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Abstract: Multimodal emotion classification (MEC) has been extensively studied in human–computer
interaction, healthcare, and other domains. Previous MEC research has utilized identical multimodal
annotations (IMAs) to train unimodal models, hindering the learning of effective unimodal represen-
tations due to differences between unimodal expressions and multimodal perceptions. Additionally,
most MEC fusion techniques fail to consider the unimodal–multimodal inconsistencies. This study
addresses two important issues in MEC: learning satisfactory unimodal representations of emotion
and accounting for unimodal–multimodal inconsistencies during the fusion process. To tackle these
challenges, the authors propose the Two-Stage Conformer-based MEC model (Uni2Mul) with two
key innovations: (1) in stage one, unimodal models are trained using independent unimodal anno-
tations (IUAs) to optimize unimodal emotion representations; (2) in stage two, a Conformer-based
architecture is employed to fuse the unimodal representations learned in stage one and predict IMAs,
accounting for unimodal–multimodal differences. The proposed model is evaluated on the CH-SIMS
dataset. The experimental results demonstrate that Uni2Mul outperforms baseline models. This study
makes two key contributions: (1) the use of IUAs improves unimodal learning; (2) the two-stage
approach addresses unimodal–multimodal inconsistencies during Conformer-based fusion. Uni2Mul
advances MEC by enhancing unimodal representation learning and Conformer-based fusion.

Keywords: multimodal emotion classification; conformer; multi-task; pre-trained model

1. Introduction

Emotion classification is a crucial subtask that has been extensively studied in domains
such as human–computer interaction, healthcare, and medicine. Early research on emotion
classification primarily utilized unimodal data, such as text [1,2], audio [3], or visual
cues [4], and achieved notable success. Recently, researchers have started incorporating
two or more modalities to achieve multimodal emotion classification (MEC) [5–7]. MEC
(explanations for all abbreviations in Appendix A Table A1) can furnish salient clues to
more accurately discern the genuine emotional states of the opinion holder and enhance
the precision of outcomes [8]. With the burgeoning of short video applications, MEC has
become an active area of research [9].

The two most salient components in MEC tasks are unimodal emotion representation
learning and multimodal fusion. In many scenarios, unimodal emotion expression differs
from multimodal emotion perception, and multimodal annotation stems from the interac-
tion between each modality. Taking a video clip from the CH-SIMS dataset as an exemplar,
as illustrated in Figure 1, the text “Isn’t it about to go bankrupt”, with an emotional an-
notation of −0.8, indicates a negative emotion, and the audio modality annotation is also
−0.8. The visual modality expression includes a smile and corresponds to a positive emo-
tional annotation of 1.0. The combination of these three modalities results in a multimodal
emotional annotation of 0.6, indicating a positive emotion for the video clip.
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emotional annotation of 1.0. The combination of these three modalities results in a multi-
modal emotional annotation of 0.6, indicating a positive emotion for the video clip. 

 
Figure 1. An example of inconsistency between unimodal emotion expression and multimodal emo-
tion perception. Stage One: unimodal emotion recognition, Stage Two: multimodal fusion for emo-
tion recognition. M: Multimodal, V: Vision, A: Audio, T: Text, ⊕: multimodal fusion.  

The majority of existing research employs identical multimodal annotations (IMAs) 
for unimodal model pretraining and multimodal fusion [10–12]. The unimodal models 
trained using IMAs cannot learn satisfactory representations but rather those of forced 
alignment. The representation of forced alignment will contain certain discrepancies in 
the distribution of each modality and form an irregular semantic space, as depicted in 
Figure 2a. Multimodal fusion grounded on this will generate distorted and convoluted 
classification boundaries (see Figure 2c). If the unimodal models are trained using inde-
pendent unimodal annotations (IUAs), the representations for each modality are roughly 
within a unified region and harbor certain differences (see Figure 2b). Leveraging uni-
modal representations with certain differences such as this for multimodal fusion will 
contribute to superior fusion outcomes [13]. Meanwhile, the multimodal fusion strategy 
is also imperative to achieve a comprehensive MEC model. A satisfactory fusion strategy 
can fully harness the information from each modality and can capture the differences and 
interactions between modalities. Building upon this, the distributions of each emotion cat-
egory are uniform, and the classification boundaries are also relatively systematic (see 
Figure 2d). Most current studies on fusion pay less attention to the unimodal–multimodal 
emotions’ inconsistency [14–17] and struggle to learn the differences between different 
modalities [13]. 

 
Figure 2. Hypothesized unimodal and multimodal emotion representation. In (a,b), the markers of 
different colors represent different modalities, and shapes with dotted curves of different colors 
represent semantic spaces of respective modalities. The black solid curves indicate the envelope of 

Figure 1. An example of inconsistency between unimodal emotion expression and multimodal
emotion perception. Stage One: unimodal emotion recognition, Stage Two: multimodal fusion for
emotion recognition. M: Multimodal, V: Vision, A: Audio, T: Text, ⊕: multimodal fusion.

The majority of existing research employs identical multimodal annotations (IMAs)
for unimodal model pretraining and multimodal fusion [10–12]. The unimodal models
trained using IMAs cannot learn satisfactory representations but rather those of forced
alignment. The representation of forced alignment will contain certain discrepancies in the
distribution of each modality and form an irregular semantic space, as depicted in Figure 2a.
Multimodal fusion grounded on this will generate distorted and convoluted classification
boundaries (see Figure 2c). If the unimodal models are trained using independent unimodal
annotations (IUAs), the representations for each modality are roughly within a unified
region and harbor certain differences (see Figure 2b). Leveraging unimodal representations
with certain differences such as this for multimodal fusion will contribute to superior
fusion outcomes [13]. Meanwhile, the multimodal fusion strategy is also imperative to
achieve a comprehensive MEC model. A satisfactory fusion strategy can fully harness
the information from each modality and can capture the differences and interactions
between modalities. Building upon this, the distributions of each emotion category are
uniform, and the classification boundaries are also relatively systematic (see Figure 2d).
Most current studies on fusion pay less attention to the unimodal–multimodal emotions’
inconsistency [14–17] and struggle to learn the differences between different modalities [13].
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Figure 2. Hypothesized unimodal and multimodal emotion representation. In (a,b), the markers
of different colors represent different modalities, and shapes with dotted curves of different colors
represent semantic spaces of respective modalities. The black solid curves indicate the envelope of
these colored lines. In (c,d), the markers of different colors represent different emotion categories,
and the black solid curves represent classification boundaries. V: Vision, A: Audio, T: Text.
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The CH-SIMS dataset encompasses not only IMAs for each clip but also IUAs for each
modality [13], which is consistent with our stance and endeavors to train the unimodal
model with IUAs, but does not delve deeply enough into the two aforementioned problems:
unimodal representation learning and multimodal fusion strategy.

