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Abstract: This article provides a comprehensive overview of the fairness issues in artificial intelli-
gence (AI) systems, delving into its background, definition, and development process. The article
explores the fairness problem in AI through practical applications and current advances and focuses
on bias analysis and fairness training as key research directions. The paper explains in detail the
concept, implementation, characteristics, and use cases of each method. The paper explores strategies
to reduce bias and improve fairness in AI systems, reviews challenges and solutions to real-world AI
fairness applications, and proposes future research directions. In addition, this study provides an
in-depth comparative analysis of the various approaches, utilizing cutting-edge research information
to elucidate their different characteristics, strengths, and weaknesses. The results of the comparison
provide guidance for future research. The paper concludes with an overview of existing challenges
in practical applications and suggests priorities and solutions for future research. The conclusions
provide insights for promoting fairness in AI systems. The information reviewed in this paper is
drawn from reputable sources, including leading academic journals, prominent conference proceed-
ings, and well-established online repositories dedicated to AI fairness. However, it is important to
recognize that research nuances, sample sizes, and contextual factors may create limitations that
affect the generalizability of the findings.

Keywords: AI fairness; bias analysis; data analytics

1. Introduction
1.1. Background

With recent advances in artificial intelligence (AI), decision making has gradually
shifted from rule-based systems to machine learning-based developments (e.g., [1–3]),
learning patterns from data and performing pattern recognition, inference, or prediction.
Although such a new methodological trend is derived from the bias brought by human
rules, this bias and unfairness are gradually permeating artificial intelligence in another
form, as humans are still involved in collecting the datasets used to train machine learning
in the new system [4,5].

Artificial intelligence fairness (AI Fairness) is an issue proposed in response to this
status quo, which is intended to prevent different harms (or benefits) to different subgroups,
thereby providing a system that both quantifies prejudice and mitigates discrimination
against subgroups [6,7]. Questions about AI Fairness are practical and affect the lives
around us in many ways. Some decision support systems for credit applications tend to
favor certain sociodemographic groups, resulting in people living in certain areas, and
people of certain ethnic backgrounds or genders having a certain selection preference for
loan approval, which is difficult to make completely objective and fair [8–11]. Meanwhile,
disability information is highly sensitive and cannot be shared, thus exacerbating this
unfairness due to the opaqueness of the information [12]. Companies may miss out on
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many potential talents due to an AI-based recruiting engine that is biased against region,
gender, and ethnicity, and even cause the company’s team composition to gradually become
homogenized in biased elements, thereby losing the advantages of diversity [13,14].

It can be seen that the study of this issue has broad social, political, and economic signif-
icance. Once the AI misunderstands the intended task, the problem of value misalignment
often ensues, and many social issues and responsibilities will arise.

1.2. Directions

Based on the works in recent years, the conceptual development of AI Fairness has
focused on the following directions:

• Fairness and bias [15–17]: Introduction of widely used fairness metrics, such as
disparate impact, equal opportunity, and statistical parity. Evaluation of their applica-
bility and limitations in different contexts, contributing to a nuanced understanding
of group fairness assessment.

• Algorithmic bias mitigation [18–20]: Exploration of techniques, like pre-processing,
in-processing, and post-processing, to mitigate algorithmic biases. Critical analysis of
their effectiveness in different scenarios, offering insights into the trade-offs between
bias reduction and model performance.

• Fair representation learning [21–23]: Introduction of techniques for learning fair
representations, including adversarial debiasing and adversarial learning frameworks.
Investigation into their potential for producing fair and informative representations,
fostering a deeper comprehension of their role in mitigating biases, understanding the
true sources of disparities, aiding in the design of more targeted interventions.

Based on the above conceptual directions, we condense and analyze the methodology
and technical analysis involved, and focus on the major key elements in this paper, includ-
ing definition and problem formulation, bias analysis, fair training, and corresponding
applications and practices.

This article undertakes a comprehensive exploration of the critical subject of fairness
issues within artificial intelligence (AI) systems. The overarching scope of this survey
is to provide an in-depth analysis of the multifaceted landscape of AI fairness, covering
its foundational aspects, developmental trajectory, practical applications, and emerging
research directions. By delving into these dimensions, the survey aims to shed light on the
complex challenges linked to fairness in AI, while offering insights into potential remedies
and avenues for future exploration.

1.3. Scope

This article mainly collects the research with the details of the corresponding research
plan and methodological route, providing a comprehensive survey of the advancements
in the domain of AI Fairness. The scope of this survey is expansive and encompasses
diverse facets of AI fairness. It begins by elucidating the foundational background and
definition of fairness within the realm of AI systems. Subsequently, the survey ventures
into the dynamic landscape of fairness concerns, exploring practical applications and recent
advancements. Of particular significance are the domains of bias analysis and fairness
training, which are delved into as crucial research directions aimed at ameliorating biases
and fostering equitable AI outcomes. The survey encompasses meticulous explanations
of the concepts, implementations, characteristics, and practical use cases of each method,
thereby providing a comprehensive understanding of their nuances.

Encompassing a retrospective spectrum, the covered literature spans from the most
recent contributions (e.g., [24–26]) to the initial inception of pertinent theories, extending
as far back as 1993 (e.g., [27–29]). A meticulous curation process led to the inclusion of
310 papers from an extensive pool of 1083 pieces of materials. The selection criteria entailed
a thorough assessment of factors, such as the intrinsic significance, perceptible impact,
novelty, ingenuity, and citation prevalence of the respective works. These works were
methodically categorized and subjected to thorough examination within the manuscript.
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The ensuing textual discourse encompasses not only analysis but also the deliberation and
the derivation of insightful perspectives.

1.4. Contributions

This article offers an extensive and comparative analysis of diverse approaches, lever-
aging contemporary research to expound upon their distinct attributes, strengths, and
limitations. This comparative exploration not only guides researchers but also informs
practitioners, providing them with a nuanced understanding of available methods and
aiding their decision making.

Additionally, the survey enriches the discourse on AI fairness by contextualizing its
practical implications. By exploring strategies to mitigate bias and enhance fairness in AI
systems, it bridges the gap between theoretical foundations and real-world challenges. The
survey further discusses the critical subject of challenges and solutions in real-world AI
fairness applications, offering insights into the current limitations and potential remedies.

Furthermore, this survey contributes by acknowledging the dynamic nature of the AI
fairness landscape and the evolving nature of research and advancements. It underscores
the evolving nature of the field and the limitations associated with the evidence derived
from reputable sources. While these limitations stem from factors such as research nuances,
sample sizes, and contextual intricacies, the survey remains committed to fostering the
continuous exploration and understanding of AI fairness.

In essence, this survey encompasses a wide-ranging scope, delving into the genesis,
evolution, applications, and challenges of AI fairness. Its multifaceted contributions aim to
advance the understanding of fairness in AI, providing valuable insights for both academia
and industry in their pursuit of equitable and unbiased AI systems.

1.5. Organization of This Article

The organization of the article is organized as follows. Section 2 introduces the
background and definition of AI fairness, and Section 3 formulates the definitions and
problems of fairness in AI systems. The main directions of the research of addressing AI
fairness, bias analysis, and fair training are reviewed in Sections 4 and 5 with details of
corresponding methodologies. Section 6 discusses the measures of migrating the bias and
improving fairness in the AI system. Section 7 reviews the related issues and solutions in
the practical applications of AI fairness, and corresponding future works are discussed and
given. Section 8 concludes the paper.

2. Preliminary
2.1. Status Quo

Although the study of fairness in machine learning is a relatively new topic, it has
attracted extensive attention. IBM launched AI Fairness 360 [30–32], which can help detect
and mitigate unwanted bias in machine learning models and datasets. It provides around
70 fairness metrics to test for bias and 11 algorithms to reduce bias in datasets and models,
thereby reducing software bias and improving its fairness (e.g., [33]).

Facebook has also developed the Fairness Flow tool to detect bias in AI, which works
by detecting forms of statistical bias in some of Facebook’s commonly used models and
data labels, enabling the analysis of how certain types of AI models perform across different
groups [34–36]. It defines “bias” as the systematic application of different standards to dif-
ferent groups of people. Given a dataset containing predictions, labels, group membership
(for example, gender or age), and other information, Fairness Flow can divide the data
used by the model into subsets and estimate its performance.

In 2019, Google also embedded the Fairness Indicators component in a series of AI tools
it developed, resulting in tools built on top of TensorFlow model analysis that can regularly
calculate and visualize fairness indicators for binary and multi-class classification [37–39].

Although the above work provides tools and theoretical analysis, due to the short
research time of this problem and still in the preliminary exploratory stage, there is no
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mature standard for how to quantify the risk of AI fairness and little insights in how to
make decisions in the case of consensus and controversy with the commonly accepted
solutions to the risks.

2.2. Review Methodology
2.2.1. Materials

Aiming at the topic along with the issues above, we collected a variety of current
academic and technical materials on AI equity and conducted a synthesis study. The infor-
mation synthesized in this study comes from a variety of reliable sources. These sources
include recent publications in prestigious academic journals, distinguished conference
proceedings, and well-established online repositories dedicated to the fairness of AI.

Our comprehensive search strategy includes systematic searches of respected academic
databases, including IEEE Xplore, ScienceDirect, ACM Digital Library, Springer, Wiley
Library, etc. In addition, we carefully reviewed relevant conference proceedings and
authoritative organization websites to ensure research inclusiveness. In a robust and
diverse collection, we conducted a meticulous review process that encompassed a wide
range of sources. We extensively searched through various databases, culminating in
the compilation of 1083 materials, comprising Proceedings, Miscellaneous, Articles, Tech
Reports, Books, Ph.D. theses, and Collections. To filter the literature and complete the
review, the review process was multifaceted and involved several key criteria.

