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Abstract: Accurately segmenting the optic disk (OD) and optic cup (OC) on retinal fundus images
is important for treating glaucoma. With the development of deep learning, some CNN-based
methods have been implemented to segment OD and OC, but it is difficult to accurately segment OD
and OC boundaries affected by blood vessels and the lesion area. To this end, we propose a novel
boundary-enhanced adaptive context network (BEAC-Net) for OD and OC segmentation. Firstly, a
newly designed efficient boundary pixel attention (EBPA) module enhances pixel-by-pixel feature
capture to collect the boundary contextual information of OD and OC in the horizontal and vertical
directions. In addition, background noise makes segmenting boundary pixels difficult. To this end,
an adaptive context module (ACM) was designed, which simultaneously learns local-range and
long-range information to capture richer context. Finally, BEAC-Net adaptively integrates the feature
maps from different levels using the attentional feature fusion (AFF) module. In addition, we provide
a high-quality retinal fundus image dataset named the 66 Vision-Tech dataset, which advances the
field of diagnostic glaucoma. Our proposed BEAC-Net was used to perform extensive experiments on
the RIM-ONE-v3, DRISHTI-GS, and 66 Vision-Tech datasets. In particular, BEAC-Net achieved a Dice
coefficient of 0.8267 and an IoU of 0.8138 for OD segmentation and a Dice coefficient of 0.8057 and
an IoU value of 0.7858 for OC segmentation on the 66 Vision-Tech dataset, achieving state-of-the-art
segmentation results.

Keywords: glaucoma; boundary enhanced; adaptive context; OD and OC segmentation

1. Introduction

Glaucoma is a blinding eye disease that is very dangerous and eventually leads to
blindness. It can cause irreversible damage to vision if not diagnosed and treated in time.
Ophthalmologists make a clinical diagnosis of glaucoma using the CDR (cup–disk ratio,
OC/OD) indicator, which helps detect and diagnose glaucoma at an early stage. Existing
research has shown that glaucoma can generally be considered when the CDR is larger
than 0.65 [1,2]. As a result, the accurate segmentation of the optic disk (OD) and optic cup
(OC) in fundus images can provide quantitative assessment and diagnostic assistance to
physicians in screening and treating glaucoma. Figure 1 shows the average unaffected eyes
and the eyes of glaucoma patients. The accurate segmentation of OD and OC is important
to calculate the CDR indicator. Doctors face a large number of fundus images of patients
every day. Manual segmentation takes a lot of time and effort, and it requires a high level
of professionalism. Meanwhile, manual segmentation is inefficient and more subjective,
which leads to inaccuracy in segmented boundaries. Therefore, for ophthalmologists,
segmenting the OD and OC accurately from fundus images is an important task.
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Figure 1. The comparison of healthy eye and glaucoma.

Deep learning has made great progress in the field of medical image segmentation.
For instance, a series based on convolutional neural networks (CNN) [3–6] has been
developed for automatic feature extraction from medical images, so applying it to OD
and OC segmentation has become a major research direction and outperforms traditional
methods in terms of segmentation effects. Deep-learning-based segmentation methods are
based on the fully convolutional network (FCN) [7]. The widely used U-Net network [8]
has become the main neural network architecture for biomedical image segmentation
tasks due to its multi-scale skip connections and learnable deconvolution layers [9–11].
M-Net, based on U-Net, introduces the idea of deep supervision and adds a loss function
in the middle layer to successfully achieve the joint segmentation of OD and OC [12].
CDED-Net uses a tightly connected network of OD and OC decoders to achieve better
results in the joint segmentation of OD [13]. CCNet provides a more efficient way of
capturing contextual information, using a self-attentive mechanism to make any location
in the feature graph perceive feature information at all locations [14]. The advantages of
the DeepLabv3+ [15] model are that it explores multi-scale contextual information and
achieves accurate segmentation by applying multi-sample rate dilation convolution, multi-
receiver field convolution, or pooling on the input feature. However, due to the complexity
of fundus images, most existing methods used to segment medical images are CNN-
based. However, the segment results are often unsatisfactory because object boundaries are
inaccurate. These problems are caused by the insufficiently detailed features acquired after
the deep convolution operation, especially the limited contextual information of OC.

To solve the above problem, the Swin Transformer uses a technique called “self-
attentiveness” to automatically learn semantic features in fundus images and overcomes
the shortcomings of the Vision Transformer (Vit) [16]. The Swin Transformer improves
feature extraction to eliminate and suppress interference from parts such as blood vessels
and bright lesions in the OD region of the original image.

In this paper, we proposed using a novel boundary-enhanced adaptive context net-
work (BEAC-Net), a pure Transformer network, for optic disk and optic cup segmentation.
BEAC-Net can automatically segment OD and OC in retinal fundus images and consists of
the classical encoder–decoder structure. We verify the efficacy of BEAC-Net on two public
fundus image datasets and introduce the 66 Vision-Tech dataset to test the generalization
property of the model.

To this end, the contributions of this paper are four-fold:

1. We propose using a novel BEAC-Net network for OD and OC segmentation based on
the ACM (adaptive context module), which eliminates noise in critical pixels when
fully effective.

2. We design an EBPA (efficient boundary pixel attention) module that can impose
boundary awareness on the proposed network via cumulative contextual information
in the horizontal and vertical directions to enhance pixel-by-pixel feature capture.