Problem Statement: In most existing multimodal datasets with IMAs:

D1 = {Xσ, YM}, (1)

where σ represents different modalities, X is the data, and YM is the IMAs. MEC models
based on these datasets take Xσ as input and YM as output in the whole training stage. This
process can be expressed as

Xσ
f⇒ YM, (2)

where f is responsible for both unimodal representation and multimodal fusion.
We define CH-SIMS as

D2 = {Xσ, Yσ, YM}, (3)

where Yσ represents IUAs and YM represents IMAs. We express the training process based
on CH-SIMS as

Xσ
f1⇒ Yσ

f2⇒ YM, (4)

where f1 is responsible for unimodal representation and f2 for multimodal fusion.
To find optimal f1 and f2, we propose a Conformer-based MEC model (Uni2Mul),

which integrates a sub-task to predict IUAs and IMAs. We argue that to achieve a satisfac-
tory unimodal representation, it is necessary to not only design a suitable feature extraction
network, but also train it with the correct IUAs rather than IMAs. Moreover, a satisfactory
fusion strategy can better leverage the effectiveness of the unimodal representation under a
multi-task framework.

The contributions of this work can be summarized as follows:
The key contributions are using IUAs for better unimodal learning (see Figure 2b) and

the two-stage approach to account for unimodal–multimodal inconsistencies during fusion
(see Figure 2d). Uni2Mul advances MEC by improving unimodal representation learning
and fusion.

The remainder of the paper is organized as follows: Section 2 describes the related
work, Section 3 discusses the proposed methods and overall architecture of the Uni2Mul
model, Section 4 explains the experimental setup and results, Section 5 presents the discus-
sion, and Section 6 summarizes our work.

2. Related Work
2.1. Visual Emotion Classification

Facial expressions are one of the important bases for human emotional expression.
The feature extraction methods for facial expressions mainly include traditional methods
and deep learning methods.

Traditional methods for facial expression recognition rely on low-level or artificially
designed features, necessitating significant human involvement. These methods commonly
include global feature extraction methods [18,19], which obtain overall information regard-
ing facial images; local feature extractions [20], which better capture local details; mixed
feature extraction methods [21,22], which combine the benefits of global and local features;
and optical-flow-based methods [23], which capture the dynamics and changes in facial
images. While these traditional, handcrafted methods for feature extraction have achieved
noticeable success, they may not be applicable in complex scenes with large amounts of
data.

Deep learning networks, such as the convolutional neural network (CNN) [24,25]
and recurrent neural network (RNN) [26], have demonstrated strong performance in
the recognition of facial expressions, leading researchers to gradually shift away from
traditional methods and toward deep learning approaches [27–29].
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Saravanan et al. [24] noted the effectiveness of CNNs for image recognition tasks as
these networks are able to capture spatial features due to their large number of filters.
They proposed a model comprising six convolutional layers, two max pooling layers, and
two fully connected layers, which outperformed decision trees and feed-forward neural
networks on the FER-2013 dataset. Yu et al. [25] proposed a model comprising a face
detection module based on the ensemble of three face detectors and a classification module
that utilized an ensemble of multiple deep CNNs. To combine the multiple CNN models,
they presented two schemes for learning the ensemble weights of the network responses:
by minimizing the log likelihood loss and by minimizing the hinge loss. Their model
achieved excellent results on both the FER and SFEW datasets.

For modeling the spatiotemporal evolution of visual information, Kahou [26] pre-
sented the application of an RNN for modeling this spatiotemporal evolution via the
aggregation of facial features to perform emotion recognition in video. Li [30] trained a
CNN to extract both geometric and appearance features, and a long short-term memory
(LSTM) to capture temporal and contextual information regarding facial expressions. The
CNN-LSTM architecture enables a more comprehensive representation of facial expressions
as it combines both spatial and temporal information.

To more effectively utilize information regarding the key parts that convey emotion,
Ming et al. [31] proposed a facial expression recognition method incorporating an attention
mechanism based on a CNN and LSTM. This model mined information regarding important
regions more effectively than general CNN-LSTM-based models.

2.2. Audio Emotion Classification

Speech contains rich emotional information, including features such as tone and
rhythm, which can convey emotions in addition to the textual information present. Acoustic
features may be divided into low-level and high-level categories.

Low-level features refer to those extracted via time and frequency algorithms, which
are usually categorized into three types: prosodic features [32], spectral features [33], and
voice quality features [34]. Each single feature can only express emotional information from
a particular aspect of speech and, as such, cannot effectively represent speech emotions.
To improve the recognition of speech emotions, researchers typically fuse multiple single
features [35].

High-level features refer to those extracted directly from the raw speech signal or via
low-level features [36] using deep learning techniques, such as CNN [37] and LSTM [38,39].
These methods are capable of directly learning optimal feature representations from raw
data and forming more abstract high-level features by combining low-level features, thereby
effectively capturing hidden features within the data without the cumbersome task of
manually extracting features.

Mao et al. [37] proposed the use of CNN for speech emotion recognition (SER) by
learning affect-salient features. They divided the CNN training into two stages: the learning
of local invariant features and the learning of affect-salient, discriminative features. Their
approach led to robust recognition performance in complex scenes and outperformed sev-
eral well-established SER features, such as spectrogram representation and local invariant
features.

Lee et al. [38] proposed an RNN-based speech emotion recognition framework capable
of accounting for long contextual effects in emotional speech. The weighted accuracy of this
framework improved by up to 12% compared to the baseline. For effective classification and
learning of multidimensional complex data (speech features that can be used for analysis,
such as pitch, energy, formants, linear predictor coefficients (LPCs), linear frequency
cepstral coefficients (LFCCs), MFCCs, and TEO), Kumbhar et al. [39] presented a speech
emotion recognition system using the LSTM model and MFCC features. This model yields
an observed area under the ROC curve of 0.55.

To reduce the dimensionality of the acoustic data and extract high-level features,
Etienne et al. [40] employed a mixed CNN-LSTM architecture. They transformed the audio
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signal into a spectrogram, which served as input to the convolutional layers followed by
recurrent ones. The best results were achieved with a choice of 4 convolutional and 1
Bi-directional LSTM (BiLSTM) layers.

CNN and RNN may lose some context information when dealing with long sequence
data and fail to fully capture emotional features. The introduction of an attention mecha-
nism helps these neural networks highlight important information. Atila et al. [41] proposed
a novel attention-based 3D CNN-LSTM network for accurate speech-based emotion predic-
tion. The network comprises six 3D convolutional layers, two batch normalization (BN)
layers, five Rectified Linear Unit (ReLU) layers, three 3D max pooling layers, one attention
layer, one LSTM layer, one flatten layer, one dropout layer, and two fully connected layers.
The attention layer is connected to the 3D convolution layers, and the proposed method is
highly efficient.