2.2.2. Criteria

The inclusion and exclusion criteria we use in selecting sources of information are
carefully thought out to ensure the relevance and quality of the studies included in our
analysis. Our criteria included peer-reviewed academic articles, conference papers, and
authoritative reports that explicitly address the fairness of AI in data management and
analytics. During the synthesis process, we thoughtfully grouped studies based on thematic
affinity, methodology, and the nature of the fairness challenges to be addressed. This group-
ing strategy facilitates a coherent and well-organized synthesis of the different perspectives
in the literature. Our criteria for selecting materials are carefully considered and include
the following factors, including the following:

• Duplication: We strive to offer diverse and original content to our audience. To avoid
redundancy, we review submissions to ensure that the material we publish does not
duplicate the existing content in our collection.

• Ineligible content: Our selection process also involves evaluating whether the
submitted content meets our eligibility criteria, including adhering to our guidelines
and standards.

• Publishing time: We value timeliness and relevance. We prioritize materials that are
current and align with the most recent developments and trends in the respective field.

• Quality of publication: Ensuring the quality of the content we publish is of utmost
importance. We assess the accuracy, credibility, and overall value of the material to
ensure it meets our quality standards.

• Accessibility: Our goal is to make information accessible to a wide range of readers.
We select materials that are well structured, clear, and easily understandable, catering
to readers with varying levels of expertise.

• Similarity of content: While covering a broad spectrum of topics, we also strive
for variety and distinctiveness in our content selection. We aim to present diverse
perspectives and insights to enrich the reader experience.

We adopted PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) in our review, which meticulously outlines the systematic progression of the
study identification, screening, eligibility, and inclusion phases, thereby increasing the
reproducibility and rigor of the review process. The PRISMA procedure is shown in
Figure 1 as a flowchart. After the procedure, reference lists of selected articles in the field
are reviewed intensively while identifying potential studies.
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Identification Bibliographies Screening Included

Remove Before Screening Screening

Duplication Ineligible

10 332

0 0

56 128

12 21

0 0

0 0

3 4

Retrieving Quality and Eligibility

Out of Date

53

0

7

3

0

2

3

Similar / Inaccessible

153

0

20

15

0

1

0

Quality

47

0

9

3

0

0

0

Proceedings 685

Miscellaneous 1

Article 318

Tech report 56

Book 1

PhD thesis 5

Collection 17

1083

Proceedings 343

Miscellaneous 1

Article 244

Tech report 23

Book 1

PhD thesis 5

Collection 10

627

Proceedings 290

Miscellaneous 1

Article 237

Tech report 20

Book 1

PhD thesis 3

Collection 7

559

Proceedings 137

Miscellaneous 1

Article 217

Tech report 5

Book 1

PhD thesis 2

Collection 7

370

Proceedings 90

Miscellaneous 1

Article 208

Tech report 2

Book 1

PhD thesis 2

Collection 7

311

Figure 1. Procedure of preferred reporting items for systematic reviews and meta-analyses.

2.3. Limitations

It is important to recognize that while these sources have contributed significantly to
our understanding, there are limitations to the evidence they provide. These limitations
stem primarily from nuances in research methodology, sample size, and context, which
may affect the generalizability of the conclusions drawn from individual studies. The
landscape of AI fairness is dynamic, with research and advancements continually shaping
our understanding of its complexities. While our current coverage might have limitations
due to the rapid pace of change and ongoing research, please know that we are committed
to further studying and exploring this crucial subject. Despite these inherent limitations,
our review endeavors to provide a comprehensive and balanced overview of the current
state of research related to the fairness of AI. We are dedicated to providing accurate and
comprehensive information to readers with the notice of the need to stay engaged with
emerging topics like AI fairness.

3. Definition and Problems
3.1. Definition

As AI technologies continue to permeate all aspects of society, ensuring fairness in their
decision-making processes is crucial to avoid perpetuating bias and inequality. However,
defining what constitutes fairness in AI is a complex and multifaceted task. So far, there are
mainly seven types of definitions, including individual fairness [40,41], group fairness [42],
equality of opportunity [11], disparate treatment [43], fairness through unawareness [44,45],
disparate impact [46], and subgroup fairness [47].

Fairness in AI can be approached through different conceptual lenses. Individual fairness
emphasizes equitable treatment for similar individuals, while group fairness aims to avoid
disparate treatment based on demographic attributes. Equality of opportunity focuses on
consistent predictive accuracy and error rates across various groups, regardless of outcomes.

An alternative approach is fairness through unawareness, achieved by ignoring sen-
sitive attributes in decision making. Despite its intentions, this method might indirectly
perpetuate bias present in data. Disparate impact examines whether AI systems dispropor-
tionately harm certain groups, irrespective of intent. It aims to uncover biases in outcomes,
intentional or not.

To address complex interactions, subgroup fairness evaluates fairness at the intersec-
tion of multiple protected attributes, ensuring equitable experiences for diverse subgroups.
These conceptions contribute to a comprehensive understanding of fairness in AI and
underscore the multifaceted nature of achieving equitable outcomes.
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Table 1 summarizes these approaches to fairness in AI. Individual fairness prioritizes
personalized treatment, while group fairness targets demographic equity. Fairness through
unawareness and equality of opportunity tackle fairness differently—ignoring attributes
vs. ensuring equal chances based on qualifications. Disparate impact assesses negative
effects, disparate treatment detects unequal treatment. Subgroup fairness navigates com-
plex attribute interactions for equitable outcomes. These concepts collectively enrich the
understanding of fairness in AI systems.

Table 1. Fairness definition.

Data Bias Definition Main Cause References

Individual Fairness Similarity at the individual level Treat similar individuals similarly [40,41,48,49]

Group Fairness Equitable outcomes for demographic groups Avoid disparities among groups [42,50,51]

Fairness through Un-
awareness Ignoring sensitive attributes Treat individuals as if attributes are

unknown [44,45,52]

Equality of Opportunity Equal chances for similar qualifications Ensure equal chances for outcomes [11,53,54]

Disparate Impact Disproportionate negative effects Evaluate disparities in outcomes [6,46,55]

Disparate Treatment Explicit unequal treatment Detect explicit biases in treatment [43,56,57]

Subgroup Fairness Fairness at the intersection of multiple at-
tributes

Consider fairness for multiple
groups [47,58]

3.2. Problems

The risks with AI systems mainly come from data accountability [24,59] and algorithm
accountability [60–62]. The connotation of data accountability mainly includes data owner-
ship, storage, use, and sharing, while algorithm accountability emphasizes determining
who is responsible for the output of AI algorithms. The interplay of these two risks also
raises the question of mission inclusivity [63–65], which mainly focuses on whether the AI
system is effective for diverse user populations. Bias effects in machine learning are shown
in Figure 2.

Figure 2. Bias effects in machine learning.
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Biases in AI models can arise from data collection, labeling, and partitioning, affecting
data integrity. Human factors during training, including optimization objectives and pa-
rameter configurations also contribute to bias. Inclusivity applications involve tuning and
updates guided by user feedback, which holds substantial influence. Techniques like K-fold
mitigate dataset bias, but original bias persists, highlighting the importance of robust data
accountability. Subjective optimization objective design exacerbates bias effects. Addressing
these issues requires comprehensive strategies for data and model development.

Feedback bias in AI model tuning can arise if participants providing feedback are
disproportionately represented in specific communities or feature sets. This concentration
can lead to model adjustments aligning more closely with the preferences of that group.
Grouping can be based on experimental settings or attributes, aiding the analysis of cognitive
and labeling differences’ impact on bias patterns. Statistical features synthesized from group
evaluations can influence machine learning model outcomes.

The inclusivity of intelligent computing services relies on data and algorithm ac-
countability to mitigate bias and ensure fairness in machine learning processes. While
industry practices often exclude sensitive attributes to address fairness concerns, this
approach overlooks the potential influence of non-sensitive attributes in reflecting bias.
Additionally, evaluating fairness using static test sets poses challenges, including potential
incompleteness and inherent bias carried over from existing systems.

Moreover, the feedback loop between machine learning system outputs and inputs
can perpetuate and reinforce biases, necessitating the analysis of algorithms in dynamic
systems. Label noise further complicates the picture, as large datasets essential for deep
network training can inadvertently incorporate incorrect labels, undermining model
accuracy and performance.

Addressing these challenges, ongoing research focuses on detecting and mitigating
bias while designing fair machine learning mechanisms and intelligent systems. Bias analy-
sis and fair training emerge as critical areas, aiming to enhance the technical understanding
and current status of each direction.

4. Bias Analysis
4.1. Data Bias

Data bias is a critical concern in artificial intelligence (AI) systems, as biased
data can lead to unfair and discriminatory outcomes. It arises when the training
data used to develop AI models are skewed, leading to biased predictions or deci-
sions [66,67]. Biased data can perpetuate historical prejudices and result in discrimina-
tory outcomes. There are five main types bias, including selection bias [68–71], sampling
bias [25,72,73], labeling bias [26,74–77], temporal bias [78–81], aggregation bias [82–86],
historical bias [52,87–89], measurement bias [4,90–92], confirmation bias, proxy bias,
cultural bias, under-representation bias [93–95], and homophily bias [96–98]. Table 2
shows the comparison of the different types of data biases.

Bias in AI models can stem from various data-related sources. Selection bias arises from
skewed data representation due to biased collection or incomplete sampling. Aggregation
bias results when data from different sources with varying biases are combined without
proper consideration. Sampling bias emerges when training data fail to represent the tar-
get population adequately. Labeling bias occurs due to errors in annotation, introducing
bias into training. Measurement bias originates from inaccuracies during data collection,
impacting the model’s ability to learn accurately. Temporal and historical biases arise from
reflecting outdated societal biases. Unconscious biases, such as cultural bias, lead to biased
decisions for diverse groups. Proxy bias uses correlated proxy variables, indirectly introducing
bias. Homophily bias reinforces existing patterns in prediction, potentially intensifying bias.
Understanding and mitigating these biases are crucial for equitable AI systems.
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Table 2. Comparison on data biases.