3. We construct an AFF (attentional feature fusion) module to integrate the feature maps
from high-level and low-level features adaptively. Multi-scale hierarchical feature
extraction avoids an excessive loss of key information in the original images.
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4. We provide a high-quality retinal fundus image dataset named the 66 Vision-Tech
dataset. The fundus images are from 66 VISION TECH Co., Ltd., No. 9 Jinfeng Road,
High-tech District, Suzhou 215163, China.
The experiment results demonstrate the good generalization properties of the model.

2. Related Work

The traditional methods used to segment the optic disk and optic cup are mainly based
on manual feature extraction. Aquino et al. and Lu et al. [17,18] used a circular transform-
based method to segment OD. Sukanya et al. [19] used super pixel point classification
to segment OD and OC, which transformed the problem of locating the OC boundary to
a pixel-by-pixel classification problem. Cheng et al. [20] attempted to segment the optic
disk using a weakly supervised approach. Compared with optic disk segmentation, the
low contrast ratio causes optic cup segmentation to be more difficult. The segmentation
accuracy of traditional segment methods is determined by the image quality and the depth
of the manually extracted image features, and when effective features cannot be extracted,
the segmentation accuracy will be significantly reduced.

With the continuous development and popularity of deep-learning technology,
Feng et al. [21] discovered that the application of convolutional neural networks (CNNs)
to extract image features achieved better results than traditional algorithms on various
medical image segmentation tasks. FCN is the basis of many current semantic segmentation
methods and has achieved better segmentation results than traditional methods on natural
image segmentation tasks. Therefore, deep-learning techniques have been introduced into
medical image processing, and more and more studies have been conducted using convo-
lutional neural networks. OD and OC segmentation networks based on deep learning have
been proposed one after another and achieved better segmentation results than traditional
segmentation methods. M-Net (multi-label deep network) added multi-scales based on
U-Net, introduced the idea of depth supervision, and added additional loss functions
in the middle interlayer with an additional loss function. The introduction of the polar
coordinate transformation operation successfully realizes the simultaneous segmentation
of the OD and OC. Huang et al. [22] proposed DenseNet which applied the FCN to the OD
and OC segmentation tasks. However, most existing CNN-based methods cannot obtain
detailed boundary features due to multiple pooling and downsampling, resulting in the
ambiguity of segmentation boundaries. Gu et al. [23] proposed CENet (context encoder
network), which realized a context-encoding module consisting of a residual multi-path
pooling module and a multi-scale dense dilated convolution module. CENet can capture
features with high-level semantic information at multi-scales, but it is not used in the
segmentation of OC. CDED-Net adopted a tightly connected optic cup–optic disk decoder
network structure and achieves high performance in the joint segmentation of cups and
disks, but extensive networks for segmentation tasks increase the number of required
parameters. Wang et al. [24] proposed a feature-embedding framework that effectively
improves the generalization ability of convolutional neural networks in completing the
OD and OC segmentation tasks. To summarize the above, these manners enhance the
information extraction ability of the network by improving the structure, but the utilization
of multi-level features in the middle of the network is not sufficient.

DeepLabv3+ [15] used the convolution of upsampling filters to extract dense fea-
ture maps and capture a long-distance context, which is mainly divided into encoder
and decoder parts. Xception is used as the backbone network in this paper. Then, the
ASPP structure is used to solve the multi-scale problem. The decoder part is introduced
to combine the underlying features with high-level feature fusion and obtain a notably
high segmentation boundary accuracy. Despite these improvements in the segmentation
network, DeepLabv3+ has more parameters, which may lead to long training times.

Transformers in the field of computer vision have taken shape, and the Transformer
architecture model has achieved significant results in the field of CV for its self-attention
feature. The Transformer can pay attention to information in different subspaces and
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capture richer feature information. However, the computation of the Transformer is too
large. Therefore, Liu et al. [25] proposed using the Swin Transformer. Different from
the previous ViT, the Swin Transformer made two improvements: (1) The Swin Trans-
former can obtain the global attention capability via the W-MSA and SW-MSA operations.
(2) Reducing the computation from a squared relationship of image size to a linear re-
lationship greatly reduces the number of operations and increases the speed of model
inference. Determining how to fuse CNN and powerful ViT to achieve better segmentation
effects has become a research hotspot. CNN can extract local detail information using
hierarchical feature representation with a strong local contextual feature extraction ability.
However, the local characteristics of the convolutional layer limit the network to capture
global information. The Transformer network has a natural advantage for global informa-
tion extraction but is not enough for local detailed information extraction because of its
self-attention structure. It also has a better ability to deal with long-range dependencies,
so integrating the two domains is considered to complement each other to improve the
segmentation performance. Chen et al. [26] proposed Trans-Unet, which adopts U-Net as
the overall network architecture and uses a Transformer in the encoder structure to extract
more features. Lin et al. [27] proposed DS-TransUnet, which incorporated a deeper size hi-
erarchical Swin transform in the encoder and decoder for feature extraction and enhanced
modeling capabilities that preserve a wide range of contextual information. Cao et al.
proposed Swin-Unet, incorporating the Swin Transformer module to effectively solve the
problems of uneven illumination and noise interference in underwater image segmentation.
Reza Azad et al. [28] proposed TransDeepLab, based on Deeplabv3 incorporated into the
Swin Transformer module, which has excellent performance on the Synapse Multi-Organ
Segmentation and Skin Lesion Segmentation tasks.