In recent years, some excellent self-supervised models have emerged in the field of
speech [42–45], among which Wav2vec can capture information about the speaker and
performs particularly well in ultra-low-resource cases [46].

2.3. Textual Emotion Classification

The Word2Vec model, proposed in 2013 [47,48], realized the distributed representation
of words, and the resulting general features of words have been widely used for textual
features. Meanwhile, LSTM has been employed to obtain deep emotional representation
by capturing long-term context dependencies. Javed et al. [49] proposed two LSTM-based
models: simple LSTM and emotion lexicon boost LSTM. The simple LSTM architecture
comprised two hidden LSTM layers and a dense layer with softmax activation for emotion
analysis. The emotion lexicon boost model enhanced the simple LSTM architecture by
incorporating the NRC Hashtag emotion lexicon. Both LSTM networks show promising
results. With the emergence of Bidirectional Encoder Representation from Transformers
(BERT) [50], BERT has been introduced for textual features in emotion analysis and has
achieved good results. Gou et al. [51] generated word-level and sentence-level vectors for
text using BERT, inserted the word-level feature into BiLSTM for processing, and connected
the output of BiLSTM with sentence-level features for emotion analysis of dialogue. Their
method significantly outperformed the baselines.

CNN models can extract local features. Gui [52] learned representations of users and
products, reviewed words using heterogeneous network embedding techniques, and em-
ployed CNN to detect product review sentiment polarity with the learned representations,
achieving state-of-the-art performance. Chen [53] constructed a novel weakly supervised
multimodal deep learning framework and trained a discriminative model from cheaply
available emoticon annotations for multimodal prediction.

Even with the hybrid approach that leverages the powers of LSTM and CNN, the
important information cannot always be better selected from word embeddings. Therefore,
the attention mechanism is used with these neural networks. The attention mechanism
can highlight important information from contextual information by assigning different
weights [54]. Xie et al. [55] calculated attention scores using both the word vectors them-
selves and the feature of word vectors extracted by the LSTM network. They then integrated
the word vectors with attention scores to input them into CNN for calculating emotion
intensity. The multi-head attention mechanism from Transformer [56] enables the model to
jointly attend to information from different representation subspaces at different positions.
Akula et al. [57] enhanced word embeddings of input text with an attention module using
L self-attention layers and H heads per layer. They passed the resultant features through a
Gated Recurrent Unit (GRU) and a feed-forward layer for sarcasm detection.

2.4. Multimodal Emotion Classification

Unimodal emotion recognition has limitations in accurately detecting human emotions
because of its reliance on a single type of sensory input. MEC combines multiple sources of
data, such as facial expressions, voice, body posture, and linguistic cues, to more accurately



Appl. Sci. 2023, 13, 9910 6 of 23

detect and differentiate various emotional states. Multimodal fusion methods aim to
combine information from multiple modalities to improve the performance of various tasks.
Some popular multimodal fusion methods include early fusion [58–60], late fusion [15],
and hybrid fusion [14,15].

Early fusion concatenates features from each modality and inputs the resultant joint
representation into a classifier for emotion classification. Pérez-Rosas et al. [58] combined
linguistic, acoustic, and visual features into a single feature vector, which was used to
make a decision about the sentiment orientation of the utterance. Xu et al. [59] used the
Object-VGG and Scene-VGG models to detect visual semantic features and extracted words
that were important to sentiment with the visual-feature-guided attention mechanism. The
visual and textual features were aggregated by using an early fusion layer to obtain the
final multimodal representation for MEC.

Late fusion employs and trains a separate classifier for each modality and combines
the output of each classifier to obtain the final prediction. Poria et al. [61] presented early
and late fusion methods. In the case of early fusion, they concatenated textual and visual
features and fed the resulting long vector into a Support Vector Machine (SVM) classifier.
In the case of late fusion, they fed features of each modality into separate SVM classifiers
and then combined their decisions with weights chosen experimentally. Yu et al. [62] used
logistic regression to perform emotion prediction of the text and related images individually
and performed late fusion for the probabilistic results using the average strategy.

The mixed fusion method integrates the advantages of early and late fusion methods
and considers both the individual features of different modalities and the relevance among
them. Cimtay et al. [15] used a hybrid fusion of faces with early fusion on electroencephalo-
gram (EEG) and galvanic skin response (GSR) modalities. EEG and GSR modalities were
used for estimating the level of arousal, and late fusion of EEG, GSR, and face modalities
was used.

The mixed fusion method requires more computing resources and needs a more re-
fined feature extraction and classifier construction for different modalities, which increases
the difficulty and cost of implementation. Recently, many research works have focused on
attention-based fusion [63–65] and its variants, such as self-attention [66,67], multi-head
attention [68,69], and Transformer [70,71]. The attention-based fusion integrates the ad-
vantages of early fusion and late fusion and compensates for their shortcomings [64]. Li
et al. [63] proposed an attention-based multimodal fusion approach. They first fused the au-
dio and visual modalities, and then fused the resultant fusion result with the text modality.
Their approach resolved the problem of asynchronous inputs by using two attention layers
to align the inputs and learn their relatedness in an orderly manner. Thao et al. [67] designed
a self-attention-based neural network for predicting the affective responses of movie view-
ers from different input modalities. They implemented a self-attention mechanism using N
identical layers, each of which included two sublayers: a multi-head self-attention followed
by a feed-forward layer. Each of these sublayers was enclosed by a residual connection, ac-
companied by layer normalization. Wang et al. [64] proposed a cross-attention asymmetric
fusion module, which utilized information matrices of the acoustic and visual modality as
weights to strengthen the textual modality. Xie et al. [70] employed a transformer-based
cross-modality fusion with a robust deep learning architecture to estimate the emotion
during a conversation.

The aforementioned studies reported varying fusion methods and achieved great
successes while having a common limitation: insufficient consideration of the differences
between IMAs and IUAs, as well as the impacts they may have on emotion classification
models. In this paper, we further discuss the impacts of IMAs and IUAs based on existing
research and propose a new multimodal fusion method.