Data Bias Definition Main Cause Impact on AI References

Selection Bias Certain groups are
over/under-represented Biased data collection process

AI models may not be
representative, leading to
biased decisions

[68–71]

Sampling Bias Data are not a random
sample Incomplete or biased sampling Poor generalization to new

data, biased predictions [25,72,73]

Labeling Bias Errors in data labeling Annotators’ biases or societal
stereotypes

AI models learn and
perpetuate biased labels [26,74–76]

Temporal Bias Historical societal biases Outdated data reflecting past
biases

AI models may reinforce
outdated biases [78–81]

Aggregation
Bias

Data combined from
multiple sources

Differing biases in individual
sources

AI models may produce
skewed outcomes due to
biased data

[82–85]

Historical Bias Training data reflect past
societal biases

Biases inherited from historical
societal discrimination

Model may perpetuate
historical biases and reinforce
inequalities

[52,87–89]

Measurement
Bias

Errors or inaccuracies in data
collection

Data collection process
introduces measurement errors

Model learns from flawed
data, leading to inaccurate
predictions

[4,90–92]

Confirmation
Bias

Focus on specific patterns or
attributes

Data collection or algorithmic
bias towards specific features

Model may overlook relevant
information and reinforce
existing biases

[27,99–102]

Proxy Bias Indirect reliance on sensitive
attributes

Use of correlated proxy
variables instead of sensitive
attributes

Model indirectly relies on
sensitive information, leading
to biased outcomes

[42,103–105]

Cultural Bias Data reflect cultural norms
and values

Cultural influences in data
collection or annotation

Model predictions may be
biased for individuals from
different cultural backgrounds

[72,106,107]

Under-
representation
Bias

Certain groups are
significantly
underrepresented

Low representation of certain
groups in the training data

Model performance is poorer
for underrepresented groups [93–95]

Homophily
Bias

Predictions based on
similarity between instances

Tendency of models to make
predictions based on similarity

Model may reinforce existing
patterns and exacerbate biases [96–98]

4.2. Algorithmic Bias

Algorithmic bias refers to biases inherent in the design and structure of AI models [108,109].
These biases may be unintentionally introduced during the development process, leading to
unequal treatment of different groups. The main algorithmic biases include prejudice bias,
sampling bias, feedback loop bias, lack of diversity bias, and automation bias.

Prejudice bias arises from biased training data, perpetuating societal stereotypes. Sam-
pling bias stems from data misrepresentation, causing poor generalization. Feedback loop
bias is a self-reinforcing cycle, where biased AI predictions lead to biased feedback. Lack
of diversity bias emerges from inadequate dataset representation, affecting underrepre-
sented groups. Automation bias involves over-reliance on AI decisions without scrutiny,
potentially amplifying underlying biases.

Table 3 summarizes the comparison of different types of algorithmic bias in AI systems,
highlighting their definitions and main implications. Prejudice bias originates from biased
data collection, reinforcing discrimination. Sampling bias results from non-representative
data, causing biased predictions. Feedback loop bias is a self-reinforcing cycle driven
by biased predictions and feedback. Lack of diversity bias emerges from homogeneous
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training datasets, affecting underrepresented groups. Automation bias is the uncritical
reliance on AI decisions, amplifying underlying biases.

Table 3. Algorithmic bias comparison.

Algorithmic
Bias Definition Main Cause Impact on AI References

Prejudice Bias AI models trained on biased
data

Biased training data and
societal prejudices

Reinforces biases, leads to
discriminatory outcomes [76,110–112]

Sampling Bias Data do not represent the target
population

Incomplete or skewed
sampling methods

Poor generalization, biased
predictions [85,113–115]

Feedback
Loop Bias

Self-reinforcing bias cycle in AI
predictions

Biased predictions influencing
biased feedback

Amplifies biases,
perpetuates discrimination [116–120]

Lack of
Diversity Bias

Training on limited or
homogeneous datasets

Insufficient representation of
diverse groups

Performs poorly for
underrepresented groups [40,121–125]

Automation
Bias

Human over-reliance on AI
decisions

Blind trust in AI without
critical evaluation

Perpetuates biases without
human intervention [126–131]

4.3. User Interaction Bias

User interaction bias occurs when AI systems adapt their behavior based on user
feedback, potentially reinforcing and amplifying existing biases [67,132]. It manifests in
various forms, each contributing to biased decision making and unequal outcomes in AI
systems. Table 4 summarizes the typical user interaction biases, including user feedback
bias, underrepresented or biased user data bias, and automation bias.

Table 4. User interaction bias comparison.

Bias Type Definition Main Cause Impact on AI Reference

User
Feedback
Bias

User Feedback Bias occurs
when biased user feedback
or responses influence the
behavior of AI systems.

Biased user feedback or
responses can be influenced
by users’ subjective
preferences, opinions, or
prejudices. The AI system
learns from this feedback and
incorporates it into its
decision-making process.

AI models may generate biased
predictions and decisions based
on the biased feedback,
potentially leading to unequal
treatment of certain user groups.
User satisfaction and trust in the
AI system can be affected by
biased outputs.

[116–118]

Biases from
Underrepre-
sented or
Biased User
Data

This bias arises when the
data collected from users
lack diversity or contain
inherent biases, which can
lead to biased model
predictions and decisions
that disproportionately
affect certain user groups.

Lack of diversity or inherent
biases in user data can result
from biased data collection
practices, data preprocessing,
or historical biases reflected in
the data.

AI systems trained on biased user
data may produce unfair
outcomes, disproportionately
impacting specific user groups.
Biases in data can lead to the
perpetuation and amplification of
existing inequalities.

[133–135]

Automation
Bias in
Human–AI
Interaction

Automation bias refers to
biased decision making by
users when utilizing AI
systems, potentially
influencing the AI system’s
outcomes and
recommendations.

Automation bias can occur
when users over-rely on AI
recommendations without
critically evaluating or
verifying the results. Human
trust in AI systems and the
perceived authority of the AI
can contribute to automation
bias.

Automation bias can lead to the
uncritical acceptance of
AI-generated outputs, even when
they are biased or inaccurate. It
may result in erroneous or unfair
decisions based on AI
recommendations. Awareness of
automation bias is crucial to avoid
blindly accepting AI decisions
without human oversight.

[126,128,129]
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User feedback bias and bias from underrepresented or biased user data contribute to
user interaction biases, influencing AI system behavior and predictions. The interaction be-
tween humans and AI, rooted in automation bias, further affects these biases. Notably, user
interaction bias and algorithmic bias overlap, as biases from human–computer interaction
data impact industrial intelligence models, highlighting their interconvertibility.

5. Fair Training
5.1. Fair Training Methods

In response to the above bias analysis, we hope to be able to develop an AI system
without bias by conducting fair training so that we can avoid perpetuating inequalities
due to discriminatory appearances caused by biases. Fairness training aims to reduce these
biases and promote fair decision making. There are several fair training methods that
are currently in common use, including pre-processing fairness [136], in-processing fair-
ness [137], post-processing fairness [46], regularization-based fairness [43], counterfactual
fairness [41,45,138].

Pre-processing, in-processing, and post-processing fairness techniques address bias
in AI systems from different angles. Pre-processing involves modifying training data to
balance group representation. In-processing modifies learning algorithms to integrate fair-
ness. Post-processing adjusts model predictions to align with fairness goals. Additionally,
regularization-based methods introduce fairness constraints in optimization, aiming to
minimize disparities, while counterfactual fairness measures fairness by assessing outcome
consistency for similar individuals across sensitive attributes.

Fair training techniques, as depicted in Table 5, strive to mitigate biases in AI systems
by integrating fairness considerations into the training process. Through the incorporation
of sensitive attributes and fairness constraints, these methods aim to diminish the impact
of such attributes on model predictions, guarding against biased outcomes that could
disproportionately affect marginalized groups. The challenge lies in striking a balance
between fairness and accuracy, avoiding the compromise of model performance while
enhancing fairness.

Table 5. Fair training method comparison.

Fair Training
Method Definition Implementation Key Features References

Pre-processing
Fairness

Modifying training data
before feeding into the
model

Re-sampling, re-weighting,
data augmentation

Addresses bias at the data
level [136,139,140]

In-processing
Fairness

Modifying learning
algorithms or objective
functions

Adversarial training,
adversarial debiasing

Simultaneously optimizes
for accuracy and fairness [137,141,142]

Post-processing
Fairness

Adjusting the model’s
predictions after training Re-ranking, calibration Does not require access to

the model’s internals [46,143–145]

Regularization-
based
Fairness

Adding fairness constraints
to the optimization process

Penalty terms in the loss
function

Can be combined with
various learning algorithms [43,146,147]

Counterfactual
Fairness

Measuring fairness based on
changes in sensitive
attributes

Counterfactual reasoning Focuses on individual-level
fairness [45,148,149]

5.2. Pre-Processing Fairness

Preprocessing fairness applications involve modifying training data before feeding
them into an AI model to reduce bias and promote fairness. These techniques focus on
addressing biases in the data themselves, which can lead to fairer model results. Common
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methods include resampling, reweighting, data augmentation, fairness-aware clustering,
and synthetic oversampling techniques.

Resampling techniques, such as oversampling and undersampling, adjust data distri-
bution to alleviate bias by equalizing group representation. Reweighting assigns higher
weights to underrepresented instances during model training, reducing bias against
marginalized groups. Data augmentation generates synthetic data to bolster underrepre-
sented groups, enhancing fairness. Fairness-aware clustering ensures equitable grouping,
while the Synthetic Minority Oversampling Technique (SMOTE) generates synthetic sam-
ples to balance class distribution, promoting fairness in classification tasks. These methods
collectively counteract bias and enhance fairness in AI models.