3. Methods

Our proposed method follows the workflow of the automatic segmentation of OD and
OC, as shown in Figure 2. Firstly, fundus images are localized with OD via a morphological
image processing method to locate the center of the OD. Secondly, image enhancement
operations on the original image due to the contrast of the photographs taken on a 66
Vision-Tech fundus camera are not enough. Figure 3 shows that image enhancement is
achieved using the SRGAN image generation network by alternately training the generator
and discriminator to convert low-resolution images to high-resolution images to improve
the quality and clarity of the images. In addition, the boundary parts of the OD are blurred,
and the data enhancement can clarify the boundary parts of the OD to improve the contrast
of the image. Thirdly, the original image is cropped to a region of interest (ROI). Finally, the
cropped optic disk images and labels are trained on the BEAC-Net segmentation network
to complete the segmentation.

3.1. Overview

Cropped and data-augmented fundus images are the input sent to the BEAC-Net
network. In Figure 2a, we propose a BEAC-Net that consists of encoders and decoders. The
encoder captures the multi-scale contextual information to progressively reduce the feature
map while capturing more advanced semantic information, and the encoder implements
the gradual recovery of spatial information to capture clearer OD and OC boundaries. In
the encoder, we develop an adaptive context module (ACM) to enhance both local-range
and long-range contextual representations. More specifically, to model adaptive spatial
pyramid pooling (ASPP), a pyramid of ACM modules with muti-scale shifted window
sizes is designed. To accurately recognize the OD and OC boundaries, it is necessary to
extract and fuse features from different levels to capture a better long-range dependency
context simultaneously. In the channel dimension, different levels of feature maps are
concatenated together. Efficient boundary pixel attention (EBPA) is used to realize the
inter-relationship between the boundary feature pixel points of the OD/OC and other pixel
points. Furthermore, the boundary pixel points are weighted with the inter-relationship to
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extract the high-level semantic features, which further extracts and integrates the feature
maps. To guide the decoder processing, richer contextual information is captured by
upsampling via 4 × 4 convolution to obtain high-level semantic information, which is
fused with the low-level semantic information via attentional feature fusion (AFF) to
solve the blurred boundaries during the upsampling process. We obtain more effective
segmented boundary features, which are significant for fundus image analysis.

3.2. Adaptive Context Module

In the encoder part, we develop a network based on the adaptive context module
(ACM) to fully and effectively utilize both local-range and long-range semantic information
interactions. In addition, ACM is used as a feature extraction tool to obtain multi-scale
features via different shift windows in the hierarchy. We construct a one-short connection
module (OCM) into the ACM to extract the local multi-scale information, as shown in
Figure 2c. Two successive ACMs realize the partial window calculation self-attention, as
shown in Figure 2b. Each window partitioning (WP) and shifted window partitioning
(SWP) are used in ACMs to greatly reduce the computational complexity.
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Figure 2. (a) The overview of proposed BEAC-Net. (b) The architecture of two successive ACMs.
(c) The detailed architecture of OCM.
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Figure 3. SRGAN network for image enhancement.

When ACM receives the features Y ∈ RH×W×C with a height of H, a width of W,
and a channel of C, it will calculate the inputs of the MSA using two parallel branches,
where Q is query, K is key, and V is value. The multi-head attention self-attention uses
global attention to learn features with good generalization performance. In the left part,
feature Y is split into non-overlapping windows with a size of H ×W via (S)WP. Then, the
features are reshaped as Yf ∈ RM×C. A full connected layer is applied to acquire query
Q ∈ RM×d, where in d = C/k, k denotes the head number. The output of the concatenation
is the input of the right part. In the right part, feature Y is first utilized to extract local-scale
information using OCM. Similar to DenseNet, all features are concatenated once in the last
feature map, which keeps the input size constant and enables the expansion of the new
output channel in Figure 2c. Two consecutive ACMs consist of a shifted-window-based
MSA with two layers of MLPs. LN layers are used before each MSA block and each MLP,
and residual connections are used after each MSA and MLP. OCM consists of two 1× 1
convolution layers and three 3× 3 depthwise separable convolution layers as dilation rates
r = {1, 2, 3}. The features of all previous layers are sent as input to the separable 3× 3
depthwise convolution. With (y0, y1, · · · , ym−1) as input, we obtain the following:

ym = Cm([y0, y, . . . , ym−1]) (1)
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where Cm is a multi-dimensional concatenate operation. We use the same operations on
the left part for feature acquisition on the OCM to generate yl ∈ RM×C, where K ∈ RM×d,
V ∈ RM×d are acquired from Yl . MSA is defined as follows:

MSA(Q, K, V) = So f tmax
(

QKT
√

d
+ B

)
V (2)

where Q, K, V ∈ RM×d ; d is the query/key dimension; and B is the bias matrix, of which
values are obtained from B ∈ RM×M.

