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Abstract: Air pollution is a critical environmental concern that poses significant health risks and
affects multiple aspects of human life. ML algorithms provide promising results for air pollution
prediction. In the existing scientific literature, Long Short-Term Memory (LSTM) predictive models,
as well as their combination with other statistical and machine learning approaches, have been
utilized for air pollution prediction. However, these combined algorithms may not always provide
suitable results due to the stochastic nature of the factors that influence air pollution, improper
hyperparameter configurations, or inadequate datasets and data characterized by great variability and
extreme dispersion. The focus of this paper is applying and comparing the performance of Support
Vector Machine and hybrid LSTM regression models for air pollution prediction. To identify optimal
hyperparameters for the LSTM model, a hybridization with the Genetic Algorithm is proposed. To
mitigate the risk of overfitting, the bagging technique is employed on the best LSTM model. The
proposed predicitive model aims to determine the Common Air Quality Index level for the next hour
in Niksic, Montenegro. With the hybridization of the LSTM algorithm and by applying the bagging
technique, our approach aims to significantly enhance the accuracy and reliability of hourly air
pollution prediction. The major contribution of this paper is in the application of advanced machine
learning analysis and the combination of the LSTM, Genetic Algorithm, and bagging techniques,
which have not been previously employed in the analysis of air pollution in Montenegro. The
proposed model will be made available to interested management structures, local governments,
national entities, or other relevant institutions, empowering them to make effective pollution level
predictions and take appropriate measures.

Keywords: air pollution prediction; common air quality index; long short-term memory; support
vector machine; genetic algorithm; bagging techniques

1. Introduction

Air pollution is a concerning global issue, with approximately 1.3 million annual
deaths attributed to it, according to the World Health Organization (WHO) [1]. Air quality
assessment plays a vital role in monitoring and managing pollution levels. WHO data
reveal that air pollution exceeding the recommended limits affects nearly the entire global
population (99%), with a significant impact in low- and middle-income countries. It is
crucial to anticipate and prepare for fluctuations in pollution levels to effectively mitigate
the adverse effects of air pollution. Improving air quality not only enhances public health
but also contributes to mitigating climate change, as air quality is closely interconnected
with our planet’s climate and the health of its ecosystems. By reducing air pollution, we
can alleviate the burden of diseases associated with air pollution and make long-term
contributions to climate change mitigation efforts.

Since 2005, the Common Air Quality Index (CAQI) has been employed in Europe as a
comprehensive and standardized metric to evaluate and communicate air quality levels to
the general public [2]. It provides a simplified and easily understandable representation of
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air pollution levels, making it easier for individuals to make informed decisions regarding
their health and well-being. The CAQI is based on the measurement of several air pollutants
that are known to have detrimental effects on human health, including particulate matter
(PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur
dioxide (SO2) [3]. These pollutants are commonly monitored by air quality monitoring
stations located in various regions. The CAQI is designed to provide a numerical value or
color-coded scale that corresponds to the air quality level.

Typically, the CAQI scale ranges from 0 to 100 and it is divided into several categories,
such as very low, low, medium, high, and very high [4], and the visual color scale is pre-
sented from green to red. To calculate the CAQI value, individual pollutant concentrations
are first converted into indexes using predefined equations that are based on value interpo-
lation. These indexes are then combined, weighted, and transformed into a single CAQI
value. The weighting factors assigned to each pollutant are determined based on their
relative health impacts.

The CAQI is a valuable tool in terms of raising awareness about air pollution and its
potential health risks. It enables policymakers, environmental agencies, and the general
public to monitor and address air quality issues effectively. Additionally, the CAQI facili-
tates the comparison of air quality between different locations and allows for long-term
trend analysis, aiding in the formulation of targeted strategies for air pollution control
and mitigation.

The advancement of machine learning (ML) techniques, including deep learning, has
opened up new opportunities to enhance air quality research [5]. Among these techniques,
the Support Vector Machine (SVM) has demonstrated promising outcomes in diverse
domains. As a supervised learning algorithm, SVM is designed in the manner that it can
identify optimal hyperplanes to enable the formation of data classes. In the context of air
pollution prediction, SVM can learn complex patterns and relationships from historical
pollution data and meteorological variables [6]. On the other hand, LSTM represents a type
of recurrent neural network known for its effectiveness in modeling sequential data [7]. It
can capture long-term dependencies and temporal patterns, making it suitable for time
series forecasting tasks such as air pollution prediction.

The hybridization of ML algorithms with other techniques yields good results, es-
pecially when it comes to metaheuristic algorithms. Hybridization allows the faster con-
vergence of algorithms and increases the prediction accuracy of ML algorithms. There is
a wide range of metaheuristic algorithms [8] and one of the most commonly used is the
Genetic Algorithm (GA), which is inspired by the process of natural selection [9]. It can
effectively search for optimal or suboptimal solutions in a large solution space.

Bagging is an ensemble learning technique that enhances predictions by consolidating
multiple models trained on diverse subsets of data. By aggregating the predictions of
individual models, bagging reduces overfitting and increases the stability and robustness
of the algorithms. It helps to capture different patterns and relationships present in the
data, increasing the model’s overall performance by enhancing accuracy, handling data
noise, and increasing robustness [10].

This paper focuses on the development of an advanced hourly CAQI prediction model
through the hybridization of metaheuristics, ML algorithms, and ensemble learning tech-
niques. More precisely, three different techniques are combined: GA, the LSTM algorithm,
and a bagging approach. To our knowledge, this combination of techniques has not been
applied yet to air pollution analysis in Montenegro. Regarding the numerical results, a
comparison with standard ML prediction algorithms (SVM) is made. Our results show that
the proposed hybrid model significantly outperforms the SVM model in terms of accuracy
and convergence.

