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Abstract: Cancer is a disease characterised by changes in combinations of genes within affected
tumour cells. The deep understanding of genetic activity afforded to cancer specialists through
complex genomics data analytics has advanced the clinical management of cancer by using deep
machine learning algorithms and visualisation. However, most of the existing works do not integrate
intelligent decision-making aids that can guide users in the analysis and exploration processes.
This paper contributes a novel strategy that applies game theory within a VR-enabled immersive
visualisation system designed as the decision support engine to mimic real-world interactions
between stakeholders within complex relationships, in this case cancer clinicians. Our focus is to
apply game theory to assist doctors in the decision-making process regarding the treatment options
for rare-cancer patients. Nash Equilibrium and Social Optimality strategy profiles were used to
facilitate complex analysis within the visualisation by inspecting which combination of genes and
dimensionality reduction methods yields the best survival rate and by investigating the treatment
protocol to form new hypotheses. Using a case simulation, we demonstrate the effectiveness of
game theory in guiding the analyst with a patient cohort data interrogation system as compared to
an analyst without a decision support system. Particularly, the strategy profile (t-SNE method and
DNMT3B_ZBTB46_LAPTM4B gene) gains the highest payoff for the two doctors.

Keywords: immersive visualization; game theory; genomic; cancer; artificial intelligence

1. Introduction

In the postgenomic era, technological advances in data collection, such as DNA
sequencing to build an individual genetic profiles, have generated a vast amount of data.
Visual and data analytics are critical functions that build new insights, enable knowledge
discovery, and support diagnoses or personalised treatment planning for genetically driven
diseases like cancer [1,2]. However, the complexity of the human genome with thousands
of relevant genes exceeds the ability of humans, e.g., clinicians, who make clinical decisions
based on limited available facts [3]. The complexity of the human genome makes a patient
unique, and it opens new opportunities for data analysts in identifying and understanding
the unique factors underlying a patient’s disease.

Computational and statistical analytic methods alone may not solve complex data
problems effectively, and their results could be rejected by medical domain experts due
to lack of trust and low interpretability [4,5]. Interactive visualisation can explain and
verify and allow users to explore and see computed and original data in interpretable ways
informing pattern recognition, insight, and relationship discovery to amplify cognition and
enable visual analytics [6]. The ability to handle complex data sets of visualisations has
gained popularity in big data analytics and has been used as a precursor to data science
algorithms for data exploration [7,8]. Specifically, visualisation can facilitate early-stage
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data discovery in cases where the data problems are ill-defined or unsuitable for algorithmic
analysis. A classic example is that the correlation coefficients of different data sets have the
same value, but visual analytics would have detected their vast differences [9].

In recent years, immersive technologies have also been utilised to further the visual
analytics capabilities of multisensory immersive analytics. Immersive analytics utilises
new displays and interaction technologies to provide multisensory interfaces where users
can immerse themselves inside the data. Visualisation in the immersive environment, also
called immersive visualisation, allows the user to gain greater insight into complex data
by applying multisensory input, applying physicalisation of data, and using the natural
interface [10]. Some of the examples of work in the application of immersive visualisation
for genomic data are MinOmis [11], StarMap [12], BioVR [13], SinglecellVR [14], and
recently VROOM [15]. Unfortunately, existing immersive analytics systems do not integrate
intelligent decision-making aids that can guide users in the analysis and exploration
processes. In such analytical environments, there could be many ways that analysts
can look at the data based on different scenarios, hypotheses, and parameters; hence, a
theoretical-based guiding system would be essential.

Game theory, also known as the “theory of social situation”, studies strategies for
negotiation and coordination among self-interested agents to maximise their returns in
the forms of utility value [16–20]. Game theory, closely related to Decision Theory, has its
root in von Neumann and Morgenstern’s mathematical framework [16,21]. Game theory
assumes that in most multiagent systems, all the involved agents’ choices determine the
overall results. To achieve that, agents will act strategically by anticipating what other
agents will do and must assume that their actions will yield a result that favours them.
Game theory led to development of notions such as Nash Equilibrium, Pareto optimal,
and Social Optimality to analyse such systems [17,21–23]. Game theory has been widely
applied in economics, social science, psychology, and medical decision-making [19,21,24].
Unfortunately, game theory has not been applied to assist decision-making in immersive
environments, especially for supporting medical professionals with analytics.

