. The batch normalization operation and
activation layers are switched in order from the original version. We also utilize ReLU
instead of GELU to activate all layers. The DSC offers two advantages when it comes to
constructing a deep learning model: (1) It might be able to reduce the number of parameters,
and (2) it may be used to improve model generalization. Thus, DSC was found to improve
training efficiency and classification accuracy.

The ConvMixer architecture tries to prove that the superiority of the ViT is partly due
to using image patches and introduces a novel ConvMixer model that is similar to the
ViT as well as the MLP-Mixer model. It works directly with patches as input, isolates the
mixing of spatial and channel dimensions, and keeps the network’s size and resolution
constant, but it utilizes convolutions to achieve the mixing steps. It gives better validation
accuracy compared with a basic CNN model with four times fewer parameters. It also uses
batch normalizations instead of layer normalizations.

The ConvMixer model is a recent approach that highlights the power of processing
images in patches to achieve impressive performance on various tasks. Its architecture
consists of first splitting input images, each of 32 × 32 pixels with three RGB channels, into
different patches, enabling local information processing. The crux of ConvMixer lies in the
alternating application of convolutional networks along the channel-wise and space-wise
dimensions of these patches. This approach allows the model to capture cross-channel
interactions and local spatial relationships effectively. Without the need for recurrent layers
or self-attention mechanisms, ConvMixer demonstrates remarkable results by assembling
basic building blocks like convolutions, non-linearities, batch normalizations, mean pooling,
and dense layers in different architectures. This simple yet potent model sheds light on
the significance of patch representations for high-performance image understanding and
classification tasks. Further insights and specific architectural details can be found in the
original ConvMixer paper. The architecture of ConvMixer is summarized in Figure 5.
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The main concept of the ConvMixer architecture is to begin by splitting the input
image into patches of size (p, p) using a convolutional layer with the stride argument.
The stride determines how the convolutional kernel moves across the input image. If
the stride is set to 1, the convolutional kernel is applied around every pixel in the image,
resulting in overlapping patches. The overlap occurs because the kernel moves one pixel
at a time, covering neighboring regions. On the other hand, if the stride is set to a value
greater than 1 (e.g., stride = 2), the convolutional kernel skips pixels, only applying the
convolution to every other pixel. As a result, the patches become non-overlapping and
cover the image in a grid-like fashion. When stride = p, the convolutional kernel moves
p pixels at a time, leading to disjointed and adjacent windows. These windows cover
the entire image in non-overlapping patches of size (p, p). Each patch is then processed
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independently through the ConvMixer architecture, allowing the model to focus on local
information and efficiently capture spatial relationships within each patch.

This patch-based processing is a fundamental aspect of ConvMixer’s design, enabling
the model to capture fine-grained features and achieve impressive performance on various
tasks without the need for complex recurrent or attention mechanisms. Therefore, the first
layer of ConvMixer is:

Z0 = BNorm(σConvol → h(X, stride = p, kernelsize = p)) (1)

The second part of the model is the main ConvMixer layer, which is repeated a number
of times according to the model depth. This layer consists of residual block containing
a depthwise convolution. A residual block is nothing but a block where the output of a
previous layer is added to the output of another later layer. In this case, the inputs are
concatenated to the output of the depthwise convolution layer. This output is followed
by the activation block, which is then followed by a pointwise convolution and another
activation block.

Zl = BNorm(σConvolDepthwise(Zl−1)) + Zl−1 (2)

and
Zl+1 = BNorm(σConvolpointwise(Zl)) (3)

The third part of the ConvMixer model involves a global pooling layer to obtain a
feature vector of size h from the processed patches. Global pooling reduces the spatial
dimensions of each patch to a fixed size, which can then be passed to a SoftMax classifier,
depending on the specific task. The activation function used in ConvMixer is GELU
(Gaussian Error Linear Unit). GELU is a smooth and differentiable activation function that
is known to perform well in deep neural networks. Unlike ReLU (Rectified Linear Unit),
which sets all negative values to zero, GELU weighs the inputs based on their magnitude
rather than gating them based on their sign. This characteristic of GELU allows it to
preserve both positive and negative information in the activation, making it suitable for
models like ConvMixer.

GELU(x) = x. ϕ(x) (4)

This smooth non-linearity helps in reducing the issues of “dying ReLU” where neurons
get stuck and stop learning due to being always inactive (zero gradient). Overall, the global
pooling and GELU activation contribute to the final feature representation of the image
patches, enabling the ConvMixer model to produce a compact and informative feature
vector that can be used for downstream tasks such as image classification or object detection.

The patch embedding in the ConvMixer model summarizes a p × p patch from the
input image into an embedded vector of dimensions e. The embedding process is achieved
through a single convolutional layer with a kernel size of p, a stride of p, and h output
channels. This convolutional operation takes the p × p patch as input and transforms
it into a new representation with h channels. The result of the convolutional operation
is then passed through a non-linearity, which introduces non-linearity to the embedding
process. The non-linearity can be the GELU activation function, which has been previously
mentioned as the activation function used throughout the ConvMixer model.

This patch embedding trick is used to convert the entire n × n image into a feature
map with dimensions h × n/p × n/p. Each h × n/p × n/p feature map corresponds to
the embedded representation of a particular patch of size p × p. To normalize the output
of each layer and stabilize the training process, batch normalization is applied after each
convolutional layer in the ConvMixer model. Batch normalization centers and scales the
activations within a batch along each dimension, introducing learnable parameters for the
mean and standard deviation. In this framework, BatchNorm(H) is used to apply batch
normalization after the convolutional layer, where H represents the number of output
channels from the convolution operation.
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By incorporating patch embedding and batch normalization, the ConvMixer model
can effectively process patches of the input image and extract meaningful features, enabling
it to achieve remarkable performance on various tasks. See Algorithm 1.

Algorithm 1: Proposed Automatic Face Recognition Using ConvMixer CNN.

Input:
Output:

Read Tensor X
Feature map Extracted x = (x1, x2, x3, . . ., xn)

Step 1. Data Augmentation and Preprocessing
Step 2. To begin, create the essential functions (a) Conv-Batch Norm and (b) Separable ConvBatch Norm.
Step 3. The Conv-Batch Norm block accepts tensor X, which contains a number of filters, and kernel size as inputs.

(a) X is given a Convolution layer.
(b) After that, Batch Normalization is used.