In Table 6, it can be seen that re-sampling techniques handle class imbalance, re-
weighting adjusts data importance, data augmentation enhances diversity, attribute swap-
ping equalizes sensitive attributes, fairness-aware clustering ensures equitable grouping,
and SMOTE addresses class imbalance. By selecting and applying the appropriate pre-
processing fairness method based on the specific dataset and fairness goals, AI practitioners
can develop models that prioritize fairness and equitable outcomes. Continued research
and experimentation with these techniques will advance the pursuit of unbiased AI appli-
cations across various domains.

Table 6. Pre-processing fairness comparison.

Pre-Processing
Fairness Method Features Pros Cons References

Re-sampling
Techniques

Balance representation of
different groups

Simple and easy to
implement

May lead to loss of
information and increased
computation

[150–153]

Re-weighting
Techniques

Assign higher weights to
underrepresented groups

Does not alter the original
dataset

Requires careful selection of
appropriate weights [154–159]

Data Augmentation Generate synthetic data to
increase representation

Increases the diversity of the
training dataset

Synthetic data may not fully
represent real-world samples [160–163]

Fairness-aware
Clustering

Cluster data points while
maintaining fairness

Incorporates fairness
constraints during clustering

May not guarantee perfect
fairness in all clusters [164–167]

Synthetic Minority
Over-sampling
Technique (SMOTE)

Generate synthetic samples
for the minority class Addresses class imbalance May result in overfitting or

noisy samples [168–171]

5.3. In Processing Fairness

In-processing fairness refers to modifying the learning algorithm or objective function
during model training to explicitly incorporate fairness constraints. These techniques aim
to simultaneously optimize accuracy while reducing bias and promoting fairness. Their
main approaches include adversarial training [172–176], adversarial debiasing [137,177–179],
equalized odds post-processing [11,144,177,180], fair causal learning [45,181–184], and meta-
fairness [163,185,186].

Table 7 summarizes the comparison of the methods above. Adversarial training and
adversarial debiasing introduce an adversarial component to the learning process, aiming
to minimize the influence of sensitive attributes on model predictions. These methods
have been applied across tasks like natural language processing, computer vision, and
recommendation systems to enhance fairness and reduce bias. Causal learning methods
focus on understanding causal relationships within data and addressing confounding
factors that lead to biased predictions. This approach has been implemented in domains
such as healthcare and criminal justice to ensure fairer and more interpretable outcomes.
Meta Fairness involves learning a fairness-aware optimization algorithm that dynamically
adjusts the balance between fairness and accuracy during model training. It is particularly
valuable when fairness requirements vary across user groups or over time.
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Table 7. In-processing fairness comparison.

In-Processing
Fairness
Method

Features Pros Cons References

Adversarial
Training

Adversarial component to
minimize bias impact

Enhances model’s fairness
while maintaining accuracy

Sensitive to adversarial
attacks, requires additional
computational resources

[172–176]

Adversarial
Debiasing

Adversarial network to
remove sensitive attributes

Simultaneously reduces bias
and improves model’s fairness

Adversarial training
challenges, potential loss of
predictive performance

[137,177–179]

Equalized
Odds Post-
processing

Adjust model predictions to
ensure equalized odds

Guarantees fairness in binary
classification tasks

May lead to suboptimal
trade-offs between fairness
and model performance

[11,144,177,180]

Causal
Learning for
Fairness

Focus on causal relationships
to adjust for bias

Addresses confounding factors
to achieve fairer predictions

Requires causal assumptions,
may be limited by data
availability

[45,181–184]

Meta Fairness Learns fairness-aware
optimization algorithm

Adapts fairness-accuracy
trade-off to changing
requirements

Complexity in learning the
optimization algorithm,
potential increased
complexity

[163,185,186]

Adapting to different biases and trade-offs between fairness and performance, these
methods provide valuable tools for equitable AI. Choosing the appropriate method hinges
on factors such as the application context and bias type.

5.4. Post-Processing Fairness

Post-processing fairness methods focus on adjusting or post-processing the out-
put of trained AI models to ensure fairness and reduce bias after the model has made
its predictions. These techniques are applied after the model has made a decision
to align the results with the fairness goal and mitigate any potential bias present
in the predictions. Some common post-processing fairness methods include equal-
ized odds post-processing [11,144,177,180], calibration post-processing [187–190], re-
jected options classification (ROC) post-processing [144,191–193], priority sampling
post-processing [194–196], threshold optimization post-processing [197–200], and reg-
ularization post-processing [201–204]. Table 8 summarizes the features, pros and cons
with the comparison of these methods.

Equalized odds post-processing is employed post-model training to align predictions,
ensuring equal false alarm and omission rates across different groups. Calibration refines
predicted probabilities to accurately reflect event likelihood. Reject option classification
introduces a “reject” option to avoid biased predictions in sensitive situations. Preferen-
tial sampling post-processing reshapes training data distribution for enhanced fairness.
Threshold optimization post-processing adjusts decision thresholds for a balanced fairness–
accuracy trade-off. Regularization post-processing employs regularization techniques to
encourage fairness during model optimization. These techniques offer ways to enhance
fairness in AI predictions and are particularly useful in contexts like credit scoring and
hiring decisions.

The effectiveness and suitability of post-processing fairness methods vary with the
AI application and fairness goals. While valuable in certain contexts, these techniques
might not entirely resolve root biases. A holistic AI fairness approach should combine pre-
processing, in-processing, and post-processing methods, alongside continuous monitoring
and evaluation, to ensure equitable outcomes.
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Table 8. Post-processing fairness comparison.

Post-Processing
Fairness Method Features Pros Cons References

Equalized Odds
Post-processing

Adjust model predictions
to ensure equalized odds

Ensures equalized false
positive and true positive
rates across groups

May lead to suboptimal
trade-offs between fairness
and model performance

[11,144,177,180]

Calibration
Post-processing

Calibrates model’s
predicted probabilities

Improves fairness by
aligning confidence scores
with true likelihood

Calibration may not entirely
remove bias from the model [187–190]

Reject Option
Classification
(ROC)
Post-processing

Introduces a “reject”
option in classification
decisions

Allows the model to abstain
from predictions in high
fairness concern cases

May lead to lower accuracy
due to abstaining from
predictions

[144,191–193]

Preferential
Sampling
Post-processing

Modifies the training
data distribution by
resampling instances

Improves fairness by
adjusting the representation
of different groups

May not address the root
causes of bias in the model [194–196]

Threshold
Optimization
Post-processing

Adjusts decision
thresholds for fairness
and accuracy trade-off

Allows fine-tuning of
fairness and performance
balance

May not fully eliminate all
biases in the model [197–200]

Regularization
Post-processing

Applies fairness
constraints during model
training

Encourages fairness during
the optimization process

Fairness constraints might
impact model performance [201–204]

5.5. Regularization Based Fairness

Regularization-based fairness methods are emerging as a promising approach to miti-
gate biases in machine learning models. Regularization techniques aim to enforce fairness
constraints during the model training process, ensuring that the model’s predictions are
less influenced by sensitive attributes and promote equitable outcomes. Table 9 summarizes
and compares different regularization methodologies for AI fairness, including adversarial
regularization [205–208], demographic parity regularization [201,204,209–211], equalized
odds regularization [201,212,213], covariate leveling regularization [214,215], and mixture
density network regularization [216–218].

Table 9. Regularization-based fairness comparison.

Regularization-Based
Fairness Method Features Pros Cons References

Adversarial
Regularization

Introduces adversarial
component

Encourages
disentanglement of
sensitive attributes

Computationally
expensive [205–208]

Demographic Parity
Regularization

Enforces similar distributions
across groups Addresses group fairness May lead to accuracy

trade-offs [201,204,209–211]

Equalized Odds
Regularization

Ensures similar false/true
positive rates

Emphasizes fairness in
both rates

May lead to accuracy
trade-offs [201,212,213]

Covariate Shift
Regularization

Reduces impact of
biased/underrepresented
subgroups

Addresses bias due to
distributional differences

Sensitive to noise in
the data [214,215]

Mixture Density
Network
Regularization

Models uncertainty in
predictions

Provides probabilistic
approach to fairness
regularization

Requires larger
amount of data to
estimate probability
distributions

[216–218]
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Regularization-based fairness methods introduce additional components to the model
training process to mitigate bias in AI predictions. Adversarial regularization aims to mini-
mize model dependence on sensitive attributes by introducing an adversarial component.
Demographic parity regularization enforces similar prediction distributions across sensitive
attribute groups. Equalized odds regularization maintains consistent false alarm and true
alarm rates among these groups. Covariate leveling regularization adapts predictions
to diverse data distributions. Mixture density network regularization models prediction
uncertainty through probability density functions. Each approach offers distinct benefits
and trade-offs in addressing bias.

5.6. Counterfactual Fairness

Counterfactual fairness is an approach that seeks to address bias in AI models by con-
sidering counterfactual scenarios, where sensitive attributes are altered while keeping other
features fixed. The idea is to evaluate fairness by examining how the model’s predictions
would change if an individual belonged to a different demographic group, allowing for
a more nuanced understanding of biases. Table 10 summarizes and compares different
regularization methodologies for AI fairness, including individual fairness [40,168,196,219],
equal opportunity fairness [220–222], reweighted counterfactual fairness [223–225], and
oblivious training [226–228].

Table 10. Counterfactual fairness methods comparison.