3.3. Adaptive Spatial Pyramid Pooling

As the encoder module uses ACM and patch merge operations, the resolution of the
extracted deep feature space is greatly reduced. Thus, learning from ASPP in Deeplab to
capture multi-scale information parallel with multiple atrous rates, we design an adaptive
spatial pyramid pooling (ASPP) module with four different shifted window sizes, including
a 4× 4 window, 6× 6 window, 8× 8 window, and 12× 12 window, to capture multi-scale
representation. In addition, we use the adaptive average pooling operation (AdaptiveAvg-
Pool operation) on the input feature. As described above, smaller shifted windows aimed
at capturing local information, and larger shifted windows aimed at capturing high-level
features. Afterward, the results of the multi-scale representation are fed into an efficient
criss-cross attention module that fuses and captures a generic representation in a nonlinear
technique.

3.4. Efficient Boundary Pixel Attention

The fundus shows that the OC boundary regions are usually complex and blurred,
and it is impossible to specify the boundary location. To solve this problem, we propose an
efficient boundary pixel attention (EBPA) to collect contextual information in the horizontal
and vertical directions to improve the boundary pixel feature capability, which effectively
exploits the information of adjacent regions around the OD and OC boundaries to compen-
sate for inadequate feature capture and to enhance the accuracy of segmented boundaries.
We focus on acquiring pixel features near the OD and OC boundary region, and boundary
detection provides powerful complementary information for semantic segmentation.

Figure 4 shows that the feature map X is shaped RC×W×H . EBPA first uses two
convolutional layers with 1× 1 convolution on X and then generates two feature maps,
Q ∈ RC1×W×H and K ∈ RC2×W×H , where C1, C2 denotes the number of channels and
C1, C2 < C. We use the affinity operation according to Q and K to generate attention
map B ∈ R(W×H)×(H+W−1). We can obtain a vector Qm ∈ RC1 at each position u in the
spatial dimension of Q. From the same horizontal and vertical directions at the corre-
sponding location, the features are collected to the feature point m in KC2×W×H to obtain
Ωm ∈ R(H+W−1)×C2 simultaneously. Ωn,m ∈ RC2 is the n-th element of Ωm. dn,m = Qm ×ΩT

n,m,
dn,m ∈ D(H+W−1)×(W×H) is the correlation degree between Qm and Ωn,m,
i = [1, 2, . . . , H + W − 1]. Then, the channel dimension obtains the attentional feature
map B via a softmax operation. The other convolutional layer with 1× 1 convolution is
applied on X to generate V ∈ RC3×W×H for feature adaptation. In the spatial dimension
of V, a vector Vm ∈ R is obtained at each position of the feature point u and collects
features from the same horizontal and vertical directions from the position of u to obtain
the set ΦmεR(H+W−1)×C. Finally, using the attentional feature map A on feature map V,

the process is shown in the following equation: X̃u =
H+W−1

∑
i=0

An,mφn,m + Xm, where X̃u is a

feature vector in X̃ ∈ R(H+W−1)×C3 at position u, and An,m is a scalar value at channel i and
position u in A. Using all of the above operations, feature map X̃m with a larger receptive
field of perception is obtained. Furthermore, the attentional feature map can be used so
that contextual features can be selectively aggregated.
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Figure 4. Structure of proposed efficient boundary pixel attention (EBPA).

3.5. Attentional Feature Fusion

In the decoder, to exploit the complementary spatial structure details and semantic
information, we design an attentional feature fusion (AFF) module, which fuses different
levels of features to address the potentially large inconsistencies in scale and semantics, as
shown in Figure 5. Low-level features are rich in spatial detail, and high-level features are
richer in semantic information. To this end, the AFF module selectively aggregates features
at different levels based on different weights and optimizes feature maps at high levels
and low levels. The whole procedure is summarized in Algorithm 1. The features obtained
using the attention module are upsampled by 4 × 4 to obtain the high-level semantic
information X, which is a feature with a larger receptive field, and the low-level semantic
feature Y for feature fusion to obtain feature Z. X and Y first perform the initial feature
fusion. After the sigmoid function, the output value is between 0 and 1. X and Y calculate
the weighted average so that the group fusion weight is subtracted by 1.

GlobalAvgPooling

Point-wise Conv1 Point-wise Conv1

Point-wise Conv2 Point-wise Conv2

ReLU ReLU

Sigmoid

C×H×W C×H×W 

C×1×1 

BN C/r×1×1 C/r×H×W BN

C×1×1 C×H×W 

BN BN
C×H×W 

X Y

Z

Figure 5. Structure of proposed attentional feature fusion (AFF).

The calculation formula is

A = F
(

X
⊎

Y
)⊗

X +
(

1− F
(

X
⊎

Y
))⊗

Y (3)
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where F(X) is concerned with the scale of the channel via point-by-point convolution, and
the channel attention of the point convolution local features is calculated using the formula
H(X):

H(X) = Y(PWConv2(σ(Y(PWConv1(X))))) (4)

where PWConv11× 1 point-wise convolution reduces the number of input feature x chan-
nels to 1

r , B is the BatchNormalization layer, σ is the ReLU function that via PWConv21× 1
convolution restores the channel numbers to the same number as the input channels, and r
denotes the channel reduction ratio.

M(X) is the channel attention formula for the global feature and differs from H(X) in
that a global average pooling (GAP) operation is first performed on the input A. F(X) is
expressed as

F(X) = σ
(

H(X)
⊕

M(X)
)

(5)

where H(X) is the channel attention of the local features, M(X) is the channel attention of
the global feature, and σ denotes the ReLU function.