Step 4. We utilized Separable Conv2D instead of Conv2D in the Conv-Batch Norm Block in Step 2.
Step 5. Model Construction

Step 6.

(a) There are two Conv layers with 32 and 64 filters each. A ReLU activation follows each of these.
(b) Then, using Add, Skip Connection is used.
(c) There were three skip connections. Two Separable Conv layers precede Max-Pooling in each Skip

Connection. The skip connection has Conv of 1 × 1 with strides 2.

Step 7. After that, the feature map x = (x1, x2, . . ., xn) was created and flattened using the flatten layer.

3.5. Deep Residual Network Connections

The terms “residual connections” and “skip connections” are interchangeable. They
are utilized to allow gradients to flow directly through a network, bypassing non-linear
activation functions. The non-linear character of non-linear activation functions causes
gradients to erupt or vanish (depending on the weights). Skip connections resemble a ‘bus’
that travels the length of the network, with gradients flowing backwards.

The residual link, also known as a skipped connection, skips the two or three tiers of
the network. Figure 6 depicts the DL network’s solitary remaining connection block. As
shown in Figure 5, there are three residual blocks in our proposed CNN model. The benefit
of using residual connectivity in a DL model is that the function from the previous layer
is added to the next layer by the preceding levels of the model network. A shortcut link,
as shown in Figure 6, defines the residual network by transforming the network building
block into its residual counterpart. The identity mapping shortcuts mentioned in Equation
(5) can be used directly when the input and output dimensions are the same.

y = F(x, {Wi}) + x (5)
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The building block is changed to a bottleneck building block for computational reasons.
Instead of two layers, a stack of three layers is employed for each residual function F, as
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shown in Figure 6. The three layers are 1 × 1, 3 × 3, and 1 × 1 convolutions, with the 1 × 1
layer lowering and then raising (restoring) dimensions, and the 3 × 3 layer acting as a
bottleneck with reduced input/output dimensions. Practical concerns have led to the use
of the bottleneck building block. Furthermore, the bottleneck construction block is caused
by the deterioration problem of plain networks. The architectural layers of ResNet-50 are
depicted in Table 3.

Table 3. ResNet-50 architectural view.

Layer Name Layer Type Input Size Output Size

Input Image Input (32, 32, 32, B) (32, 32, 32, B)

Patch Split Convolution (Stride = p,
Kernel = p) (32, 32, 32, B) (h, n/p, n/p, B)

ConvMixer Block 1 Alternating
Convolutional Layers (h, n/p, n/p, B) (h, n/p, n/p, B)

Skip Connection 1 Elementwise Addition Same Same

ConvMixer Block 2 Alternating
Convolutional Layers Same Same

Skip Connection 2 Elementwise Addition Same Same

ConvMixer Block 3 Alternating
Convolutional Layers Same Same

Skip Connection 3 Elementwise Addition Same Same
Global Pooling Global Average Pooling Same Same
Flatten Flatten (h, 1, 1, B) (h × B,)
Dense Layer Dense (h × B,) (e, B)
SoftMax Softmax (e, B) (num_classes, B)

The genuine output value is H(x), and the residual learning of layers in the network
input x is F(x).

The input size (32, 32, 32, B) represents the initial image size with B being the batch
size. h is the number of output channels from the patch embedding layer, and n/p is
the resulting spatial dimension after patch splitting. The ConvMixer blocks consist of
alternating convolutional layers applied channel-wise and space-wise. Skip connections are
added after each ConvMixer block to directly add the output of the block to its input. This
helps avoid the vanishing gradient problem and allows the model to go deeper effectively.

Global average pooling is applied to obtain a global representation of the feature map.
The final Dense layer is used for classification, and the SoftMax activation function

is applied to produce the probabilities for each class. The output size is (num_classes,
B), where num_classes is the number of classes in the classification task. Please note that
the actual values of h, p, e, and num_classes depend on the specific configuration and
requirements of the ConvMixer model and the ResNet-50 architecture being used. The table
provides a general outline of how skip connections can be incorporated into the ConvMixer
model to make it deeper and more powerful, similar to ResNet-50.

3.6. Features Classified Using AdaBoost Classifier

The Adaboost [46] algorithm is an ML technique for FR that uses eigenvalues to extract
features. The AdaBoost algorithm is used to develop a powerful learner over several rounds.
AdaBoost creates a powerful learner by layering weak learners on top of one another. A
new weak learner is added and a weighting vector is adjusted to focus on examples that
were misclassified in previous rounds to produce a strong classifier employing numerous
classifiers while training the dataset. Face recognition analysis is widely employed in a
variety of applications. According to a review of the literature, various algorithms have
been created to recognize faces. The AdaBoost method is a simple-to-implement algorithm
that improves detection accuracy. As a result, this research evaluates an AdaBoost algorithm
for human face recognition, see Algorithm 2.
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All samples are equally weighted with Wi during the AdaBoost training phase. The
weights are then repeatedly improved by raising the weights associated with misclassified
data. To generate the final output of the boosted classifier, numerous weak learners can
be combined in a weighted sum using the AdaBoost process. When compared with other
commonly used classifiers such as neural networks and SVM, AdaBoost can achieve good
classification performance with fewer parameter adjustments. We only choose a weak
classifier for the specified classification problem and the number of boosting steps used
in the training step when implementing AdaBoost. Each round of boosting can include
many weak classifiers. At each round of boosting, the AdaBoost algorithm will choose
the weakest classifier that gives the best results. The following are the major processes
involved in implementing the AdaBoost algorithm. To implement it, we need decision
stumps, which work on the principle of the AdaBoost classifier. The procedure is carried
out three times. A linear combination of weak classifiers makes up the final classifier.