This article bridges this gap by applying game theory as a decision support engine
within an immersive visualisation based on VROOM [15] to enable effective support
for decision-making by clinicians treating complex diseases like cancer. Visualisation of
these data using VROOM provides an overview of the patient cohorts in an immersive
environment, and visual analysis tools to aid the data exploration. In this study, we
demonstrate how we can extend the functionality of VROOM further through a novel
method employing game theory as the decision support engine. It is considered that this
simulation will mimic a real-world situation where multiple medical professionals have
differing opinions, and that game theory can help guide them while maximising their
payoff. This will facilitate decision-making processes that guide which treatment options
are preferred for a particular patient based on genomics and biomedical information.

The paper also contributes a hypothetical scenario where two doctors have different
opinions on the essential gene combinations driving a patient tumour, the optimal dimen-
sionality reduction algorithm, and how many genes should be included when considering
the clinical needs of the patient. It is important to note that all cancer patients are unique
and respond differently to treatments. What may have worked for one patient may not
work for another. Our game theory model helps identify neighbouring patients who have
had the highest survival rate. This information allows clinicians to examine which gene set
was used, and if those genes are relevant, they can form a hypothesis and conduct further
investigation. We demonstrate the effectiveness of our proposed method with the patient
cohort data interrogation compared to one without a decision support system.

The rest of the paper is organised as follows. Section 2 reviews the related work for
game theory in medical and genetic bioinformatics. Section 3 presents game theory and the
concepts of Nash Equilibrium and Social Optimality. Section 4 describes how a case study
applies game theory to immersive visualisation. Section 5 concludes the discussion and
explores future work.
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2. Related Works

Game theory has been applied in various fields, such as management, social science,
economics, political science, and management science [24]. It started to gain popularity
in medical decision-making, doctor–patient interactions, organ transplant management,
resource planning, and training [19,21,24–26]. This paper will explore the use of game
theory as a decision support system to guide medical analysts and doctors in analysing
their patients’ genomic and biomedical data.

Zhu, Jiang, Ye, Sun, Gragnoli, and Wu [27] developed a framework based on evolution-
ary game theory that combines group phenotypic composition with ecological interactions.
Their framework specifically maps quantitative trait loci (QTLs) for population demo-
graphics and evolution. Archetti [28] employed evolutionary game theory to study the
collective interaction between cancer cells, analysing the dynamics of these cells’ growth
factors and treatment effectiveness in reducing the cell population. Their findings revealed
that anti-angiogenic drugs and RNG interference have only short-term effects, suggesting
the preference for evolutionarily stable treatment strategies. Relatedly, Khadem, Kebriaei,
and Veisi [29] utilised evolutionary game theory to investigate the proposed therapeutic
methods’ effectiveness, involving changes in the interaction parameters between healthy
and cancerous cells.

Game theory has shown successful application in medical resource management and
training, yielding favourable outcomes. McFadden and Tsai [19] applied game theory in
complex operating room system management, resulting in positive effects on the environ-
ment and benefiting all stakeholders. Blake and Carroll [21] proposed using game theory
in medical training and practice to encourage better recognition of competing priorities
and adjustment of approaches when one’s preferred outcome is unlikely. Mendonça and
Catalão-Lopes [24] developed a game theory model for liver transplantation consultation
in alcoholic liver disease patients, employing Nash Equilibrium to yield desired doctor
behaviour and improved patient cooperation rate. These studies demonstrate the success
stories of the integration of the game theoretical framework into decision-making processes.
We incorporate the game theory model into our toolset as a driver for improving decision-
making processes. Game theory application has been proven successful, as mentioned
earlier; hence, we utilise its capability for improving the decision-making and analytical
processes in immersive visualisation with complex scenarios and possibilities.