2. Related Work

Recent studies have been focusing on sophisticated learning algorithms to enhance air
quality evaluation and air pollution prediction. Drewil and Al-Bahadili [11] used the LSTM
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model in conjunction with GA to enhance the performance of air prediction models. The
performance of the GA-LSTM model was evaluated and compared with models employing
manual criteria. The results showed a significant improvement in LSTM performance
with the integration of GA. Waseem et al. [12] chose to perform only PM2.5 forecasting
by applying deep learning techniques, among which the LSTM encoder–decoder variant
showed promising results. In another study, Xayasouk et al. [13] examined the methods of
predicting PM levels and showed that LSTM combined with deep autoencoder techniques
showed slightly better performance than the typical LSTM model.

Triana and Osowski [14] employed bagging and boosting techniques for PM prediction.
Their experiments demonstrated significant improvements in result quality when using
bagging and boosting ensembles with weak predictors. The Mean Absolute Error was
reduced by more than 30% for PM10 and 20% for PM2.5 compared to individual predictors.
Liang et al. [15] developed multiple ML models, including adaptive boosting (AdaBoost),
an artificial neural network (ANN), random forest (RF), a stacking ensemble, and SVM, for
the prediction of air quality index levels over different time intervals (1 h, 8 h, and 24 h).
The stacking ensemble, AdaBoost, and RF models showed the best prediction performance,
although their forecasting accuracy varied across geographical regions. Madhuri et al. [16]
used linear regression, SVM, decision tree, and RF models for air quality prediction. The RF
model achieved the highest accuracy among the tested algorithms. Kumar and Pande [17]
applied five different ML models to predict air quality. The authors showed that the
strongest correlation between predicted and actual data was achieved by the XGBoost
model. Sanjeev [18] conducted a study where a few standard classification models were
applied to a dataset that included pollutant concentrations and meteorological data. Due
to its robustness against overfitting, the RF classifier demonstrated superior performance
compared to other classifiers.

In their review, Rybarczyk and Zalakeviciute [19] examined a collection of 46 highly
relevant journal papers. The authors found that there were more studies focused on
pollutants such as O3, NO2, PM10, and PM2.5, while fewer studies covered CAQI prediction.
We refer interested readers to a comprehensive review [20] of 155 papers that provides a
detailed analysis of air quality prediction using ML techniques.

3. Implementation Methodology

This paper focuses on the hybridization of multiple algorithms. To develop our hybrid
model, the Python libraries Keras and Scikit-Learn and their modules keras.optimizers and
sklearn.model_selection were used, as well as the necessary functions and algorithms con-
tained in these modules. A comprehensive description of the proposed system architecture
is represented in Figure 1. The various phases employed to obtain hourly air pollution pre-
dictions in Niksic, Montenegro are presented. The first step involves collecting air quality
data from an air monitoring station. The collected data undergo preprocessing and feature
engineering procedures to ensure better training and testing results. After this, the data are
partitioned, scaled, and fed into the proposed hybrid LSTM model for further analysis and
prediction. In order to enhance the performance of the LSTM model, a GA is employed
for parameter selection. This hybridization with the metaheuristic algorithm helps to find
the best combination of hyperparameters for LSTM, resulting in the improved predictive
capabilities of the model. The bagging technique is applied to the best-performing LSTM
model. This approach involves training multiple instances of the LSTM model on distinct
subsets of the data and combining their predictions, leading to improved overall accuracy
and robustness. Based on its predictive performance, the implemented hybrid LSTM model
is thoroughly tested and compared with the SVM approach. These two final models are
evaluated and analyzed to provide insights into their suitability for air quality prediction.



Appl. Sci. 2022, 13, 10152 4 of 22

Figure 1. Proposed system architecture for hourly CAQI prediction in Montenegro.

The LSTM algorithm is a type of RNN architecture specifically designed to handle
sequential data and effectively capture long-term dependencies [21]. LSTM networks
use specialized memory cells and gates to effectively manage and control the flow of
information at various time steps. This enables them to effectively model and retain
important patterns and dependencies in the input data. The LSTM algorithm addresses
the vanishing gradient problem that occurs in RNN algorithms, where gradients become
too small to update weights effectively over long sequences. By using memory cells and
gates, LSTM allows gradients to flow through time more easily. Figure 2 illustrates the
architecture of the LSTM unit, while the corresponding Equations (1)–(6) for the LSTM
algorithm are provided below:

int = σ(Vinxt + ωinht−1 + βin), (1)

f rgt = σ(Vf rgxt + ω f rght−1 + β f rg), (2)

outt = σ(Voutxt + ωoutht−1 + βout), (3)

C̃t = tanh(Vcxt + ωcht−1 + βc), (4)

Ct = f rgt ⊗ Ct−1 + int−1 ⊗ C̃t, (5)

ht = outt ⊗ tanh(Ct−1), (6)

where the input gate (int), forget gate ( f rgt), and output gate (outt) are controlled by the
weights (Vin, Vf rg, Vout) connecting them to the input. The weights (ωin, ω f rg, ωout) connect
the input, forget, and output gates to the hidden layer. The bias vectors (βin, β f rg, βout) are
associated with the input, forget, and output gates, respectively. The state of the cell at the
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previous time point is denoted by C̃t and the current state of the cell by Ct. The outputs of
the cell at the previous and current time points are denoted by ht−1 and ht, respectively [22].

Figure 2. The structure of the memory unit in the LSTM layer.