AdaBoost must meet two requirements: (1) the classifier must be trained interactively
on a variety of weighed training instances; and (2) the classifier must be trained on many
weighed training examples. It seeks to minimize training errors in each iteration to produce
a good fit for these samples. What is the mechanism behind the AdaBoost algorithm? The
procedure is as follows: AdaBoost begins by randomly selecting a training subset. It trains
the AdaBoost machine learning model iteratively by selecting the training set based on
the previous training’s accurate prediction. It gives incorrectly categorized observations
a larger weight so that they have a higher chance of being classified correctly in the next
iteration. Equation (6) represents this state as follows:

S(x) = w1s1(x) + w2s2(x) + w3s3(x) + w4s4(x) (6)

where S is a string classifier, w is the weight parameter, s1 and s2 are weak classifiers and x is
a feature vector in Equation (6). The sign of s1(x) decides to which class point x is assigned
by the ith weak classifier, and the sign of s(x) decides to which class point x is assigned by
the final strong classifier. In addition, it distributes weight to the trained classifier in each
iteration based on the classifier’s accuracy. The classifier with the highest accuracy will be
given the most weight. This process is repeated until all the training examples fit nicely or
the largest number of predictions has been reached. A “vote” is performed across all the
learning algorithms created to categorize them.

Algorithm 2: AdaBoost Classifier to Recognize Human Faces.

Input:
Output:
Initialize:

Process:
Step 1:

Input Extracted Feature map x = (x1, x2, x3, . . ., xn) with labels Y.
Class Labels, Y = 1,0 where 1 shows the recognized and non-recognized face and test data xtest.
Weights w1; i = 1/2l or1/2m for yi or with l + m = n, respectively. where m and l are positive and
negative samples.

Construction of AdaBoost Classifier for Recognizing human faces

(a) The AdaBoost classifier is trained using feature samples x = (x1, x2, x3, . . ., xn) derived from the
proposed ConvMixer deep learning architecture, which includes both positive and negative data.

(b) Use Equations (4)–(6) to generate week classifiers and update weight over misclassified samples.

Step 2. Combine the week classifier to generate strong classifier to recognize human identity.

Step 3.
The decision function of the equation below is used to allocate test samples xtest to a class label. Xtest =
(w.x) + b.

3.7. Fine-Tuned Model and Hyperparameters

In this face recognition example, we begin by preparing a dataset containing face
images, which we split into training, validation, and test sets. For the ConvMixer architec-
ture, we adopt a simplified version consisting of a single layer with a convolutional step,
followed by LayerNorm, ReLU activation, and a Feedforward Mixer with ReLU activation.
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The model’s weights are initialized using He initialization. During training, we employ a
fixed learning rate of 0.001 and perform data augmentation with a batch size of 32 and a
dropout rate of 0.2 to regularize the model. The goal is to minimize the cross-entropy loss
function as it is well-suited for classification tasks like face recognition.

Next, we integrate an AdaBoost classifier into the system. The ConvMixer model acts
as the base classifier, and we train AdaBoost with 50 weak learners and a learning rate of
0.1. The AdaBoost algorithm will combine the outputs of these weak learners to form a
strong classifier, enhancing the overall performance of face recognition.

Throughout the process, we conduct a hyperparameter search to fine-tune the model
effectively. This involves experimenting with various hyperparameter combinations to
optimize the ConvMixer’s performance on the validation set. In cases of overfitting, we
consider implementing early stopping to prevent excessive training. Finally, we evaluate
the fully trained AdaBoost classifier on the test set to obtain an unbiased estimate of its
performance in recognizing human faces. By iteratively adjusting the model architecture
and hyperparameters, we aim to achieve the best possible accuracy in face recognition,
making this approach applicable to real-world scenarios involving video surveillance and
urban security.

3.8. System Implementation

The AFR-Conv system outlines an approach for automated face recognition that com-
bines multiple advanced techniques to achieve accurate results. These steps are described
in Algorithm 3. It begins by initializing parameters, including the number of ConvMixer
blocks and AdaBoost iterations, and selecting powerful pre-trained CNN models such as
ResNet-50, Inception-v3, and DenseNet-161. The preprocessing step prepares the training
and testing images for analysis. The algorithm then sets up the ConvMixer architecture,
including ConvMixer blocks and skip connections. AdaBoost is initialized with sample
weights and weak classifiers. During the training phase, ConvMixer models are trained
iteratively on the training data. Predictions are made using AdaBoost, sample weights are
adjusted based on classification errors and alpha values are calculated for weak classifiers.
The algorithm also leverages the strengths of pre-trained CNNs by extracting features
using ResNet-50, Inception-v3, and DenseNet-161. The AdaBoost classifier combines these
features’ weighted votes to predict labels for testing images. In the evaluation phase,
the algorithm assesses the predicted labels’ accuracy and performance metrics. This ap-
proach effectively combines ConvMixer, pre-trained CNNs, and AdaBoost to create a robust
face recognition system that takes advantage of transfer learning (TL), handles occlusion,
and produces accurate predictions. The algorithm’s comprehensive methodology holds
potential for improving facial recognition outcomes in real-world scenarios.

The algorithm’s effectiveness hinges on a set of pivotal settings and configurations that
tailor its behavior and performance. At its core, the algorithm revolves around key parame-
ters, including the number of ConvMixer blocks for feature extraction and the iterations
for the AdaBoost algorithm to refine predictions. By design, it harnesses the capabilities of
potent pre-trained CNN models—namely, ResNet-50, Inception-v3, and DenseNet-161—to
extract intricate features from images. The preprocessing step encompasses essential trans-
formations such as image resizing and normalization, readying the training and testing
images for subsequent analysis. In the heart of the algorithm, the ConvMixer architec-
ture materializes with a specified count of ConvMixer blocks, complemented by strategic
skip connections.
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Algorithm 3: Advanced Automated Face Recognition System.

Step 1
Input: Training images with labels, Testing images, Number of ConvMixer blocks (num_blocks), Number of
boosting iterations (num_boosting_iterations)
Output: Accuracy, F1-score, Precision, Recall metrics

Step 2 Parameters Setup: num_blocks← 3, num_boosting_iterations← 5

Step 3
Preprocessing: Define image preprocessing transformation: Resize images to (224, 224) and convert to tensor
and normalize pixel values

Step 4
Pre-trained CNN Initialization: pretrained_models← [ResNet-50, Inception-v3, DenseNet-161]
Freeze all parameters in pretrained_models

Step 5

ConvMixer Model: Define ConvMixerBlock class and Define ConvMixer block layers

(a) Define ConvMixerArchitecture class: Define ConvMixer architecture with ConvMixer blocks and skip
connections

(b) Initialize conv_mixer_model as ConvMixerArchitecture()

Step 6
AdaBoost Initialization: Initialize sample_weights with equal weights for training samples, initialize
weak_classifiers as DecisionTreeClassifiers with max_depth = 1, and initialize adaboost_classifier as
AdaBoostClassifier with weak_classifiers and num_boosting_iterations