Counterfactual
Fairness Method Features Pros Cons References

Individual
Fairness

Focuses on treating similar
individuals similarly based on
their features

Considers fairness at the
individual level,
promoting personalized
fairness

Defining similarity metrics and
enforcing individual fairness
can be challenging

[40,196,219]

Equal
Opportunity
Fairness

Minimizes disparate impact on
true positive rates across
sensitive attribute groups

Targets fairness in favor of
historically disadvantaged
groups

May neglect other fairness
concerns, such as false positive
rates or overall accuracy

[220–222]

Equalized Odds
Fairness

Aims for similar false positive
and true positive rates across
sensitive attribute groups

Addresses fairness in both
false positives and false
negatives

May lead to accuracy
trade-offs between groups [229–231]

Reweighted
Counterfactual
Fairness

Assigns different weights to
instances based on similarity to
counterfactual scenarios

Provides better fairness
control by adjusting
instance weights

Determining appropriate
weights and balancing fairness
and accuracy can be
challenging

[223–225]

Oblivious
Training

Trains the model to be ignorant
of certain sensitive attributes
during learning

Offers a simple and
effective way to mitigate
the impact of sensitive
attributes

May result in lower model
performance when sensitive
attributes are relevant to the
task

[226–228]

Individual fairness focuses on treating similar individuals equally despite their pro-
tected attributes. It promotes personalized fairness at the individual level, emphasizing
fine-grained treatment. Equal opportunity fairness ensures similar true positive rates across
different groups to prevent disparate impact in binary classification. Reweighted counter-
factual fairness adjusts data weights during training to mitigate bias and can be combined
with fairness-aware algorithms. Oblivious training trains models on both original and
counterfactual data to promote fairness without explicit labels.

These methods address different fairness concerns, considering both individual and
group fairness aspects, each with their computational and implementation considerations.
Each fairness method has strengths and limitations, potentially impacting areas like model
performance and interpretability. The method chosen should align with specific fairness
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criteria and application contexts, as certain methods may be better suited for particular
domains than others.

In medical data collection, informed consent methods are employed to clarify data
usage and potential risks. Privacy techniques like anonymization protect individuals’ iden-
tities. Data minimization reduces privacy risks by collecting only necessary information,
though this may limit insights. Transparency communicates data collection processes,
building trust while potentially raising privacy concerns. Data security measures include
encryption and access controls to prevent unauthorized access. Accuracy and accountabil-
ity methods involve auditing for reliable data and research outcomes. These approaches
enhance data quality and accountability but may require resource allocation. Balancing
these strategies is essential for ethical and effective data collection in scientific research.

6. Discussion
6.1. Fair Data Collection

To guarantee the fairness in data collection, we summarize the different methods with
the comparison in Table 11 between informed consent, privacy and anonymity, privacy
and anonymization, accuracy and accountability, data security, data minimization, and
transparency approach.

Table 11. Fair data collection fairness methods comparison.

Method Category Features Pros Cons References

Informed Consent Obtain explicit consent from
participants Respects individual autonomy May lead to selection bias [232–234]

Informed Consent Clear explanation of data
collection purpose Builds trust with participants Consent may not always be

fully informed [235,236]

Informed Consent Informed of potential risks Difficulties with complex
research studies [237–239]

Privacy and
Anonymity

Data anonymization,
aggregation,
de-identification

Protects participant privacy Reduced utility of
anonymized data [240,241]

Privacy and
Anonymity

Prevents re-identification of
individuals

Minimizes risk of data
breaches

Challenges in preserving
data utility [242–244]

Data Minimization Collect only necessary data Reduces data collection and
storage costs

Limited data for certain
analyses [28,245,246]

Data Minimization
Avoid gathering
excessive/inappropriate
data

Mitigates privacy risks Potential loss of insights [247,248]

Transparency Clear communication of data
collection process Builds trust with data subjects May lead to privacy

concerns [249–251]

Transparency Information on methods and
data use

Increases data sharing and
collaboration

Difficulties in balancing
transparency [249–251]

Data Security Encryption, access controls,
security audits

Protects data from
unauthorized access Implementation costs [252–254]

Data Security Safeguards data from
breaches

Prevents data manipulation
and tampering Potential usability impact [252–254]

Accuracy and
Accountability

Processes for data accuracy
and accountability Ensures reliability of data Requires resource allocation

for auditing [24,255,256]

6.2. Regular Auditing and Monitoring

The continuous monitoring and auditing of AI systems are crucial to identify and
address emerging biases throughout the AI lifecycle. Regular auditing and monitoring are
crucial aspects of ensuring AI fairness in real-world applications. Table 12 summarizes
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different methods for auditing and monitoring AI fairness, including disparate impact anal-
ysis, fairness-aware performance metrics, bias detection techniques, algorithmic fairness
dashboards, model explanation and interpretability, and continual bias monitoring.

Table 12. Regular auditing and monitoring comparison.

Method Features Pros Cons References

Disparate Impact
Analysis

Measures disparate impact
ratios

Easy to implement and
interpret

Only captures one aspect of
fairness (impact ratios) [6,257,258]

Fairness-aware
Performance
Metrics

Simultaneously evaluates
accuracy and fairness

Provides a holistic view of
model performance and
fairness

Choice of fairness metric
may not fully capture
desired notions of fairness

[259–261]

Bias Detection
Techniques

Identifies biases in data or
model predictions

Alerts to potential fairness
issues early

May require domain
expertise for interpreting
and addressing identified
biases

[71,262,263]

Algorithmic
Fairness
Dashboards

Real-time visualizations and
metrics for monitoring

Enables continuous fairness
monitoring

Complexity in designing
comprehensive dashboards [264–266]

Model
Explanation and
Interpretability

Provides insights into
decision-making

Facilitates understanding of
model behavior and
potential biases

May not fully capture
complex interactions in the
model, leading to limited
interpretability

[267–270]

Continual Bias
Monitoring

Ongoing and regular
assessment

Detects and addresses
emerging fairness issues
over time

May require significant
resources for continuous
monitoring

[47,271,272]

7. AI Fairness in Practice

AI fairness has a large number of real-world applications in a variety of fields, where
it is critical to ensure that machine learning models do not perpetuate or amplify bias
and discrimination. The areas where the current research and application work are
more focused are AI-based social infrastructure and management and business appli-
cations. Tables 13 and 14 summarize common applications and case studies with a com-
parison of the approaches and challenges, respectively, including education [273–277]
health care [52,278–280] criminal justice and sentencing [88,281–283], hiring and recruit-
ing [284–286], lending and credit decisions [287–292], online advertising [8,293–295], cus-
tomer service and chatbots [296–303].

7.1. Social Administration

Artificial intelligence (AI) has become an integral part of all industries, changing
the way decisions and processes are managed. In recent years, the concept of AI fair-
ness has gained prominence, especially in the field of social management. AI systems
are increasingly being used in areas such as criminal justice, healthcare, and education.
Table 13 summarizes the typical applications, including issues, mechanisms, opportunities
and challenges.

7.1.1. Health Care

AI fairness can also be applied to healthcare diagnosis and treatment recommendation
systems to reduce bias and ensure fairness in healthcare delivery, as some healthcare AI
systems have been found to differ in the diagnosis of certain diseases among different racial
groups [52,278]. The use of a fairness-aware algorithm improves the performance of the
model and provides a fairer diagnosis for all patients [279,280].
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Table 13. AI fairness in social administration practices.

Application Issues Mechanism Opportunities Challenges

Health Care

Racial and gender biases in
diagnosis and treatment.
Unequal healthcare due to
socioeconomic factors.

diversifying
representative datasets.
Personalized treatment
plans based on
individual
characteristics.

Enhancing healthcare
access and outcomes for
all individuals.
Reducing healthcare
disparities.

Ensuring patient privacy
and data security.
Addressing biases in
data collection and data
sources.

Education

Bias in admissions and
resource allocation.
Unequal access to quality
education.

Fair criteria for
admissions and resource
allocation. Personalized
learning for individual
needs. Identifying and
assisting at-risk students.

Reducing educational
disparities. Enhancing
learning outcomes for
all students.

ethical considerations
regarding data privacy in
educational settings.
avoiding undue focus on
standardized testing.

Criminal
Justice and
Sentencing

Racial Bias in predictive
policing and sentencing.
Unfair allocation of
resources for crime
prevention.

focus on rehabilitation
with regular auditing
and updating the models
with transparency in
decision-making.

Reducing biased arrests
and sentencing.
Allocating resources
more efficiently.

The ethical implications
of using AI in criminal
justice. Ensuring model
accountability and
avoiding “tech-washing”.

AI applications in healthcare face challenges of interpretability, trust, data privacy,
and security. Privacy concerns hinder data sharing, while complex AI models lack inter-
pretability, impacting trust. Transparent and responsible data management is needed for
data sharing while protecting privacy. Explainable AI can enhance trust by making AI
recommendations understandable [304]. Aligning with healthcare governance measures
can ensure trustworthy AI use. Addressing these issues can revolutionize medical decision
making, improve outcomes, and foster equitable and patient-centered healthcare.

7.1.2. Education

Artificial intelligence fairness is applied to education technology to ensure equal
opportunity for students regardless of their background [273]. This is because in reality,
AI-powered tutoring systems exhibit biases when assigning tasks to students [274,275].
Therefore with the incorporation of fairness awareness, the system can adjust the recom-
mendations to treat all students fairly [276,277].

AI algorithms in college admissions and resource allocation may unintentionally
perpetuate biases, impacting opportunities and diversity. Personalized learning platforms
might worsen educational disparities, particularly for marginalized students. Testing and
assessment bias can lead to unfair evaluations, affecting self-esteem and prospects. Future
work should design fairness-conscious admissions models and AI systems optimizing
fairness to mitigate bias. Transparency and accountability measures should guide AI-
based educational decisions. Incorporating equity in personalized learning algorithms
and diverse educational content can promote equitable support. Culturally responsive
education and diverse resources can also aid in reducing bias in assessments.

7.1.3. Criminal Justice and Sentencing

Utilizing AI fairness to address bias in risk assessment tools ensures that criminal
sentencing decisions are fair [88,281]. In the criminal justice system, some AI-based risk
assessment tools have been found to be racially biased, resulting in harsher sentences
for some minorities [282]. Implementation of fairness awareness training resulted in a
significant reduction in system bias [283].