The GA is an evolutionary-based metaheuristic algorithm that employs the principles
of natural adaptation and selective breeding [8]. It operates on a population of individuals,
where each individual represents a potential solution to a specific problem. These individ-
uals are characterized by a genetic code, which is a sequence of characters (genes) from
some alphabet. By decoding each individual and assessing its fitness value, the algorithm
determines the quality of solutions within the population. Through iterative processes of
selection, crossover, and mutation, the GA seeks to optimize the solutions until a specific
stopping criterion is met. This criterion can be a fixed number of generations or a condition
where the algorithm terminates if there is no improvement in the best individual over a
defined number of generations.

The SVM algorithm belongs to the class of well-known supervised ML algorithms.
It shows good performance when it is required to fit functions to the training data and
at the same time to minimize produced errors. To handle the demanding relationships
between the input features and the target variable, and to ensure the detection of linear
decision boundaries, SVM incorporates kernel functions, allowing the mapping of the input
data into a multidimensional feature space. The optimization process in SVM involves
minimizing the loss function, which consists of a margin violation error and a regularization
term [23]. The regularization term maintains a trade-off between the complexity of the
model and the training error, thus mitigating the risk of overfitting. The SVM function is
defined by Equation (7):

f (xi) = vϕ(xi) + β, (7)

where ϕ(xi) describes the non-linear mapping function, xi represents the input vector, and
zi represents the corresponding target value. The values v and β are the weight factor and
bias, respectively [24]. The estimation of the parameters w and b is achieved through the
minimization of the regularized risk function ρ(v), as denoted by Equation (8):

ρ(v) =
1
2
‖v‖2 + P

n

∑
i=1
Le(zi, f (xi)). (8)

The regularization term 1
2‖v‖2 balances the trade-off between the empirical risk and

model flatness. The penalty coefficient P determines the extent of this trade-off. The
e-insensitive loss function Le(zi, f (xi)) is defined by Equation (9) and is used to handle
errors within a tolerance level e:

Le(zi, f (xi)) = max{0, |zi − f (xi)| − e}. (9)
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If the predicted value falls within the threshold, its contribution to the loss function
will be ignored. However, if the predicted value exceeds the threshold, the loss function
will take on a value greater than e. To measure the distance between the actual values and
the corresponding boundary values of the e-tube, two positive slack variables, δ and δ∗, are
introduced. This transformation results in the constrained form of Equation (8),

min f (v, δ, δ∗) =
1
2
‖v‖2 + P

n

∑
i=1

(δ + δ∗),

subject to {
zi − vϕ(xi)− β ≤ e + δ, δ ≥ 0
vϕ(xi) + β− zi ≤ e + δ∗, δ∗ ≥ 0.

(10)

The Lagrangian function, defined by Equation (11), is used to solve the previously
defined optimization problem (10),

maxF(λi, λ∗i ) =−
1
2

n

∑
i=1

n

∑
j=1

(λi − λ∗i )(λj − λ∗j )κ(xi, xj)

+
n

∑
i=1

zi(λi − λ∗i )− e
n

∑
i=1

zi(λi + λ∗i )

subject to
n

∑
i=1

λi − λ∗i = 0, λi, λ∗i ∈ [0, P]. (11)

Equation (12) describes the method of calculating the regression function f (x),

f (x) =
n

∑
i=1

(λi − λ∗i )κ(xi, xj) + β, (12)

where the Lagrangian multipliers satisfy the constraints λi ≥ 0 and λ∗i ≥ 0. The kernel
function κ(xi, xj) allows for the non-linear mapping of the original data into a higher-
dimensional feature space.

3.1. Data Collection and Preprocessing

In the analysis described in this paper, data were provided by the Environmental
Protection Agency (EPA) of Montenegro. The data were collected from the air quality
monitoring station located in Niksic, Montenegro and are freely downloadable from the
EPA website [25]. There are 9 monitoring stations in Montenegro, located in Podgorica UT,
Podgorica UB, Niksic, Bar, Pljevlja, Bijelo Polje, Kotor, Gornje Mrke, and Gradina, as shown
in Figure 3. The focus of the analysis was Niksic, since this town is recognized as one of
Montenegro’s urban areas that consistently experiences high pollution levels throughout
the year. Our selection was additionally guided by the fact that the datasets obtained from
air monitoring stations in other cities in Montenegro were either incomplete or insufficient
for our analysis. The air pollutant data from Niksic were recorded from 21 August 2019
until 17 December 2022, and consisted of hourly values of PM2.5, PM10, NO2, O3, SO2,
and CO.

In general, data collected from monitoring stations, sensors, and other sources cannot
be readily utilized for analysis without undergoing necessary preparatory steps. The raw
data often contain inconsistencies, outliers, missing values, and other imperfections that
need to be addressed. To ensure the accuracy and reliability of subsequent analyses and
predictions of our model, multiple preprocessing techniques, including data cleaning, data
scaling, and the removal of NAN values, were applied to the collected data. Invalid data
(missing data) were simply ignored. To unify data on a common scale, we used a MinMax
scaler. It works by transforming each feature independently, maintaining the relationships
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between the features while ensuring that they all fall within the interval [0, 1]. For each
feature value x, the scaled value xscaled is calculated using Equation (13):

xscaled =
x− xmin

xmax − xmin
. (13)

The initial dataset had 28, 142 values, which was reduced to 17, 007 after missing data
elimination. With the outlier detection and removal, the dataset was additionally reduced
to 16, 913 values. As with other ML techniques, our approach also requires a phase of
training and testing. The final dataset of 16, 890 values, which is the number of continuous
24 h time series, was divided into training and testing datasets, with 12, 672 (75%) and 4218
(25%) data values, respectively.