Step 7

Training: For each boosting_iteration in range(num_boosting_iterations):

− Train conv_mixer_model using ConvMixer blocks on training data
− Compute ConvMixer predictions
− Calculate errors, alpha values, and update sample_weights
− Train weak_classifiers and update sample_weights for adaboost_classifier

Step 8
Face Recognition Example: For each testing image: Extract features from testing_images using
pretrained_models, and Predict labels using adaboost_classifier

Step 9

Evaluation and Output: Calculate accuracy as accuracy_score(testing_labels, predicted_labels)
Calculate F1-score as f1_score(testing_labels, predicted_labels, average = ‘macro’)
Calculate precision as precision_score(testing_labels, predicted_labels, average = ‘macro’)
Calculate recall as recall_score(testing_labels, predicted_labels, average = ‘macro’)
Output accuracy, F1-score, precision, and recall metrics

Step 10 [End of Algorithm]

The AdaBoost component initializes with calculated sample weights and incorporates
weak classifiers, like decision stumps, to iteratively improve the model’s performance.
During training, the ConvMixer model learns iteratively from the training data, iteratively
refining its weights to minimize errors. On the face recognition front, the pre-trained CNN
models extract features from the testing images, while the AdaBoost-generated weighted
votes synergize to produce insightful predictions. Ultimately, the algorithm’s efficacy
hinges on thoughtful parameter choices, such as learning rates and batch sizes, as well as
diligent experimentation and fine-tuning to align with the specific problem context and
desired performance outcomes.

Our aim is to develop a system that can not only recognize people’s faces but also
handle challenging situations like occlusions caused by sunglasses, face masks or hats.
To achieve this, the algorithm’s settings and configurations are crucial in shaping its per-
formance. Firstly, the algorithm’s parameters are defined. We decided to utilize three
ConvMixer blocks for feature extraction and opt for five iterations in the AdaBoost algo-
rithm to refine our predictions. Moreover, we leverage the power of three pre-trained CNN
models: ResNet-50, Inception-v3, and DenseNet-161. These models come with pre-learned
features, which can greatly assist in identifying facial attributes. The preprocessing step
is essential to ensure consistency across our dataset. All training and testing images are
resized to a standard size and their pixel values are normalized to a common range of 0 to
1. This initial preparation creates a level playing field for subsequent analysis. We kickstart
the process by initializing pre-trained CNN models. These models, having been trained on
extensive datasets, are loaded and ready to extract meaningful features from the images.
Then, our ConvMixer architecture is configured. With three ConvMixer blocks and the
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inclusion of skip connections, the architecture is primed to capture intricate features from
facial images, crucial for accurate recognition.

The AdaBoost component is initialized by assigning equal weights to all training
samples and preparing weak classifiers, such as decision stumps. As we delve into the
training phase, the ConvMixer model learns iteratively from the training data. After each
iteration, ConvMixer predictions are calculated, and sample weights are adjusted based
on errors. The AdaBoost algorithm then takes the lead, updating sample weights to focus
on misclassified samples and calculating alpha values for weak classifiers. When it is time
for face recognition, we apply the pre-trained CNN models to extract features from the
testing images. AdaBoost, being an ensemble learning technique, combines the weighted
votes from the weak classifiers to make predictions. The result is a predicted label for each
testing image.

Finally, we evaluate the system’s performance. By comparing the predicted labels
to the actual labels of the testing images, we compute crucial metrics, including accuracy,
precision, recall, and the F1-score. These metrics provide insights into how effectively our
algorithm recognizes faces, even in situations involving partial obstruction. As a result of
rigorous training, evaluation, and parameter tuning, our Automated Face Recognition sys-
tem achieves an impressive accuracy of around 97%. The innovative blend of ConvMixer’s
feature extraction, the expertise of pre-trained CNN models, and the ensemble predictions
of AdaBoost culminate in a powerful solution that outperforms conventional methods. This
development underscores the potential of this new approach in the realm of facial recogni-
tion, making possible improved accuracy and robustness against challenging scenarios.

4. Results
4.1. Environmental Setup

To achieve high performance with the proposed AFR-Conv-Ada method, the model
required a large dataset. Moreover, due to the overfitting issue, the architecture’s perfor-
mance degraded with a small dataset, with the network performing well on a training set
but poorly on test data. The data augmentation method is used in this study to enlarge
the dataset and alleviate the overfitting problem. As a result of the data augmentation
approach that employs fundamental image processing methodology, the dataset size is
increased. The Google Colab platform is used to execute the implementation, which is
based on the PyTorch deep learning framework and runs on two NVIDIA 2080ti (12 GB)
GPUs. The batch size in training is set at 128, and the training process takes 32K iterations
to complete. We extract the 512-dimension attributes for each normalized face in testing.
We apply data augmentation to the training set, such as flipping data, to reduce overfitting
and increase the generalization of the trained models. All the images are preprocessed
using the Viola–Jones method, and then the extracted parts are selected and stored in a
database before the feature extraction step. In the training dataset, 30% of the face images
are allocated to training the classifier, and 70% of the images are used to test the recognition
of the proposed system.

4.2. Data Augmentation for Class Imbalance

The optimization method is a stochastic gradient descent SGD + momentum (0.9)
with momentum. The batch size is 256. Regularization: The weight decay is 5 × 10−4,
and L2 regularization is employed. After the first two completely linked layers (p = 0.5),
dropout occurs. Even though ResNet50 is deeper and has more parameters, we believe
it can converge in fewer cycles for two reasons: first, the increased depth and smaller
convolutions introduce implicit regularization; second, there are several layers of pre-
training. Initialization of parameters: For a shallow network, parameters are initialized
at random. The weight w is sampled from N (0, 0.01), and the bias is set to 0. The first
four convolutional layers and three fully connected layers are then initialized using the
parameters of the A network for deeper networks. It was later discovered, however, that it
is also feasible to directly initialize it without the need for pre-trained parameters. Each
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rescaled image is randomly cropped in each SGD iteration to generate a 224 × 224 input
image. The cropped image is additionally randomly flipped horizontally and RGB color
altered to improve the dataset.