Current research predominantly addresses racial, socioeconomic, and recidivism pre-
diction biases. Data-driven disparities may lead to biased arrests, bail decisions, and
sentencing. Biased recidivism prediction algorithms misclassify groups as high risk, per-
petuating unfair treatment and higher incarceration rates for marginalized groups.
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Future efforts should gather diverse, representative training data to mitigate bias.
Fairness-aware algorithms and AI models optimizing fairness should be developed to pre-
vent differential treatment based on race or socioeconomic status. Transparent risk assess-
ment models can enhance interpretability, aiding defendants and legal professionals. Regu-
lar model audits are essential to identify and rectify potential biases in model deployment.

7.2. Business

Another important application area for AI Fairness is business. More and more AI
technologies are also being continuously introduced into commercial applications, and
Table 14 summarizes and compares several trending widely used scenarios.

Table 14. AI fairness in business practices.

Application Issues Mechanism Opportunities Challenges

Recruiting
Bias in job ads and
candidate selection. Lack
of diversity in hiring.

Debiasing job descriptions,
candidate screening and
removing identifiable
information, diversifying
training data.

Increasing workforce
diversity. Reducing hiring
discrimination.

Balancing fairness and
competence. Ensuring
fairness across different
demographics.

Lending
and Credit
Decisions

Discrimination in loan
approvals. Lack of
transparency in decision
making.

Implementing
fairness-aware algorithms,
explaining model
decisions, alternative data
to creditworthiness.

Expanding access to credit
for marginalized groups.
Improving overall lending
practices.

Striking a balance between
fairness and risk
assessment. Handling
potential adversarial
attacks on models.

Online Ad-
vertising

Targeting ads based on
sensitive attributes.
Reinforcing stereotypes
through ad delivery.

Differential privacy to
protect privacy, biased
message screening,
providing users preference
controls.

Improving user experience
and privacy protection.
Fostering a positive brand
image.

The balance between
targeted ads and user
privacy. Identifying and
Addressing hidden biases
in ad delivery.

Customer
Service
and
Chatbots

biased responses and
inappropriate interactions.
Lack of understanding
diverse linguistic
expressions.

Training chatbots on
inclusive and diverse
datasets with
reinforcement learning to
improve interactions with
feedback on bot behavior.

Enhancing user experience
and customer satisfaction.
Scaling customer support
efficiently.

Minimizing harmful or
offensive responses.
Dealing with novel inputs
and out-of-distribution
data.

7.2.1. Hiring and Recruiting

The integration of artificial intelligence (AI) in human resource management (HRM)
introduces transformative enhancements. Figure 3 shows a recruitment process supported
by AI throughout. AI-driven algorithms streamline CV screening and candidate profiling,
while proctored assessments ensure secure remote testing. AI optimizes interview schedul-
ing and personalizes HR training. Behavior tracking and personality analysis provide
insights into candidate dynamics, and AI aids in appraisal monitoring through perfor-
mance metric analysis. These applications collectively reshape HRM practices, enhancing
efficiency and informed decision making.

In the applications of AI system in HRM, artificial intelligence fairness is applied to
mitigate bias in automated hiring systems, ensuring equitable and non-discriminatory
candidate selection [305,306]. Many AI-driven recruitment tools have exhibited biases,
favoring specific candidates and overlooking job requisites [307,308]. Utilizing AI fairness
techniques rectifies these model biases, fostering impartial hiring decisions independent of
attributes unrelated to job proficiency [309]. Tackling these challenges and future endeavors
in AI fairness is pivotal to harnessing the potential of AI for equitable recruitment, fostering
diversity and inclusivity in workforce dynamics.
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Figure 3. Tasks with artificial intelligence for hiring and recruiting in human resources.

7.2.2. Loan and Credit Decisions

AI applications in loan and credit decision making aim to improve decision accuracy,
speed, and fairness while maintaining prudent risk management. As shown in Figure 4, AI
applications in loan and credit decision making involve leveraging artificial intelligence
techniques to assess creditworthiness, streamline lending processes, and enhance risk
management. These applications use AI algorithms to analyze various data sources, such
as financial records, transaction histories, and alternative data, to make more accurate
and efficient lending decisions. This aids in automating and optimizing the loan approval
process, reducing human bias, and increasing access to credit for underserved populations.
AI assists in fraud detection, predicting default risks, and personalizing loan terms based
on individual borrower profiles.

Client Corporation Project

Customer 
Profiling

Asset/Liability 
Profiling

Investment 
Profiling

Policy/Product Matching

e.g., Transaction Analysis e.g., Analysis of Balance, Commercial 
Register, Finance etc.

Revenue Prediction, 
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Private Credit Corporation Credit Financing Portfolio

Figure 4. Tasks with artificial intelligence for hiring and recruiting in human resources.
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7.2.3. Online Advertising

To counteract bias in credit-scoring models and ensure equitable access to loans and credit
opportunities for all individuals, AI fairness is applied with bias migration strategies [287,288].
Certain AI-driven credit scoring models have exhibited potential bias towards specific demo-
graphic groups [288,289]. Implementing bias mitigation techniques enhances model fairness,
leading to more impartial lending determinations [290–292]. Looking ahead, future efforts
should focus on integrating diverse data sources like rental histories or utility payments into
credit assessments while maintaining fairness. Designing AI models capable of adapting
to various data distributions, including non-traditional data, can also sustain fairness and
accuracy. Incorporating fairness-aware explanations into AI models offers insight into achiev-
ing equitable credit decisions with transparency. Through these applications and ongoing
research, the aim is to foster inclusive and just lending practices by minimizing bias and
promoting unbiased access to credit [287,288,290–292].

AI systems have a substantial role in online advertising, including targeted ad delivery,
content censorship and related design. Figure 5 shows an example of AI applications
according to the hierarchical taxonomy of online advertising. It can be seen that the AI
support can enhance ad relevance and user experience, while also mitigating inappropriate
content. However, challenges related to biases in ad targeting and content moderation
necessitate the development of fairness-aware approaches to ensure equitable outcomes.
In this context, AI technologies both facilitate and necessitate ongoing efforts to maintain
fairness and effectiveness in online advertising practices.

Online Advertising

Web Page Blog/Newsletters email/messages

Text Advertising HTML HCI Multimedia

Content Tag
Contextual Advertising

Keyword
Sponsored Searching

Paid Placement

Searching

Displaying Advertising

Banner, Sidebar, HCI Pop-up/Pop-under Ad Floating Advertising Interstitials

AI Advertising Delivery

AI Content Censorship

Figure 5. An example of AI support corresponding to the taxonomy of online advertising.

To address the issue above, AI fairness is used for ad targeting to avoid promoting
discriminatory or biased content to users based on their attributes [293]. Some online
advertising platforms have experienced problems with certain ads being disproportion-
ately shown to users from specific demographic groups [8,294]. By incorporating fairness
constraints, the platform achieved more balanced ad targeting across all users [295]. AI
algorithms in advertising may unintentionally yield biased ad targeting and content due to
biased training data and content generation. Future work should center on fairness-aware
targeting, bias audits, diverse data, and inclusive content to ensure fairness and inclusivity
in ad delivery.
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7.2.4. Customer Service

Artificial intelligence is also introduced into customer service, or the customer relation-
ship management (CRM) system [296], which enhances customer interactions and support.
As shown in Figure 6, the chatbots utilize natural language processing and sentiment anal-
ysis to understand customer queries and provide accurate, timely responses. They enable
automated, efficient, and personalized customer interactions, improving user experience.
AI-driven chatbots handle routine inquiries, offer real-time support, and gather insights for
businesses to enhance their services. This technology aims to streamline customer service
operations while ensuring effective and satisfactory customer interactions.

Data Query & Fetching

Client Data

FAQ Data

Call Centre Data

CRM Service Data

AI Modules

Keyword
Searching

Sentiment 
Analysis

Semantic 
Module

Knowledge
Aggregation

Speech SynthesisNLP

Chatbot

Chat Interface

Figure 6. An example of AI support chatbot system for CRM.

However, some customer service chatbots show biased responses to users who speak
certain language dialects [297–299]. Aiming at this, AI fairness is used in chatbot design to
avoid biased responses or inappropriate behavior towards users [300,301]. After implement-
ing fairness checks, the chatbot provides culturally sensitive and fair interactions [302,303].

The current challenge in the customer service bot domain pertains to mitigating
uncertain biased and inappropriate responses. Chatbots often unknowingly offer biased
or offensive replies due to training data exposure, leading to customer dissatisfaction
and reputational harm. Additionally, limitations in comprehending diverse linguistic
expressions hinder accurate responses to various language forms, including slang. Further,
inadequacies in addressing sensitive topics and emotional responses lead to inappropriate
interactions in some customer service bots.

In prospective research, countering the aforementioned concerns requires embedding
bias detection and mitigation mechanisms to identify and address biased language and
responses in chatbot interactions. Mitigating biased replies can be achieved by adopting
inclusive training data representing diverse user demographics and employing natural
language processing techniques to enhance language comprehension. Continuous learning
is essential for customer service bots to adapt and comprehend various language styles
through user interactions.

8. Conclusions

This article introduces the study of fairness in artificial intelligence, detailing the
background and definition of this concept. The article introduces the development process
of the fairness problem in AI systems from the perspectives of practical applications and
the current state of development, and reviews and discusses the main research directions
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for solving the fairness problem in AI—bias analysis and fairness training—respectively. In
the course of the review, the ideas and implementations of each method are explained in
detail, and their respective characteristics and occasions of use are compared. The article
also explores measures to reduce bias and improve fairness in AI systems, reviews relevant
problems and solutions in practical applications of AI fairness, and discusses possible
future research directions. On the basis of the theoretical foundations and methodology
of AI fairness, the paper also explores scenarios and application examples in practical
applications, thus contributing to the current discussion on fair and unbiased AI systems.

This paper also provides an in-depth comparison of the characteristics, advantages,
and disadvantages of each of the different methods, based on the collation of the state-of-
the-art research. The results of the comparison will provide advisory support for future
research and development. At the same time, this paper also summarizes some of the
existing problems in existing applications and proposes some focuses and solution ideas
for future research work. These summaries will provide ideas for the further development
of fairness in future AI systems.