Algorithm 1 Description of the AFF

Input: Feature map X, Feature map Y, size = [B, L, C], B = Batchsize, L = H ∗W,
C = Channels //X is low-level feature, Y is high-level feature

Output: Feature map Z, size = [B, L, C]

1: input = [B, L, C] → input = [B, H, W, C] //H = height, W = weight as the height
and weight of fundus image

2: x = [B, C, H, W], y = [B, C, H, W]
3: xa = x + y
4: x_local = local_att(xa) //Channel attention of local features
5: x1 = k1 ∗ xa
6: x2 = δ(batchnormal(x1))
7: x_local = batchnormal(k2 ∗ x2)
8: x_global = global_att(xa) //Channel attention of global features
9: x1 = AdaptiveAvgPool(xa)

10: x2 = k3 ∗ x1
11: x3 = δ(batchnormal(x2))
12: x_global = batchnormal(k4 ∗ x3)
13: xlg = x_local + x_global
14: w = sigmoid(xlg)
15: z1 = 2× x× w + 2× y× (1− w)
16: Z = tail(z1)
17: return Z
18: In the above f ormulas, δ re f ers to ReLU f unction, ∗ denotes convolution operation,

kidenotes convolutional f ilters with kernel size 3 × 3, AdaptiveAvgPool denotes
AdaptiveAvgPooling, sigmoid denotes sigmoid f unction.

3.6. Loss Function

We observed that the fundus image in the dataset has some common characteristics;
the background region (the area is black in the fundus image) and the foreground region
(the OD and OC area) are imbalanced. Only one small part of the OC region is occupied.
This problem affects the robustness and stability of the training model and the oscillations
and anomalies of each evaluation metric. To improve the performance of the Dice coefficient
and IoU, we conduct both multi-class cross-entropy and Dice Loss in the loss function.

(1) Multi-class cross-entropy: the multi-class cross-entropy is defined as

Lce =
1
N ∑

i
Li −

1
N ∑

i

M

∑
c=1

yiclog(pic) (6)
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where M is the class number, pic = {0, 1}, and pic is the prediction when sample i belongs
to c.

(2) Dice coefficient: Dice Loss training focuses more on mining the foreground area,
which can alleviate the negative impact of the foreground–background area imbalance in
the sample, which means that most of the area in the image does not contain the target.
Furthermore, only a small part of the area contains the target, which is formulated as
follows:

LDice = 1− 2∑N
n=1 pnyn + α

∑N
n=1 p2

n+∑N
n=1 y2

n + α
(7)

where p denotes the prediction; y denotes the ground truth, which is usually used in se-
mantic image segmentation; and α is set to a fixed value to achieve a non-zero denominator.
We let the loss function calculate normally. We can also assign the maximum value of α in
the denominator to avoid overfitting problems in the trained model.

Finally, we define the sum of the cross-entropy loss and Dice Loss together as follows:

Lloss = wceLce + wdiceLdice (8)

where wce is the weight of the cross-entropy loss, and wdice is the weight of the Dice Loss.
In this study, we use wce = 0.4 and wdice = 0.6 in the training phase.

4. 66 Vision-Tech Dataset

66 Vision-Tech Dataset: Our fundus dataset is named the 66 Vision-Tech dataset,
which is taken with a dilatation-free fundus camera (YZ50A1) from 66 VISION TECH
Co., Ltd. The fundus camera has excellent performance with its near-infrared light source
illumination. It can realize pupil precision alignment and split line fine focus. The currently
available public datasets RIM-ONE-v3 [29] and DRISHTI-GS [30] are taken with Canon
CR-2 and Nidek AFC-210 fundus cameras, respectively. The number of fundus images of
the three datasets are shown in Table 1. Figure 6 shows the large differences in images,
such as base color, brightness, texture, and contrast.

In Figure 6, OD occupies a small percentage of the fundus image. To improve the
segmentation accuracy and prevent many irrelevant background areas from affecting
the segmentation results, we pre-process the image with data expansion and contrast
enhancement and locate the brightest point in the fundus image as the center of OD. Then,
an external expansion twice the radius of the OD region is cropped out with the center.
The cropped region contains both OD and OC intact. The label is also cropped by the
corresponding area simultaneously.

Table 1. Comparison of amount among three datasets.

Dataset Year of
Publication Total Number Number of

Training Sets
Number of
Testing Sets

DRISHTI-GS 2017 101 50 51
RIM-ONE-v3 2021 159 140 19
66 Vision-Tech 2023 150 130 20
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CANON CR-2AFZeissVisucam500 66 Vision-TechYZ50A1(ours)NIDEK AFC-210

Figure 6. Fundus images taken by different fundus cameras.

5. Experiments

For better quantitative analysis, we conducted a statistical comparison and collected
data on the following indicators: Dice, IoU, and HD. Due to the limited number in the
fundus image dataset, we use two datasets, RIM-ONE-v3 and DRISHTI-GS, to train the
model and use the 66 Vision-Tech dataset to test the generalization ability of the proposed
model. The model requires a generalization ability to obtain excellent segmentation results
because different fundus image datasets have different feature distributions.

5.1. Datasets

RIM-ONE-v3 dataset: The RIM-ONE dataset consists of three versions with image
numbers 169, 455, and 159. In this paper, we use the dataset with five ophthalmologist
annotations in the dataset. We used the division method of Wang et al. [31] to obtain the
training and test images in the dataset.