4.3. Model Training

After the first, second, and fifth CONV layers, the network utilizes an overlapping
max-pooling layer for training. Max-pool layers with strides smaller than the window
size are referred to as overlapping max-pool layers. With a stride of 2, a 3 × 3 max-pool
layer is employed, resulting in overlapping receptive fields. The top-1 and top-5 mistakes
were reduced by 0.4 percent and 0.3 percent, respectively, because of the overlapping. In
detail, the focal loss function modifies the cross-entropy loss to concentrate learning on
difficult negative cases. It is a dynamically scaled cross-entropy loss, meaning the scaling
factor decreases as confidence in the proper class grows. This scaling factor, on the surface,
appears to automatically down-weight the contribution of simple cases during training
and quickly focus the model on challenging examples.

Training: After the dataset has been prepared and the CNN has been selected, the
network may begin to be trained. The values of the learnable parameters are altered at
random during this method, and the related features are computed to offer a preliminary
categorization of the pictures in the training set. The network’s performance is measured
using a metric (the loss function) that measures the similarity between the prediction and
the ground truth. To improve the loss function and hence enhance correct predictions, pa-
rameters are iteratively modified. However, as previously mentioned, we must distinguish
between two distinct scenarios. The first relates to a situation in which the whole network
must be taught. In this situation, all of the network’s parameters must be learned from
scratch. In the second scenario, we can start with the pre-trained network and then modify
some of its layers or add new layers to adapt it to the specific task you’re interested in.
This is particularly useful when you have a limited amount of data for the new task, as the
pre-trained network has already learned useful features from a different, potentially larger
data set. Fine-tuning allows you to leverage these learned features and adapt them to the
new task, often resulting in faster convergence and improved performance.

4.4. Results Analysis

In this experiment, data is gathered from a variety of popular datasets available on
the Internet. Faces with masks appear in a small number of datasets. As a result, an
augmentation approach is used on multiple common verification datasets to create the
synthesized face mask evaluation dataset. The data augmentation technique is applied
to LFW [31], CALFW [32], CPLFW [33], and CFP [34]. The LFW is a popular public face
verification benchmark containing 13K photos and 5.7K IDs. To analyze the performance
of the suggested AFR-Conv-Ada, 8500 face photos with masks were employed in total.
First, we examine the training and validation accuracy of the model, as well as the loss
function on the validation and training data. Using the 8500 images, Figure 7 illustrates the
AFR-Conv-Ada model validation and training accuracy. As demonstrated in the figure, our
model performs well in both validation and training. The 96.5% accuracy is achieved based
on validation and training data, demonstrating that the AFR-Conv-Ada method performs
efficiently on the selected dataset.
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Next, to gain further insight into the proposed detection algorithm’s performance,
the proposed AFR-Conv-Ada model’s classification result is represented by a confusion
matrix. The proposed technique was found to correctly categorize human faces despite
occlusions. This indicates that all samples have been appropriately categorized according
to the predicted value. As a result, it confirms that the AFR-Conv-Ada approach also has
high detection accuracy on selected datasets.

Since these are the most often used performance metrics, we utilize accuracy, recall,
and F1-score to assess how well our model performs. We discuss the best results in terms of
accuracy and loss and then compare our findings to those of other researchers in this field
who have used various datasets to assess model performance. The experimental results
of the ENSEMBLE-FRO approach are presented in terms of precision (PR), recall (RE),
and detection accuracy (DA) metrics. The proposed APR-Conv-Ada is composed of three
pre-trained DL architectures: Inception-v3, ResNeXt-50, and DenseNet-161. It achieves
94% for PR, 91% for RE, and 90% for DA on the 8500 selected face images. Table 4 shows
that the proposed APR-Conv-Ada system better identifies human faces than other transfer
learning algorithms such as ReseNet-50, DenseNet-161, Ensemble-CNNs, and Inception-V3
because it makes fewer mistakes. Furthermore, APR-Conv-Ada using the AdaBoost model
achieves 97.5% classification accuracy, recall, and precision.
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Table 4. Results of different transfer learning algorithms compared with proposed APR-Conv-Ada
method when face occlusion is 25% on testing and training datasets.

Model Precision Recall Accuracy F1-Score

Resnet-50 89.5% 85.6% 90.5% 89.5%
Inception-V3 86.2% 84.3% 85.5% 83.5%
DenseNet-161 87.5% 86.5% 91.3% 90.5%
Ensemble-CNNs 89.5% 85.6% 90.5% 89.5%
APR-Conv-Ada 95.5% 97.6% 97.5% 98.5%

The presented strategy, as shown in Table 5, outperforms the existing DL models.
In this work, the proposed technique is compared with other current models in terms of
accuracy and computing complexity. The comparisons were performed with VGG-16 [30]
and Alex-Net [31] systems on our selected dataset. We have selected these two systems
because they are easy to implement. Compared with these two systems, our method
required a total processing time of 163 s. Overall processing times for the VGG-16 and
Alex-Net were 184 s and 209 s, respectively. Based on these findings, it was determined that
the proposed model took less time to identify faces. This shows that the proposed model is
more efficient than its successors.

Table 5. Average processing time on selected datasets with state-of-the-art systems using CPU.

Deep Learning
Framework Training Attribute

Extraction Prediction Total Time

VGG-16 [30] 180.2 s 2.0 s 1.8 s 184 s
Alex-Net [31] 205.1 s 2.2 s 1.9 s 209.2 s
AFR-Conv-Ada 160.5 s 1.8 s 1.4 s 163 s

The GPU is also used by Google Colab to test the computational performance of the
proposed AFR-Conv-Ada system on this dataset. The GPU is used for high-performance
computing. It can be thought of as a set of cores with a software layer that enables parallel
processing. In contrast to the CPU, the GPU shows that its performance in terms of
execution time is fast. The performance of several transfer learning algorithms is compared
with the proposed AFR-Conv-Ada classifier in Table 6.

Table 6. Average processing time on selected dataset with state-of-the-art systems using GPU.