3. Proposed Method
3.1. Game Theory

Game theory offers mathematical techniques for analysing the dynamics of conflict
and cooperation among rational, intelligent decision-making agents [30]. It studies the
strategies of interaction among self-interested agents who strive to maximise their gains,
specifically strategies of competition, cooperation, negotiation, and coordination [22,31,32].
These agents will strategically consider the actions of others and make choices based on
those anticipations to maximise their payoff.

Central to game theory is the assumption that all involved agents act rationally and
prioritise their self-interest. It provides analytical methods to model and analyse system
behaviour, such as Nash Equilibrium, Social Optimality, and Pareto optimality [22,32].

For any non-cooperative game model, each game encompasses, at minimum, a trio
of fundamental components. Firstly, there exists a set of agents, colloquially known as
players, who participate in the game. Secondly, each agent is endowed with a set of feasible
actions that each agent can take. Lastly, there is a set of utility functions assigned to the
agents. These utility functions play a critical role in mapping an action profile to real-valued
numbers, serving as a quantifiable representation of the individual agent’s payoff within
the game.

Formally, a game G =
(

P, {Ai}i∈P, {ui}i∈P
)

is defined as a tuple, where

• P = {1, 2, . . . , n} is a finite set of agents.
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• For each agent i ∈ P, Ai is a set of possible actions (strategies). The set of all joint
actions, called strategy profiles, is denoted by A = A1 × A2 × . . .× An. Each vector
a = (a1 × a2 × . . .× an) ∈ A is called an action profile.

• For each agent i ∈ P, ui: A 7→ R is a utility function that maps an action profile to a
real number, indicating the player’s payoff for each possible joint action.

In game theory, a game can usually be represented in a normal form as an n-dimensional
matrix [32,33]. We use such a matrix in our application of game theory.

Each agent is driven to maximise their payoff in a game without knowing other agents’
actions. However, due to shared resources and the interdependent nature of the game, an
agent’s payoff is influenced by both their strategy and those employed by their opponents.
In the context of a multiagent system, mixed strategies is defined as follows.

Let
(

P, {Ai}i∈P, {ui}i∈P
)

be a normal-form game, and for any given non-empty set
X, let Π(X) be a probability distribution over X. Then a mixed strategy of player i is an
element of

Si = Π(Ai) (1)

Consequently, the set of mixed-strategies profiles is the Cartesian product of the
individual mixed-strategy sets S1 × . . .× Sn [32].

The expected utility ui for agent i of a mixed-strategy profile s = (s1, . . . , sn) can be
calculated as

ui(s) = ∑
a ∈A

ui(a)
n

∏
j=1

sj(aj) (2)

The Nash Equilibrium concept is widely recognised as one of the key principles in
game theory. A Nash Equilibrium refers to an action profile where, if any agent were to
deviate from their chosen action, they would not achieve a better payoff. As a result, no
agents have the incentive or motivation to deviate from such a Nash Equilibrium.

Formally, Nash Equilibrium is defined as follows [32]: A strategy profile s∗ is a Nash
Equilibrium if, for all agents i, and for all strategy si ∈ Si

ui(s∗ i) ≥ ui(si, s∗−i) (3)

where (si, s∗−i) = (s∗ 1, . . . , s∗ i−1, si s∗ i+1, . . . , s∗n) is a strategy profile that is the same
as s∗ except player i’s strategy is replaced by si.

A pure strategy is a special case of a mixed strategy where the agent only selects one
action [32]. Pure strategy is what is used in this paper.

Another important concept in game theory is Social Optimality [34]. A strategy is
called Social Optimum if it has maximised the sum of all players’ payoffs, i.e., for all
strategies si ∈ Si

∑j∈P uj(s) ≥ ∑j∈P uj
(
s′
)
for any s′ ∈ S (4)

Games are usually represented in a normal form via an n-dimensional matrix (Leyton-
Brown 2008). In the walkthrough of our application, such a matrix would be used.