3. Methods

Given a video clip that contains multimodal information such as text, audio, and
vision, the task aims to predict emotional annotation of the clip, i.e., positive, negative, and
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neutral. The key is to extract and fuse the representations of each modality. To achieve
this, we propose a Conformer-based MEC model (Uni2Mul). Figure 3 provides a detailed
illustration of our model. The visual, acoustic, and textual features are extracted from
the video data using CLIP (ViT-B/32), Wav2Vec, and BERT (bert-base-chinese), three pre-
trained models, respectively. These features are then fed into unimodal neural networks to
predict IUAs. Meanwhile, hidden representations are fetched from these unimodal neural
networks and fused to predict IMAs. More details about our model are provided below.
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Figure 3. Conformer-based MEC model (Uni2Mul). The model contains two stages: emotional
classification models for each modality (left part) aim to optimize unimodal representation, and
multi-task fusion network with Conformer (right part) performs multimodal fusion and MEC. The
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layer. GAP: Global Average Pooling1D, ⊗: operation of multiplication, ⊕: operation of addition.

3.1. Unimodal Neural Networks
3.1.1. Vision

CLIP is a transferable visual model trained from 400 million (image, text) pairs col-
lected from the internet [72]. We use this pre-trained model as a visual feature extractor to
make full use of its prior knowledge, which includes not only visual but also textual infor-
mation. To extract better unimodal emotional representations, we construct an emotion
classification model for the visual modality using CNN and LSTM, inspired from [30].

Specifically, we use CLIP to extract features from images and define the visual feature
as XV . We then feed XV into three CNN layers, whose operation process can be formulated
as

RV
cnn = WV

cnn·XV + bV
cnn, (5)

where RV
cnn represents the output of CNNs and can be defined as RV

cnn =
[
rV

0 , rV
1 , · · · , rV

t
]
,

where t is the timestep. WV
cnn denotes the weight matrix and bV

CNN represents the bias
vector.

Next, the LSTM layer takes the outputs of CNNs as input and performs the following
operations:

iVt = σ
(
WV

i
[
hV

t−1 : rV
t
]
+ bV

i
)
,

f V
t = σ

(
WV

f
[
hV

t−1 : rV
t
]
+ bV

f

)
,

oV
t = σ

(
WV

o
[
hV

t−1 : rV
t
]
+ bV

o
)
,

CV
t = f V

t ·CV
t−1 + iVt ·tanh

(
WV

c
[
hV

t−1 : rV
t
]
+ bV

c
)
,

HV
t = oV

t ·tanh
(
CV

t
)
,

(6)

where iVt , f V
t , and oV

t represent the output of the input gate, forget gate, and output gate,
respectively, in the LSTM; CV

t represents the current moment cell state; and HV
t represents

the hidden output of the LSTM and can be defined as HV
t =

[
hV

0 , hV
1 , · · · , hV

t
]

(where t
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is timestep). σ(·) denotes the sigmoid activation function and tanh(·) is the hyperbolic
tangent function. WV

i , WV
f , WV

o , and WV
c represent the weight matrices, while bV

i , bV
f , bV

o ,

and bV
c represent the bias vectors.

Finally, we define the hidden representation as HV = HV
t , which is fed into a fully

connected layer for visual emotional classification. The operation process of the visual
emotional classification can be formulated as

YV = WV ·HV + bV , (7)

where YV represents the annotation of the visual modality, WV represents the weight matrix,
and bV represents the bias vector.

3.1.2. Audio

Wav2Vec 2.0 is a self-supervised framework for speech representation learning. It can
capture the information about the speaker and performs well in speech recognition tasks,
especially in ultra-low-resource cases [46]. Therefore, we use it as a feature extractor for
acoustic data. Inspired by Atila et al. [41], we propose a network that consists of a CNN,
followed by a self-attention mechanism and a Bi-LSTM.

Firstly, we employ Wav2Vec 2.0 to extract acoustic features from the waveform signal
and define the acoustic feature as XA. We then feed XA into a CNN layer:

RA
cnn = WA

cnn·XA + bA
cnn, (8)

where RA
cnn represents the CNN output, WA

cnn represents the weight matrix, and bA
cnn

represents the bias vector.
We use the “Scaled Dot-Product Attention” from [56] as the attention mechanism. The

matrix of outputs is computed as

QueA = WA
Que·RA

cnn,
KeyA = WA

Key·RA
cnn,

scoreA = so f tmax
(
WA

attn·tanh(QueA·KeyA)
)
,

RA
attn = scoreA·

(
WV

Val ·ValA
)
,

(9)

where QueA, KeyA, and ValA stand for query, key, and value, respectively. ValA is equal to
KeyA, and scoreA represents the weight on the value. So f tmax is the softmax function, and
tanh(·) is the hyperbolic tangent function. RA

attn is the output of the attention module and
can be defined as RA

attn =
[
rA

0 , rA
1 , · · · , rA

t
]
, where t is the timestep. RA

attn is fed into BiLSTM
to extract deep representations. WA

Que, WA
Key, WA

attn, and WV
Val represent the weight matrices.

The outputs of BiLSTM can be computed as follows:

iA
t = σ

(
WA

i
[
hA

t−1 : rA
t
]
+ bA

i
)
,

f A
t = σ

(
WA

f
[
hA

t−1 : rA
t
]
+ bA

f

)
,

oA
t = σ

(
WA

o
[
hA

t−1 : rA
t
]
+ bA

o
)
,

CA
t = f A

t ·CA
t−1 + iA

t ·tanh
(
WA

c
[
hA

t−1 : rA
t
]
+ bA

c
)
,

HA
t = oA

t ·tanh
(
CA

t
)
,

(10)

where iA
t , f A

t , and oA
t represent outputs of the input gate, forget gate, and output gate,

respectively, in LSTM; CA
t represents the current moment cell state; and HA

t represents the
hidden output of LSTM and can be defined as HA

t =
[
hA

1 , · · · , hA
t
]
, where t is the timestep.

σ(·) denotes the sigmoid activation function and tanh(·) is the hyperbolic tangent function.
WA

i ,WA
f , WA

o , and WA
c represent the weight matrices and bA

i , bA
f , bA

o , and bA
c represent the

bias vectors.
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Finally, we feed the output of BiLSTM into a fully connected layer for acoustic emo-
tional classification. The operation process of the acoustic emotional classification can be
formulated as

HA =

[ →
HA

t :
←

HA
t

]
,YA = WA·HA + bA, (11)

HA and YA represent hidden representation and annotation of the acoustic modality, re-
spectively. WA represents the weight matrix, and bA represents the bias vector.

3.1.3. Text

We use BERT to obtain embeddings from texts. We do not use word segmentation tools,
due to the characteristics of BERT. We add two unique tokens to indicate the beginning and
the end for each text. We define the textual feature extracted by BERT as XT .

During the training of the unimodal emotional classification models, we find that the
performance of the textual modality emotional classification model is superior to the other
modalities, so we want to extract more information from the textual modality. Inspired
by [54], we design the CNN-attention-based model.