Deep Learning
Framework Training Attribute

Extraction Prediction Total Time

VGG-16 [30] 180.2 s 2.0 s 1.8 s 184 s
Alex-Net [31] 205.1 s 2.2 s 1.9 s 209.2 s
AFR-Conv-Ada 120.5 s 1.2 s 0.4 s 122.4 s

Table 7 shows the experimental results of different transfer learning algorithms com-
pared with the proposed APR-Conv-Ada when face occlusion is 35% on testing and training
datasets. Table 7 presents the experimental results when face occlusion is 35% on the testing
and training datasets. As can be observed in Table 7, the three pre-trained DL architectures,
Inception-v3, ResNeXt-50, and DenseNet-161, are compared in terms of precision (PR),
recall (RE), detection accuracy (DA), and metrics when face occlusion is 35%. It can be ob-
served that the F1-score for the ResNeXt-50 model achieves 89.5%. While the Inception-V3
model achieves 83.5%. The DenseNet-161 model achieves 90.5%, and it should be noticed
that the F1 score for the APR-Conv-Ada model is 89.5%. Finally, the APR-Conv-Ada model
achieves 98.5%. As shown in the results, due to the influence of the Ensemble-CNNs-W
model and other models, the accuracy is highest on the F1 score when face occlusion is 35%.
As it can be observed from Table 7, the F1-scores for the Ensemble-CNNs, Inception-V3,
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ResNeXt-50, and DenseNet-161 models are 87.5%, 81.5%, 89.2%, and 87.1%, respectively,
while the AFR-Conv-Ada model achieves high performance (98.0% classification accuracy)
when face occlusion is 35% on testing and training datasets. The proposed method obtained
nearly the same accuracy as the above-mentioned classification systems; however, we tested
our model on a considerably larger dataset that mostly met all real-world requirements.

Table 7. Results of different transfer learning algorithms compared with proposed AFR-Conv-Ada
system when face occlusion is 35% on testing and training datasets.

Model Precision Recall Accuracy F1-Score

Resnet-50 87.5% 84.6% 88.5% 87.5%
Inception-V3 84.2% 83.3% 83.5% 81.5%
DenseNet-161 85.5% 84.5% 89.3% 89.2%
Ensemble-CNNs 87.5% 83.6% 88.5% 87.1%
AFR-Conv-Ada 95.0% 97.0% 97.0% 98.0%

Table 8 shows even higher performance in verification by using AFR-Conv-Ada com-
pared with other techniques. In this table, the proposed method is trained on a dataset with
45% face occlusion on the testing and training datasets. The proposed technique’s verifica-
tion performance is only marginally improved by training on the synthetic dataset. In this
experiment, the synthesized CALFW training dataset was utilized to test the performance
of the proposed system. In fact, after training with the synthesized dataset, recognition
performance on the cross-age CALFW database declined. Rather, in all synthesized datasets
in the table, the approach achieves significantly improved verification performance. The re-
sults of different transfer learning algorithms compared with the proposed AFR-Conv-Ada
system for face occlusion are displayed in Table 8. This table indicates that the AFR-Conv-
Ada approach improves verification performance in a similar way. In addition, the ROC
curve is also used to measure the performance of the proposed classifier AFR-Conv-Ada in
training and test datasets by 10-fold cross-validation. Figure 8 shows the ROC curve of the
proposed method.

Table 8. Results of different transfer learning algorithms compared with proposed AFR-Conv-Ada
when face occlusion is 45% on testing and training datasets.

Model Precision Recall Accuracy F1-Score

Resnet-50 83.5% 80.6% 84.5% 83.5%
Inception-V3 80.2% 78.3% 78.5% 77.5%
DenseNet-161 81.5% 80.5% 85.3% 85.2%
Ensemble-CNNs 83.5% 79.6% 83.5% 82.1%
AFR-Conv-Ada 94.3% 96.2% 96.5% 97.0%

The image alignment with an affine transform utilizing face landmarks developed by
MTCNN is used to evaluate AFR-Conv-Ada [22]. The same hyperparameters as specified
in [1] for training on the dataset are utilized for the AFR-Conv-Ada model trained on the
face-mask synthesized CASIA-Webface. The 6000-face mask is utilized to generate image
pairings derived from the original pairs for assessment in the LFW dataset, together with 10-
fold cross-validation and the conventional unrestricted with labeled outside data technique.
The half-synthesized pairs are constructed in this experiment to examine verification
performance between face-masked images and normal images, with just the second image
in each pair synthesized. Half-synthesized image pairs using original pairs and synthesized
pairs presented by the database were also used in CFP-FF, CFP-FP, CALFW, and CPLFW
evaluations. On the real-world dataset RMFD, the experiment is carried out by creating 800
mask-to-mask and mask-to-non-mask combinations at random, with equivalent negative
and positive pairs. In images without face masks, non-mask-to-non-mask pairs are also
generated and utilized for reference. As demonstrated in Figure 8, our training and
validation accuracy continue to improve without reaching a point where the curve becomes
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stable. This result supports our prior prediction that the loss of features due to occlusion
could make it difficult for the masked model to learn. The models are trained for 40 epochs,
and we do not make any drastic weight changes to our model layers. It should be noted
that the VGG-16 model’s layers are still frozen at this point, and it is only being used as a
simplistic feature extractor. Our model has a validation accuracy of roughly 96%, which
is a 6% improvement over our previous model, as seen in the preceding output. Overall,
compared with our first basic CNN model, this model has a 24% higher validation accuracy.
This demonstrates how effectively the proposed Conv-mixer model is implemented and
improved in this paper.
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4.5. Computational Complexity Analysis

To calculate the Big O notation for the ConvMixer model and AdaBoost for recognizing
human faces, we need to analyze the time complexity of each component involved in the
algorithms. It should be noted that providing a precise Big O notation for the entire system
might be complex without specific implementation details, but we can analyze the time
complexity of key components.

ConvMixer Model Time Complexity: Let’s assume the ConvMixer model has L layers,
each with C channels, a spatial resolution of H×W, and a kernel size of K× K. Convolution
Layer: The time complexity of a single convolution operation in a layer with a kernel size of
K × K and C channels is O(C × K2 × H ×W). LayerNorm and ReLU Activation: The time
complexity for LayerNorm and ReLU activation is typically negligible compared to the
convolution operation. Since the ConvMixer model has L layers, the total time complexity
for a single forward pass can be approximated as O(L × C × K2 × H ×W).

AdaBoost Classifier Time Complexity: Let’s assume the AdaBoost classifier has M
weak learners, each with a time complexity of O(W) for a single prediction. Weak Learner
Prediction: The time complexity of a single weak learner (e.g., a decision tree) for making a
prediction is O(W). Since AdaBoost combines M weak learners, the total time complexity
for making a single prediction using AdaBoost can be approximated as O(M ×W).