Figure 3. Air monitoring stations in Montenegro.

3.2. Feature Engineering

The CAQI value is based on the measurement of several air pollutants: PM2.5, PM10,
NO2, O3, O2, and CO. It provides a numerical value or color-coded scale that corresponds
to the air quality level, i.e., very low, low, medium, high, and very high, as shown in Table 1.

Table 1. CAQI scale representation. Concentrations of all pollutants are presented in µg/m3.

CAQI Scale Index PM2.5 (1 h) PM2.5 (24 h) PM10 (1 h) PM10 (24 h) NO2 O3 SO2 CO

Very low 0–25 0–15 0–10 0–25 0–15 0–50 0–60 0-50 0–5000
Low 25–50 15–30 10–20 25–50 15–30 50–100 60–120 50–100 5000–7500

Medium 50–75 30–55 20–30 50–90 30–50 100–200 120–180 100–350 7500–10,000
High 75–100 55–110 30–60 90–180 50–100 200–400 180–240 350–500 10,000–20,000

Very high >100 >110 >60 >180 >100 >400 >240 >500 >20,000

CAQI values are not available on the Montenegro EPA website; only the specific
pollutant concentration values are provided, such as PM2.5, PM10, NO2, O3, SO2, and CO.
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Based on the preliminary statistical analysis, 4 pollutants were selected: PM2.5, PM10, NO2,
and O3. The selected pollutants were considered to be equally harmful. Consequently, their
weighted factors were set to 1. Due to the low statistical significance, SO2 and CO were
excluded from further analysis.

The CAQI values were calculated by applying Equation (14) to the 4 selected input
parameters:

CAQI = max
{

IO3 , IPM2.5 , IPM10 , INO2

}
, (14)

where the pollutant concentration (Ci) is mapped to pollutant index (Ii) by applying the
following equation:

Ii = Ilow +
Ci − Clow

Chigh − Clow
(Ihigh − Ilow), (15)

where i denotes the air pollutant. Values Clow and Chigh denote the minimal and maximal
1-h concentration values of the CAQI category that corresponds to the concentration of the
specific pollutant, while Ilow and Ihigh denote the minimal and maximal air quality index
values of the category shown in the second column of Table 1. The following calculations
are used in our work: maximum mean hourly values for NO2, O3 (in µg/m3) and calculated
daily mean value for PM10, PM2.5 (in µg/m3).

In addition, based on the EPA recommendation, in order for the measurement to be
considered valid, it is necessary that there are at least three measured values of the input
parameters at the same time, and that among them there is at least one measured value for
NO2, PM10, or O3, which we also took into account.

As an example, based on the CAQI system provided by the Montenegro EPA web-
site [4], if the concentration of PM10 is CPM10 = 82.2 µg/m3, it will fall within the concentra-
tion interval of 50 and 90 and the index interval of 50 and 75, corresponding to a moderate
pollutant level. The index value IPM10 is then calculated based on Equation (15) as follows:

IPM10 = 50 +
82.2− 50
90− 50

(75− 50) = 70.125, (16)

It is important to note that, while one pollutant may have the highest concentra-
tion value, another pollutant could be dominant, meaning it has the highest index value.
This ambiguity comes from different concentrations of certain input quantities that are
considered dangerous.

3.3. Performance Evaluation

In order to provide a baseline for comparative analysis and to assess the proposed
model’s performance, four standard evaluation metrics were applied: Mean Square Er-
ror (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Coefficient of Determination R2.

MSE is a measure used to quantify the extent of deviation between the predicted
values (ẑi) and measured values (zi). A lower MSE value indicates a smaller deviation. The
MSE value is computed using Equation (17):

MSE =
1
n

n

∑
i=1

(zi − ẑi)
2. (17)

MAE measures the extent of error between the predicted value and the measured
value. The MAE value can be obtained by Equation (18):

MAE =
1
n

n

∑
i=1
|zi − ẑi|. (18)

MAPE quantifies the error between the predicted and measured values as a percentage
of the measured values. The MAPE value is computed based on Equation (19):
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MAPE =
1
n

n

∑
i=1

∣∣∣∣ zi − ẑi
ẑi

∣∣∣∣100%. (19)

The R2 measure indicates how well the air pollutant values in a regression model
explain the variation in the CAQI value. It quantifies the proportion of the total variation
in the CAQI values that can be accounted for by the air pollutants. The R2 value ranges
from 0 to 1, and a higher R2 value indicates a better fit, meaning that a larger proportion
of the variation in the CAQI values is captured by the air pollutants. The R2 measure is
calculated as shown in Equation (20):

R2 = 1− ∑n
i=1(zi − ẑi)

2

∑n
i=1(zi − z)2 , (20)

where z represents the mean of the measured values and n is the number of samples.
The issue of bias can arise in performance validation when the dataset is split, trained,

and tested only once [26]. This implies that the validity of the results obtained from the
testing dataset may be affected when the testing subset is altered. To address this problem,
each model in our work was rebuilt five times using different random subsets of training
and testing samples, while maintaining a consistent splitting proportion of 75:25.

4. Results and Discussion
4.1. Data Summary

After the necessary eliminations and reductions of the initial measurement set, the
CAQI values were calculated by applying Equation (14) for the remaining 16, 913 readings
of each pollutant. The descriptive statistics (Count, Mean, Standard Deviation (Std), Mini-
mum (Min), First Quartile (Q1), Median (Q2), Third Quartile (Q3), and Maximum (Max)) of
the input dataset are shown in the first column of Table 2. Columns two to five correspond
to the input features of our model and the last column presents the calculated values of
CAQI. CAQI represents the output variable that our model aims to predict based on the
known input feature concentrations, O3, PM2.5, PM10, and NO2, displayed in µg/m3.