3.2. Decision Support in Immersive Environment: VROOM

We apply game theory as the decision support system in our immersive visualisation
VROOM [15]. The visualisation allows the analyst to interrogate patient cohorts in an
immersive environment based on their genomic similarity and treatment data to hypothe-
sise treatment options. Non-linear and linear dimensionality reduction methods, such as
t-distributed Stochastic Neighbour Embedding (t-SNE) [35,36], Uniform Manifold Approx-
imation and Projection (UMAP) [37–39], Non-negative Matrix Factorisation (NMF) [40],
Principal Component Analysis (PCA) [41], and computation analytics algorithms such as
autoencoder [42] were also used to transfer the complex genomics data to a 3D immersive
space, where patients with similar genomic properties are located closely together [15].
Dimensionality reduction process transfers the data from a high-dimensional space into
a low-dimensional space while they retain some meaningful properties of the original
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data. This process is crucial for genomics data analytics where the data can have tens of
thousands of dimensions in a patient’s genetic information [43].

For medical domain users, the complex data analysis and exploration process could
be overwhelming; hence, there is a need for a decision support system to assist the analyst.
In our VROOM system, the analysts can look at four different data sets with two types
of risk assessment. On top of that, six types of dimensionality reduction algorithms are
used. These combinations can easily overwhelm the user when deciding where to start.
Our objective is to apply game theory to provide a good starting point. In this section, we
discuss the mathematical part of game theory application.

This paper investigates how two clinicians with different opinions can be modelled
into the visualisation system as a decision support system. The model helps to drive which
patients, when compared, should be selected in the similarity space to look for the gene
combination that yields the list of neighbours with the highest survival rate. For non-
technical users, e.g., clinicians, the visual analysis process could be overwhelming; hence, a
decision support system to assist them is useful. For example, the clinicians can decide on
a treatment method by using the game theory model to identify the best treatment success
rate with the highest survival rate of the selected patient and the patient’s neighbours.
Our model assumes that the decision-making process for our “two doctors” scenario is
a strategic game. The two main game theory concepts used here are Nash Equilibrium
and Social Optimality. The concept can be generalised to more than two clinicians. For
discussion, we will use two clinicians in our case study.

3.3. Data Sets

For this study we limited ourselves to studying data derived from patient cohorts
diagnosed with acute myeloid leukaemia (AML). The data used in this study were from
publicly available cancer genomic data sets, including The Cancer Genome Atlas (TCGA)
Research Network (https://www.cancer.gov/tcga assessed on 31 May 2021), HOVON
(http://www.hovon.nl/ assessed on 31 May 2021), National Cancer Institute Office of
Cancer Genomic—‘TARGET’ data set (https://ocg.cancer.gov/programs/target/data-
matrix assessed on 31 May 2021), and Tyner et al. (2018) consolidated data set (https:
//www.cbioportal.org/study/summary?id=aml_ohsu_2018 assessed on 31 May 2021).

The data included bulk ribonucleic acid (RNA) sequencing data, patient metadata,
and clinical history. The owners did not restrict the use of their data and had obtained
ethics approval for their clinical trials. The data sets also contained the patients’ genomic
profiles, which had undergone a feature selection process using the LSC17 gene score [44].
The LSC17 gene score was used to rapidly identify AML patients who had not responded
well to the standard AML therapy due to initial therapy resistance. The gene score could
be part of newer novel strategies. Table 1 shows two samples of data from the data set.

Table 1. Patient gene data with their gene expression value. The data partially show the LSC17 gene
list. The first column is the patient id, and the numerical value is the actual gene expression value of
the listed gene. The table’s header is the name of the genes selected for the study.

Patient DNMT3B ZBTB46 NYNRIN ARHGAP22 . . . CD34 AKR1C3 GPR56
aml_ohsu_2018_15-00626 5.125 5.081 3.678 3.785 9.080 4.879 7.1123
aml_ohsu_2018_15-00674 3.702 4.607 3.131 3.560 6.403 3.2101 5.427

. . .