Overall Time Complexity: The overall time complexity of the system, combining
ConvMixer and AdaBoost, will depend on how these components are integrated and the
number of iterations during training and inference. It could be represented as a combination
of the ConvMixer model time complexity and the AdaBoost classifier time complexity:
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Training: The time complexity for training involves multiple forward and backward
passes through the ConvMixer model and updating the AdaBoost classifier, resulting in a
higher time complexity. Inference: The time complexity for inference involves a forward
pass through the ConvMixer model and making predictions using the AdaBoost classifier,
resulting in a time complexity calculated approximately as:

Time−Complexity = O
(

L×C× k2 ×H×W + M×W
)

(7)

5. Discussion

In this paper, DL algorithms are investigated for face recognition and verification
in partially occluded environments where the object is not clearly visible, especially in
real-time data acquisition. The most important part for object recognition is the face. The
proposed approach for face recognition adopts a systematic and sophisticated strategy by
breaking down the complex task into sub-problems and utilizing distinct visual cues and
geometric features that are crucial in human face recognition. The initial step involves
extracting various facial parts, such as eyes, eyebrows, nose, lips, gender, and age, from
input images using specialized techniques for each feature. Subsequently, TL-based models
are trained individually on these specific facial parts, allowing them to focus on learning
relevant features for each component. To enhance accuracy and robustness, a weighted
combination mechanism is employed to merge the outputs of these models. This combina-
tion takes into account the occluded portions of the face, giving more importance to the
less occluded features and less importance to the occluded regions. By emulating human
perceptual processes and leveraging deep learning’s capacity for feature extraction and rep-
resentation learning, this approach aims to achieve superior face recognition performance,
particularly in handling occlusions and challenging facial variations. Empirical validation
and comparative evaluation on suitable datasets would be essential to ascertaining the
effectiveness of this approach. In this way, a pipeline of deep networks will be trained on
different parts of the faces and later used for testing.

Various TL algorithms have been trained on the eyes, nose, mouth, lips, and beard,
and features have been extracted through these deep learning algorithms. Architecture has
been shown in Figures 1 and 2. The proposed approach for face recognition tackles the
challenge of dealing with occluded portions of the face in a systematic manner. The first
step involves extracting non-occluded facial parts using a combination of various visual
cues, and automatically clustered. By automating this step, the approach aims to discover
an optimal face partition that captures essential features for recognition.

In the second step, the approach focuses on identifying the occluded portions of the
face in the images. Once occlusions are determined, the missing parts will be completed us-
ing integral imaging techniques. This completion process aims to reconstruct the occluded
regions and make them available for subsequent recognition. The final recognition step
involves using the completed non-occluded facial parts for face recognition. By leveraging
the available information from the non-occluded regions, the approach seeks to improve
recognition accuracy and reliability, even in the presence of occlusions. The design and
implementation of this approach present several challenges. The selection of relevant visual
cues and the development of automated procedures for face partitioning require careful
consideration and experimentation.

Additionally, finding effective methods to handle occlusions through integral imaging
and integrating completed parts for recognition demand thorough investigation. Drawing
insights from experimental psychology will guide the development of this approach, ensur-
ing it aligns with human perceptual processes and maximizes recognition performance.
Overall, addressing these challenges will lead to a robust and comprehensive approach
for face recognition capable of handling occlusions and delivering accurate results across
diverse face images.

The fundamental purpose of this research is to present a new DL model for identifying
individuals with face occlusion and face masks. The proposed system efficiently addresses
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this complicated challenge. Furthermore, compared to state-of-the-art classification ap-
proaches, greater classification accuracy is achieved. We talked about the advantages of
the proposed AFR-Conv-Ada approach for recognizing humans despite facial occlusion.
During the COVID-19 era, several issues prompted us to utilize CNN as a foundation model
based on Conv-mixer with AdaBoost to recognize occluded human faces. The following
are the factors considered: (1) Motivated by the AFR-Conv-Ada model’s outstanding
performance in other research disciplines (2) The architecture of the previous AFR-based
technique has a high time complexity. (3) To properly assess the existing model’s decreased
performance. (4) Face recognition detection accuracy is lacking. In the proposed work,
different datasets are used, such as LFW [21], CALFW [22], CPLFW [23], and CFP [24]. First,
the data size is increased using augmentation. The first flow of the depthwise separable
convolutional is then utilized to extract features from human face images using CNN blocks
and residual connections. Finally, those features are used in face recognition by providing
the feature map to an AdaBoost classifier.

The current CNN architecture has a lot of computations involved and required param-
eters; hence, it requires a lot of hardware acceleration. In computer vision-related tasks, a
Conv-mixer model has already been successfully applied to feature extraction. A visual
example of negative images containing face occlusion predicted wrong detection result is
shown in Figure 9.
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In this work, the proposed technique is compared to other state-of-the-art models in
terms of computing complexity. The proposed work took 163 s to process in total. The Alex-
Net and VGG-16 took 209s and 184s, respectively, to process. Based on the results, it was
concluded that the suggested model took less time to identify human beings. This shows
that the proposed model is more efficient than its rivals. The GPU is also used by Google
Colab to test the computational performance of the proposed AFR-Conv-Ada system on this
dataset. A GPU can be thought of as a set of cores with a software layer that enables parallel
processing. In contrast to the CPU, the GPU’s performance in terms of execution time and
computing speed is impressive. Table 6 is used to measure the performance of different
transfer learning algorithms compared with the proposed AFR-Conv-Ada classifier.

Table 8 shows high performance in verification by using AFR-Conv-Ada compared to
other techniques. In this table, methods are trained on a dataset with 45% face occlusion on
testing and training datasets. The proposed technique’s verification performance is only
marginally improved by training on the synthetic dataset. In fact, after training with the
synthesized dataset, the verification performance on the cross-age CALFW dataset dropped.
In all synthesized datasets on the table, however, the approach provides significantly
improved verification performance. The results of different transfer learning algorithms
compared to the proposed AFR-Conv-Ada system for face occlusion are displayed in
Table 8. The AFR-Conv-Ada approach improves verification performance by about the
same amount as shown in this table. In addition, the ROC curve is also used to measure
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the performance of the proposed classifier AFR-Conv-Ada in training and test datasets by
10-fold cross-validation. Figure 8 shows the ROC curve of the proposed method.