DRISHTI-GS dataset: The Drishti-GS dataset contains 101 retinal images and mask
annotations for the optical discs and optical cups used to detect glaucoma. The dataset has
been divided into 50 training and 51 testing images. All the images have been annotated by
four ophthalmologists.

66 Vision-Tech Dataset:The 66 Vision-Tech dataset contains a total of 160 fundus
images, 140 for training and 20 for testing. The camera captured the original image size of
2000 × 1600 pixels, and due to the strong light setting and eyeless design, the overall color
of the image was yellowish and slightly foggy. Therefore, the original image needed to be
pre-processed, as shown in Figure 7.

1. Data annotation. Two ophthalmologists used Labelme to annotate 160 fundus images
of the optic disk (OD) and optic cup (OC). In this paper, 140 were randomly selected
as the training set and 20 were randomly selected as the test set using the division
method following [31].

2. Data Augmentation. The fundus images are pre-processed for image defogging and
contrast enhancement using the Automatic Color Enhancement (ACE) [32] algorithm,
which corrects the final pixel values by calculating the degree of lightness and dark-
ness of the target pixels and the surrounding pixels and their relationship to achieve
contrast adjustment of the image. Due to the small number of images, in the experi-
ment, we use random vertical flip, random horizontal flip, and random diagonal flip
to every image [33], and one image is expanded to 2 × 2 × 2 = 8 images by expanding
the dataset.

3. Cropping ROI [34]. A small percentage of the OD area in the fundus images is used
to obtain more accurate boundary segmentation of the optic disk and reduce the
influence of background noise regions on the segmentation results. The center of the
OD is detected by the brightest point in the fundus image as the center of the OD.
Then, it performs an external expansion twice the radius of the cropped OD region
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to obtain the full area of the OD and OC, which is sent to the BEAC-Net model for
training and testing. In particular, the cropping images reduce the computing load on
the computer and improve the computing efficiency. The labels are cropped into the
corresponding ROI simultaneously.

Fundus Image Data Augmentation Cropping ROI Label

Figure 7. OD and OC segmentation in fundus images into three classes: disk (green), cup (red), and
background (black).

5.2. Implementation Details

The BEAC-Net is implemented based on Python 3.6 and Pytorch 1.7.0 using Ubuntu
18.04 Linux and NVIDIA RTX3060 GPU for the experiments. For OD and OC partitioning,
two public datasets were used as the training set to fit and optimize the model parameters.
Subsequently, tests were performed on the internal dataset to evaluate the performance
of the network. During training, the epochs are 300, and the popular SGD optimizer with
a momentum value of 0.9 and weight decay value of 1 × 10−4 is used to optimize our
model for backpropagation, along with a learning rate update strategy and an early stop
mechanism. The learning rate decreases gradually from 0.001, and when the loss does not
decrease after 10 training rounds, the network learning rate is reduced to half. During
training, the batch size is set to 4, and the output segmented image size is 640× 640× 3.

5.3. Evaluation Metrics

We took a task-specific approach to the range of evaluation metrics, aiming to allow
each experiment to be compared on the basis of having the same environmental settings.
Accuracy, Dice coefficient (Dice), Intersection over Union (IoU),and Hausdorff Distance
(Hd) are our evaluation metrics used to measure the semantic performance for segmenting
OD and OC relative to the ground truth. These parameters are formulated as follows:

Acc =
TP + TN

TP + FP + TN + FN
(9)

Dice =
2TP

2TP + FP + FN
(10)

IoU =
TP

TP + FP + FN
(11)

Hd(X,Y) = max{dXY, dYX} = max
{

maxx∈Xminy∈Yd(x, y),maxy∈Yminx∈Xd(x, y)
}

(12)
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where TP is true positive, FP is false positive, TN is true negative, and FN is false negative,
respectively. X and Y are the number of pixels in the predicted and labeled binary mask
images, respectively. The value of the Dice coefficient is between [0, 1]; the closer to 1, the
better the segmentation result. The value of the IoU is also between [0, 1]; the larger the
value of IoU, the more the region predicted to be the OD and OC overlaps with ground
truth and the better the segmentation result.

5.4. Comparison with State-of-the-Art Models

To further validate the segmentation performance of the proposed BEAC-Net, we
compared several current state-of-the-art models, including U-Net [8], Deeplabv3+ [15],
M-Net [12], and Swin-Unet [35]. The same experimental environment is set up for all model
training, while the same pre-processing operations are performed on the fundus image.
Figures 8–10 show a visual comparison of the segmentation results between our BEAC-Net
and other methods of OD and OC segmentation on three datasets. The segmentation results
of the OC and OD show that the boundary part of the BECA-net is closest to the ground
truth, indicating that the OC boundary pixels are correctly categorized, and it enhances
the feature capture to collect the boundary contextual information via the EBPA module.
The segmentation method based on the U-Net network with its U-shaped structure and
jump connections can effectively transfer the high-level and low-level information, but
the number of network layers is small and cannot capture boundary features. Deeplabv3+
predicts the feature map directly bilinear upsampling 16 times to the desired size, which
does not have enough detailed information, and the segmentation results are affected by
blood vessels and bright lesions. Swin-Unet uses the Swin Transformer to extract image
feature information, and the structure can better capture different levels of features, but
there are difficulties in preparing segmentation for OD with large noise backgrounds.
The reason that these methods do not give the expected results in segmenting OC and
OD is that the boundary features and the contextual information of the boundaries are
not extracted completely.Our proposed BEAC-Net can make the boundaries of OD and
OC regions more sensitive by introducing boundary awareness into the network, make
the AFF module focus on fusing the multi-scale features, and eliminate the influence of
blood vessels and background noise on the segmentation results. In Figure 10, BEAC-Net
produces segmentation results that are closest to the ground truth.