Specifically, we generate the query and key for the textual modality using two 1D
CNNs. We use the “Scaled Dot-Product Attention” from [56] as the attention mechanism,
too. The matrix of outputs is computed as

QueT = WT
Que·XT + bT

Que,
KeyT = WT

Key·XT + bT
Key,

scoreT = so f tmax
(
WT

attn·tanh(QueT ·KeyT)
)
,

RT
attn = scoreT ·

(
WT

Val ·ValT
)
,

(12)

where QueT , KeyT , and ValT stand for query, key, and value, respectively. ValT is equal
to KeyT , and scoreT represents the weight on the value. So f tmax is the softmax function
and tanh(·) is the hyperbolic tangent function. RT

attn is the output of the attention module.
WT

Que, WT
Key, WT

attn, and WT
Val represent the weight matrices. bT

Que and bT
Key represent the

bias vectors.
Subsequently, we conduct a global average pooling operation on QueT and RT

attn, and
concatenate them together to formulate the textual representation, HT . HT is computed as
follows:

HT =
[

GAP(QueT) : GAP
(

RT
attn

)]
, (13)

where GAP(·) represents the global average pooling operation.
Lastly, we send HT to a fully connected layer for emotional classification. We formulate

the classification operation as follows:

YT = WT ·HT + bT , (14)

where YT represents the annotation of the textual modality, WT represents the weight
matrix, and bT represents the bias vector.

These networks for each modality are trained with IUAs to ensure the difference
of representation between the inter-modal information, and are then saved to construct
Uni2Mul framework.

3.2. Multi-Task Multimodal Fusion Network with Conformer

Inspired by Gulati et al. [73], we propose the Conformer-based fusion method. The
Conformer [73] (see Figure 4) is a convolution-augmented Transformer for speech recogni-
tion. It can combine convolution neural networks and Transformers to model both local and
global dependencies of audio sequences in a parameter-efficient way. The model exhibits
better accuracy with fewer parameters than previous work on the LibriSpeech dataset.
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The Conformer block (see Figure 4a) is composed of four modules stacked together,
i.e., a feed-forward module, a self-attention module, a convolution module, and a second
feed-forward module at the end. In the multi-head self-attention module (see Figure 4d),
we employ pre-norm residual units with dropout, which helps in training and regularizing
deeper models. The convolution module (see Figure 4c) is stacked in the order of layernorm
layer, convolution layer, gated linear unit (GLU), and so on. Batchnorm is deployed just
after the convolution for training deep models. As for the feed-forward module (see
Figure 4b), it starts with a layernorm layer, which is followed by two interleaved linear
layers and dropout layers. We also apply Swish activation to regularize the network.

Especially, we first load the unimodal models saved above and set these models
as untrainable to obtain unimodal representations from their hidden layers. We then
concatenate these representations to form the multimodal representation, which can be
formulated as

XM = [HV : HA : HT ], (15)

We use a Conformer-based method to fuse the multimodal representation and predict
the emotional annotation of video. Especially, we send XM into the first feed-forward
module and define the result as RFFM1 , which is fed into the multi-head self-attention
module. The operation of the multi-head self-attention module in the Conformer can be
formulated as follows:

RM
LN = LN

(
R f f m1

)
,

QueM = WM
Que·RM

LN ,
KeyM = WM

Key·RM
LN ,

scoreM = so f tmax
(
WM

attn·tanh(QueM·KeyM)
)
,

RM
attn = scoreM·

(
WM

Val ·ValM
)
,

RM
mha = WM

MHA·Concat
(

RM
attn1

, · · · , RM
attnh

)
,

RM
DP = DP

(
RM

mha
)
,

(16)

where LN(·) is the layer normalization operation, and QueM, KeyM, and ValM stand for
query, key, and value, respectively. ValM is equal to KeyM, and scoreM represents the
weight on the value. So f tmax is the softmax function and tanh(·) is the hyperbolic tangent
function. RM

attn is the output of the attention module of one head and RM
mha is the output

of the multi-head attention module. WM
Que, WM

Key, WM
attn, and WM

Val represent the weight
matrices. Concat(·) represents the concatenate operation and DP(·) represents the dropout
operation.
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RM
DP is then fed into the convolution module, and the operations in the convolution

module can be formulated as

RM
cnn1

= WM
cnn1
·LN

(
RM

DP
)
+ bM

cnn1
,

RM
cnn2

= WM
cnn2
·BN

(
GLU

(
RM

cnn1

))
+ bM

cnn2
,

RCON = DP
(

RM
cnn2

)
+ HM

DP,
(17)

where LN(·) is the layer normalization operation, GLU(·) represents the gated linear unit
operation, BN(·) is the batch normalization operation, and DP(·) represents the dropout
operation. RM

cnn1
and RM

cnn2
are convolution operation results. WM

cnn1
and WM

cnn2
represent

the weight matrices, and bM
cnn1

and bM
cnn2

represent the bias vectors. We feed HCON into the
second feed-forward module and define the result as R f f m2

.
Based on the research results of CH-SIMS, the accuracy of the textual and visual

modalities in unimodal emotion recognition models is relatively high, which we refer to
as the dominant modalities. In contrast, the accuracy of the acoustic modality is relatively
low, which we refer to as the less salient modality. During the process of multimodal
fusion, in order to avoid neglecting information from less salient modalities, we utilize a
multi-task framework for multimodal fusion. In other words, our multimodal model has
four outputs, which include the unimodal classification results for the visual, acoustic, and
textual modalities, as well as the overall MEC result. The operation process of the MEC can
be formulated as

YM = WM·GAP
(

R f f m2

)
+ bM,

YV = WV ·HV + bV ,
YA = WA·HA + bA,
YT = WT ·HT + bT ,

(18)

where YM represents the annotation for each video clip; WM, WV , WA, and WT represent
the weight matrices; and bM, bV , bA, and bT represent the bias vectors. GAP(·) represents
the global average pooling operation.

4. Experiment
4.1. Dataset

The CH-SIMS [13] dataset collects 60 videos from movies, TV series, and variety
shows, and divides these videos into 2281 video clips. Each video clip has three unimodal
annotations and one multimodal annotation. Given that there are only a few datasets
containing unimodal annotations currently available, we only conduct experiments on the
CH-SIMS dataset.