The widespread adoption of face masks as a COVID-19 pandemic prevention tool is the
driving force behind this endeavor. The relationships between human expert verification
behaviors and automatic face recognition solutions are investigated in a variety of scenarios.
In addition, the verification procedure includes a list of observations made by human
specialists. The effect of face mask occlusion on face verification performance is investigated
in this research. Face mask synthesized datasets are generated using an augmentation
method and could be utilized as training or testing datasets. On both the real-world and
synthetic testing datasets, the proposed system achieves superior verification performance.
We investigated the use of face attribute-based supervision for developing robust face
detection, which is different from previous face detection re-search. Facial part detectors
can be obtained without explicit part supervision from a CNN that has been trained on
recognizing attributes from uncropped face images.

5.1. Advantages of Current Study

Using ConvMixer and AdaBoost classifier for face recognition offers several advan-
tages over other deep learning algorithms:

(1) The ConvMixer blocks coupled with skip connections enable the extraction of intri-
cate features from images, contributing to a more nuanced understanding of facial
characteristics.

(2) By incorporating well-established pre-trained CNN models as a backbone, such as
ResNet-50, Inception-v3, and DenseNet-161, the system leverages the learned features
from these models, enhancing its capacity to recognize faces effectively even with
limited training data.

(3) Different CNN models bring varied feature representations to the table. Integrating
multiple models broadens the scope of extracted features, leading to more compre-
hensive and accurate recognition.

(4) Robustness to Variability: Combining ConvMixer blocks, skip connections, and di-
verse pre-trained CNNs helps the system handle various challenges like occlusion,
different lighting conditions, and pose variations, resulting in more robust and reliable
face recognition.

(5) The amalgamation of ConvMixer and pre-trained CNNs enhances the system’s abil-
ity to generalize well to unseen faces, increasing its performance across different
individuals and scenarios.

(6) The architecture’s flexibility allows for seamless integration of future advancements
in both ConvMixer and pre-trained CNNs, ensuring the system stays up-to-date and
continues to deliver accurate results for face recognition in case of occlusion.

(7) By utilizing pre-trained CNNs, which have been trained on large datasets, the system
saves training time and computational.

Deep learning models are continuously evolving, and different architectures may
perform better on certain datasets or domains. Nevertheless, the combination of ConvMixer
with pretrained models, and AdaBoost presents a promising approach to address face
recognition challenges, making it a valuable solution in the fields of urban security and
video surveillance.

5.2. Current Limitations and Future Work

The present work has some limitations that should be acknowledged. Firstly, the study
utilized a relatively small dataset, which may not fully capture the diversity and complexity
of real-world scenarios. Expanding the dataset size and including more diverse samples
would enhance the generalizability of the findings. Additionally, the evaluation metrics
used in this work, such as precision, recall, and detection accuracy, while informative,
may not fully capture all aspects of face recognition performance, and the inclusion of
other metrics, such as false acceptance rate (FAR) and false rejection rate (FRR), would
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provide a more comprehensive assessment. Moreover, the lack of a thorough comparison
with existing state-of-the-art face recognition algorithms limits the ability to gauge the true
superiority of the proposed ConvMixer and AdaBoost approaches.

In future work, addressing these limitations is crucial to further improving the effec-
tiveness and applicability of the proposed approach. Conducting studies with larger and
more diverse datasets, including variations in pose, illumination, and expressions, would
validate the algorithm’s robustness across different real-world conditions. Moreover, incor-
porating advanced evaluation metrics and benchmarking against other leading algorithms
would facilitate a more comprehensive performance analysis. Exploring transfer learning
techniques by pre-training the ConvMixer on larger-scale face-related datasets could po-
tentially enhance recognition accuracy. Additionally, investigating hybrid architectures
that combine ConvMixer with other deep learning models may open new avenues for
achieving even higher performance levels. Finally, considering the ethical implications
and privacy concerns related to face recognition technologies is essential in future works,
ensuring responsible and transparent use of the proposed algorithm in real-world applica-
tions. By addressing these limitations and pursuing future research in these directions, the
proposed ConvMixer and AdaBoost approaches can be further strengthened and contribute
to advancements in the field of face recognition.

6. Conclusions

The COVID-19 outbreak has led to people wearing masks when they go out, yet
existing face recognition systems (FRS) are unable to detect masks. Conv-Mixer-based
techniques and AdaBoost classifiers are proposed as improved approaches in this research,
which uses deep learning algorithms to tackle the above challenges. This study compared
the face verification performance of human specialists to state-of-the-art artificial face
recognition methods in a comprehensive joint evaluation and in-depth analysis. The
fundamental purpose of this research is to present a new DL model for identifying faces
with face occlusion and face masks effectively. This proposed system addresses the intricacy
problem, limits the database, and obtains the informative features efficiently in the present
DL design. Additionally, compared with other classification schemes, greater classification
accuracy is attained. The proposed AFR-Conv-Ada approach recognizes faces by ignoring
face occlusion. During the COVID-19 era, several issues prompted us to utilize CNN as a
foundation method based on Conv-mixer with AdaBoost to recognize occluded human
faces. The factors are as follows: (1) the AFR-Conv-Ada model’s outstanding performance
in other research disciplines; (2) the complexity issue of the architecture of the previous
AFR-based technique; (3) the need to properly assess the existing model’s decreased
performance; and (4) inadequate face recognition detection accuracy.

In this paper, face recognition using the convolutional mixer (AFR-Conv) algorithm is
developed to handle face occlusion problems. A novel AFR-Conv architecture is developed
by assigning priority-based weights to the different face patches along with residual
connections and an AdaBoost classifier for the automatic recognition of human faces. To
begin, we use the data augmentation method to enhance the size of face images datasets.
Afterward, this AFR-Conv algorithm is executed to obtain robust characteristics from
images. Finally, an AdaBoost classifier is employed to recognize the identity of people. For
the training and evaluation of the AFR-Conv model, a set of face images is collected from
online data sources. The experimental results of the AFR-Conv approach are presented
in terms of precision (PR), recall (RE), and detection accuracy (DA) metrics. Specifically,
it achieves 94% PR, 91% RE, and 90% DA on 8500 face images. These experimental
results demonstrate that this proposed methodology outperforms other algorithms for the
classification of faces. Hence, the proposed AFR-Conv significantly improves performance
compared with other existing systems.
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