A concise summary of the dataset is presented with the boxplot displayed in Figure 4.
The boxplot illustrates the distribution of concentrations for four pollutants: PM2.5, PM10,
NO2, and O3, and CAQI values. Figure 4 reveals that PM2.5 and PM10 exhibit similar
distributions, with both pollutants showing positively skewed tendencies. The PM2.5
interquartile range (IQR) is narrower than the IQR for PM10, suggesting that PM2.5 con-
centrations are relatively less variable. Both pollutants display many outliers, indicating
extreme pollution events. The percentage of outliers in PM2.5 is 11.87% and that in PM10
is 7.15%. The NO2 dataset shows a moderately positively skewed distribution with a
narrow IQR and the percentage of outliers in NO2 is 5.87%. The median concentration of
O3 indicates a lower central tendency, and there are no outliers in O3. The range of CAQI
values is considerably extensive and these values have the greatest dispersion, resulting in
a challenge for modeling. Additionally, there are no outliers within the CAQI dataset.

Table 2. Descriptive statistics of the dataset.

Metric NO2 (µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3) O3 (µg/m3) CAQI

Count 16,913 16,913 16,913 16,913 16,913
Mean 9.30 16.04 26.78 52.61 51.01

Std 9.74 17.48 22.58 25.69 26.14
Min 2.00 5.00 5.00 2.00 14.00
Q1 2.00 5.00 11.10 31.90 29.00
Q2 5.20 9.00 18.70 53.90 43.00
Q3 12.90 17.20 34.40 72.20 72.00

Max 54.30 104.80 114.90 129.40 129.00
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Figure 4. Summary of the air pollution dataset used.

Figure 5 shows the Pearson correlation coefficients between selected air pollutants,
PM2.5, PM10, NO2, O3, and the CAQI values. The strength and direction of the linear
correlation between the CAQI values and the measured pollutants are shown as values
falling between −1 and +1. The correlation coefficient of 0.8 between PM2.5 and PM10
indicates a strong positive correlation between the two pollutants. The correlation coeffi-
cient between PM2.5 and NO2 is 0.61, indicating a moderate positive correlation. On the
other hand, the correlation coefficient between O3 and PM2.5 is −0.46, and that between
O3 and NO2 is −0.47, indicating a moderate negative correlation. There is a moderate
positive correlation between the CAQI values and PM2.5 (0.55), as well as between the
CAQI values and PM10 (0.6). The correlation coefficient between the CAQI values and O3
(−0.35) indicates a moderate negative correlation.

Figure 6 presents the values of four air pollutants (PM2.5, PM10, NO2, and O3) collected
over the 3-year period, together with five CAQI levels. The most frequent CAQI levels
in relation to PM2.5 and PM10 are high and very high. In relation to NO2 and O3, low,
medium, and high CAQI levels are equally distributed. In the legends of the plots shown in
Figure 6, we provide percentages that describe how many measurements of the parameter
shown on the y-axis influenced some of the CAQI levels. For example, a very high level
of CAQI was reached due to the maximal PM2.5 in 0.12% of the data, 69.22% due to the
maximal PM10, and 30.66% of cases due to the maximal O3, while NO2 did not cause a
very high level of CAQI in any measurement. Observing Figure 6, it is evident that the
dataset used is characterized by 14.32% of very low CAQI values, 46.05% of low CAQI
values, 16.33% of medium CAQI values, 18.44% of high CAQI values, and 4.86% of very
high CAQI values.

In order to gain better insights and visually depict the relationships between the
features and the calculated values of CAQI, a pairplot is presented in Figure 7. This allows
for a comprehensive visualization of the associations between different variables. The
main diagonal of the pairplot represents the distributions of the pollutant concentrations.
The concentrations of NO2, PM2.5, and PM10 show the similarities in their behavior, with
heavily rightly skewed tendencies and a narrow spread of values. This indicates the higher
concentrations of these pollutants in the dataset. Observing the pairplot, it is evident that
there exists a strong positive correlation between PM2.5 and PM10, suggesting that an
increase in one pollutant is associated with an increase in the other one. There is no obvious
relationship among the other pollutants. The color points represented in the scatter plot
show different CAQI levels. It is observable from Figures 6 and 7 that very high CAQI
values imply higher concentrations of PM2.5, PM10, and NO2. Conversely, CAQI shows a
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negative correlation with O3. From Figures 5–7 it can be concluded that the concentration
levels of PM2.5, PM10, and NO2 considerably impact the air quality, i.e., the CAQI levels.

Figure 5. Pearson correlation values.

Figure 6. Scatterplot of four observed features and the calculated CAQI.
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Figure 7. Visual representation of pairwise feature relationships.