4.2. Parameters’ Setting

All experiments are carried out using a single NVIDIA (Santa Clara, CA, USA) Quadro
P520 card. We adopt Adam as the optimizer with a learning rate of 1 × 10−4, and set the
number of epochs to 30 and batch size to 32. All models are trained using sparse categorical
cross-entropy on each softmax output. We evaluate the models with accuracy (Acc.) and F1
score. Acc. is equal to the proportion of correctly classified samples to the total number of
samples, and can be formulated as follows:

Acc. =
TP + TN

TP + FN + TN + FP
, (19)

TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives.
Precision is the ability of the classifier not to label as positive a sample that is negative,

and recall is the ability of the classifier to find all the positive samples. The F1 score can be
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interpreted as a weighted harmonic mean of the precision and recall, and can be formulated
as follows:

precision = TP
TP+FP ,

recall = TP
TP+FN ,

F1 = 2×precision×recall
precision+recall ,

(20)

Higher values of Acc. and F1 score represent better performance. We use the
“save_best_only = True” parameter in Keras to save only the best model during train-
ing. This parameter ensures that the model weights are saved whenever the monitored
metric improves and overwrites the previously saved weights only if there is an improve-
ment. Thus, at the end of training, the saved weights correspond to the best performing
model on the validation set.

In addition to the general parameters mentioned above, personalized parameters for
unimodal and multimodal models are set as follows:

Vision: In the process of selecting the visual timestep, we conduct several pilot ex-
periments to access the impact of different timesteps on the performance of the visual
models. We observe that increasing the timestep results in a larger memory footprint for
the feature matrix, without a significant improvement in model performance. To strike a
balance between computational complexity and performance, we decide to set the visual
timestep to 10. The output length of CLIP is 512. Therefore, the input shape of the visual
modality is 10× 512. The following three 1D convolution layers have 64 filters, and the
kernel sizes are set to 3, 1, and 3, respectively, with strides being set to 1. The subsequent
BiLSTM has 32 units.

Audio: Similarly, in line with our previous findings for the visual timestep, our pilot
experiments demonstrate that setting the acoustic timestep to 128 not only maintains a
good level of performance but also showcases the effectiveness of this parameter. As a
result, we set the acoustic timestep to 128. The output length of Wav2Vec 2.0 is 512. Thus,
the input shape of the acoustic modality is 128× 512. The following 1D convolution layer
has 64 filters, and the kernel size and strides are set to 3 and 2, respectively. The subsequent
BiLSTM has 32 units, and dropout is used with a rate of 0.5 to prevent overfitting.

Text: The longest sentence in the CH-SIMS dataset has 36 tokens. The output length of
BERT used in this paper is 512. Hence, the input shape of the textual modality is 36× 512.
The subsequent two 1D convolution layers have 64 filters, and both the kernel size and
strides are set to 1.

Multimodal: The number of attention heads in our multi-head attention module in
Conformer is 2. Dropout is used with a rate of 0.5 to prevent overfitting. The convolution
layer in Conformer has 64 filters, and the kernel size is set to 3. The loss weights for
multimodal, vision, audio, and text are 0.3, 0.2, 0.2, and 0.3, respectively.

4.3. Experimental Results

We employ the models described in [13] as our initial benchmark. Following estab-
lished research practices, we conduct experiments involving single-task and multi-task
scenarios to evaluate the fusion of multimodal data. We test two variations of unimodal
models, namely pre-trained and without pre-training, within both the single-task and
multi-task frameworks. The evaluation of these models is based on the Acc. metric, and
the outcomes are presented in Table 1, comparing our models to the baseline performance
on the CH-SIMS dataset.

The results indicate that all four of our models outperform the baseline models men-
tioned in the CH-SIMS paper in terms of Acc. Particularly, the Uni2Mul-M-Conformer
model exhibits an accuracy improvement of 7.75 points compared to the MLF-DNN∗
baseline.

We can observe that the pre-training method in stage one improves the performance
of the MEC models. For example, Uni2Mul-S-Conformer demonstrates a higher Acc.
than Uni2Mul-S-Conformer (w/o pre-train), and Uni2Mul-M-Conformer shows a higher
Acc. than Uni2Mul-M-Conformer (w/o pre-train). These results suggest that pre-trained
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unimodal models can capture good representations and pass them unchanged to the fusion
network for MEC.

Table 1. The results of the baseline and our models on the CH-SIMS dataset. The models with *
are multi-task models, extended from single-task models by introducing independent unimodal
annotations. “S” in model names stands for “Single-task”, while “M” denotes “multi-task”. The
model names with “w/o pre-train” indicate that the corresponding unimodal models have not been
pre-trained, while the ones without “w/o pre-train” indicate that the unimodal models have been
pre-trained. “Conformer” in model names means the fusion method of the models.

Model Acc.

baseline

EF-LSTM [74] 51.73
MFN [75] 63.89

MULT [76] 65.03
LF-DNN [13] 66.91

MLF-DNN * [13] 69.06
LMF [77] 64.38

MLMF * [13] 67.70
TFN [78] 64.46

MTFN * [13] 69.02

ours

Uni2Mul-S-Conformer (w/o pre-train) 72.21
Uni2Mul-S-Conformer 76.15

Uni2Mul-M-Conformer (w/o pre-train) 73.30
Uni2Mul-M-Conformer 76.81

Additionally, a multi-task framework can achieve complementary information among
multiple related tasks, improving the generalization ability of the MEC models. For
example, Uni2Mul-M-Conformer (w/o pre-train) outperforms Uni2Mul-S-Conformer (w/o
pre-train), and Uni2Mul-M-Conformer outperforms Uni2Mul-S-Conformer.

These findings demonstrate that Uni2Mul models can achieve superior performance,
and our proposed methods for representation extraction and fusion strategy prove effective
for MEC.

5. Discussion
5.1. Ablation Study
5.1.1. Unimodal Representation

To validate our hypotheses, we conducted the following experiments to examine
the impact of different feature extraction methods and neural network structures on the
performance of unimodal emotion classification models. We trained individual models
for each modality, utilizing two types of annotations: IMAs and IUAs. The evaluation
of these models was based on the Acc. and F1 score. The results are shown in Table 2.
To compare the performance differences more clearly between IMA and IUA models, we
plotted Figure 5 based on the data in Table 2.

In the visual modality, we compared our unimodal model, the CNN-LSTM-based
model, with the CNN-based and CNN-ATTN-LSTM-based models. Two types of features
were tested for each model: video images and the outputs of CLIP. As presented in Table 2
and Figure 5a–c, the Acc. (IUAs) consistently outperformed Acc. (IMAs), and our CNN-
LSTM-based model yielded the highest performance among the three models. Specifically,
the CNN-LSTM-based model demonstrated a 0.65 percentage point improvement in Acc.
(IUAs) and a 5.53 percentage point improvement in F1 (IUAs) when compared to Acc.
(IMAs) and F1 (IMAs). Furthermore, CLIP proved to be an effective method for visual
feature extraction. Taking the CNN-LSTM model trained using IUAs as an example,
employing the output of CLIP as the input feature resulted in a 16.85 percentage point
increase in Acc. and a 32.52 percentage point increase in F1 score, compared to using
images as the input. This improvement can be attributed to the ability of CLIP to leverage
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prior knowledge of both vision and text, allowing it to extract textual information along
with visual information.