5.5. Results on Cross-Dataset

In this part, we use the RIM-ONE-v3 and DRISHTI-GS datasets for testing and intro-
duce the 66 Vision-Tech dataset to test the generalization ability of the BEAC-Net. Figure 11
shows the training results, including the accuracy curve, Dice curve, HD curve, and loss
curve, for training the BEAC-Net network on the DRISHTI-GS dataset. As shown in the
figure, the curves of the network converge faster in the early training period, indicating
that the BEAC-Net network has a strong learning ability, and as the training rounds reach
50, the curves of the network training begin to level off with only a small fluctuation.

Table 2 shows the comparisons of the quantitative results of the RIM-ONE-v3 and
DRISHTI-GS datasets. Our proposed model was compared with U-Net, Deeplabv3+,
Encoder-Decoder CE-Net, M-Net, Ensemble CNN, U-shaped convolutional neural network,
Robust, and Swin-Unet, which are widely used in the field of semantic segmentation. BEAC-
Net outperforms the second-best Swin-Unet, with a Dice value of 0.8582 and IoU value
of 0.8385 for OD segmentation on the RIM-ONE-v3 dataset, leading by 0.017 and 0.0284,
respectively. In particular, the segmentation results of OC achieve excellent performance,
with a Dice value of 0.8087 and IoU value of 0.7633 on the DRISHTI-GS dataset. Through
extensive experiments, the validity of BEAC-Net was verified, and it was able to leverage
the boundary information to provide supplementary information for better segmentation.
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 Original image Ground truth BEAC-NetU-Net Deeplabv3+ M-Net Swin-Unet

Figure 8. Results of OD and OC segmentation images on the RIM-ONE-v3 dataset, where green
colors indicate OD, and red colors indicate OC.

Original image Ground truth

Ours

U-Net Deeplabv3+ M-Net Swin-Unet BEAC-Net

Figure 9. Results of OD and OC segmentation images on the DRISHTI-GS dataset, where green
colors indicate OD, and red colors indicate OC.
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Original image Ground  truth U-Net M-NetDeeplabv3+ BEAC-NetSwin-Unet

Figure 10. Results of OD and OC segmentation images on the 66 Vision-Tech dataset, where green
colors indicate OD, and red colors indicate OC.
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Figure 11. (a) Acc curve, (b) Dice score curve, (c) Hausdorff Distance curve, (d) Loss curve for
DRISHTI-GS dataset.
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We test the model’s generalization ability across different datasets. In Table 3, on the 66
Vision-Tech dataset, our proposed BEAC-Net outperforms the other models. Compared to
the segmentation results with the proposed BEAC network and other methods, the BEAC
network performs best in the Dice and IoU metrics, reaching a Dice value of 0.8267 and
IoU value of 0.8138 for the OD and a Dice value of 0.8057 and IoU value 0.7858 for the OC.
Compared with Swin-Unet, leading by 0.0118 and 0.0086 for the OD and 0.0616 and 0.0043
for the OC, respectively, BEAC-Net is more sensitive to the segmentation boundary. We can
see that BEAC-Net has the best HD performance for the segmentation of the OD and the
OC, with the HD of the OD reaching 8.63 and the HD of the OC reaching 9.59, indicating
that the ACM module implements the process of capturing both local-scale and long-range
information to improve the segmentation accuracy of the pixels in the boundary region.
The results show the good generalization properties of our proposed BEAC-Net model and
demonstrate that it is an effective approach for a better presentation of image details in the
segmentation results.

Table 2. Comparison of segmentation results on RIM-ONE-v3 and DRISHTI-GS dataset among
different methods.

Method

RIM-ONE-v3 Dataset DRISHTI-GS Dataset

OD OC OD OC

Dice IoU Dice IoU Dice IoU Dice IoU

U-Net [8] 0.7351 0.8206 0.7176 0.6633 0.7887 0.8206 0.7376 0.7533
Deeplabv3+ [15] 0.7467 0.8344 0.7236 0.6701 0.7861 0.8344 0.7336 0.7001
CE-Net [23] 0.7632 0.8478 0.7592 0.6732 0.7932 0.8478 0.7492 0.7532
M-Met [12] 0.7696 0.8114 0.7348 0.6900 0.8026 0.8114 0.7648 0.7300
Ensemble CNN [10] 0.8132 N/A 0.7240 N/A 0.8120 N/A 0.7740 N/A
U-shaped [33] 0.8344 N/A 0.7564 N/A 0.8361 N/A 0.7764 N/A
Robust [6] 0.8410 0.8256 0.7129 0.6633 0.8310 0.8256 0.7945 0.7429
Swin-Unet [35] 0.8412 0.8101 0.7332 0.6633 0.8582 0.8101 0.7822 0.7532
Our 0.8582 0.8385 0.7333 0.6633 0.8614 0.8385 0.8087 0.7633

Table 3. Comparison Between our model and previous methods on 66 Vision-Tech dataset.