4.2. CAQI Prediction Model Implementation

The proposed system aims to create advanced hourly air pollution predictions by
implementing a hybrid LSTM model. Hybridization in this paper involves the use of the
GA, given the advantageous characteristics of this algorithm. The GA metaheuristic is
applied to elevate the LSTM’s accuracy and aims to find the best combination of a suitable
time step number and the number of LSTM units in each layer. The GA parameter settings
are displayed in Table 3. The fitness function is the same as the MSE of the model produced
by each individual. To create the next generation, one-point crossover was performed,
with a crossover probability of 0.9. The selection of individuals was performed using
tournament selection, with a tournament size of 3. Mutation was applied on the offspring
with a mutation probability of 0.3. The mutation uniformly modified both genes, and it
could either increase or decrease the values within the given ranges. In our GA, individuals
distinguished by a chromosome composed of two genes represented as integers were used.
The first gene determines the number of hidden layers, while the second gene determines
the number of time steps. These values are tailored for the effective implementation of
the LSTM hybrid model. The values of the first gene (the first parameter) were randomly
taken from the interval 7–15 and the values of the second gene (the second parameter)
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were randomly taken from the interval 24–40. The range of (24, 40) was considered for the
selection of the optimal number of time steps, while the range of (7, 15) was examined to
choose the best number of units. Bearing in mind that the GA was used for the LSTM model
parameters’ fine-tuning, a GA search was applied to find the most favorable combination
of values for the time step and hidden layer size, while other parameters that characterized
the GA itself were taken as fixed values and were not subjected to detailed analysis.

Table 3. GA parameter setting.

Parameter Value

Crossover probability 0.9
Number of generations 4

Mutation probability 0.3
Population size 4
Fitness function MSE

The best hyperparameter settings for the LSTM model are presented in Table 4. While
there are certain guidelines for the setting of hyperparameters, it is necessary to optimize
them as their values rely on the quality of the data. The chosen set of hyperparameters affect
the ML algorithm’s performance, especially the CPU time necessary for training and testing
and the memory usage to store model and intermediate results. In the literature [11], it has
been demonstrated that taking a relatively small number of time steps is sufficient to obtain
good performance of the algorithm. The time step value is related to the number of time
steps in the input sequences used to train the LSTM model. The input data to the LSTM
model are organized into value sequences, each containing 24 consecutive observations,
and the LSTM model processes these sequences to learn patterns and relationships in the
data over time. During training, the input data are divided into sets of 24 consecutive
observations. The model takes these sequences as input and is trained to predict the next
value in the sequence (i.e., the 25th observation) as an output. In essence, the model learns
the relationships between an input string and the individual output value that follows
it. The choice of 24 time steps as the lower bound of the interval was made based on the
assumption that CAQI values exhibit relatively periodic changes, considering daily human
activity. However, larger values were also allowed, considering the tendency shown by
numerical results addressing similar issues. By increasing the upper bounds of the intervals,
we enabled the model to better learn patterns from the dataset. It was found that the best
accuracy and convergence were achieved for 15 hidden units in the LSTM layer and 24 time
steps. Preliminary tests showed that Adam demonstrated the best performance among all
observed optimizers. The training model was configured with a total of 300 epochs and a
batch size of 8.

Table 4. LSTM hyperparameter setting.

Hyperparameter Value

Number of features 4
Number of outputs 1

Number of time steps (selected by GA) 24
Hidden layer size (selected by GA) 15

Batch size 8
Number of epochs 300

Dropout rate 0.2
Recurrent dropout 0.2

Learning rate 0.0001
Optimizer Adam
Activation Relu

Number of bags 5
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The performance of the best LSTM model with applied GA for hyperparameter tuning
was evaluated using the MSE, MAE, MAPE, and R2 evaluation metrics, as shown in
the third column of Table 5. The learning curve is displayed in Figure 8a, showing the
decreasing trend of the loss function with each epoch. This rapid decline in loss is attributed
to the high quality of the model and the well-tuned model parameters. The convergence
graph for the five models in the bagging ensemble is shown in Figure 8b. The training
and testing MSE and MAE history for the ensemble model with bagging are presented
in Figure 9.

(a) (b)
Figure 8. Convergence graphs representing (a) the best LSTM model without bagging, (b) the five
models in the bagging ensemble.

(a) (b)
Figure 9. Training and testing performance metric history for the ensemble model with bagging:
(a) MSE, (b) MAE.

The performance of the ensemble model with bagging was evaluated using four
evaluation metrics, as presented in the fourth column of Table 5. The actual and predicted
values on a subset of the test dataset for the ensemble model with bagging are displayed in
Figure 10.

Table 5. SVM, best LSTM, and ensemble model evaluation results in hourly CAQI prediction.

Performance Metric SVM Model Best LSTM Model Ensemble Model

MSE 428.2885 58.8046 56.5810
MAE 13.8739 4.6657 4.5560

MAPE 0.2685 0.0923 0.0912
R2 0.3820 0.9135 0.9168

In our analysis, the performance difference between the LSTM model and the ensemble
model was assessed, revealing a reduced MSE difference value of −9.3688, indicating
improved algorithm performance in terms of lower error and better prediction. As a result,
the quality of the model was increased. The performance difference between the best LSTM
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model without bagging and the ensemble model was also assessed, resulting in an MSE
difference of −2.2236 (see Table 6).

Regarding the SVM model, preliminary tests to adjust its hyperparameters were
performed. The best-performing SVM model, which was used for the comparison with the
ensemble model with bagging, had the following hyperparameters: the radial basis function
was used as the kernel function, the parameter that represented the penalty factor was set to
1, and the regularization parameter was set to 2. This value of the penalty factor enabled the
resulting SVM model to be less sensitive to outliers and focus more on the general patterns
of the data. Additionally, a relatively large value of the regularization parameter ensured
that the model had a wider margin of tolerance for errors. This enabled the comparison
between the best-performing SVM model and the ensemble model with bagging.

Figure 10. Actual and predicted values for the ensemble model with bagging on a subset of the
test dataset.

Table 6. Best model (without bagging) and ensemble model comparison.