The information synthesized in this study comes from a variety of reliable sources.
These sources include recent publications in prestigious academic journals, distinguished
conference proceedings, and well-established online repositories dedicated to the fairness
of AI. It is important to recognize that while these sources have contributed significantly to
our understanding, there are limitations to the evidence they provide. These limitations
stem primarily from nuances in the research methodology, sample size, and context, which
may affect the generalizability of conclusions drawn from individual studies. The land-
scape of AI fairness is dynamic, with research and advancements continually shaping our
understanding of its complexities. While our current coverage might have limitations due
to the rapid pace of change and ongoing research, please know that we are committed to
further studying and exploring this crucial subject.
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179. Darlow, L.; Jastrzębski, S.; Storkey, A. Latent adversarial debiasing: Mitigating collider bias in deep neural networks. arXiv 2020,
arXiv:2011.11486.

180. Mishler, A.; Kennedy, E.H.; Chouldechova, A. Fairness in risk assessment instruments: Post-processing to achieve counter-
factual equalized odds. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual
Event/Toronto, ON, Canada, 3–10 March 2021; pp. 386–400.

181. Roy, S.; Salimi, B. Causal inference in data analysis with applications to fairness and explanations. In Reasoning Web. Causality,
Explanations and Declarative Knowledge: 18th International Summer School 2022, Berlin, Germany, 27–30 September 2022; Springer:
Cham, Switzerland, 2023; pp. 105–131.

182. Madras, D.; Creager, E.; Pitassi, T.; Zemel, R. Fairness through causal awareness: Learning causal latent-variable models for biased
data. In Proceedings of the Conference on Fairness, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019;
pp. 349–358.

183. Loftus, J.R.; Russell, C.; Kusner, M.J.; Silva, R. Causal reasoning for algorithmic fairness. arXiv 2018, arXiv:1805.05859.
184. Hinnefeld, J.H.; Cooman, P.; Mammo, N.; Deese, R. Evaluating fairness metrics in the presence of dataset bias. arXiv 2018,

arXiv:1809.09245.

http://dx.doi.org/10.1007/s10462-021-10066-4
http://dx.doi.org/10.1186/1471-2105-14-106
http://www.ncbi.nlm.nih.gov/pubmed/23522326
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.3390/a15080283


Appl. Sci. 2023, 13, 10258 29 of 33

185. Modén, M.U.; Lundin, J.; Tallvid, M.; Ponti, M. Involving teachers in meta-design of AI to ensure situated fairness. Proceedings
2022, 1613, 0073.

186. Zhao, C.; Li, C.; Li, J.; Chen, F. Fair meta-learning for few-shot classification. In Proceedings of the 2020 IEEE International
Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 275–282.

187. Hsu, B.; Chen, X.; Han, Y.; Namkoong, H.; Basu, K. An Operational Perspective to Fairness Interventions: Where and How to
Intervene. arXiv 2023, arXiv:2302.01574.

188. Salvador, T.; Cairns, S.; Voleti, V.; Marshall, N.; Oberman, A. Faircal: Fairness calibration for face verification. arXiv 2021,
arXiv:2106.03761.

189. Noriega-Campero, A.; Bakker, M.A.; Garcia-Bulle, B.; Pentland, A. Active fairness in algorithmic decision making. In Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019; pp. 77–83.

190. Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; Weinberger, K.Q. On fairness and calibration. Adv. Neural Inf. Process. Syst.
2017, 30.

191. Tahir, A.; Cheng, L.; Liu, H. Fairness through Aleatoric Uncertainty. arXiv 2023, arXiv:2304.03646.
192. Tubella, A.A.; Barsotti, F.; Koçer, R.G.; Mendez, J.A. Ethical implications of fairness interventions: What might be hidden behind

engineering choices? Ethics Inf. Technol. 2022, 24, 12. [CrossRef]
193. Kamishima, T.; Akaho, S.; Asoh, H.; Sakuma, J. Model-based and actual independence for fairness-aware classification. Data Min.

Knowl. Discov. 2018, 32, 258–286. [CrossRef]
194. Kasmi, M.L. Machine Learning Fairness in Finance: An Application to Credit Scoring. Ph.D. Thesis, Tilburg University, Tilburg,

The Netherlands, 2021.
195. Zhang, T.; Zhu, T.; Li, J.; Han, M.; Zhou, W.; Philip, S.Y. Fairness in semi-supervised learning: Unlabeled data help to reduce

discrimination. IEEE Trans. Knowl. Data Eng. 2020, 34, 1763–1774. [CrossRef]
196. Caton, S.; Haas, C. Fairness in machine learning: A survey. arXiv 2020, arXiv:2010.04053.
197. Small, E.A.; Sokol, K.; Manning, D.; Salim, F.D.; Chan, J. Equalised Odds is not Equal Individual Odds: Post-processing for Group

and Individual Fairness. arXiv 2023, arXiv:2304.09779.
198. Jang, T.; Shi, P.; Wang, X. Group-aware threshold adaptation for fair classification. AAAI Conf. Artif. Intell. 2022, 36, 6988–6995.

[CrossRef]
199. Nguyen, D.; Gupta, S.; Rana, S.; Shilton, A.; Venkatesh, S. Fairness improvement for black-box classifiers with Gaussian process.

Inf. Sci. 2021, 576, 542–556. [CrossRef]
200. Iosifidis, V.; Fetahu, B.; Ntoutsi, E. Fae: A fairness-aware ensemble framework. In Proceedings of the 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1375–1380.
201. Zhong, M.; Tandon, R. Learning Fair Classifiers via Min-Max F-divergence Regularization. arXiv 2023, arXiv:2306.16552.
202. Nandy, P.; Diciccio, C.; Venugopalan, D.; Logan, H.; Basu, K.; El Karoui, N. Achieving Fairness via Post-Processing in Web-Scale

Recommender Systems. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, Seoul,
Republic of Korea, 21–24 June 2022; pp. 715–725.

203. Boratto, L.; Fenu, G.; Marras, M. Interplay between upsampling and regularization for provider fairness in recommender systems.
User Model. User Adapt. Interact. 2021, 31, 421–455. [CrossRef]

204. Yao, S.; Huang, B. Beyond parity: Fairness objectives for collaborative filtering. Adv. Neural Inf. Process. Syst. 2017, 30.
205. Yu, B.; Wu, J.; Ma, J.; Zhu, Z. Tangent-normal adversarial regularization for semi-supervised learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10676–10684.
206. Sato, M.; Suzuki, J.; Kiyono, S. Effective adversarial regularization for neural machine translation. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 204–210.
207. Nasr, M.; Shokri, R.; Houmansadr, A. Machine learning with membership privacy using adversarial regularization. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 634–646.

208. Mertikopoulos, P.; Papadimitriou, C.; Piliouras, G. Cycles in adversarial regularized learning. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–10 January 2018; SIAM: Philadelphia, PA,
USA, 2018; pp. 2703–2717.

209. Du, M.; Yang, F.; Zou, N.; Hu, X. Fairness in deep learning: A computational perspective. IEEE Intell. Syst. 2020, 36, 25–34.
[CrossRef]

210. Horesh, Y.; Haas, N.; Mishraky, E.; Resheff, Y.S.; Meir Lador, S. Paired-consistency: An example-based model-agnostic approach
to fairness regularization in machine learning. In Proceedings of the Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, 16–20 September 2019; Springer: Cham, Switzerland, 2020;
pp. 590–604.

211. Lohaus, M.; Kleindessner, M.; Kenthapadi, K.; Locatello, F.; Russell, C. Are Two Heads the Same as One? Identifying Disparate
Treatment in Fair Neural Networks. Adv. Neural Inf. Process. Syst. 2022, 35, 16548–16562.

212. Romano, Y.; Bates, S.; Candes, E. Achieving equalized odds by resampling sensitive attributes. Adv. Neural Inf. Process. Syst. 2020,
33, 361–371.

213. Cho, J.; Hwang, G.; Suh, C. A fair classifier using mutual information. In Proceedings of the 2020 IEEE International Symposium
on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2521–2526.

http://dx.doi.org/10.1007/s10676-022-09636-z
http://dx.doi.org/10.1007/s10618-017-0534-x
http://dx.doi.org/10.1109/TKDE.2020.3002567
http://dx.doi.org/10.1609/aaai.v36i6.20657
http://dx.doi.org/10.1016/j.ins.2021.06.095
http://dx.doi.org/10.1007/s11257-021-09294-8
http://dx.doi.org/10.1109/MIS.2020.3000681


Appl. Sci. 2023, 13, 10258 30 of 33

214. Wieling, M.; Nerbonne, J.; Baayen, R.H. Quantitative social dialectology: Explaining linguistic variation geographically and
socially. PLoS ONE 2011, 6, e23613. [CrossRef]

215. Bhanot, K.; Qi, M.; Erickson, J.S.; Guyon, I.; Bennett, K.P. The problem of fairness in synthetic healthcare data. Entropy 2021,
23, 1165. [CrossRef]

216. Brusaferri, A.; Matteucci, M.; Spinelli, S.; Vitali, A. Probabilistic electric load forecasting through Bayesian mixture density
networks. Appl. Energy 2022, 309, 118341. [CrossRef]

217. Errica, F.; Bacciu, D.; Micheli, A. Graph mixture density networks. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual, 18–24 July 2021; pp. 3025–3035.

218. Makansi, O.; Ilg, E.; Cicek, O.; Brox, T. Overcoming limitations of mixture density networks: A sampling and fitting framework
for multimodal future prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; pp. 7144–7153.

219. John, P.G.; Vijaykeerthy, D.; Saha, D. Verifying individual fairness in machine learning models. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, PMLR, Virtual, 3–6 August 2020; pp. 749–758.