Method
OD OC

Dice IoU HD Dice IoU HD

U-Net [8] 0.6948 0.7256 35.82 0.6515 0.7534 39.60
Deeplab [36] 0.7231 0.7512 29.74 0.6752 0.7655 33.52
Deeplabv3+ [15] 0.7554 0.7440 21.55 0.6836 0.7521 26.23
M-Met [12] 0.7675 0.7778 22.16 0.6872 0.7678 30.25
Trans-Unet [26] 0.7947 0.8065 18.75 0.7102 0.7763 21.85
Swin-Unet [35] 0.8149 0.8052 12.32 0.7441 0.7815 15.65
Our 0.8267 0.8138 8.63 0.8057 0.7858 9.59

5.6. Ablation Study

To validate the effectiveness of the different components of BEAC-Net, we conducted
ablation studies on the 66 Vision-Tech dataset. EBPA, AFF, and ASPP influence and Dice
Loss are discussed below; we selected modules that do not contain these as the baseline.
Table 4 shows the ablation results. The Dice and IoU of segmentation OD are 0.7523 and
0.7636 when using the baseline, respectively, and adding any of the three modules results
in a performance improvement. The OD and OC segmentation accuracy is optimized when
all three modules are added.

(1) Efficient Boundary Pixel Attention

In the ablation experiments, we compare the baseline and add the EBPA modules,
which can reduce the time and space complexity to O

(
N
√

N
)

by successively stacking
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the two EBPA modules. EBPA can capture the optic disk and cup segmentation boundary
context information in the fundus image from the horizontal and vertical directions and
reduce the model parameters to obtain a lightweight model. In Table 4, the segmented OC
Dice and IoU are improved by 0.0228 and 0.0345, respectively, compared with the baseline
after adding EBPA. We perceive that better boundary segmentation results are obtained.

(2) Attentional Feature Fusion

We only use the simple linear operation concatenation when we fuse the high-level
features and low-level features in the baseline. As shown in Table 4, the IoU of segmenting
the OC using the concatenation module is 0.7108, and after replacing AFF from the baseline,
the IOU reaches 0.7547, the segmentation accuracy improves to 0.0439, and HD decreases
from 33.56 to 25.50.

(3) ASPP influence

ASPP is used to obtain multi-scale features with different shifted window sizes, and
we compared adding ASPP to the baseline. In Table 4, there is a significant performance
after adding ASPP; OD Dice and IoU are improved to 0.8148 and 0.7952, respectively.
The reason is that by using different shifted windows rather than using different atrous
convolution, the image extracted features have a better receptive field. After convolution,
the image resolution decreases, and many details about the image boundaries are lost,
while using shifted windows to obtain features instead of convolution ensures the same
resolution of the feature map.

(4) Dice Loss

We combine the classification cross-entropy and Dice Loss assignment weights as the
loss function to make the model converge faster in the training phase and fit the boundary
shape in the ground truth more effectively. We train two BEAC-Net datasets, one with only
the categorical cross-entropy (BEAC-Net + Lce) as the loss function and the other with a
combination of categorical cross-entropy and Dice Loss (BEAC-Net + Lce + Ldice) as the loss
function. Table 5 shows that after introducing the Dice Loss, the OC Dice and IoU values
improved by 0.0098 and 0.0191, respectively, from 0.8059 to 0.8157 and 0.7767 to 0.7958.

Table 4. Comparison Between Our Model And Previous Methods On 66 Vision-Tech Dataset.

EBPA AFF ASPP
OD OC

Dice IoU HD Dice IoU HD

- - - 0.7523 0.7636 35.82 0.7426 0.7108 33.56
X - - 0.7630 0.7841 22.23 0.7654 0.7453 25.43
- X - 0.7837 0.7947 23.36 0.7742 0.7547 25.50
- - X 0.8148 0.7952 21.47 0.7759 0.7557 25.21
X X - 0.8156 0.8017 15.23 0.7867 0.7712 17.78
X X X 0.8267 0.8138 8.63 0.8057 0.7858 9.59

Table 5. Ablation study on the impact of the loss function.

Method
Dice IoU

OD OC OD OC

BEAC-Net + Lce 0.8203 0.8059 0.8121 0.7767
BEAC-Net + Lce + Ldice 0.8367 0.8157 0.8238 0.7958

6. Conclusions

In this paper, we propose a novel boundary-enhanced adaptive context network
(BEAC-Net), which produces richer contextual information for OD and OC segmentation.
BEAC-Net is based on ACM, which can enhance critical features to suppress background
features to reduce the negative impact of the noise. The EBPA module is used to capture
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richer contextual information of the optic disk and cup segmentation boundaries in the
fundus image in both horizontal and vertical directions. More importantly, BEAC-Net can
integrate the feature maps from different levels via the AFF module adaptively. We also
performed extensive experiments on the RIM-ONE-v3, DRISHTI-GS, and 66 Vision-Tech
datasets to confirm the effectiveness of BEAC-Net. Since there are many types of diseases
of the fundus, we will further investigate and actively explore BEAC-net applications in
fundus image lesion segmentation to improve fundus image segmentation performance.
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