Performance Metric Difference Value

MSE Difference −2.2236
MAE Difference −0.1097

MAPE Difference −0.0010
R2 Difference 0.0033

The performance evaluation of the best-performing SVM model yielded a high value
of MSE (428.2885) and a low R2 measure (0.3820), as shown in the second column of Table 5.
These low performance results of the SVM model can also be seen in Figure 11, where the
actual and predicted values on a subset of the test dataset for the SVM model are presented.
The comparison between the SVM and the ensemble model with bagging yielded an MSE
difference of −371.7075 and an R2 difference of 0.5348 (see Table 7). The actual values and
predicted values for the SVM and the ensemble model on a subset of the test dataset are
presented in Figure 12. Our model demonstrates improved performance compared to the
SVM model. It achieves a more than five-times improvement in terms of MSE, indicating
better accuracy in predicting the output variable. There is a 67% reduction in terms of MAE,
reflecting the enhanced accuracy of the proposed model. The MAPE is also reduced by a
factor of three, indicating more reliable predictions. The R2 value is increased from 0.3820
to 0.9168, showing a stronger correlation between the predicted and actual values. These
results highlight the superior quality of our ensemble model with bagging compared to
standard ML techniques, such as SVM.
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Figure 11. Actual and predicted values for the SVM model on a subset of the test dataset.

Table 7. SVM model and ensemble model comparison.

Performance Metric Difference Value

MSE Difference −371.7075
MAE Difference −9.3180

MAPE Difference −0.1773
R2 Difference 0.5348

Figure 12. Actual values, prediction of the SVM model, and prediction of the ensemble model on a
subset of the test dataset.

4.3. Statistical Analysis

A comparative statistical analysis was conducted on the calculated MAE values ob-
tained from the training and testing of three models: the LSTM model, the best LSTM
model without bagging, and the ensemble model with bagging. The summary statistics
for the calculated MAE values obtained from the training and testing of the models are
presented in Table 8.
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Table 8. Summary statistics for the calculated MAE values obtained from training and testing of the
LSTM model, the best LSTM model without bagging, and the ensemble model.

Dataset Model Minimum Maximum Mean Std. Deviation

LSTM 4.909 48.593 8.861 8.2130
MAE training set Best LSTM without bagging 4.751 47.253 7.186 6.599

Ensemble model 4.665 47.614 7.112 6.578

LSTM 4.695 47.434 8.921 8.484
MAE testing set Best LSTM without bagging 4.410 45.694 7.049 6.636

Ensemble model 4.274 45.639 6.953 6.610

In order to examine whether datasets are following Gaussian distribution the following
hypotheses were tested: the null hypothesis (H0) assuming that the data is normally
distributed and the alternative hypothesis (Ha) assuming that the data is not normally
distributed. The Shapiro–Wilk normality test was performed for the calculated MAE values
obtained from the training and testing of the models. The test statistics (W) were low, below
1, and the p-values were less than 0.0001, indicating that the observed data significantly
deviated from a normal distribution, as is shown in Table 9. A probability–probability (P-P)
plot was generated to illustrate that the calculated MAE values obtained from the training
and testing of the three models did not adhere to a normal distribution. As can be seen in
Figure 13, the points deviated significantly from the equality line, strongly suggesting that
the examined datasets did not follow a normal distribution.

Table 9. Shapiro–Wilk test for the calculated MAE values obtained from training and testing of the
LSTM model, the best LSTM model without bagging, and the ensemble model.

Dataset Model W p-Value α

LSTM 0.540 <0.0001 0.05
MAE training set Best LSTM without bagging 0.400 <0.0001 0.05

Ensemble model 0.404 <0.0001 0.05

LSTM 0.547 <0.0001 0.05
MAE testing set Best LSTM without bagging 0.409 <0.0001 0.05

Ensemble model 0.412 <0.0001 0.05

Checking the normality (Shapiro–Wilk test) of the MAE distribution helps in selecting
the appropriate statistical tests and in ensuring the validity of the conclusions drawn from
these tests. Assuming normality is often a prerequisite for certain parametric tests like
ANOVA or t-tests. If the MAE data is normally distributed, it implies that the underlying
errors are evenly distributed around the mean error and that the ANOVA test would be
appropriate for further statistical analysis. If the MAE data is not normally distributed, tests
that do not assume a specific distribution of data (non-parametric tests like the Kruskal–
Wallis test) are more appropriate.

We further performed the non-parametric Kruskal–Wallis test [27] with a significance
level (α) set at 0.05 and 2 degrees of freedom. This test is employed to compare k samples
when dealing with non-Gaussian distributions. The null hypothesis tested whether the
samples came from the same population. For the calculated MAE values obtained from
the training of the models, the calculated K statistic was 109.245, while the critical value
was 5.991. The calculated two-tailed p-value was found to be less than 0.0001, indicating
significant differences in the performance of the models under consideration. Consequently,
the null hypothesis was rejected with a confidence level exceeding 99.99%. In the case of
calculated MAE values obtained from the testing of the models, the calculated K statistic
was 117.872, while the critical value was 5.991. The calculated two-tailed p-value was found
to be less than 0.0001, indicating that the null hypothesis had to be rejected.
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(a) (b)

(c) (d)

(e) (f)
Figure 13. Probability plot. (a) Calculated MAE values obtained from training of the LSTM model.
(b) Calculated MAE values obtained from testing of the LSTM model. (c) Calculated MAE values
obtained from training of the best LSTM model without bagging. (d) Calculated MAE values
obtained from testing of the best LSTM model without bagging. (e) Calculated MAE values obtained
from training of the ensemble model. (f) Calculated MAE values obtained from testing of the
ensemble model.