In this work, we further reduced the LSC17 genes, inspired by Ng, Mitchell [44], Elsayed,
Wu, Cao, Raimondi, Downing, Ribeiro, Gruber, Rubnitz, Pounds, and Lamba [45]’s work on
clustering their patients’ data, to LSC3. According Ng and Mitchell [44], LSC17 score analysis
can be used to predict AML patient medical conditions. LSC17 has a list of 17 genes identified
to be significant in Ng and Mitchell’s [44] analysis and predictive model. The full list of the
genes identified by LSC17 is DNMT3B, ZBTB46, NYNRIN, ARHGAP22, LAPTM4B, MMRN1,

https://www.cancer.gov/tcga
http://www.hovon.nl/
https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
https://www.cbioportal.org/study/summary?id=aml_ohsu_2018
https://www.cbioportal.org/study/summary?id=aml_ohsu_2018
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DPYSL3, KIAA0125, CDK6, CPXM1, SOCS2, SMIM24, EMP1, NGFRAP1, CD34, AKR1C3,
and GPR56. The paediatric LSC3 (pLSC3) score model (LSC3), on the other hand, is derived
from DNMT3B-CD34-GPR56 As a Prognostic Tool to Predict AML Patient Outcome [45]. The
LSC3 lists a subset of the genes identified in LSC17.

The LSC17 score analysis can be used to predict the medical condition of AML pa-
tients [44]. Their study involved diverse AML subtypes (n = 908) from five independent
cohorts. The LSC17 score allows the clinician to rapidly identify AML patients who do not
respond to standard therapy due to initial therapy resistance and should be part of trials
evaluating novel upfront or post-remission strategies. All the combinations of three genes
from LSC17 were used for our case. Other well-known biomarkers, such as CD34, were
also used in the experiments.

4. Results and Discussion
4.1. Game Theory Application

Game theory was applied in such a situation to calculate which strategies will yield the
Nash Equilibrium and/or Social Optimum if Nash Equilibrium cannot be achieved. The
utility value is the rate of the survival of the patient’s nearest neighbours (ten neighbours
in our study) calculated for that particular dimensionality reduction algorithm and gene
combinations selected by the two doctors and the number of dimensions to consider while
making the dimensionality reduction, in the form of a payoff matrix as shown in Table 2.

Table 2. The payoff matrix is used to analyse patient survivability using different gene combinations
and dimensionality reduction algorithms with differing dimensions. The utility value is calculated
using the resulting ten neighbours based on their survival results. The above is a snapshot and
reduced version of the large table in the visualisation. This is run for every patient. The data shown
here are the actual results for patient “aml_ohsu_2018_16-01272”. The Nash Equilibrium strategy
profiles are highlighted with an underline.

Doctor B
LSC17 DNMT3B_ZBTB46_NYNRINCD34 DNMT3B_ZBTB46_LAPTM4BDNMT3B_ZBTB46_MMRN1

D
oc

to
r

A t-SNE (0.6, 0.3) (0.2, 0.4) (0.4, 0.4) (0.6, 0.5) (0.3, 0)

PCA (0.4, 0.3) (0.4, 0.4) (0.4, 0.4) (0.5, 0.5) (0.3, 0.1)

NMF (0.2, 0.2) (0.5, 0.5) (0.4, 0.4) (0.4, 0.4) (0.3, 0.2)

UMAP (0.3, 0.2) (0.3, 0.4) (0.4, 0.4) (0.4, 0.4) (0.4, 0.2)

Table 2 shows the subset of the set of actions that can be taken by Doctor A and Doc-
tor B. For Doctor A, the set is {t-SNE, PCA, NMF, UMAP} while for Doctor B, the set is {LSC17,
DNMT3B_ZBTB46_NYNRIN, CD34, DNMT3B_ZBTB46_LAPTM4B, DNMT3B_ZBTB46_MMRN1}.
If Doctor A chooses action UMAP and Doctor B’s choice of action is CD34, then the payoff for
Doctor A and Doctor B is 0.4 and 0.4, respectively, or (0.4, 0.4). The numbers shown in the table
are the actual survival rates of the ten patients for the patient of interest. For example, 0.6 indicates
that 60% of the neighbours of the patient of interest have recovered from AML.

To find the Nash Equilibrium, one must look for the best response function for each
player and then find a profile a* of actions for which all the players have the best-response
function [22]. In Table 2, the values with underscores are the best response for each doctor.
Those cells in Table 2 with both payoffs underlined are the Nash Equilibrium strategy profiles.