Table 2. Performance of unimodal models in stage one. “ATTN” in the model names represents
attention mechanism. Mel is the Mel spectrogram feature.

Modality Name of Model Feature Acc. (IMAs) F1 (IMAs) Acc. (IUAs) F1 (IUAs)

V

CNN
Image 48.36 44.56 45.08 44.18
CLIP 63.68 63.11 66.96 65.41

CNN-LSTM
Image 54.49 38.67 51.20 35.06
CLIP 67.40 62.05 68.05 67.58

CNN-ATTN-LSTM
Image 54.27 38.18 51.20 34.68
CLIP 65.43 59.97 67.83 65.60

A

BiLSTM
Mel 51.20 44.35 50.77 42.14

Wave2Vec 52.52 44.94 50.98 46.17

CNN-BiLSTM
Mel 51.42 42.70 51.20 42.27

Wave2Vec 53.61 41.62 53.17 46.84

CNN-ATTN-BiLSTM
Mel 52.95 43.24 49.45 44.36

Wave2Vec 54.27 40.48 53.17 50.06

T

BiLSTM
Word2Vec 54.70 43.98 53.39 44.53

BERT 69.80 65.64 74.40 73.18

ATTN-BiLSTM
Word2Vec 54.92 43.16 54.05 44.62

BERT 70.24 65.96 74.62 74.41

CNN-ATTN
Word2Vec 55.36 42.40 53.39 45.95

BERT 70.02 66.87 75.27 75.10

For the acoustic modality, we compared our unimodal model, the CNN-ATTN-
BiLSTM-based model, with the BiLSTM-based and CNN-BiLSTM-based models. Two
types of features were examined for each model: Mel features and outputs of Wav2vec.
As indicated in Table 2 and Figure 5d–f, most models exhibited higher F1 score for IUAs
compared to IMAs, and our CNN-ATTN-BiLSTM-based model delivered the best per-
formance among the three models. Additionally, Wav2Vec 2.0 proved to be an effective
method for acoustic feature extraction. Although the CNN-ATTN-BiLSTM-based model
had a 1.1 percentage point lower Acc. (IUAs) compared to Acc. (IMAs), it demonstrated a
9.58 percentage point higher F1 score for IUAs compared to F1 score for IMAs.

In the textual modality, we compared our unimodal model, the CNN-ATTN-based
model, with the BiLSTM-based and ATTN-BiLSTM-based models. Two types of features
were tested for each model: outputs of Word2Vec and BERT. As depicted in Table 2 and
Figure 5g–i, in most cases, the F1 score for IUAs outperformed the F1 score for IMAs, and
in some instances, the Acc. (IUAs) surpassed Acc. (IMAs). Our CNN-ATTN-based model
yielded the best performance among the three models. As expected, BERT proved to be an
effective method for textual feature extraction.

The results shown in Table 2 and Figure 5 are consistent with our idea: unimodal
models trained using IUAs can learn better emotional representation.

5.1.2. Multimodal Fusion

We compared four fusion strategies: concatenate, multi-head attention, Transformer,
and Conformer. The evaluation of these fusion strategies was conducted using Acc. (accu-
racy) and F1 score. The results are presented in Table 3.

Based on the overall trend observed in Table 3, Conformer emerged as the most
effective fusion method, followed by Transformer, multi-head attention, and concatenate.
Specifically, the Uni2Mul-M-Conformer model achieved an Acc. (IUAs) that was 0.22, 0.44,
and 1.76 percentage points higher than those of Uni2Mul-M-Transformer, Uni2Mul-M-
Attention, and Uni2Mul-M-Concatenate, respectively.
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and F1 score, of three textual models: BiLSTM, ATTN-BiLSTM, and CNN-ATTN. V: Vision, A: Audio,
T: Text.

In most cases, Acc. (IUAs) outperformed Acc. (IMAs), and F1 (IUAs) outperformed
F1 (IMAs). The Uni2Mul-M-Conformer model demonstrated an Acc. (IUAs) that was
3.72 percentage points higher than that of Acc. (IMAs), while F1 (IUAs) was 3.58 percentage
points higher than that of F1 (IMAs). These results align precisely with our expectations.

Furthermore, the multimodal fusion models constructed using pre-trained unimodal
models exhibited higher Acc. and F1 score compared to those built without pre-training.
Additionally, the multi-task framework outperformed the single-task framework, which is
consistent with previous research findings.
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Table 3. Results for MEC with different fusion strategies in stage two.

Name of Model Acc. (IMAs) F1 (IMAs) Acc. (IUAs) F1 (IUAs)

Uni2Mul-S-Concatenate (w/o pre-train) 66.52 65.47 68.71 64.60
Uni2Mul-S-Concatenate 71.99 70.39 73.96 73.17

Uni2Mul-M-Concatenate (w/o pre-train) 70.46 67.95 69.58 68.83
Uni2Mul-M-Concatenate 72.87 70.35 75.05 74.36

Uni2Mul-S-Attention (w/o pre-train) 69.15 65.61 67.61 61.37
Uni2Mul-S-Attention 72.65 71.53 73.96 73.26

Uni2Mul-M-Attention (w/o pre-train) 70.24 64.35 70.90 69.56
Uni2Mul-M-Attention 72.87 71.16 76.37 75.26

Uni2Mul-S-Transformer (w/o pre-train) 68.71 63.64 65.21 59.62
Uni2Mul-S-Transformer 71.77 69.17 75.05 73.87

Uni2Mul-M-Transformer (w/o pre-train) 69.58 63.77 71.77 67.96
Uni2Mul-M-Transformer 73.09 70.06 76.59 74.68

Uni2Mul-S-Conformer (w/o pre-train) 69.37 64.57 72.21 68.56
Uni2Mul-S-Conformer 72.21 70.62 76.15 75.00

Uni2Mul-M-Conformer (w/o pre-train) 71.55 68.40 73.30 71.84
Uni2Mul-M-Conformer 73.09 71.50 76.81 75.08

5.2. Visualization
5.2.1. Visualization of Hidden Representations

To assess the impact of IMAs and IUAs on model feature extraction, we utilized t-SNE
to visualize the hidden representations of our models (refer to Figure 6).
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Figure 6. Unimodal and multimodal representation. (a,b) are the results from unimodal models
trained using IMAs and IUAs, respectively; (c,d) are the results from models trained using IMAs
and IUAs with Conformer-based fusion strategy. In (a,b), the markers of different colors represent
different modalities, and shapes filled with different colors represent semantic spaces of different
modalities. In (c,d), the markers of different colors represent different emotional categories, and
shapes filled with different colors represent classification distribution. V: Vision, A: Audio, T: Text.
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For unimodal representations, models trained using IMAs displayed irregular cluster-
ing in the semantic space with diffuse distributions (see Figure 6a). Conversely, models
trained using IUAs formed more regular, spherical-like clusters (see Figure 6b) that adhered
to a uniform Gaussian distribution.