To determine which models resulted in the rejection of the null hypothesis, it was
essential to conduct multiple pairwise comparison procedures. In this research, we em-
ployed the two-tailed Steel–Dwass–Critchlow–Fligner test [28] on the calculated MAE
values obtained from the training and testing of the three models. Based on the rank values
for the models according to the calculated MAE values obtained from training and testing,
as displayed in Table 10, the models were categorized into three distinct groups. It is
not necessarily the group with the smallest mean of ranks that caused the rejection of the
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null hypothesis. Since p-values are lower than 0.0001 (the significance level is 0.05), we
can conclude that all three models are responsible for rejecting the null hypothesis. The
groups in the last column indicate that all three algorithms are classified according to their
performance into separate units and, if they are compared in pairs, no two algorithms are
similar. The first group consisted of the ensemble model exhibiting similar performance,
the best LSTM model without bagging was placed in the second group, and the LSTM
model was placed in the third.

Table 10. Multiple pairwise comparisons using the Steel–Dwass–Critchlow–Fligner procedure. Two-
tailed test on the calculated MAE values obtained from training and testing of the LSTM model, the
best LSTM model without bagging, and the ensemble model.

Dataset Sample Sum of Ranks Mean of Ranks Groups

Ensemble model 107,205.000 357.350 A
MAE training set Best LSTM without bagging 126,283.000 420.943 B

LSTM 171,962.000 573.207 C

Ensemble model 107,352.000 357.840 A
MAE testing set Best LSTM without bagging 124,245.000 414.150 B

LSTM 173,853.000 579.510 C

Finally, the Kolmogorov–Smirnov test was conducted to compare the distribution
between the LSTM without bagging and the ensemble model. The null hypothesis assumed
that both models had the same distribution. The significance level for this test was set at
α = 0.05. For the calculated MAE values obtained from the training of the models, the
resulting D-value statistic was 0.250 and the p-value was less than 0.0001, leading to the
rejection of the null hypothesis with a risk lower than 0.01%. For the calculated MAE values
obtained from the testing of the models, the resulting D-value statistic was 0.153 and the
p-value was 0.001, leading to the rejection of the null hypothesis with a risk lower than
0.15%. Hence, for the calculated MAE values obtained from the training and testing of the
models, the LSTM model without bagging and the ensemble model exhibited differences in
the distribution of their respective values. Based on our comprehensive statistical analysis,
it is evident that the ensemble model outperformed the LSTM and the best LSTM model
without bagging.

5. Conclusions

Air pollution is a global issue that affects countries and regions around the world. It
has wide-ranging impacts on various aspects of the environment, public health, and the
global climate system. This problem has been further aggravated due to the increase in
the global population, urbanization, industrialization, and climate change. There is an
urgent need to provide precise predictions of air pollution levels, which will contribute to
improving public health and overall quality of life.

The application of ML algorithms provides promising results for CAQI prediction. The
focus of this paper was to propose an advanced hybrid ML model for hourly CAQI predic-
tion in the region of Niksic, Montenegro. The proposed hybrid LSTM model with bagging
(i.e., the ensemble model) delivered significantly better performance when compared to the
SVM model. A comprehensive statistical analysis was conducted on the calculated MAE
values obtained from the training and testing of the LSTM model, the best LSTM model
without bagging, and the ensemble model. The results showed that the ensemble model
outperformed the other two compared models. This novel hybrid model can be considered
as a new and superior alternative for hourly CAQI prediction. The application of such
advanced ML analysis using the hybrid approach has not been previously employed in the
context of air pollution in Montenegro.

Although our analysis showed that the ensemble model outperformed SVM as a
technique to predict CAQI values, we draw the reader’s attention to the fact that SVM
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is still a promising technique that is worth considering. In particular, it has been shown
in the literature that SVM is applicable to CAQI classification problems [29] as well as to
regression problems [30], while, in some other papers [31], as in our analysis, SVM has
shown slightly worse results. It is evident that the prediction of CAQI values is an extremely
complex problem and that the performance of the applied algorithms depends significantly
on the characteristics of the dataset; thus, it is important to apply various ML algorithms in
modeling, without a priori assumptions that some are inefficient and inapplicable.

The findings of this paper open up several possibilities for future research, such as ex-
ploring alternative optimization techniques, incorporating additional variables, considering
long-term predictions, conducting comparative studies, and validating the proposed mod-
els in different regions, which could contribute to advancing the accuracy and applicability
of air quality prediction models. Our future research will also explore the performance of
the suggested model in the context of diverse data patterns.

In particular, the potential of other metaheuristic algorithms can be investigated, as
well as the hybridization of the existing techniques with additional optimization strategies.
Future research could consider incorporating additional variables such as meteorological
data (temperature, humidity, wind speed) to enhance the precision and robustness of the
predictive models. Predictions with larger time steps, such as 8 h and 24 h predictions, can
be considered as well. Further extending the analysis to long-term predictions, such as
weekly or monthly forecasts, could provide valuable insights for air quality management
and policy planning. Long-term predictions can help to identify patterns, trends, and
potential mitigation strategies for sustained improvements in air quality. While this paper
compared the performance of the hybrid LSTM, GA, and bagging approach with the SVM
model, there may be other ML algorithms or hybrid models that could be included in
comparative studies. Assessing the strengths and weaknesses of different models can help
to identify the most effective techniques for air pollution prediction. Finally, future works
could validate the proposed hybrid model in other regions of Montenegro with varying air
pollution characteristics, to assess its transferability and performance in diverse settings.

Monitoring air quality, raising awareness, and implementing effective policies are
essential in safeguarding public health and preserving the environment. The proposed
model can support efforts to mitigate and reduce air pollution, including the adoption of
pollution control measures, the promotion of cleaner energy sources, the improvement of
industrial processes, and the adoption of sustainable transportation systems.
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