The concept of Nash Equilibrium is based on the premise that agents are strictly
competitive and strive to optimise their payouts [34]. It should be noted that this strategy
does not always yield favourable outcomes for the group [34]. To address this concern,
Social Optimality can be employed to maximise the total payoff for the entire group.
By considering the broader welfare and overall benefits, Social Optimality provides a
framework to enhance the collective outcome of the game.

Table 3 illustrates the Social Optimality application in our case. The only strategy pro-
file that fulfils the Social Optimality condition is the strategy profile (t-SNE, DNMT3B_ZBT-
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B46_LAPTM4B) as it has the highest payoff for the whole group at 1.1, highlighted in red.
In this case, (t-SNE, DNMT3B_ZBTB46_LAPTM4B) is the best choice for the two doctors.
The numerical value in Table 3 is the total payoff available to Doctor A and Doctor B if they
choose that strategy profile.

Table 3. The Social Optimality payoff matrix. In this case, the numerical values in the tables are the
total payoff for Doctor A and Doctor B. The highlighted red cell has the highest value; hence, it is the
Social Optimality selection.

Doctor B
LSC17 DNMT3B_ZBTB46_NYNRINCD34 DNMT3B_ZBTB46_LAPTM4BDNMT3B_ZBTB46_MMRN1

D
oc

to
r

A t-SNE 0.9 0.6 0.8 1.1 0.3

PCA 0.7 0.8 0.8 1.0 0.4

NMF 0.4 1.0 0.8 0.8 0.5

UMAP 0.5 0.7 0.8 0.8 0.6

4.2. Use Case Study

This section illustrates how game theory helped the analyst find possible linkages
between patients’ genomic similarities, treatment profiles, and survivability. We discuss the
feature of VROOM and how game theory can help to improve efficiency and provide more
options in interrogating the data. VROOM’s full functionalities and objectives are published
in the paper by Lau and Qu [15]. This paper only discusses the immersive visualisation
features relevant to game theory applications. Comparisons are made between the two to
showcase how game theory can help make discoveries.

The “OHSC Three Risk” data set and the dimensionality reduction algorithm are
chosen for the discussion. The visualisation shows the entire TARGET data set patient
cohort in an immersive 3D environment, as shown in Figure 1. The patients are roughly
clustered in the three segments to indicate the patient risk level. The red, yellow, and cyan
colours indicate high, medium, and low risk, respectively. Same-risk patients are located
closely together thanks to the computational analytics, as shown in groups a, b, and c in the
figures. In Figure 1, the selected patient is represented by the larger sphere with a blue halo
around it. Notice that the white lines connecting the POI are its neighbours determined by
the game theory engine.

Figure 2 shows the immersive visualisation running in a VR environment. Its function-
ality is similar to the one shown in Figure 1. The significant difference is that the neighbours
in this figure are based on their Euclidean distances from the selected patient, POI. Before
we discuss the difference it made, we shall share the relevant VROOM capabilities for the
user to analyse the data.

From overview visualisation as shown in Figure 1 or Figure 2, the analyst can select
a patient of interest (hereafter referred to as POI) to conduct detailed studies. As shown
in Figure 3a, the analyst selects the patient using the select command by gazing and air-
clicking on the patient. The analysts can grab the sphere representing the patient and put it
onto the virtual tablet shown in Figure 3b. The virtual tablet shows the metadata of the
patient, such as age, gender, and ethnicity. It also provides statistical information such as
boxplots and bar charts. The boxplot (Figure 3c) shows the patient gene value compared to
the sample population of the currently displayed data, which is helpful to indicate if the
POI gene value is an outlier or within the interquartile range (IQR). At the same time, the
bar chart displays the value of each of the 17 genes. These tools provide an overview and
detailed visual analytics capabilities to the analyst. As this feature only deals with the POI,
there are no differences between the two systems.
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Figure 1. VROOM, our immersive visualisation in an AR headset. It shows a 3D similarity space of 
patient cohorts. In this case, the OHSC three-risk data set is used. The red, yellow, and cyan indicate 
the patient risk factors, high, medium, and low risk, respectively, labelled by a, b, c. The white line 
connecting the selected patient, which has a blue hue, to the rest of its neighbours is determined by 
game theory using the method discussed in Section 3. The black line indicates the separation of the 
clusters. 