In terms of multimodal representations, the Conformer-based fusion model trained
with IMAs were not well concentrated, with multiple overlapping regions, resulting in
suboptimal classification performance and limited generalizability (Figure 6c). In contrast,
the model trained with IUAs exhibited distinct classification boundaries and minimal
overlap in the classification distribution, yielding comparatively superior classification
performance and adequate generalizability (see Figure 6d).

5.2.2. Visualization of Attention Weights

In stage one, we obtained a 64-dimensional visual feature vector, a 64-dimensional
acoustic feature vector, and a 128-dimensional textual feature vector. In stage two, we con-
catenated these three vectors into a 256-dimensional multimodal vector and fed it into the
fusion network. To explore the differences in fusion methods, we visualized the attention
weights of three fusion strategies: multi-head attention (see Figure 7a), Transformer (see
Figure 7b), and Conformer (see Figure 7c). In Figure 7a–c, we constructed an attention
weight matrix for the aforementioned 256-dimensional multimodal feature vectors. The
horizontal axis positions correspond to visual, acoustic, and textual feature components
from left to right, and the vertical axis positions correspond to them from top to bottom.
The numerical values (different colors) of each position in the matrix represent the degree
of correlation of the corresponding positions, and the diagonal represents autocorrelation.
The higher the value, the brighter the color. The weights of different heads were averaged.
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Figure 7. Attention weights of three fusion methods: (a) for “multi-head attention”, (b) for “Trans-
former”, and (c) for “Conformer”. The lighter the color, the higher the weight.

In Figure 7a, we observed a few scattered regions with relatively high weights in the
distribution, indicating that the multi-head attention fusion model successfully identified
important emotional features. In Figure 7b, the weights were predominantly higher along
the main diagonal, suggesting that the Transformer model discovered significant intra-
modal relationships. Although there were a few high weight regions near the bottom left
corner, their weights were lower compared to those along the main diagonal. This implies
that the model had less proficiency in fusing inter-modal information and primarily focused
on intra-modal relationships. Moving on to Figure 7c, we notice that the main diagonal had
a wider area of prominence compared to Figure 7b. Additionally, some vertical highlight
regions appeared at the bottom left of the main diagonal. These observations indicate that
the Conformer model, benefiting from its convolutional kernel, assigns higher weights
to intra-modal relationships and exhibits greater confidence in inter-modal relationships.
These findings align with our expectations and suggest that the Conformer network serves
as an effective fusion model.
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5.2.3. Visualization of Confusion Matrix

To provide a more intuitive representation of the impact of IMAs, IUAs, and fusion
strategies on the performance of multi-modal fusion models, we visualize the confusion
matrices of these models. The results are shown in Figure 8.
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Figure 8. Confusion matrix for MEC models. (a,c,e,g) are from models trained with IMAs, while
(b,d,f,h) are from models trained with IUAs. (a,b) belong to the concatenate-based fusion models,
(c,d) belong to the multi-head attention-based fusion models, (e,f) belong to the transformer-based
fusion models, and (g,h) belong to the Conformer-based fusion models.

Comparing the left side of Figure 8a,c,e,g with the right side Figure 8b,d,f,h, it can
be observed that regardless of the fusion strategy employed, models trained with IUAs
outperform those trained with IMAs. Models trained with IMAs tend to have higher
recognition accuracy for the negative class but lower accuracy for the positive and neutral
classes. On the other hand, models trained with IUAs exhibit better recognition capabilities
for both the positive and neutral classes, especially those based on the Conformer fusion
method, which show improvements in recognition accuracy for all three classes.
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This research, however, has several limitations. The first limitation is the lack of
additional datasets for extensive validation. The second limitation is that CH-SIMS is a
dataset with imbalanced samples, specifically a small number of positive, especially neutral
emotion samples. The adaptability of the model to imbalanced data can also be improved.

6. Conclusions

In this paper, we propose a robust Conformer-based MEC model called Uni2Mul,
which focuses on optimizing unimodal representation and multimodal fusion. We divide
the implementation of Uni2Mul into two stages. In stage one, we construct individual
unimodal neural networks for each modality and train them using IUAs to optimize the
unimodal representations. This results in pre-trained unimodal models with superior
performance. In stage two, we concatenate the hidden representations of these pre-trained
unimodal models and feed the concatenated feature into the Conformer-based fusion
network. This fusion network includes a sub-task that predicts IUAs for MEC. We also
perform ablation experiments for the two stages separately. For stage one, we construct
three different neural network structures for each modality and train these networks using
IUAs and IMAs, respectively. For stage two, we try four fusion methods: concatenate,
multi-head attention, Transformer, and Conformer. We summarize our overall findings as
follows:

(1) Unimodal models trained using IUAs can learn more differentiated information and
improve the complementarity between modalities compared to those trained using
IMAs.

(2) The hidden representations of the pre-trained unimodal models serve as effective
inputs for the fusion network. This ensures that the differentiated information learned
using the unimodal models is passed unchanged to the fusion network.

(3) The Conformer module, with its multi-head attention mechanism and convolutional
kernel, excels in paying attention to important intra-modal information and capturing
inter-modal relationships. It is the best among the four fusion strategies mentioned
above.
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Appendix A

Table A1. Abbreviations used in this paper. Each abbreviation retains the underlined letter from its
corresponding phrase.

Abbreviations Stand for

Uni2Mul Unimodal to Multimodal
MEC Multimodal Emotion Classification
IUAs Independent Unimodal Annotations

https://github.com/thuiar/MMSA
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Table A1. Cont.

Abbreviations Stand for

IMAs Identical Multimodal Annotations
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
SER Speech Emotion Recognition

LFCC Linear Frequency Cepstral Coefficients
MFCC Mel-scale Frequency Cepstral Coefficients
ROC Receiver Operating Characteristic

BiLSTM Bidirectional LSTM
BN Batch Normalization

ReLU Rectified Linear Unit
BERT Bidirectional Encoder Representation from Transformers
GRU Gated Recurrent Unit
VGG Visual Geometry Group
SVM Support Vector Machine
EEG electroencephalogram
GSR Galvanic Skin Response
CLIP Contrastive Language-Image Pre-training
GLU Gated Linear Unit
LN Layer Normalization
DP Dropout Operation

GAP Global Average Pooling1D
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