220. Han, X.; Baldwin, T.; Cohn, T. Towards equal opportunity fairness through adversarial learning. arXiv 2022, arXiv:2203.06317.
221. Shen, A.; Han, X.; Cohn, T.; Baldwin, T.; Frermann, L. Optimising equal opportunity fairness in model training. arXiv 2022,

arXiv:2205.02393.
222. Verma, S.; Rubin, J. Fairness definitions explained. In Proceedings of the International Workshop on Software Fairness,

Gothenburg, Sweden, 29 May 2018; pp. 1–7.
223. Balashankar, A.; Wang, X.; Packer, B.; Thain, N.; Chi, E.; Beutel, A. Can we improve model robustness through secondary

attribute counterfactuals? In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Virtual,
7–11 November 2021; pp. 4701–4712.

224. Dong, Z.; Zhu, H.; Cheng, P.; Feng, X.; Cai, G.; He, X.; Xu, J.; Wen, J. Counterfactual learning for recommender system. In
Proceedings of the 14th ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September 2020; pp. 568–569.

225. Veitch, V.; D’Amour, A.; Yadlowsky, S.; Eisenstein, J. Counterfactual invariance to spurious correlations in text classification. Adv.
Neural Inf. Process. Syst. 2021, 34, 16196–16208.

226. Chang, Y.C.; Lu, C.J. Oblivious polynomial evaluation and oblivious neural learning. In Proceedings of the Advances in
Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information
Security Gold Coast, Australia, 9–13 December 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 369–384.

227. Meister, M.; Sheikholeslami, S.; Andersson, R.; Ormenisan, A.A.; Dowling, J. Towards distribution transparency for supervised
ML with oblivious training functions. In Proceedings of the Workshop MLOps Syst, Austin, TX, USA, 2–4 March 2020; pp. 1–3.

228. Liu, J.; Juuti, M.; Lu, Y.; Asokan, N. Oblivious neural network predictions via minionn transformations. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017;
pp. 619–631.

229. Goel, N.; Yaghini, M.; Faltings, B. Non-discriminatory machine learning through convex fairness criteria. In Proceedings of the
2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; p. 116.

230. Makhlouf, K.; Zhioua, S.; Palamidessi, C. Survey on causal-based machine learning fairness notions. arXiv 2020, arXiv:2010.09553.
231. Gölz, P.; Kahng, A.; Procaccia, A.D. Paradoxes in fair machine learning. Adv. Neural Inf. Process. Syst. 2019, 32.
232. Ferryman, K.; Pitcan, M. Fairness in Precision Medicine; Data and Society Research Institute: New York, NY, USA, 2018.
233. Dempsey, W.; Foster, I.; Fraser, S.; Kesselman, C. Sharing begins at home: How continuous and ubiquitous FAIRness can enhance

research productivity and data reuse. Harv. Data Sci. Rev. 2022, 4, 10–11. [CrossRef]
234. Durand, C.M.; Segev, D.; Sugarman, J. Realizing HOPE: The ethics of organ transplantation from HIV-positive donors. Ann.

Intern. Med. 2016, 165, 138–142. [CrossRef]
235. Rubinstein, Y.R.; McInnes, P. NIH/NCATS/GRDR® Common Data Elements: A leading force for standardized data collection.

Contemp. Clin. Trials 2015, 42, 78–80. [CrossRef]
236. Frick, K.D. Micro-costing quantity data collection methods. Med. Care 2009, 47, S76. [CrossRef] [PubMed]
237. Rothstein, M.A. Informed consent for secondary research under the new NIH data sharing policy. J. Law Med. Ethics 2021,

49, 489–494. [CrossRef] [PubMed]
238. Greely, H.T.; Grady, C.; Ramos, K.M.; Chiong, W.; Eberwine, J.; Farahany, N.A.; Johnson, L.S.M.; Hyman, B.T.; Hyman, S.E.;

Rommelfanger, K.S.; et al. Neuroethics guiding principles for the NIH BRAIN initiative. J. Neurosci. 2018, 38, 10586. [CrossRef]
[PubMed]

239. Nijhawan, L.P.; Janodia, M.D.; Muddukrishna, B.; Bhat, K.M.; Bairy, K.L.; Udupa, N.; Musmade, P.B. Informed consent: Issues
and challenges. J. Adv. Pharm. Technol. Res. 2013, 4, 134.

240. Elliot, M.; Mackey, E.; O’Hara, K.; Tudor, C. The Anonymisation Decision-Making Framework; UKAN: Manchester, UK, 2016; p. 171.
241. Rosner, G. De-Identification as Public Policy. J. Data Prot. Priv. 2019, 3, 1–18.
242. Moretón, A.; Jaramillo, A. Anonymisation and re-identification risk for voice data. Eur. Data Prot. L. Rev. 2021, 7, 274. [CrossRef]
243. Rumbold, J.M.; Pierscionek, B.K. A critique of the regulation of data science in healthcare research in the European Union. BMC

Med. Ethics 2017, 18, 27. [CrossRef] [PubMed]
244. Stalla-Bourdillon, S.; Knight, A. Anonymous data v. personal data-false debate: An EU perspective on anonymization,

pseudonymization and personal data. Wis. Int’l LJ 2016, 34, 284.

http://dx.doi.org/10.1371/journal.pone.0023613
http://dx.doi.org/10.3390/e23091165
http://dx.doi.org/10.1016/j.apenergy.2021.118341
http://dx.doi.org/10.1162/99608f92.44d21b86
http://dx.doi.org/10.7326/M16-0560
http://dx.doi.org/10.1016/j.cct.2015.03.003
http://dx.doi.org/10.1097/MLR.0b013e31819bc064
http://www.ncbi.nlm.nih.gov/pubmed/19536026
http://dx.doi.org/10.1017/jme.2021.69
http://www.ncbi.nlm.nih.gov/pubmed/34665099
http://dx.doi.org/10.1523/JNEUROSCI.2077-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30541767
http://dx.doi.org/10.21552/edpl/2021/2/20
http://dx.doi.org/10.1186/s12910-017-0184-y
http://www.ncbi.nlm.nih.gov/pubmed/28388916


Appl. Sci. 2023, 13, 10258 31 of 33

245. Ilavsky, J. Nika: Software for two-dimensional data reduction. J. Appl. Crystallogr. 2012, 45, 324–328. [CrossRef]
246. Fietzke, J.; Liebetrau, V.; Günther, D.; Gürs, K.; Hametner, K.; Zumholz, K.; Hansteen, T.; Eisenhauer, A. An alternative data

acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic
strontium isotopes in carbonates. J. Anal. At. Spectrom. 2008, 23, 955–961. [CrossRef]

247. Gwynne, S. Conventions in the Collection and Use of Human Performance Data; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2010; pp. 10–928.

248. Buckleton, J.S.; Bright, J.A.; Cheng, K.; Budowle, B.; Coble, M.D. NIST interlaboratory studies involving DNA mixtures (MIX13):
A modern analysis. Forensic Sci. Int. Genet. 2018, 37, 172–179. [CrossRef] [PubMed]

249. Sydes, M.R.; Johnson, A.L.; Meredith, S.K.; Rauchenberger, M.; South, A.; Parmar, M.K. Sharing data from clinical trials: The
rationale for a controlled access approach. Trials 2015, 16, 104. [CrossRef] [PubMed]

250. Abdul Razack, H.I.; Aranjani, J.M.; Mathew, S.T. Clinical trial transparency regulations: Implications to various scholarly
publishing stakeholders. Sci. Public Policy 2022, 49, 951–961. [CrossRef]

251. Alemayehu, D.; Anziano, R.J.; Levenstein, M. Perspectives on clinical trial data transparency and disclosure. Contemp. Clin. Trials
2014, 39, 28–33. [CrossRef]

252. Force, J.T.; Initiative, T. Security and privacy controls for federal information systems and organizations. NIST Spec. Publ. 2013,
800, 8–13.

253. Plans, B.E.A. Assessing security and privacy controls in federal information systems and organizations. NIST Spec. Publ. 2014,
800, 53A.

254. Dempsey, K.; Witte, G.; Rike, D. Summary of NIST SP 800-53, Revision 4: Security and Privacy Controls for Federal Information Systems
and Organizations; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.

255. Passi, S.; Jackson, S.J. Trust in data science: Collaboration, translation, and accountability in corporate data science projects. Proc.
ACM Hum. Comput. Interact. 2018, 2, 1–28. [CrossRef]

256. Hutt, E.; Polikoff, M.S. Toward a framework for public accountability in education reform. Educ. Res. 2020, 49, 503–511.
[CrossRef]

257. Carle, S.D. A social movement history of Title VII Disparate Impact analysis. Fla. L. Rev. 2011, 63, 251. [CrossRef]
258. Griffith, D.; McKinney, B. Using Disparate Impact Analysis to Develop Anti-Racist Policies: An Application to Coronavirus

Liability Waivers. J. High. Educ. Manag. 2021, 36, 104–116.
259. Liu, S.; Ge, Y.; Xu, S.; Zhang, Y.; Marian, A. Fairness-aware federated matrix factorization. In Proceedings of the 16th ACM

Conference on Recommender Systems, Seattle, WA, USA, 18–22 September 2022; pp. 168–178.
260. Gao, R.; Ge, Y.; Shah, C. FAIR: Fairness-aware information retrieval evaluation. J. Assoc. Inf. Sci. Technol. 2022, 73, 1461–1473.

[CrossRef]
261. Zhang, W.; Ntoutsi, E. Faht: An adaptive fairness-aware decision tree classifier. arXiv 2019, arXiv:1907.07237.
262. Serna, I.; DeAlcala, D.; Morales, A.; Fierrez, J.; Ortega-Garcia, J. IFBiD: Inference-free bias detection. arXiv 2021, arXiv:2109.04374.
263. Li, B.; Peng, H.; Sainju, R.; Yang, J.; Yang, L.; Liang, Y.; Jiang, W.; Wang, B.; Liu, H.; Ding, C. Detecting gender bias in

transformer-based models: A case study on BERT. arXiv 2021, arXiv:2110.15733.
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