 
Figure 2. VROOM has been implemented in both AR and VR; in this figure, the visualisation is run 
in VR. Everything is similar to Figure 1, except the neighbours for the selected patient here are 
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patient cohorts. In this case, the OHSC three-risk data set is used. The red, yellow, and cyan indicate
the patient risk factors, high, medium, and low risk, respectively, labelled by a, b, c. The white line
connecting the selected patient, which has a blue hue, to the rest of its neighbours is determined by game
theory using the method discussed in Section 3. The black line indicates the separation of the clusters.
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Figure 2. VROOM has been implemented in both AR and VR; in this figure, the visualisation is run in
VR. Everything is similar to Figure 1, except the neighbours for the selected patient here are determined
by their distance from the patient using Euclidean distance in the 3D Cartesian coordinate space.



Appl. Sci. 2023, 13, 10178 9 of 14Appl. Sci. 2023, 13, 10178 10 of 15 
 

 
Figure 3. Users can conduct detail analysis on the patient they are interested in investigating, here-
after referred to as POI. In this figure, patient “TARGET-20-PAPSCM” is selected from (a) and pulled 
into (b) the patient of interest panel. The panel shows the patient information, such as age, gender, 
and ethnicity. (c) The tablet has functionality such as a boxplot of the patient gene data vs. the whole 
population. The patient gene expression value is clearly marked as an “x” (yellow) in the boxplot 
an, (d) gene expression value in a bar chart. 

Figure 3. Users can conduct detail analysis on the patient they are interested in investigating, hereafter
referred to as POI. In this figure, patient “TARGET-20-PAPSCM” is selected from (a) and pulled into
(b) the patient of interest panel. The panel shows the patient information, such as age, gender, and
ethnicity. (c) The tablet has functionality such as a boxplot of the patient gene data vs. the whole
population. The patient gene expression value is clearly marked as an “x” (yellow) in the boxplot an,
(d) gene expression value in a bar chart.
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The analyst can also conduct a patient-to-group comparison. The visual analytics
tools implemented here are a boxplot, heatmap, and patient history table (see Figure 3).
The boxplot is calculated based on the POI and the group of patients selected for the
query, which differs from the earlier implementation. A heatmap is a very common tool in
genomic data analysis, which is used to visualise gene expression data to unravel hidden
patterns [1]. The patient history table contains the gender, age, risk, similarity, vital status,
and current regimen. The original design for the system, as shown in Figure 2, is meant
to show the nearest neighbour and allow the user to choose whom to compare to the POI.
It allows flexibility for the analyst to decide who and what to compare, and it is helpful
for an experienced analyst. However, due to the amount of data, the risk factors, and the
dimensionality reduction algorithm used, we introduced the game theory-driven system to
drive the analyst.

Our game theory model utility value, which is discussed in detail in Section 3, is the
survival rate of the ten nearest neighbours for the POI; hence, in using that, the system
provides the best combination for the analyst to look at the gene expression of those patients
suggested for comparison and their medical history. If there is no suggestion, the analyst
will decide which patients to use for comparison.

We do a walkthrough to show how our game-theory engine assisted the analytics
process. First, the patient we are interested in is “aml_ohsu_2018_16-01254” in the OHSC
data set (Figure 4). This patient is a female with low-risk factors and is alive (when the data
are captured), and her current regimen is HiDaC.
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Figure 4. Our patient of interest is shown in the AR environment.

The game theory system gave the following suggestion using the method discussed
in Section 3, as shown in Figure 5. The first few Nash Equilibrium and Social Optimum
results were displayed for the user. If the user makes no changes, the first item will be the
default. In this case, Nash Equilibrium, and also the Social Optimum item, is DNMT3B,
DPYSL3, and CD34 genes and the NMF dimensionality reduction algorithm.

As the utility of our game theory model was the survival rate of the patient’s ten
neighbours, the combination suggested by our model should have the highest treatment
success rate number. The analyst can look at the heatmap to discover any differences in
gene expression value for their POI compared to the rest of the patients suggested by the
system, as shown in Figure 6. Our POI is the first patient listed in the figure. A visual
comparison would reveal that the heatmap for our POI is relatively similar to the rest of
the group.



Appl. Sci. 2023, 13, 10178 11 of 14

Appl. Sci. 2023, 13, 10178 11 of 15 
 

Our game theory model utility value, which is discussed in detail in Section 3, is the 
survival rate of the ten nearest neighbours for the POI; hence, in using that, the system 
provides the best combination for the analyst to look at the gene expression of those pa-
tients suggested for comparison and their medical history. If there is no suggestion, the 
analyst will decide which patients to use for comparison.  

We do a walkthrough to show how our game-theory engine assisted the analytics 
process. First, the patient we are interested in is “aml_ohsu_2018_16-01254” in the OHSC 
data set (Figure 4). This patient is a female with low-risk factors and is alive (when the 
data are captured), and her current regimen is HiDaC.  

 
Figure 4. Our patient of interest is shown in the AR environment. 

The game theory system gave the following suggestion using the method discussed 
in Section 3, as shown in Figure 5. The first few Nash Equilibrium and Social Optimum 
results were displayed for the user. If the user makes no changes, the first item will be the 
default. In this case, Nash Equilibrium, and also the Social Optimum item, is DNMT3B, 
DPYSL3, and CD34 genes and the NMF dimensionality reduction algorithm.  

 

Figure 5. The result of the game theory calculation applied to the data. Here DNMT38, DPYSL3, and
CD34 genes were chosen with NMF. The details of the gene description are given on the right side of
the panel.

Appl. Sci. 2023, 13, 10178 12 of 15 
 

Figure 5. The result of the game theory calculation applied to the data. Here DNMT38, DPYSL3, and 
CD34 genes were chosen with NMF. The details of the gene description are given on the right side 
of the panel. 

As the utility of our game theory model was the survival rate of the patient’s ten 
neighbours, the combination suggested by our model should have the highest treatment 
success rate number. The analyst can look at the heatmap to discover any differences in 
gene expression value for their POI compared to the rest of the patients suggested by the 
system, as shown in Figure 6. Our POI is the first patient listed in the figure. A visual 
comparison would reveal that the heatmap for our POI is relatively similar to the rest of 
the group.  

The last panel that our tool provides is the patient history table (Figure 7). This panel 
is especially useful if the data set contains the patient current regimen/treatment. As the 
patients have a similar genetic profile and have recovered from AML, that would give a 
good starting point for the clinician/analyst to form a hypothesis and investigate further 
if those regimens received by the patients used for comparison would benefit our POI. 
Based on the analytical scenario, we could maximise the decision regarding survival rates 
for the patient using visualisation and game theory.  

 
Figure 6. Heatmap for the gene expression of all the patients suggested by our system and the POI. 
The analyst can visually detect the significant differences between the patients. Our POI is the 1st 
column for the list of patients. Colours are used to indicate the level of expression for the gene from 
red to green. 
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The analyst can visually detect the significant differences between the patients. Our POI is the 1st
column for the list of patients. Colours are used to indicate the level of expression for the gene from
red to green.
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The last panel that our tool provides is the patient history table (Figure 7). This panel
is especially useful if the data set contains the patient current regimen/treatment. As the
patients have a similar genetic profile and have recovered from AML, that would give a
good starting point for the clinician/analyst to form a hypothesis and investigate further if
those regimens received by the patients used for comparison would benefit our POI. Based
on the analytical scenario, we could maximise the decision regarding survival rates for the
patient using visualisation and game theory.
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5. Conclusions

Our immersive visualisation design enables interaction between oncologists, lab
scientists, and clinicians to collaborate and review patient prognosis based on empirical
data. However, without AI technologies, it could be overwhelming for analysts to initiate
the analysis process. In this work, we show that using game theory helps the users to have
a good starting point based on game theory applications. We compared how it helped to
provide more options for the analysts to look at the data and derive new hypotheses for
further discovery.

Future work will include detailed discussions with the users to derive more integrated
and real-world decision-making situations for the visualisation. Future validation of
the results from the game theory application and a more comprehensive evaluation and
statistical analysis of the quantitative results will also be carried out in the future.
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